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Abstract: In this paper we study a class of operator polynomials in Hilbert
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merical range. As an application the Eneström–Kakeya–Hurwitz theorem on
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1 Introduction

For many purposes the Eneström–Kakeya theorem ([31, p. 137], [37, p. 4],

[9, p. 12], [38, p. 255]) is an effective criterion to test whether a real polyno-

mial has all its zeros in the unit disk. It can be stated as follows.

Theorem 1.1. Let5

h(z) =
∑m−1

j=0
ajz

j (1.1)

be a real polynomial such that

0 < a0 ≤ a1 ≤ · · · ≤ am−1. (1.2)

Then all zeros λ of h(z) satisfy |λ| ≤ 1.

The theorem has numerous applications, which range from asymptotics

of partial sums of power series [11] or a local-global stability principle for

discrete-time systems [28], to coding theory [13], the economic theory of10

depreciation and reinvestment [41], stability analysis of delay filters [36] and

to models of high energy collisions [10] in physics. In this paper we are

concerned with an extension of the Eneström–Kakeya theorem to operators in

Hilbert space, which is different from the ones given by Furuta and Nakamura

[21] and by Fuji and Kubo [18]. Our starting point is a sharper version of15

Theorem 1.1, which goes back to Hurwitz [26] (see also [1], [2]). We use the

following notation, which later will be extended to operator polynomials. For

a complex polynomial p(z) we define

σ(p) = {λ ∈ C; p(λ) = 0} and r(p) = max{|λ|; λ ∈ σ(p)}.

Let π+
m−1 denote the set of all real polynomials p(z) =

∑m−1
j=0 ajz

j satisfying

(1.2).20

Theorem 1.2. [26] Let h(z) = a0+a1z+· · ·+am−1z
m−1 be a real polynomial

with

0 < a0 = a1 = · · · = ar1−1 <

ar1
= ar1+1 = · · · = ar2−1 < · · ·

< ars
= ars+1 = · · · = am−1. (1.3)

Then r(h) ≤ 1. Set k = gcd(r1, . . . , rs, m). Then r(h) = 1 if and only if

k > 1. In that case

0 < a0 = · · · = ak−1 ≤ ak = · · · = a2k ≤ · · · ≤ am−k = · · · = am−1,
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and

h(z) = (1 + z + · · · + zk−1) p(zk), p ∈ π+
`−1, ` = m

k
,

and p(z) has no zeros λ with |λ| = 1. The zeros of h(z) on the unit circle

are simple, and they are the nontrivial k-th roots of unity, e2νπi/k, ν =

1, . . . , k − 1.

To prove Theorem 1.2 one can assume that am−1 = 1, and then use5

a multiplier (z − 1) and consider the polynomial g(z) = (z − 1)h(z). Set

a−1 = 0. Then

g(z) = zm −
∑m−1

j=0
(aj − aj−1)z

j,

and σ(g) = σ(h) ∪ {1}. Therefore (1.2) implies g(z) = zm −
∑m−1

j=0 cjz
j

with c0 > 0, cj ≥ 0, j = 1, . . . , m − 1, and

∑m−1

j=0
cj = 1. (1.4)

Because of (1.4) it is more convenient to deal with g(z) instead of the poly-10

nomial h(z) in (1.1). Therefore in this paper the focus is on operator poly-

nomials of the form

G(z) = Izm −
∑m−1

j=0
Cjz

j, (1.5)

where the coefficients Cj are bounded, positive semidefinite operators on

a Hilbert space. We shall extend the following theorem to operator poly-

nomials, and then generalize Theorem 1.2 to Hilbert spaces.15

Theorem 1.3. ([26], [1], [35, p. 92]) Let

g(z) = zm − (cm−1z
m−1 + · · ·+ c1z + c0)

be a real polynomial, g(z) 6= zm. Set c−1 = 0. Let t ∈ {0, . . . , m − 1} be

such that ct > 0 and cj = 0 if j < t. Suppose

cj ≥ 0, j = 0, . . . , m − 1, and
∑m−1

j=t
cj ≤ 1. (1.6)

(i) Then r(g) ≤ 1.

(ii) We have r(g) = 1 if and only if 1 ∈ σ(g), i.e.
∑m−1

j=0 cj = 1.20

(iii) The zeros of g(z) on the unit circle (if any) are simple.

(iv) Suppose r(g) = 1. Define

d = gcd
(

{j; ct+j 6= 0, j = 0, . . . , m − t − 1} ∪ {m − t}
)

, ` = (m − t)/d.
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Then

{λ; g(λ) = 0, |λ| = 1} = {e2νπi/d, ν = 0, . . . , d − 1}, (1.7)

and

g(z) = zt
[

z`d −
∑`−1

j=0
cjd zjd

]

= zt(zd − 1)p(zd) (1.8)

with r
(

p(zd)
)

< 1. In particular, if c0 > 0 then the zeros of g(z) are m-th

roots of unity.

The content of the paper is as follows. In Section 2 we recall basic con-5

cepts of spectral theory of operators in Hilbert space such as residual spec-

trum and approximate point spectrum. We define analogous concepts for

the set σ(B) =
{

λ ∈ C; 0 ∈ σ
(

B(λ)
)}

of characteristic values of operator

polynomials

B(z) =
∑m

j=0
Bjz

j ∈ L(H)[z]. (1.9)

Moreover we introduce approximate characteristic values of B(z) and cor-10

responding approximate Jordan chains. In Section 3 we investigate the ap-

proximate numerical range of operator polynomials. It will be shown that

the residual spectrum on the boundary of the numerical range is empty if

the coefficients of B(z) in (1.9) are selfadjoint. In Section 4 we deal with op-

erator polynomials (1.5) assuming Cj = C∗
j , Cj ≥ 0 (positive semidefinite),15

and
∑m−1

j=0 Cj ≤ I. We shall prove that σ(G) is contained in the closed unit

disk. Special attention will be given to the characteristic values of G(z) on

the unit circle ∂D. It will be shown that they lie on the boundary of the

numerical range of G(z). Hence it will follow from results of Section 3 that

characteristic values on ∂D are in the normal approximate spectrum of G(z),20

and that they are approximately semisimple. Moreover, ∂D does not con-

tain residual characteristic values of G(z). However, residual characteristic

values may well exist in the interior of unit disk, as we shall illustrate by an

example. In Section 5 we extend the Eneström-Kakeya theorem to Hilbert

space. A proof of Theorem 1.3 is given in the Appendix.25

2 The spectrum, definitions and notation

Let D = {z ∈ C; |z| < 1} be the open unit disk and ∂D = {z ∈ C; |z| = 1}
the unit circle of the complex plane. The set of nonnegative real numbers

will be denoted by R≥. Let Em = {ζ ∈ C; ζm = 1} be the group of m-th

roots of unity. If ζ ∈ Em then ord ζ will denote the order of ζ.30
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Let H be a complex Hilbert space and SH = {x ∈ H; ‖x‖ = 1} its unit

sphere, and let L(H) be the algebra of bounded linear operators on H. If

v ∈ H then v∗ ∈ H∗ is defined by v∗(u) = 〈v, u〉 for all u ∈ H. If T ∈ L(H)

then T ∗ denotes the adjoint of T . We say that an operator T ∈ L(H) is

positive semidefinite (T ≥ 0) if T is selfadjoint and satisfies 〈x, Tx〉 ≥ 0 for5

all x ∈ H. If 〈x, Tx〉 > 0 for all x ∈ H, x 6= 0, then we write T > 0. A

selfadjoint operator T will be called strictly positive definite (T � 0) if

〈x, Tx〉 ≥ δ〈x, x〉 for some δ > 0.

It follows from [5, p. 244, (57.16)] that T � 0 if and only if T > 0 and T

is invertible. If T ≥ 0 then (see [40, p. 314], [43, p. 63]) there exists a unique

positive semidefinite square root, and if T is strictly positive definite then10

T 1/2 � 0. Let S, T ∈ L(H) be selfadjoint. We write S ≥ T if S − T ≥ 0

and S � T if S − T � 0.

Let σ(T ) be the spectrum of T ∈ L(H) and let

σP (T ) = {λ ∈ C; λI − T is not injective}

the point spectrum of T . A complex number λ is called an approximate

eigenvalue of T , if for all ε > 0 there exists a u ∈ H such that15

‖(λI − T )u‖ < ε‖u‖.

The set σA(T ) of approximate eigenvalues of T is the approximate point

spectrum of T (see [6], [24, p. 54] [5, p. 241], [34, p. 413], [20, p. 81]). We say

that a sequence v = (vν) ∈ HN is an approximate eigenvector corresponding

to λ if

lim
ν→∞

(λI − T )vν = 0 and v 6= 0 (null sequence). (2.1)

If convenient, one can assume ‖vν‖ = 1, ν ∈ N. Evidently, σP (T ) ⊆ σA(T ).20

Let

σR(T ) = {λ ∈ C; λI − T is injective and range(λI − T ) 6= H}

be the residual spectrum of T . Then (see e.g. [34, p. 413])

σ(T ) = σA(T ) ∪ σR(T ). (2.2)

It is known ([39, p. 194], [15, p. 161]) that

σR(T ) ⊆ σP (T ∗). (2.3)
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The following notation will be useful. Let u = (uν), v = (vν) ∈ HN. We

write

u =̂ v if lim
ν→∞

(uν − vν) = 0.

Then u =̂ 0 denotes a null sequence. Let

H[z] = {f : C → H; f(z) =
∑k

i=0
fiz

i, fi ∈ H, k ∈ N0}. (2.4)

If p(z) = (pν(z)), q(z) = (qν(z)) ∈ (H[z])N then we write

p(z) =̂ q(z) if lim
ν→∞

pν(z) = lim
ν→∞

qν(z) for all z ∈ C.

According to (2.1) we have λ ∈ σA(T ) if and only if (λI −T )v =̂ 0 for some5

v ˆ6= 0. We define

KerA(λI − T ) = {v ∈ HN; (λI − T )v =̂ 0},

and we write KerA(λI − T ) =̂ {0} if λ /∈ σA(T ).

Let H be finite dimensional, say H = Cn, and let T ∈ Cn×n. The ascent

of an eigenvalue λ of T is the smallest integer ` such that Ker(λI − T )`+1 =

Ker(λI − T )`. An eigenvalue λ with ascent 1 is called semisimple [12]. In10

that case we have

Ker(λI − T )2 = Ker(λI − T ),

and the space Cn splits into T -invariant subspaces V and W such that

Cn = V ⊕ W and T|V = λI, λ /∈ σ(T|W ).

If H is an arbitrary Hilbert space we say that λ ∈ σA(T ) is approximately

semisimple if

KerA(λI − T )2 = KerA(λI − T ). (2.5)

It is easy to see that the identity (2.5) can be described in terms of pairs15

(v, w) ∈ HN × HN satisfying (2.7) below.

Lemma 2.1. Let λ ∈ σA(T ). (i) We have (2.5) if and only if

KerA

(

λI − T 0

I λI − T

)

=

{

(

v

w

)

; v =̂ 0, (λI − T )w =̂ 0

}

. (2.6)

(ii) Conversely, KerA(λI − T ) $ KerA(λI − T )2, if and only if there exist

sequences v, w ∈ HN such that

(λI − T )v =̂ 0, v ˆ6= 0, (λI − T )w =̂ v. (2.7)
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We call the pair (v, w) in (2.7) an approximate Jordan chain of length 2.

Note that the sequence v is an approximate eigenvector. Hence λ is approxi-

mately semisimple if and only if corresponding approximate eigenvectors can

not be extended to approximate Jordan chains of length 2.

If there exists a sequence v ∈ HN such that v ˆ6= 0, and (λI − T )v =̂ 05

and (λI − T )∗v =̂ 0, then λ is called a normal approximate eigenvalue of

T (see e.g. [16], [19], [30]). The case where (λI − T )v =̂ 0 is equivalent to

(λI −T )∗v =̂ 0 is of special interest. First consider H = Cn and T ∈ Cn×n.

Suppose

Ker(λI − T )∗ = range(λI − T ). (2.8)

Then Ker(λI − T )∗ = Ker(λI − T )⊥ implies that (2.8) holds if and only if10

Cn = Ker(λI − T ) ©⊥ range(λI − T ), (2.9)

or equivalently if and only if there exists a unitary matrix U such that

U∗TU =

(

λI 0

0 T2

)

, λ /∈ σ(T2).

Lemma 2.2. Let λ ∈ σA(T ). If

KerA(λI − T ) = KerA(λI − T )∗

then λ is approximately semisimple.

Proof. (i) Suppose w ∈ KerA(λI − T )2. Then

0 =̂ (λI − T )[(λI − T )w] = (λI − T )∗(λI − T )w.

Therefore ‖(λI − T )w‖2 =̂ 0. Hence (λI − T )w =̂ 0, and we have (2.5).15

Let L(H)[z] be defined in accordance with (2.4). Then B(z) ∈ L(H)[z]

is an operator polynomial of degree m if

B(z) =
∑m

j=0
Bjz

j, (2.10)

and B0, . . . , Bm ∈ L(H), Bm 6= 0. Set B∗(z) =
∑m

j=0 B∗
j z

j. We extend the

notion of spectrum from operators T ∈ L(H) to operator polynomails (2.10)

with invertible leading coefficient Bm. We define20

σ(B) = {λ ∈ C; B(λ) is not invertible} =
{

λ ∈ C; 0 ∈ σ
(

B(λ)
)}

,
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and r(B) = sup{|λ|; λ ∈ σ(B)}, and

σM (B) =
{

λ; 0 ∈ σM

(

B(λ)
)}

for M ∈ {P, A, R}.

Thus λ ∈ σA(B) if and only if

∑m

j=0
Bjλ

jv =̂ 0, (2.11)

for some sequence v ∈ HN, v ˆ6= 0. Adapting a notion of [4] we call the

elements of σA(B) approximate characteristic values of B(z). If (2.11) holds

then we say that v is an approximate eigenvector of B(z) corresponding to λ.5

For operator polynomials we define (approximate) semisimplicity in terms of

Jordan chains. Let λ ∈ σA(B). If v, w ∈ HN are sequences such that

B(λ)v =̂ 0, v ˆ6= 0, B′(λ)v + B(λ)w =̂ 0,

then (v, w) is called an approximate Jordan chain of length 2 of B(z) cor-

responding to λ. Thus, all approximate Jordan chains of λ have length 1 if

and only if10

KerA

(

B(λ) 0

B′(λ) B(λ)

)

=

{

(

v

w

)

; v =̂ 0, B(λ)w =̂ 0

}

. (2.12)

(We refer to [4] or [27] for a study of Jordan chains of operator polynomials.)

If B(z) = λI − T then (2.12) reduces to (2.6). We say that λ is approxi-

mately semisimple if there are no corresponding approximate Jordan chains

of length 2.

In our examples we shall deal with `2 = `2(C), the complex Hilbert space15

of square summable sequences. Let e1 = (1, 0, 0, . . . )T , e2 = (0, 1, 0, , . . . )T ,

etc., be the standard orthonormal basis of `2. Define e = (eν)ν∈N.

Example 2.3. Consider H = `2 and G(z) = z3I − (C2z
2 + C1z + C0) with

C0 = C1 = diag(1/2, 1/3, 1/4, . . . ), C2 = I − 2C0 = diag(0, 1/3, 2/4, . . . ).

Then G(0) = G′(0) = C0 implies

lim
ν→∞

G(0)eν = 0 and lim
ν→∞

(

G′(0)eν + G(0)eν

)

= 0.

Hence (e, e) is an approximate Jordan chain of length 2 corresponding to20

0 ∈ σ(G).
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Let λ ∈ σA(B), and suppose B(λ)v =̂ 0 and B(λ)∗v =̂ 0 for some

v ˆ6= 0. Then the approximate characteristic value λ will be called normal,

and v is a corresponding normal approximate eigenvector. To illustrate the

preceding concepts we consider a monic operator polynomial of degree 2.

Example 2.4. Let H = `2 and consider G(z) = z2I − (C1z + C0) with5

C1 = diag(1/2, 1/3, 1/4, 1/5, . . . ) and C0 = diag(0, 1/3, 2/4, 3/5, . . . ).

Then C1 ≥ 0, C0 ≥ 0, and C0 = I − 2C1. Moreover, C0 + C1 = I − C1 ≤ I.

From G(1) = C1 and G(−1) = 3C1 follows that e is a normal approximate

eigenvector of G(z) corresponding to 1 and to −1. But ±1 /∈ σP (G). Set

pν(z) = [(z − 1) − 1
ν
] eν and p(z) = (pν(z)). Then G(z)e =̂ (z + 1)p(z).

The following proposition extends Lemma 2.2.10

Proposition 2.5. Let λ ∈ σA(B) be such that

KerA B(λ) = KerA B(λ)∗. (2.13)

Then λ is approximately semisimple if

limν→∞ v∗
ν B′(λ)vν 6= 0 (2.14)

for all v = (vν) ∈ KerA B(λ), v ˆ6= 0.

Proof. Suppose v, w ∈ HN and

B(λ)v =̂ 0, v ˆ6= 0, B′(λ)v + B(λ)w =̂ 0.

Then limν→∞ v∗
νB

′(λ)vν = 0, in contradiction to (2.14).15

If B(z) = zI − T and T ∈ L(H), then B ′(z) = I. This implies (2.14) for

all λ ∈ C, and we recover Lemma 2.2.

3 The approximate numerical range

For an operator polynomial B(z) ∈ L(H)[z] we define the approximate

numerical range WA(B) and the numerical range W (B) as

WA(B) =

{λ ∈ C; s. th. lim
ν→∞

y∗
νB(λ)yν = 0 for some y = (yν) ∈ HN, y ˆ6= 0}
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and

W (B) = {λ ∈ C; s. th. y∗B(λ)y = 0 for some y ∈ H, y 6= 0}.

For polynomial matrices B(z) ∈ Cn×n[z] the concept of numerical range was

first studied systematically in [29] and investigated further in [32], [17], [33].

If B(z) = zI − T and T ∈ L(H), then WA(B) and W (B) are equal to

FA(T ) = {λ ∈ C; λ = lim x∗
νTxν for some (xν) ∈ HN, ‖xν‖ = 1, ν ∈ N}

and

F (T ) = {λ ∈ C; λ = x∗Tx for some x ∈ H, ‖x‖ = 1} =

{x∗Tx; x ∈ H, ‖x‖ = 1},

respectively. The set F (T ) is known as the numerical range (or field of5

values) of T . By the Toeplitz–Hausdorff theorem F (T ) is convex (see e.g.

[22, p. 4], [3, p. 388]). According to [29] the set W (B) is bounded if and only

if 0 /∈ F (Bm). Let

w(B) = sup{|λ|; λ ∈ W (B)}

be the numerical radius of B(z). Evidently,

σA(B) ⊆ WA(B). (3.1)

The next example shows that, in general, W (B) is a proper subset of WA(B).10

Example 3.1. Consider H = `2, and

T = diag(1/2, 2/3, 3/4, . . . )

and B(z) = zI − T . Let e = (eν). Then e ∈ (SH)N and B(1)e =̂ 0. Hence

1 ∈ σA(B), and therefore 1 ∈ WA(B). Let u = (u1, u2, . . . , )
T ∈ `2. Then

∑∞
k=1 |uk|

2 = 1 implies u∗Tu < 1. Hence 1 /∈ W (B).

The following theorem provides an intrinsic characterization of W (B).15

We point out to a general result of [7] on the closure of the numerical range

of operators in Banach spaces and we also refer to corresponding comments

in [5, p. 329].

Proposition 3.2. We have WA(B) = W (B).
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Proof. Let us first show that WA(B) ⊆ W (B). Suppose λ ∈ WA(B) and

let (vν) ∈ (SH)N be a corresponding sequence with limν→∞ v∗
νB(λ)vν = 0.

The sequences (v∗
νBjvν), j = 0, . . . , m, are bounded. We can assume that

the limits βj = limν→∞ v∗
νBjvν , j = 0, . . . , m, exist. Hence

βj = v∗
νBjvν + εjν and lim

ν→∞
εjν = 0.

Define5

bν(z) =
∑m

j=0
v∗

νBjvν zj , ν ∈ N, and b(z) =
∑m

j=0
βjz

j.

Then bν(z) =
∑

j(βj − εjν)z
j, and b(λ) = 0. Zeros of a complex polynomial

vary continuously with its coefficients (see e.g. [8, p. 230]). Hence, there exists

a sequence (λν) such that

bν(λν) = 0, |λ − λν| < δν, and limν→∞ δν = 0.

Because of bν(λν) = v∗
νB(λν)vν we have λν ∈ W (B). Therefore λ =

limν→∞ λν ∈ W (B).10

We now prove the inclusion W (B) ⊆ WA(B). Let λ ∈ W (B) and

λν ∈ W (B), ν ∈ N, such that limν→∞ λν = λ. For each ν we have a vν ∈ SH

such that v∗
νB(λν)vν = 0. Hence

|v∗
νB(λ)vν | ≤ |v∗

ν

(

B(λ) − B(λν)
)

vν | + |v∗
νB(λν)vν| ≤

‖B(λ) − B(λν)‖ + |v∗
νB(λν)vν|.

We conclude that limν→∞ v∗
νB(λ)vν = 0, that is, λ ∈ WA(B).

From Proposition 3.2 follows ∂WA(B) = ∂W (B) and ∂FA(T ) = ∂F (T ).

Moreover,

w(B) = sup{|λ|; λ ∈ WA(B)}, (3.2)

and if W (B) is bounded then

w(B) = max{|λ|; λ ∈ WA(B)}. (3.3)

It is known (see e.g. [20, p. 97]) that the spectrum of T is contained in15

the closure of F (T ). A corresponding result holds for operator polynomials.

Lemma 3.3. We have σ(B) ⊆ WA(B) and r(B) ≤ w(B).
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Proof. From (2.2) we obtain σ(B) = σA(B) ∪ σR(B). Therefore, by (3.1),

it suffices to prove σR(B) ⊆ WA(B). Suppose λ ∈ σR(B), that is 0 ∈
σR(B(λ)). Then (2.3) implies 0 ∈ σP (B(λ)∗), that is λ̄ ∈ σP (B∗). Hence

λ̄ ∈ WA(B∗). This is equivalent to λ ∈ WA(B).

We say that the operator polynomial B(z) is spectraloid if5

w(B) = r(B). (3.4)

If B(z) = zI − T , T ∈ L(H), then (3.4) is equivalent to w(T ) = r(T ), and

the operator T is spectraloid in the sense of [23, p. 176], [22, p. 150], [20,

p. 99].

In the following we are concerned with approximate characteristic values

of B(z) lying on the boundary of W (B). We need an extension of The-10

orem 1.1 of [32], which will be proved along the lines of [32]. If zi ∈ C,

i = 1, 2, 3, then [z1, z2, z3] shall denote the triangle with vertices z1, z2, z3.

The interior of a set M will be denoted by intM .

Lemma 3.4. If λ ∈ ∂W (B) then 0 ∈ ∂F
(

B(λ)
)

.

Proof. Let us show first that 0 is not an interior point of FA

(

B(λ)
)

. Suppose15

there exists a disk U(0, ε) = {w ∈ C; |w| < ε} such that U(0, ε) ⊆ FA

(

B(λ)
)

.

Then there exist zi ∈ U(0, ε), i = 1, 2, 3, such that 0 is an interior point of

the triangle [z1, z2, z3]. We have

zi = limν→∞ x∗
iνB(λ)xiν

for some sequence (xiν) ∈ (SH)N, i = 1, 2, 3. Set ziν = x∗
iνB(λ)xiν , ν ∈ N,

i = 1, 2, 3. Then 0 is in the interior of the triangle20

[z1ν , z2ν , z3ν ] ⊆ U(0, ε),

if ν is sufficiently large, ν ≥ ν0. By assumption, λ is a boundary point of

W (B). Therefore there exists a sequence (λk)k∈N such that limk→∞ λk = λ

and

λk /∈ W (B), k ∈ N. (3.5)

Then

lim
k→∞

x∗
iνB(λk)xiν = x∗

iνB(λ)xiν = ziν, i = 1, 2, 3.

Hence, if ν ≥ ν0 and k is sufficiently large, k ≥ k0, then 0 is in the interior25

of

[x∗
1νB(λk)x1ν , x∗

2νB(λk)x2ν , x∗
3νB(λk)x3ν ].

11



We have

x∗
iν B(λk)xiν ∈ F

(

B(λk)
)

, i = 1, 2, 3.

Since F
(

B(λk)
)

is convex it follows that 0 ∈ F
(

B(λk)
)

for k ≥ k0. Hence

x∗B(λk)x = 0 for some x 6= 0, that is, λk ∈ W (B), in contradiction to (3.5).

From λ ∈ ∂W (B) follows λ ∈ W (B) = WA(B). Hence 0 ∈ FA

(

B(λ)
)

.5

Then 0 /∈ intFA

(

B(λ)
)

implies 0 ∈ ∂FA

(

B(λ)
)

= ∂F
(

B(λ)
)

.

In the case where H is finite dimensional the following proposition can

be found in [25, p. 235].

Proposition 3.5. If λ ∈ ∂F (T ) ∩ σA(T ) then

KerA(λI − T ) = KerA(λI − T )∗, (3.6)

and10

Ker(λI − T ) = Ker(λI − T )∗. (3.7)

Proof. If (λI − T )y = 0, y 6= 0, then v = (vν), vν = y, ν ∈ N, is an

approximate eigenvector of T . Hence it suffices to prove (3.6), and to consider

λ = 0. Suppose (3.6) does not hold. Then there exists a sequence x = (xν)

with x∗
νxν = 1, ν ∈ N, such that Tx =̂ 0 and y = T ∗x ˆ6= 0. If y = (yν)

then limν→∞ y∗
νxν = 0. Since the sequences (y∗

νyν), (y∗
νTyν) and (x∗

νTyν)15

are bounded we can assume right away that they are convergent. Set vν =

λxν + µyν. Then

v∗
νvν = |λ|2 + |µ|2y∗

νyν + (λ̄µx∗
νyν + µ̄λy∗

νxν), (3.8)

and

lim
ν→∞

v∗
νTvν = lim

ν→∞
(λ̄µx∗

νTyν + µ̄µy∗
νTyν) = lim

ν→∞
(λ̄µ y∗

νyν + µ̄µ y∗
νTyν).

Set c = limν→∞ ‖yν‖. Then c > 0. Let limν→∞ y∗
νTyν = τ c2. Then

lim
ν→∞

v∗
νTvν = c2(λ̄µ + µ̄µ τ). (3.9)

Define20

G = {v = λx + µy; λ, µ ∈ C, v = (vν), ‖vν‖ = 1, ν ∈ N}.

Then

V = {limν→∞ v∗
νTvν; v ∈ G} ⊆ FA(T ).

12



From (3.8) and (3.9) we obtain

V = {c2(λ̄µ + µ̄µ τ); |λ|2 + c2|µ|2 = 1}.

Thus u ∈ V if and only if

u = (λ , cµ)∗
(

0 c

0 τ

) (

λ

cµ

)

and |λ|2 + |cµ|2 = 1. Set M =

(

0 c

0 τ

)

. Then V = F (M). If τ = 0 then

(see [22, Chapter 1.1]) the set F (M) is a disk with center 0 and radius c/2.5

If τ 6= 0 then F (M) is an ellipse with foci at 0 and τ and minor axis c.

Therefore 0 is an interior point of FA(T ). Hence 0 /∈ ∂FA(T ). Because of

∂FA(T ) = ∂F (T ) this is a contradiction.

We now assume B(z) = B∗(z) such that

B∗
j = Bj, j = 0, . . . , m, (3.10)

in (2.11).10

Lemma 3.6. If B(z) = B∗(z) then the sets W (B) and WA(B) are sym-

metric with respect to the real axis.

Proof. Because of WA(B) = W (B) we only have to show that λ ∈ W (B)

implies λ ∈ W (B). Let x ∈ H, x 6= 0, such that x∗B(λ)x = 0. Thus

λ ∈ W (B). Define b(z) =
∑m

j=0 x∗Bjx zj. Then (3.10) implies b(z) ∈ R[z].15

Hence b(λ) = 0 yields b(λ) = 0, that is λ ∈ W (B).

Theorem 3.7. Assume B(z) = B∗(z).

(i) Let λ ∈ ∂W (B). Then λ /∈ σR(B), i.e.

σR(B) ∩ ∂W (B) = ∅. (3.11)

(ii) If λ ∈ ∂W (B) ∩ σ(B) then

KerA B(λ) = KerA B(λ)∗ and Ker B(λ) = Ker B(λ)∗. (3.12)

Proof. (i) Suppose there exists an element λ ∈ σR(B) ∩ ∂W (B). Then20

0 ∈ σR(B(λ)), and λ ∈ ∂W (B∗). Hence (2.3) implies 0 ∈ σP (B(λ)∗) and

Lemma 3.4 implies 0 ∈ ∂F (B(λ)∗). Then (3.7) in Proposition 3.5 yields

0 ∈ σP (B(λ)). This is a contradiction, since the sets σP (B) and σR(B) are

disjoint. Therefore we have (3.11).

(ii) If λ ∈ σ(B) lies on the boundary of W (B) then (3.11) and (2.2) imply25

λ ∈ σA(B), i.e. 0 ∈ σA(B(λ)). Thus (3.12) follows from Proposition 3.5.
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4 Semidefinite coefficients

Let

G(z) = Izm − (Cm−1z
m−1 + · · ·+ C1z + C0) (4.1)

be a monic operator polynomial with selfadjoint positive semidefinite coeffi-

cients Cj ∈ L(H), j = 0, . . . , m − 1.5

4.1 The numerical radius

We first deal with w(G).

Theorem 4.1. G(z) is spectraloid, i.e. w(G) = r(G).

Proof. Let λ ∈ WA(G). Consider a corresponding sequence v = (vν) ∈ HN,

v ˆ6= 0, with10

lim
ν→∞

v∗
νG(λ)vν = lim

ν→∞
v∗

ν

[

λmI −
∑m−1

j=0
Cjλ

j
]

vν = 0, (4.2)

and

v∗
νvν = 1, ν ∈ N. (4.3)

Define cjν = v∗
νCj vν, j = 0, . . . , m − 1. The sequences

(cjν), j = 0, . . . , m − 1, (4.4)

are bounded. We can choose a suitable subsequence of (vν) such that the

corresponding subsequences in (4.4) are convergent. Hence we may assume

that the limits15

c
(v)
j = lim

ν→∞
cjvν

, j = 0, . . . , m − 1, (4.5)

exist. Define

g(v)(z) = zm −
(

c
(v)
m−1z

m−1 + · · ·+ c
(v)
1 z + c

(v)
0

)

. (4.6)

Then (4.2) is equivalent to g(v)(λ) = 0. Note that g(v)(z) ∈ R[z] and

c
(v)
j ≥ 0, j = 0, . . . , m − 1. (4.7)

Set ρ = w(G). Assume
∑m−1

j=0 Cj 6= 0. Then G(z) 6= Izm and ρ > 0.

Because of (3.3) we have λ ∈ WA(G) for some λ with |λ| = ρ. Let v =

(vν) ∈ HN, v ˆ6= 0, be a corresponding sequence such that (4.2) holds, and20

let g(v)(z) be the polynomial in (4.6). Then g(v)(λ) = 0. Because of (4.7)
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there exists a unique positive root ρ̂ of g(v)(z), and r(g(v)) = ρ̂ (see e.g. [38,

p. 243], [37, p. 3]). Then ρ̂ = ρ. Otherwise we would have w(G) ≥ ρ̂ > ρ.

Hence

g(v)(ρ) = lim
ν→∞

v∗
νG(ρ)vν = 0, (4.8)

and therefore ρ ∈ WA(G). Suppose y∗G(ρ)y < 0 for some y 6= 0. If u ∈ R>5

is sufficiently large then y∗G(u)y > 0. Hence y∗G(s)y = 0 for some s > ρ,

and we would have w(G) > ρ. Therefore we obtain G(ρ) ≥ 0. Hence (4.8)

yields limν→∞ G(ρ)vν = 0. Thus v = (vν) is an approximate eigenvector

of G(z) corresponding to ρ. Hence ρ ∈ σA(G). Therefore ρ ≤ r(G). Then

r(G) ≤ w(G) implies r(G) = w(G).10

Theorem 4.2. The numerical radius of G(z) satisfies w(G) ≤ 1 if and only

if G(1) ≥ 0, i.e.
∑m−1

j=0
Cj ≤ I. (4.9)

Proof. Let ρ = w(G). We know that G(ρ) ≥ 0. Hence, if 0 < ρ ≤ 1, then

I ≥
∑m−1

j=0
Cjρ

j−m ≥
∑m−1

j=0
Cj,

which proves (4.9). Now let λ ∈ WA(G) and let v = (vν) ∈ HN, v ˆ6= 0,

be a corresponding sequence such that (4.2) holds, and let g(v)(z) be the15

polynomial in (4.6). Then g(v)(λ) = 0. If (4.9) holds then

∑m−1

j=0
c
(v)
j ≤ 1. (4.10)

Hence Theorem 1.3 (i) yields |λ| ≤ 1, and therefore w(G) ≤ 1.

Corollary 4.3. We have w(G) = 1 if and only if

G(1) ≥ 0 and KerA

(

G(1)
)

6= {0} (4.11)

or equivalently, if and only if

∑m−1

j=0
Cj ≤ I and KerA

(

I −
∑m−1

j=0
Cj

)

6= {0}. (4.12)

Proof. We know from the proof of Theorem 4.1 that w(G) = 1 implies (4.11).20

Conversely, if (4.11) holds, then w(G) ≤ 1 (by Theorem 4.2), and 1 ∈ σA(G).

Hence w(G) ≤ 1 ≤ r(G) yields w(G) = 1.
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It is no loss of generality if we deal with operator polynomials G(z)

with w(G) = 1. Let 0 < w(G) = ρ. Define G̃(z) = ρ−mG(ρz). Then

G̃(z) = ρ−mG(ρz). Therefore W (G̃) = ρ−1W (G) and σ(G̃) = ρ−1σ(G), and5

w(G̃) = r(G̃) = 1. If G̃(z) = Izm −
∑m−1

j=0 C̃jz
j, then C̃j = ρ−(m−j) Cj,

j = 0, . . . , m − 1. The coefficients of G̃(z) have the following properties

C̃j ≥ 0, j = 0, . . . , m − 1,
∑m−1

j=0
C̃j ≤ I.

Corollary 4.4. We have w(G) = min{s; s ≥ 0, G(s) ≥ 0}.

Proof. Set q = min{s; s ∈ R≥, G(s) ≥ 0}. Let ρ = w(G). Then G(ρ) ≥ 0.

Hence q ≤ ρ. Suppose G(s) ≥ 0. Then Theorem 4.2 implies ρ ≤ s, and we10

obtain q ≥ ρ. Hence q = ρ. Note that G(s) ≥ 0 for all s ≥ ρ.

Corollary 4.5. If
∑m−1

j=0 Cj � I then w(G) < 1.

Proof. The assumption implies that the inequality (4.10) is strict. Thus

g(v)(1) =
∑m−1

j=0 c
(v)
j < 1. Therefore |λ| < 1 for all λ ∈ WA(G). Since

WA(G) is closed we obtain w(G) < 1.15

In general, the inequality
∑m−1

j=0 Cj < I is not sufficient for w(G) < 1.

Example 4.6. Let H = `2 and

C0 = diag(1/2, 2/3, 3/4, 4/5, ...).

Then 0 < C0 < I, and the inequality C0 � I is not satisfied. Consider

G(z) = zI − C0. Then

I − C0 = diag(1/2, 1/3, . . . , 1/k, . . . ) > 0

implies w(G) ≤ 1. We have noted earlier in Example 3.1 that G(1)e =20

(I − C0)e =̂ 0. Hence 1 ∈ σA(G), and w(G) = 1.

4.2 The spectrum on the unit circle

In this section we consider operator polynomials with r(G) = w(G) = 1.

Thus we assume

Cj ≥ 0, , j = 0, . . . , m − 1,
∑m−1

j=0
Cj ≤ I, (4.13)

and

KerA

(

I −
∑m−1

j=0
Cj

)

6= {0}. (4.14)
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Hence σ(G) ∩ ∂D 6= ∅. Let v = (vν) ∈ HN, v ˆ6= 0, be given. We define

M(v) = {µ; µ ∈ ∂D, G(µ)v =̂ 0}.

Then M(v) consists of those approximate characteristic values µ of G(z)

which lie on the unit circle and have v as a corresponding approximate eigen-5

vector. In the proof of Theorem 4.1 we have seen that w(G) = ρ = 1, and

|λ| = 1 and G(λ)v =̂ 0 imply G(1)v =̂ 0. Hence we have M(v) 6= ∅ if and

only if

G(1)v =
(

I −
∑m−1

j=0
Cj

)

v =̂ 0, v ˆ6= 0. (4.15)

We may assume that v is a sequence satisfying (4.3) and that the limits (4.5)

exist. If λ ∈ σA(G) and v is a corresponding approximate eigenvector then10

G(λ)v =̂ 0 implies Cjv ˆ6= 0 for some j, 0 ≤ j ≤ m− 1. Let tv be defined by

C0v =̂ · · · =̂ Ctv−1v =̂ 0, and Ctvv
ˆ6= 0. (4.16)

Note that C0 � 0 implies tv = 0. We now describe the structure of M(v)

and generalize Theorem 1.3 (iv).

Theorem 4.7. Assume (4.15). Set

dv = gcd
(

{j; Ctv+j v ˆ6= 0, j = 0, . . . , m − tv − 1} ∪ {m − tv}
)

. (4.17)

Then M(v) = Edv
.15

Proof. Let g(v)(z) = zm −
∑m−1

j=0 c
(v)
j zj be the polynomial in (4.6). Then

λ ∈ M(v) implies g(v)(λ) = 0. From (4.16) follows c
(v)
t > 0, c

(v)
j = 0, if

j < t. We apply Theorem 1.3 (iv) to determine the unimodular roots of

g(v)(z). Set

d̂v = gcd
(

{j; c
(v)
tv+j 6= 0, j = 0, . . . , m − tv − 1} ∪ {m − tv}

)

.

Then (1.7) yields Ed̂v

= {λ; g(v)(λ) = 0, |λ| = 1}. Because of Cj ≥ 020

we have c
(v)
j = limν→∞ v∗

νCjvν = 0 if and only if limν→∞ Cjvν = 0. Hence

d̂v = dv, and therefore M(v) ⊆ Edv
.

To prove the inclusion Edv
⊆ M(v), we first note that (4.16) and (4.17)

imply

G(z)v =̂ ztv
[

z`dvI −
∑`−1

j=0
Cjdv

zjdv

]

v. (4.18)

If λ ∈ Edv
then λdv = 1, and therefore (4.18) yields G(λ)v = G(1)v. Then

(4.15) implies G(λ)v =̂ 0. Hence λ ∈ M(v).
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The assumption r(G) = w(G) = 1 implies that approximate character-

istic values of G(z) on the unit circle are on the boundary of the numerical5

range of G(z). Therefore we can take advantage of results of Section 3. An

immediate consequence of Theorem 3.7 (i) is the following.

Theorem 4.8. If λ ∈ σ(G) and |λ| = 1, then λ /∈ σR(G), i.e.

σR(G) ∩ ∂D = ∅.

Thus, if the spectrum of G(z) on the unit circle is nonempty then its

elements are approximate characteristic values. The next theorem shows10

that all of them are approximately normal and semisimple.

Theorem 4.9. If λ ∈ σ(G) and |λ| = 1, then

KerA G(λ) = KerA G(λ)∗ and Ker G(λ) = Ker G(λ)∗, (4.19)

and λ is approximately semisimple.

Proof. The identities (4.19) are taken from Theorem 3.7 (ii). We apply

Proposition 2.5 to show that λ is approximately semisimple. Assume that15

v = (vν) is such that (4.3) holds and that the limits c
(v)
j in (4.5) exist.

Let g(v)(z) be the corresponding polynomial (4.6). It follows from The-

orem 1.3 (iii) that λ is a simple root of g(v)(z). Hence (g(v))′(λ) 6= 0. There-

fore limν→∞ v∗
νG

′(λ)vν 6= 0, which amounts to condition (2.14).

We note two observations, which will be used later.20

Lemma 4.10. (i) If C0 � 0 then σ(G) ∩ ∂D ⊆ Em, where m = deg G.

(ii) If C0 � 0 and C1 � 0 then σ(G) ∩ ∂D ⊆ {1}.

Proof. Suppose σ(G)∩ ∂D 6= ∅, that is 1 ∈ σA(G). Let v be an approximate

eigenvector corresponding to 1. Then C0 � 0 implies tv = 0. Hence dv | m,

and therefore M(v) ⊆ Edv
⊆ Em. If Cj � 0, j = 0, 1, then dv = 1. Hence25

M(v) = {1}.

In Example 2.4 we considered a polynomial G(z) = z2I − (zC1 +C0) and

extracted a factor (z + 1) from G(z)e ∈ H[z]. A general factorization result

is given in (4.20) below. It extends the identity (1.8) in Theorem 1.3 (iv).

Theorem 4.11. Suppose G(1)v =̂ 0, v ˆ6= 0. Let tv and dv be defined by

(4.16) and (4.17), respectively. If m − tv = `dv then

G(z)v =̂ ztv (zdv − 1) p
(

zdv

)

, (4.20)
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where p(z) = (pν(z)) is a sequence in H[z] and

p
(

λdv

)

ˆ6= 0 if |λ| = 1. (4.21)

Proof. In (4.18) we have observed that G(z)v =̂ ztv
[

Iz`dv −
∑`−1

j=0 Cjdv
zjdv

]

v.5

Hence G(z)v =̂ ztvq(zdv) for some sequence q(z) = (qν(z)) in H[z]. If

λdv −1 = 0 then G(λ)v =̂ 0, and we obtain q(z) = (zdv −1)p(z). It remains

to show that the sequence p(zdv) in (4.20) satisfies (4.21). Suppose p(λdv) =̂0

for some λ ∈ ∂D. Then λ ∈ M(v) and therefore λ ∈ Edv
, i.e. λdv − 1 = 0.

Hence G(λ)v =̂ G′(λ)v =̂ 0. Then (v, v) would be an approximate Jordan10

chain of length 2 corresponding to λ. Hence λ ∈ σA(G) ∩ ∂D would not be

approximately semisimple, in contradiction to Theorem 4.9.

4.3 An operator polynomial with nonempty residual

spectrum

We have seen in Theorem 4.8 that the residual spectrum of G(z) on the unit15

circle is empty. In this section we construct an operator polynomial of the

form (4.1) with properties (4.13) and (4.14), which has a residual spectrum

(contained in the open unit disk).

Example 4.12. Let H = `2. We construct a monic operator polynomial

G(z) = Iz3 − (C2z
2 + C1z + C0) ∈ L(H)[z]

with selfadjoint positive semidefinite coefficients Cj satisfying20

C2 + C1 + C0 = I (4.22)

such that

σR(G) ∩ D 6= ∅, (4.23)

i.e. such that there exists a λ ∈ D with 0 ∈ σR(G(λ)). Let

S+ : (z1, z2, z3, . . .) 7→ (0, z1, z2, , . . .)

be the right-shift and

S− : (z1, z2, z3, . . .) 7→ (z2, z3, z4, . . .)

the left-shift on `2. It is known (see [34, p. 420]) that D ⊆ σR(S+). In

particular, 0 ∈ σR(S+). This can be seen as follows. The map S+ : `2 → `2

is injective, and range(S+) = 〈e1〉
⊥ is not dense in `2. Set

U =
1

2
(S+ + S−) and V =

1

2
(S+ − S−).
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Then S∗
+ = S− implies U∗ = U and (iV )∗ = iV . Clearly, U +V = S+. Let

0 < α < 1
2
. Define d(z) = z3 − [(1 − 2α)z2 + (2α − 2α2)z + 2α2] and5

D(z) = Iz3 − (D2z
2 + D1z + D0) = d(z) I.

Then λ = −(1 + i)α is a root of d(z), and

d(z) = (z − λ)(z − λ̄)(z − 1) = (z2 + 2αz + 2α2)(z − 1).

From D(1) = 0 follows

D2 + D1 + D0 = I. (4.24)

Set κ = 1 + 2α + 2α2. The polynomials

p(z) = z2 + 2αz − (1 + 2α) and q(z) =
1 + α

α
z2 −

1

α
z − 1

satisfy

p(1) = q(1) = 0 and p(λ) = −κ, q(λ) = iκ. (4.25)

Define10

E(z) = E2z
2 + E1z + E0 = p(z) U + q(z) iV

such that

E0 = − (1 + 2α) U − iV,

E1 = 2α U −
1

α
iV,

E2 = U + (
1

α
+ 1) iV.

Then (4.25) implies

E2 + E1 + E0 = 0 (4.26)

and

E(λ) = p(λ) U + q(λ) iV = −κU + iκ iV = −κS+. (4.27)

We consider the operator polynomial

G(z) = D(z) − εE(z), ε > 0.

The coefficients of G(z) have the form Cj = Dj − εEj, j = 0, 1, 2. Because

of 0 < α < 1
2

the operators

D0 = 2α2I, D1 = 2α(1 − α)I, D2 = (1 − 2α)I,

20



are strictly positive definite. The operators Ej are self-adjoint. We assume

that ε > 0 is sufficiently small such that Cj � 0, j = 0, 1, 2. From (4.24) and5

(4.26) we obtain (4.22). To prove (4.23) we evaluate G(z) at the point λ.

From D(λ) = 0 and (4.27) follows G(λ) = εκS+, and we conclude that

0 ∈ σR(G(λ)).

Let us determine the spectrum of G(z) on the unit circle. From (4.22)

follows 1 ∈ σ(G). Because of C0 � 0 and C1 � 0 we can apply Lemma 4.10,10

and we see that 1 is the only element of σ(G) that lies on the unit circle.

5 The Eneström–Kakeya theorem in Hilbert

space

Theorem 1.1 and Theorem 1.2 have been extended to matrix polynomials

([14], [42]). In this section we obtain more general results for operator poly-15

nomials.

Theorem 5.1. Let

H(z) = Am−1z
m−1 + · · ·+ A1z + A0 (5.1)

be an operator polynomial with selfadjoint coefficients Aj ∈ L(H). Assume

Am−1 � 0, Am−1 ≥ Am−2 ≥ · · · ≥ A0 ≥ 0. (5.2)

(i) Then r(H) ≤ 1 and 1 /∈ σ(H).

(ii) The residual spectrum of H(z) on the unit circle is empty.20

(iii) If λ ∈ σ(H) and |λ| = 1, then KerA H(λ) = KerA H(λ)∗ and λ is

approximately semisimple,

(iv) Suppose A0 � 0. Then λ ∈ σ(H) and |λ| = 1 imply λm = 1.

Proof. (i) From Am−1 � 0 follows A
1/2
m−1 � 0, and therefore R := A

−1/2
m−1 ∈

L(H), R = R∗. Set Ãj = R∗AjR, j = 0, . . . , m − 1. Then25

R∗ H(z) R = Izm−1 +
∑m−2

j=0
Ãj zj.

Thus, it suffices to consider (5.1) with Am−1 = I and I ≥ Am−2 ≥ · · · ≥
A0 ≥ 0. As in the case of the polynomial h(z) in (1.1) one can use the

multiplier (z − 1). Define G(z) = (z − 1) H(z). Then G(z) = Izm −
∑m−1

j=0 Cjz
j, and C0 = A0, and Cj = Aj − Aj−1 ≥ 0, j = 1, . . . , m − 1, and

C0 + C1 + · · ·Cm−1 = I, and 1 ∈ σP (G). Moreover,5

σ(G) = σ(H) ∪ {1} (5.3)
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From Corollary 4.3 follows r(G) = w(G) = 1. Hence (5.3) implies r(H) ≤ 1.

Let us show that 1 /∈ σ(H). Because of (5.2) we have H(1) =
∑m−1

j=0 Aj � 0.

Hence H(1) has a bounded inverse and therefore 0 /∈ σ(H(1)).

It is obvious that (ii) follows from (4.8). For (iii) we refer to Theorem 4.9,

and (iv) is a consequence of Lemma 4.10 (i).10

We now extend Theorem 1.2 to a result on operator polynomials. We

focus on an approximate eigenvector v of H(z). With regard to (1.3) we

make the assumptions

A0v =̂ · · · =̂ Ar1−1v, Ar1−1v ˆ6= Ar1
v,

Ar1
v =̂ · · · =̂ Ar2−1v, Ar2−1v ˆ6= Ar2

v, · · · ,

Ars−1v ˆ6= Ars
v, Ars

v =̂ · · · =̂ Am−1v. (5.4)

Theorem 5.2. Suppose the coefficients of H(z) satisfy

Am−1 � 0 and Am−1 ≥ Am−2 ≥ · · · ≥ A0 � 0.

Let λ ∈ σ(H) and |λ| = 1, and let v be a corresponding approximate eigen-

vector. Let r1, . . . , rs, be given by (5.4). Define k = gcd(r1, . . . , rs, m). Then

λk = 1, and

H(z)v =̂ (1 + z + · · ·+ zk−1)p(zk),

where p(z) =
(

pν(z)
)

⊆ H[z] is a sequence with

lim
ν→∞

pν(λ
k) 6= 0 if |λ| = 1. (5.5)

Proof. Again, we can assume Am−1 = I, and pass from H(z) to G(z). The

coefficients of G(z) satisfy (5.2) Therefore (5.4) is equivalent to

{1, . . . , r1 − 1, r1 + 1, . . . , r2 − 1, . . . , rs + 1 . . . , m − 1} =

{j; 0 ≤ j ≤ m − 1, Cjv =̂ 0},

and we have {j; 0 ≤ j ≤ m − 1, Cjv ˆ6= 0} = {r1, . . . , rs}. Hence

k = gcd
(

{j; 0 ≤ j ≤ m − 1, Cjv ˆ6= 0} ∪ {m}
)

.

Then Theorem 4.11 and tv = 0 yield

G(z)v =̂ (z − 1)H(z)v =̂ (zk − 1)p(zk) =̂ (z − 1)(1 + z + · · ·+ zk−1)p(zk).

Finally, (4.21) implies that the sequence p(zk) = (pν(z
k)) satisfies (5.5).5
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A Appendix

Proof of Theorem 1.3.

Suppose λ 6= 0 and g(λ) = λm −
∑m−1

j=0 cjλ
j = 0. Then

1 =
∑m−1

j=0
λ−(m−j) cj. (A.1)

Set µ = max{|λ|−1, . . . , |λ|−m}. Then (1.6), i.e.

cj ≥ 0, j = 0, . . . , m − 1, and
∑m−1

j=t
cj ≤ 1.

yields10

1 ≤
∑m−1

j=0
|λ−(m−j)| cj ≤ µ. (A.2)

(i) From (A.2) follows 1 ≤ µ, that is |λ| ≤ 1. Hence r(g) ≤ 1.

(ii) If |λ| = 1, i.e. µ = 1, then (A.2) implies

∑m−1

j=0
cj = 1. (A.3)

Clearly, (A.3) implies g(1) = 0.

(iii) Set γj = (j + 1)m−1 cj+1, j = 0, . . . , m − 2. Then

g′(z) = m
(

zm−1 − (γm−2z
m−2 + · · ·+ γ1z + γ0)

)

,

and γj ≥ 0, and
∑m−2

j=0 γj < 1. Hence part (ii) implies r(g′) < 1. Therefore15

g(z) and g′(z) have no common zeros on the unit circle.

(iv) If t > 0 then

g(z) = zt[zm−t − (ct + ct+1z + · · · + cm−1z
m−1−t)], ct > 0.

Hence it suffices to consider the case t = 0, c0 > 0. Let |λ| = 1, and set

βj =
1

λm−j
cj, j = 0, . . . , m − 1. (A.4)

Then µ = 1 implies

1 =
∣

∣

∣

∑m−1

j=0
βj

∣

∣

∣
=

∑m−1

j=0
|βj|.

Hence βj = ωαj, j = 0, . . . , m − 1, with αj ∈ R≥, ω ∈ C, |ω| = 1. From

(A.1) we obtain 1 = ω
∑

αj. Therefore ω = 1, and βj ∈ R≥. Take j = 0 in5
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(A.4) Then c0 > 0 yields λm ∈ R>. Because of |λ| = 1 we obtain λm = 1,

i.e. λ ∈ Em. Let

d = gcd
(

{j; cj 6= 0, j = 0, . . . , m − 1} ∪ {m}
)

, and ` = m/d.

Then

g(z) =
(

zd
)`

−
(

c(`−1)d

(

zd
)`−1

+ · · · + cdz
d + c0

)

.

Moreover, g(1) = 0 implies

g(z) = (zd − 1)p(zd). (A.5)

Suppose λ is a zero of g(z) and |λ| = 1. Because of λm = 1 we can rewrite10

(A.4) as

βj = λjcj, j = 0, . . . , m − 1. (A.6)

Let ord λ = s and m = ks. If cj 6= 0, i.e. cj > 0, then (A.6) implies λj = 1,

that is j ∈ {0, s, 2s, . . . , (k − 1)s}. Therefore cj 6= 0 only if j ∈ sZ, and

{j; cj 6= 0, j = 0, . . . , m − 1} ⊆ {0, s, 2s, . . . , (` − 1)s}.

Hence s|d, and therefore λ is a zero of zd − 1, i.e. λ ∈ Ed. This proves (1.7)

in the case t = 0. In (A.5) we have r
(

p(zd)
)

≤ 1. Suppose r
(

p(zd)
)

= 1.15

Then 0 = p(ηd) = g(η) for some η with |η| = 1. Thus (1.7) would imply

ηd = 1. Hence η ∈ σ(zd − 1), and g(z) would have a zero on the unit circle

which is not simple. Therefore it follows that r
(

p(zd)
)

< 1. �
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