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Abstract
\

\

In this articlc, 'we commcnce an investigation of the SU(N) representation
space of Seifert fib~\red homology spheres 1:( (LI, ••• , an). ,U~ndc;' mild assump-"
tioTIS (e.g. if f{ is prime), then Theorem 3.1 implies that any closed connected
componcnt of irrcd uci blc SU(N) rcpresclltations of :E (al, ... , (Ln) is homeomor­
phic to a component of SU(N) repl'esentations of an associated genus zero Fuch­
sian group. The latter representation spaces can be studied USillg the goneral
correspondence between represelltatiolls of Fuchsian groups and the moduli of
parabolic bu ndles givcn by Mehta and Seshadri. For exanlple, the illductivc
procedure of Atiyah-Bott-Nitsure determines the cohomology of this moduli
space and it follows that the odd dimensional cohomology graups of any C0111­

ponent of irreducible SU(N) representations of E((LI, ... , (Ln) vanish. In particu­
lar, any irrcduciblc compollcnt of tllc SU(3) representation space of a Brieskorn
spheres E(p, (j, r) is either a point or a two sphere. By repeated applicatioTI of
the illductive procedure, thc precise TIumber of points and two sphcres in this
representation space is determined. Specific results for t~le Brieskorn spheres
with 1) = 2 are given, where the representation space is a collection of points.
In thc last section, thc SU(N) spectral flow of irreducible represcntations of
Seifert fibered homology spheres is shown to be even. This gives a calculation
of the leading term in a gauge-thcoretic definition of the generalized Cassoll
inval'iants.

1 Introduction

Thel'e is a rieh anel elegant thcol'y of l'epl'csentations of finite groups. Up to conju­
gation, thcl'c are only finitcly Inany distinct irredueible representations in any given
rank, anel the eolleetion of all irredueible rcprescntations satlsfy a fan10us arithn1ctic
relation [17].

Suppose that (p, q,1') are pairwise l'elatively prilne anel let E(p, q, 1') be a Brieskorll
sphere, that is, the link of the singularity of the variety x P + yq + zr = 0 in C3

. Thc
rank two representation theory of the gl'OUPS 7rI E(p, q, 1') shares lnany properties with
that of finite groups. [n particular, up to conjugation, thel'e are only finitely Inany
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irreducible representations of rank two. Counting the nUInber of these representa­
tions inlInediately yields Casson 's i.nvariant. This follows froin the observation of
Fintushel and Stern [8] that thc SU(2) spectral flow of any Seifert fibered hOlnology
sphere is even a,nd the characterization of Casson 's invariant as the Euler character­
istic for Floer hon1ology [18]. In the general case of a Seifert fibered hOlnology sphere
2:(al, ... ,an) (the link of the singularity of con1plete intersection of cOinplex dilnen­
sion 2 in Cn

), the 5U(2) represcntation space is not discrcte but has components of
dimension 27n for each 0 ~ 7n ~ n - 3. Thc perturbation argument of §4 of [8] along
with the results in [12] show that Casson 's invariant of ~((LI, ... ,an) is just the Euler
characteristic of its SU(2) represcntation space.

In this paper, we consider the problenl of clescribing in rather general tcnns the
SU(N) l'eprescntation space of Seifert fibered hOlnology spheres ~(ab"" an)' For
exalnple, it is shown that thc odd dinlensional hOIllology of any connectcd conlponent
of irreducible SV (N) representations vanishes. This is done by interpreting it as
the llloduli of parabolic bundles over the Riemann sphere. Since any component of
irreducible SV (3) representations of a. Brieskorn sphere has dinlension ~ 2, it follows
that it is either a point OI' a two sphere. Restricting our attention further t.o the
Brieskorn spheres ~(2,]J, q), thc SU(3) rcpresentation space is just a discretc set of
points.

By the leading tenn of the SU(3) Casson invariant, we Inean L p( _1)SF(8,p) where
tbe sun1 is taken over p an irreducible representation in a (possibly perturbed) reprc­
sentation space. The other tern1 is 80 sun1 of IvIaslov indices over thc reducibles, which
is n10re subtle to define and is not discussed here (cf. [7]). For p an irreduciblc SU(N)
representation of a Seifert fibercd hOluology spherc, we provc that SF( G, p) is always
even. Thus, for the Brieskorn spheres E(2, p, q), the calculation of the Ieading tenn
of thc SU(3) Casson invariant is reduced to the problem of counting thc nUIl1bcr of
irreducible rcpresentations. The fonnula we adopt for the generalizcd Casson invari­
ants suggests that there nlay be an SU(N) Floer hOlnology for 3-manifolds, but this
is beyond the scope of this paper.

We now briefty outline the contents of each scction. In §2, we derive sOlne gen­
eral results about rec!tlcible representations of perfect groups and, luore specifically,
funda.n1ental groups of Seifert fibered hOlllology spheres 2:(a), . .. an)' In §3, we prove
that if a.ll hut one of the Seifert nUInbers ([1, ... , an are relatively prilne Lo N, then any
connected con1ponent of irreducible SU(N) representations of 2:(a], . .. an) is hon1eo­
morphic to a cOlnponent of a SU(N) representations of the genus zero Fuchsian group
T(Nal"" an)' Proposition 3.2 gives a fonnula for the din1ension of a given compo­
nent of the SU(N) representation space of T, froln which it follows that the SU(3)
representation spaces of ßrieskorn spheres have ditnension ~ 2.

]n §4, the 1l10duli of parabolic bundles is introduced anel thc inducLive proccdure of
Atiyah-Bott-Nitsure is discussed. The neccssary definitions are given in §4.1 and the
inductive procedure is outlined in general tern1S in §4.2. In short, given a parabolic
bundle E, thc Harder Narasilnhan filtration of E, together with an intcrsection matrix
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I p cIefinecI for each parabolie point p, detennines a stratification on thc space of
holoIllorphic struetures on E which is equivariantly perfcct with respcct to the gauge
group P of parabolic autoIllorphisms of E [16]. In partieular, one ean deduce the
P-equivariant cohol1101ogy of the top stratuill of senlistable bllndles by knowing the
equivariant COhOl1l010gy of caeh lowcr stratuill. In thc case seIllistable = stable, then
the 1110dllii is the quotient of this top stratuIll by the gauge group P. lf, in addition,
the parabolic structurc is nontrivial, thcll Proposition 4.8 proves that the cohomology
of the mocluli space is torsion free anel in fact the tensor produet of the equivariant
COhOlllOlogy of the scrnistable bllnclles with the COhOlllOlogy of the classifying space
of the isotropy group (just BU( 1)). A corollary is that if the underlying curve is er I

,

then the odd diluensional COh0I110logy of the moduli vanishcs. In partieular, any
Dl0duli of cOlnplex dilllension 1 is isoillorphic to eIF l

. In §4.3, two specific exanlples
are presentcd for rank three parabolic bundlcs over CJIDl.

In §5 we return to the study of representations of Brieskorn spheres. §5.1 applies
the theory froll1 the prevlous scctions to stlldy thc 8U(3) representation spaces of
Brieskorn spheres. Specific results are listed in tables at thc end of §5.1. Then in §5.2
the IllethocI of [8J is generalized to C0I11pute the SU(N) speetral flow of irreducible
representations of Seifert fibered hOIllOlogy spheres. It is proved that the SU(N)
speetral flow of any irreducible representation of a Seifert fibred h0I110logy sphere is
even. This shows that the rcsults in §5.1 deterrnine the leading term of the generalized
SU(3) easson invariant for these ßrieskorn spheres.

Acknowledgernents: This work was supported in part by a Rackhanl grant from
the University of I\1ichigan. In addition, 1 would like to thank Ron F'intushel and
Paul Kirk for lnany helpful discussions.

2 Reducible Representations

Let Gf denote a compaet Lie group with center Z. Define the space of representations
of a finitely presented group 7r into G, dcnoted Rep(7r, GI), to bc the set of hOlllon1or­
phisIllS p : 1f -t Ci, with tbe usual (coIl1pact-open) topology. The presentation

descri bes Rep(1f, C/) a.s an algebraic variety in Gf X .7.'. X Ci by iden tifying p E Rep( 1f, G)
with the ilnages of thc generators Xi = p(Xi)' Thus

By the representation space, denoted R( 1f, Ci), we just mean thc space of rcpresenta­
tions tnodulo the G action by conjugation, i.c.

R( 7r, G) = Rep(1f, G)/conj.
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Definition 2.1 (i) Fo'r any SeC, define Z(S) = {, E G' I ,S = S, for aU sES}.
(ii) Let. Rep*(Jr,G) = {p E J~ep(Jr,Gl) I Z(i1n(p)) = Z(C;)} be the s'ubsel ofl:rreducible
1'epresentalions. Sinee Rep* is invariant under eonjugationJ we n~ay define R* =
Rep* /eonj.

Lenl1na 2.2 S7.lppOSe that If1 (Jr) = 01 i.e. Jr = [Jr,Jr].
(i) 1f p E Rep( Jr, U(n)) is redueihle, lhen hy eonjugat.ing if neeessarYJ we have

i1n(p) C SU(nd X ... X SU(nk).

(ii) In partieular, if p E Rep( Jr, U (3)) is redueiblc, t.hen i1n(p) C SU(2).

proof: First observe that p E Rep(Jr, U(n)) => i1n(p) C SU(n). This fo11ows fr0l11 the
observation that 1[1 (Jr) = 0 => det(p) : Jr -t U(1) is tri vial.

Suppose thaL p is reducible. This Ineans that, after conjugating, we Inay asSU111C

irn(p) C U(nd x ... x U(nk). Now (i) fo11ow8 by applying the initial observation to
each C0l11pOnent U(nd, and part (ii) is an ilnn1cdiate conscqucnce of (i). •

Henceforth in this section, unless stated otherwise, E = E( (l,l, ••. ,an) will denote
a Seifert fibered honlology 8phere. Hs fundalnental group has a standard prcsentation

'"' - ( I Ih t I aj - I -bi - h- bo )Jr 1.:....J - Xl, •• ·, X n ,I. cen ra , Xi - ~ , XI' •• X n - .

Here, the bj are not unlquc but 111Ust satisfy

n b.
a( -bo+L ~) = 1

j:;;1 ai

(1)

(2)

where a = aI··· an' Recalling that the center of SU(N) is isolnorphic to ZN and
adopting the notation for 111anifolds ~, R('L., G) =R(1r I 'L., G), we have

Lenlnla 2.3 (i) lf P E R*(E, SU(N)), then p(h) E ZN.
(ii) If p E R(E, SU(N)) and p(Xj) E ZN for 1 ~ i ~ 11. - 2, then p is l..riVl:al.
(iii) R(f.(p, Cf, 1'), SU(2)) consist,s 01 a finit.e colleetion of points.
(iv) lf pE R*('L.(2;p,q),SU(2)), theu p(h) = -1.

proof: The presentation (1) ill1plies that p(h) E Z(i7n(p)) anel (i) follows froln the
definition of irreducibility. To see (ii), suppose that p E .I~(~, SU(N)) is a represen­
tation with p(h), p(Xt), . .. , P(Xn -2) E ZN. Then the last relation of (1) in1plies that
p(xn-r)p(xn ) E ZN, from which it follows that p(xn-d and p(Xn ) COll1Il1ute. But that
iIl1plies p is abelian, so p is trivial. Statelnent (iii) follows fronl [8] (01' equivalently,
fron1 the dilnension count of Proposition 3.2). To prove (iv), first note that p(h) = ±J
since h is central. lf p(h) = 1, then p factors thl'ough to give a representation of the
triangle group
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It is left as an exercise to see that there arc no nontrivial SU(2) representations of
the above triangle group (using )(; = 1). •

Suppose that PI E R(~, SU (N)) is a l'educi ble l'cpresentation which is the endpoint
of a path of irreducible representations Pt. Since pt(h) E ZN and i8 continuous in t, it
i8 constant. The following proposition now follows froln (iii) and (iv) of the pl'cvious
lemnla.

Proposition 2.4 // P E R(E(p, q, 1'), SU(3)) with p(h) = diag(l, -1, -1) up {,o con­
fugal,ion,) I,hen P is art isolated red'llcible rep'resentation. In particnlar) every relllcible
representation p E R(~(2, p, q), 8U(3)) is isolated.

3 U nitary Representations of Fuchsian Groups

In this section, a general result relating the SU(N) representation space of Seifert­
fibered hOIllOlogy spheres to l'cprcsentations of a certain Fuchsian group is proved.
For tcchnical reasons, we shall assUI11e that JV is relatively prinle to all but one of
the Seifert 11l11nbers. \Ve conelude by giving a fOl'lnula for thc dimension of this
representation spacc.

Fix SU (N) anel let E = ~(al, ... , an) be any Seifel't-fibered hOlllOlogy sphere whosc
Seifert nlllnbers (li are relatively prilnc to 1\' for i > 1. (U P to reordering, this will
alwa,ys hold provided JV is prilnc.) USillg the notation of thc presentation (1) for the
group 7I"1~, Define

Re]Jc(~, SU(N)) = {p E R('E., SU(3)) I p(h) = ZN}

and

Rc(~, SU(N)) = Repc ('f., SU{N))/conj.

Notice that R·(~, SU(N)) ~ Rc(~, SU{N)) by
Now the quotient of E by thc natural cirelc action is an orbifold X of dinlension 2

with genus 0 and 11. cone points of cone angles 27I" / (Li. Its orbifold funclalnental group
is just 7rl~/ (11. = 1) and has the presentation as the genus zero Fuchsian group

We wish to retate the SU(N) representation spaces of ~ anel its quotient because
representations of T( ab . .. ,an) can be studieel with stable parabolic bundles. In
order to accul'ately relate the two reprcsentation spaces, we Inust lnultiply thc order
of the first cone point by 1\'.

So consider the group T = T( N (LI, ([2, ... ,an)' Dcnotc by 'T the quotient

T = T / (yfl i5 central ).

The quotient map identifies R(T, SU(N)) with a 8ubrnanifold of R(T, SU{N)) which
we denote Rc(T, SU{N)). Then we havc
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Theoren1 3.1 Re(~,SU(N)) ~ Re(T, SU(N)).

prüüf: First, in the presentation (1), we lnay choase bi divisible by N for i =J. 1 [15].
In this way, we see that T is alsa a quotient of 7r1 (~), nanlely

The quotient nlap dcfines a continuous one-ta-one nlap

<1> : R(T, SU(N)) ~ R(~, SU(N)).

To see that cf> is surjectivc on Re, consider p E RCPe(~, SU(N)). Since p(h)N = J,
we see that p factors through to T. It is ilnnlediate that <1>-1, defined on Re, is COl1­

tinuous. •

Before we present the next proposition, which describes the Zariski tangent space
of an irreducible SU(N) representation of ~(aI, ... ,an), we develop SOlne notation.

Let ~V be the Inappillg cylinder of the Seifert fibration ~(al' ... ,an) ~ 52. View
this Illap as an orbifold circle bundle over X, the orbifold with underlying space 52 and
with n cone points of orders Cl I, ... ,an' Thus ~v is an orbifald with singularities which
are cones on lens spaces and it is well known that 7rfrb X ~ 7rfrb~v ~ T( Cl], ••• , an).
Furthennore, if p E R-(E(a], ... ,an), SU(N)), thcn

which follows by interpreting each tenn as group cohonlology. Since p is irreducible,
HO(~X", aD(p)) = O. By Poincare duality (using an ad-invariant inner product of !iu(N)
on the fi bers of aD(p)), we see also H2 (.X", aD(p)) = O. \Ve could use thc Fox differ­
ential calcullls to compute H1(X, aD(p)), but there is a short-cut whieh exploits the
irreducibility of p and involves only counting the dinlensions of thc conjugacy classes
of each p(Yi)'

First SOUle general remarks about elelnents in SU(N). Any Y E SU(N) is conjugate
to a diagonal lllatrix exp(diag(8], ... , ON)) where 0 S B] :s ... :S BN < 1. Since
det(Y) = 1, we have L~ Oi E Z. Further, if ya = I, then Oj = lj/a for integers 0 ::;
lj < a. Given a, there are only finitely Inany conjugacy classes of ath roots of unity in
SU(N). One can list then1 by their diagonal representatives exp(diag(II/a, .. . , IN/a))
where 0 S ll/a ::; ... :S IN/a < 1.

The conjugacy dass of Y, denoted C(Y), is just SU(N) IllOdulo f y , the isotropy
subgroup of Y. \'Vriting 8 = {1}l, ... , 17.. }, where 0 ::; 171 < ... < TJ .. < 1 are listed
without rnultiplicity, and defining 111.j to be the multiplicity of 1/j (i.e. the dilnension
of the e2Jri

T/i eigenspace of Y), thcn r'y ~ S(U(1nd x ... x U(111. .. )) and it follows that

..
diln C(Y) = l\r2

- L m;.
i:=]

6



We can apply these considerations to the representations of the genus zero Fuch­
sian groups by identifying p E Rep(T(al,' .. , an), SU(N)) with the points

(Yi, ... , Yn ) E SU(N)x .~. xSU(N)

satisfying y;U; = land Y1 •.• YN = I. (Obviously, Yi = p(Yi)') Choose O'i a diagonal
a~h root of unity in SU (N) as above and set ä = (0'1" .. , O'n)' Dcfine

Repö = {p E Rep(T(at, ... , an), SU(N)) I p(Yd E C(O'd}·

So, Repa = jl-I (I) where

Il : C(O'd X ... X C(an ) ~ SU(N)

is j ust the n-folel proeluct Il(Yj, ... , Yn ) = Yl ... Yn · If ] tf. irrl,Ül) thcn Repe: = 0.
Othcrwisc Repc; is connceted (this wi II follow frOll1 the eorrespondenec betwecn r~p­

resentation spaccs and I110duli of seInistahle parabolie bunellcs dcseribed in the next
scetion), and a standard arguIllent shows that for p E Repa, dflp is surjcetivc, i.c.
irrcdueible rcpresentations are regular points of Il. ThllS, lettillg d j = dinl C(O'i), we
find that

n

dill1Repi; = L di - dill1SU(N).
i=1

Dcfining

Re: = Repa/conj,

then since the action of conjugation on the irreducibles is a free PU(fV) action, we
have shown

Proposition 3.2 11 P E Ri;, then H1 (~X", Ol) p) = L~ di - 2 dilll SU(N).

Renlark: Thc above proposition holds for Fuchsian groups of genus 9 anel one geLs
the fOrIl1ula dilll J~5 = (2g - 2) diIl1 SU(N) + L~ d j •

For exanlple, in SU(3), because d j E {O,4,6}, there arc only two possibilities
for a nOnCll1pty l'eprescntation space. The first possibility is if each di = 6 so that
ditTI Re: = 2 (in fact, it will follow later that Ra ~ 52). The second possibility is if
dl = 4 anel d2 = 6 = d3 , in which case dirn Re: = 0 in which case Ra is a point.

Because there are only finitely lnany conjugacy classes of ath roots of unity in
SU(N) for a, givcn integer Cl,

R(T(ab ... ,an), SU(N)) = TI Ra,
a

anel by Theorem 4.'1 of [4],
Ra ~ ~a, (3)

where 'Ytö dcnotcs the lnoeluli space of sernistable parabolic bunclles over er1 with
parabolic degl'cc O. Therc arc n parabolic points PI, ... ,Pn and the parabol ic st ruc­
ture at Pi is detenninecl by O'i (see §4 of [4]). Connectedness of Ra now follows
from Proposition 2.8 of [16J where it is proved that ~a is connected (provided it is
nonen1pty) .
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4 The Moduli Space of Parabolic Bundles

4.1 Definitions

We now introduce the IllOduli spacc of scnlistable parabolic bundles. Let M be a
c10scd surface of genus g with a set P = {PI, ... , Pu} of 11. distinct points on M.
Suppose that E is a CN bundle over M.

Definition 4.1 A topologl:cal parabolic st1'uct1tTe in E is a col/ection 01 weighted flags
in the fibers of E above each pEPJ i. e.

Ep = FI :> F2 :> . . . :> F!J :> 0

o S; 111 < 112 < . .. < 1} t1 < 1.

Each Rag Inakes a Ioeal contribution to the parabolie degree, defined as

t1

k = L 17~i1Ji ,
i=l

where lni = diln(Fi ) - dilll(Fi+I ). Of course, all the structure associated with the
fiag dcpends on the parabolic point in qucstion. \,Vhen we want to clllphasize this
depenelence, we shall write Fi(p), l}i(p), s(p), 1ni(p), anel k(p). The paraholic degree
anel slope of E are defincd by

pd(E) = deg E + L k(p),
pEP

J1(E) = pd(E) .
rank E

Let C denote the spacc of all holoIllorphic structures on E.

Definition 4.2 A given d" E C is cal/ed stable (senüstable) ij, for every proper holo­
n~orphic subbundle E', we have J-l(E' ) < It(E) (l'especliveIYJ p(E') S; Il(E)). Let
Ct1 ~ CH denote the subspaces 01 stable and semistable bundles.

To construct the 11lOeluli space of scmistahle parabolic bundles, consider the gauge

group gC of bundlc autolllorphislllS of E Iying over M. Then gC acts on C but does
not preserve Ct1 !J' We Inust instead consiclcr the sllbgrollp P of hundle autolllorphisIllS
which preserve the fiag structures, i.e.

P = {g E gC I g(Fj(p)) = Fj(p) over each parabolic point ]J E P}.

Then P acts on CSt1 anel we can deHne the moduli 91 = CH§P. We adopt a notation
renliniscent of the Nhul1ford quotient (i.c. the double slash) to indicate the nl0duli is
not sinlply the quotient by the grollp action, but rather further identifications need
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to be 111ade in order to obtain a reasonable space (cf. §2 of [5] for details). \,Ve warn
the reader tha,t tbe 1110d uli 91 is not, strictly speaking, a ~1 tunford quotient because
the group P is not generally reductive. In this paper, we shall assume that C" = C"-,,
in which case the tnoduli space 91 = Cs/P is an honest quotient anel our notation
should cause no confusion.

For each dU E C, the parabolic bundle (.E, dU) has a canonical filtration by pal'abolic
subbundles

oC EI C ... C Er = E (4)

with senlistable quotients Di = Ed Ei - 1 whosc slopes Ili = Il(Dd satisfy Pi > Ili+l'
Letting '11. i = rank D i and pd i = pd(Dd, then the Hal'c1er-Nal'asiInhan type A of
(E l (r') is the polygon in IR? \Vi th vertices

The length of A, denoted lAI, is just the integer r. Notice that dU E CH {:} lAI = 1.
Unfortunately, setting

C). = {dU I (E, cLU) has type A}

does not proviele a nice P-equivariant stratification for the sinlple reason that C,\
is generally disconnected. To get the desired stratification on C, we need the lllore
refined notion of c0l11pound type introducecl by Nitsure [16], The extra infonnation
to keep track of is how cach subbundle Ei in thc filtration intersects each Rag Fj(p),
given by a 11latrix-valued function Ip of P defined as follows.

Definition 4.3 (Intersection Matrix) For pEP, set di,j
define the r x s(p) ·ma17'i:r. Jp by

(This is j1lst "he sym:metric difference of (dij )) but. looks strange because the jlags a7'e
descertding while the filt7'ation is ascending.)

Definition 4.4 (Coll1pound Type) Define the c01npound type 01 the parabolic bu'11.­
dIe (E, dU) to be the pair (A, I), where ,,\ is the Harder-Narasitnhan type 01 (E, d") aud
1 I:S the interseetion rnalTix. Also} set,

C,\,l = {dU I (E, d") has compound type (A, I)},

the stral-lU1l 0/ holonwrphic st.,.ucl.ures with compound type (A, I).
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(5)

4.2 The Inductive Procedure of Atiyah-Bott-Nitsure

\,Ve now elescribe thc incluctive procedure of Atiyah anel Bott, as 1110dified by Nit­
sure, for the computation of the P-equivariant eoholl101ogy of the space of seInistable
parabolic bundles. Beeause this calculation is hoth technical and key to our descrip­
tion of the rcpresentation spaees of Brieskorn spheres, the ll1aterial is presented in a
eomplete and self-eontained way.

The ielea is to relate the COhOI110logy of 91 in the case C$ = C,.. to the P-equivariant
eohoillology of Cs.'!' Therc is a subtle issue eluc to the fact that P cloes not aet freely
on C.'!Sl which is acldressed in Proposition 4.8. In any case, one ean ealculate the
P-equivariant eohon1010gy of Cs .'! using thc P-cquivaria.ntly perfect stratification on C
dctern1incd by thc cOlnpounel type of thc parabolic bllndlc [16]. After revicwing this
calculation for 1110dllii spaees of bunclles of arbitrary rank, in the next seetion we give
speeifie exalnples for rank 3 bunclles over the RieIl1ann sphere, which is tbe principal
ease of interest in this paper.

Nitsure proveel that eaeh stratUll1 C.\,l, if noncmpty, is eonneeted, anel that the
stratifieation indllced on C is P-equivariantly perfeet. This a.llows one to eOll1pllte
the P-eqllivariant eohon101ogy of CS '" the top straturll, by knowing the equivariant
COhOIl1ology of all the other strata.

~1ore preeisely, because

C = C.. IJ U UC,\,1
,\,1

is a P-equivariant, perfeet stratification, it follows that

pt(Cs.. ) = Pt (C) - L t2d
>.,I Ft (C,\,1)

'\,1

where d>.,1 elenotes the cOInplex codiInension of the C,\,! anel Pt rcfers to the cquiv­
ariant Poineal'e polynomial (cL Proposition 3.8 of [16]). Each unstable stratull1 has
equivariant cohoI1101ogy ison10rphic to the tensor Pl'oeluct of tbc equivariant coho­
I1101ogies of seInistable strata of Iower ditnension (see Propositions 7.12 of [1] and 3.4
of [16]). In tenns of the equivariant Poincare polynoll1ials, this Ineans that

r

Ft(C,\,I) = TI Ft (C.. s (Di ) )"

i=l

(6)

where for each Pt, we Inean equivariant COh0I110logy using the appropriate gauge group
P(D i ) of pal'abolic autOll1orphisn1s of Di. AssuIlling by induction that ?t(C,\,I) are
alt known, to detern1ine Pt(C.'!:J), we need to find pt(C) = Pt(BP) anel then we need
to entunel'ate all the unstable strata which oeeur and to COinpute their eoclimensions.

Proposition 4.5 The equivuTianl Poincun! polYTwnüal 0/ BP is given by

_ ( . 2N N (1 + t2k - 1 )2g ) ( .'!(p)-l Mk+dp) 1 _ t2j )

Pt(BP) - (1 - t ) TI (1 _ t2k)2 TI II rr 1 _ t2(j-Mk(P)) •
k=l pEP k=I j=Mk(P)+I

10



proof: Let F denoLe the Oag varicty anel consieler thc fibration

P L....+ gC ---... F.

On the level of classifying spaces, this gives

F ---... BP ---... BgC .

(7)

As explained in §6.4 of [4}, this last fibration is cohOlll010gically trivial, so its Poincarc
polynomial is given by

(8)

Furtherrnore, it is shown in Theorelll 2.15 of [1] that BgC is torsion free with Poincal'c
polynonlial

P (BgC) = (1 _ t?N) rrN (1 + t
2k

-
1

)2
9

. (9)
t (1 _ t2k)2

k=l

The COhOll1010gy of the flag variety is also torsion free anel weil unelerstood. First,

wherc each
F p = U(N)/U(rn}(p)) X ... X U(ml}(p)),

Recall H1-j(p) is thc llnI1tiplicity dinl(J~(p)) - diIn(Fj +1(p)). Set

k

A1k (p) = L m·i(p),
i=l

Each Rag is cohonl010gically a Pl'oeluct of Grasslnanians, allel suppressing dependence
on p, Proposition 23.2 of [6] gives

(10)

This c0l11pletes the proof. •

The next proposition gives a fonl1ula for the codimension dA,! of an unstable stra­

tUITI CA,!. Berore stating it, we introduce some notation. Let <!:nllE and ~atlEnllE de­
note the sheaves of genTIS of enelolll0rphislllS of E and parabolic endolllorphisIl1S of E,
respecti vely. AIso, let lEnll"E = <!:nllE / rEnll'E and ~atlEnll"E = ~ntlEnllE /'llntlEnll'E
be the quotient sheaves by the subsheaves ~nil'E and ~at~nll'E which preserve the
Harder-Narasill1han filtration (4) of E. Then there is a short exact sequence

o---... ~nt~nll" E ---... ~nll"E ---... Q ----7 0

where Q is a skyscra,per sheaf supported on the set P of parabolic points.
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Proposition 4.6 (Nitsure)

d,\,l = 2:(nidj - njdi ) +(( rank E)2 - 2: ninj) (g - 1 +n)
i>j i~j

proof: See the proof of Proposition 1.17 in [16] for the detaib. Briefly,

d.\,l = 11.
1

( Al, ParEncl"E) = - X(End"E') +X(Q) . (11)

Writing ni = rank 1Ji anel eh = deg D i for thc rank and degrec of the senlistable
quotient Di in thc Harder-Narasilnhan filtration (4) of E anel using Ricmann-Roch,
one can cOInpute as in 7.16 of [1] to get

x(~nD"E) = L,(njdj - njdd + ninj(g - 1).
i>j

Since Q is a skyscraper sheaf supporteel on P, the following forIllula for the rank of
Q at p determines x( Q).

rank (Qp) = (rank E)2 - L ninj - L n~i1nj + L lp(i, k:)1p(j, I). (12)
i<j i<j i<j- - 15k

There is a slight discrepancy between our formula for x( Q) anel that given by Nitsure,
here we correct two typographical errors.•

There is a alternative description of x( Q) which is usernl for C0I11putations. For
the sake of argUI11ent, SllPPOSC that there is only one parabolic point and that the
quotients .D j of thc Harder-Narasitnhan filtration are all line bllndles (i.e. 1.\1 = N).
Asslune further that the fiag over p is full, i.e. that s = IV. Thcn the following
proposition gives a silnple cOlnbinatorial description of x( Q).

Proposition 4.7 Undc'l' lhese assu'mpUons) I p is a penrtut,ation matrix and X( Q) is
the nünimal number of adjacent 1'010 17'ansposi/.ions necessary /.0 oblain the ident:ity
'matrix fro'm I p •

proof: Let R i denote the i th row vector of I p • Then ~ is given by a standard basis
vcctor ej j • It is eleal' frOln the fornntla far x( Q) that a transposition of two adjaccnt
rows ~ = ej j anel ~+l = eji+l cithcr incrcases 01' elecreases X( Q) by 1 elepeneli ng
on whether ji < y'i+l 01' y'i > ji+l. Equally elear is the fact that if I p is the identity,
then X(Q) = O. Since lp is apermutation I11atrix, SOIlle sequence of a,djacent row
transpositions will give the identity, anel a rninilnal sequence will all decrease X(Q)

12
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by I, proving the proposition.•

Re01ark: First of all , this proposition generalizes in the obvous way to the case
of nl0re than one parabolic point. Also, it holds with coluIlln transpositions replaeing
row transpositions, ancl then generalizes to the cases IA1 = IV and arbitrary s using
rows, anel s = lV anel arbitrary lAI using coltunns.

The final step in the ineluetive proceclure is to enUlllerate all the unstable strata
that oceur. For genus 9 2:: 2, this is fairly straightforward, while for genus 9 = 0, it is
COIlIplieated by the fact that cel'tain 10wcr rank 1110duli spaces nlay be enIpty (see the
renlark at the end of §6.3 of [4]), and consequently not all strata which are present
for higher genus appeal' in the genus zero case. The specific exaInples of the following
section show how to deal wi th this issue.

Having cOillpleteel the ineluctive pl'ocedure and cleduced thc P-equivariant coho­
Inology of C"", we are still left with the pl'Obleln of relating this to the COhOIl1010gy of
the rlloduli 91. Thc technique is to use the fact that for a free action of a group G on
a Illanifold 1\1 with quotient 1\', thc G-equivariant coholnology of lvI coineides with
the cohoI11010gy of N. In our case, thc problcln is that, even with the assulllption
that C"" = C", the P action is not free, beca,use the subgroup C'" of eonstant eentral
bundle autolnorphislns acts trivially. Howevcr, stahlc bundles are simple, i.e. for any
d" E C", the isotropy group of d" is precisely C*. Consider the fibration

C'" -T P -t P (13)

·1

I
It follows that thc group P = P jC'" does aet freely, so we would be done if we could
relate the P- and the P-cquivariant cohomologies of es' We have already seen that
H*(BP, Z) and Hp(C"", Z) are torsion frce (here Hp rcfers to P-equivariant cohomol­
ogy). So using Proposition ß.1 of [4] wc just Tleccl to show that the fibration obta1ned
froll1 (13) by ta,king c1assifying spaccs,

i -
BU(J) ~ BP -t BP, (14)

is trivial. Proposition 6.2 of [4] proves this 1S the case [01' rank 2 parabolic bundles
provided there is at least one nontrivial Hag. Proposition 4.8 extends this to arbitrary
rank. This is provcd by noticing that because the fiber of (14) is a j«(Z, 2), this bundle
is classified by an elelllent of

[HP, }{(Z, 3)] = H3 (BP, Z).

To show that (14) is trivial, it is cnough to show that the induced ll1ap
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is onto. Using thc Hurewitz nlap, this is equivaJent to requiring that thc illlage o[ the
lllap

7flU(l)~1rlP

is a direct SUlll. In [1], it is observed that thc image of 7fl U(1) ~ 7fIYC is a direct
sunl whenever thc rank and degree of the bundle are coprillle. The sanle for P follows
illllllediately frolll the following eleIllentary observa.tion. Suppose G' is a subgroup of

G, H ~ G' with im,(</» is a direct sunl of G. Then in~(cP) is also a dircct SUIn in G'.
Using this we shall prove Proposition 4.8. Suppose that Eis a topological parabolic

bundle with at least Olle nontrivial fiag

Let P be as usual the group of bundle autOIllorphisI11S preserving the fiag strl1cture.
Forgetting all the parabolic structure except that at p, where we use only the flag

we denote by P' the parabolic autolllOl'phisll1S with respect to this new parabolic
stl'ucturc. Clearly, we have the inelusion P L.....j. P'.

Clainl: The illlage of thc natural inelusion lnap 7f1 U(l) -» 7f1 P' is a direct SUlll.

\Ve can imlnediately canelude

Proposition 4.8 Suppose that lhe lopologieal parabolie bundle E has al least ane
nontrivial flag. Then fhe fib'l'lltion (14) l:S trim:nl. In pll'I'Ucular, lj CH = ClI , then the
'rnoduli of sl.able bundles is I.orsion-free with coh01nology

H:P(CH , Z) = H-(BU(l), Z) (9 H*(91, Z).

proof of clainl: Laoking at the long exact sequence of (7) in hOlllOtOpy, it follows
that

7f2:F' -» 'TrI P' -» 'lrlYC

is short exact. By (10), it fo11ows that 1r2:F' = Z. Let r be the lnap whieh restriets
a bundlc autolnorphisll1 LO the point p. Replacing groups by their lllaxilllal cOInpacts
and applying 1'*, we get t.he seql1eIlCe

(I"Iere, 1n2 = dirn F2 anel nl'l = 11. - 1'71.2-) The salne exacL argulnent as that which
proves Proposition 6.2 of [4) finishes the proof. •
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Corollary 4.9 In addition to thc hypotheses of the previol.ls proposition) aSSU1ne
that the underlyiTtg Rienzann s'll'1jace is er l

. Then H2i+1(91, Z) = o. rn partic'llla'l')

i/ dim(91) = 2, then 91 ~ CIP 1
•

proof: This i8 proved by induction, the case of rank one i8 trivial and rank two
is treated in [4]. FrOlTI the previolls proposition, it is enough to show that the P­
equivariant Poincare polynOlnial of C~s is actually a polynolnial in t2

• Suppose ineluc­
tively that this has been proved whenever rank E < lV. This is evident in genus 0
froll1 forrnulas (5) anel (6) and Proposition 4.5.•

Ren1ark: In light of this corollary, it i8 rea80nable to expect thaL these 1110cluli
are rational. A proof of this will appeal' in [5J for I110eluli ovcr CIP I

, anel as a elirect
consequence one I11ay concluele that thcse 1110eluli achnit :Morse functions with cl'itical
points of only even index.

4.3 Examples

In this sectioIl, we present two exan1ples of the inductive procedure for rank 3 bundles
over the Rie111al111 sphere. In both, Iv} = CIP1 with three lnarked points {Pt, P2, P3}
anel E is a rank 3 topological parabolic bundle over 1\1 of degree -3.

Für the first example, suppose E has pa.rabolic structures over PI, P2 anel P3 given

by the weights (0, ~, ~), (~, ~, ~) anel (;1' ~~, ~~) respectively, anel consieler thc associ­
ated nl0duli space 91. In this case, Proposition 4.5 givcs

(15)

The other tenn in forI1lltla (5) is a SUI11 which can be decOlnposed according to
the length of ,,\ into two sums

(16)

which we treat separately.
First, Sllppose that lAI = 3, so E has a filtration 0 C E1 C E2 C E3 = E

whose quotiellts Li = Ei/Ei - 1 are line bundles. Note that for line bundles L, sincc
Cs~(L) = C(L), it follows that avcr er!,

~ 1
Pt(Css(L)) = Pt(BU(l)) = --2'

1 - t

ThllS if lAI = 3,
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Let di = deg(Li) and Pi = p(Ld. Notice that the type A = ((0,0), (1, ItI), (1, JLz), (1, !L3))
is deternlined by di and by the intersection matrix. More illlportantly, such a A is thc
type of an unstable stratunl if anel only if

(17)

The calculation runs through all possible degrees d l , dz, d3 and all possible inter­
section matriccs, inclueling only those which satisfy (17) into the first SUIU of (16).

\-Ve fUl'ther dCC0I11pOSe the sun)

'""' Zd -L..J l >.,1 Pt (C)..,! ) = SI +Sn + SIll + SIV
>',1

1>'1=3

accoreling to the cases: (I) d l > rlz > d3 , (Il) d l = dz > d3 , (lI!) d! > dz = d3 ,

and (IV) dl = dz = d3 • (Notice that if d} < dz 01' dz < <13 , then (17) cannot hold
for this particular choice of weights, i.c. the foul' cases above are exhaustive.) Sincc
d3 = -3 - cl) - dz, Proposition 4.6 shows that a stratUl1l of type A, I has coclilnension
given by

d,\,! = 4d l + 2dz + :J + x( Q)

anel Proposition 4.7 Inakes it easy to C01l1pute X(Q).
(1) lf fil > dz > d3 then (17) holds for all possible intersection Inatrlces. It follows

that cll 2: °and -[d l /2] - 1 ::; dz ::; d! - 1. Splitting this into two pieces according
to dl = 2k is even anel cll = 2k +1 is oeld anel then sumlning thc geolnetric series, we
see that

S, = L Pt (C.u (L) )t8d1 +ld~+6+Zx( 12)

d1 ,d~

For the relnaining cases, it is helpful to notice that the weights over Pl are dO'lni­

nant in the following way. Because the sunl of the 111axilnulll difference between the
weights over pz anel P3 is less than the 111inilnU111 difference between the weights over
PI (i.e. 2/9 +3/31 < 1/3), the intersection elata over PI deternlines whether 01' not
any given type satisfies (17).

16



(II) In this ease, the type satisfies (17) if and only if J-11 > J-12, whieh is the ease if
and only if

I
p1

E {U ~ n,U~ n,0!n}·
Then we find that

Sn

(III) Silnilarly, (17) is satisfied if alld only if J-12 > Il3, whieh is the ease if alld only
if

I
p1

E {U ~ n,0~ n,0!n}·
Again, we get that

(1 + t2)2(1 + t2+ t4)3t8
SIII = (1 _ t2)3(1 _ t12)

(IV) If d1 = d2 = d3 = -1, then (17) is satisfied if anel only if

This gives
(1 + t2)2(t4+ t2+ 1)2

SIV = (1 _ t2)3

To eomplete the ealculation, we show that

'""" 2d ~L.. t >.,1 Pt (C,\,I) = o.
>.,1

1>.l c 2

This follows fronl the following

Clain1: If W is a rank 2 parabolie sub- 01' quotient bundle of E, then Css(vV) = 0.

proof of claim: rar such bundles W, there are 33 different ways that W could inherit
weights from E. We prove this in the ease that ltV inherits the weights (0, ~), (~, ~)

and (:1' ~~), the other eases being identieal. Here, by tensoring with an appropriate
line bundle, we ean assurne that deg(vV) E {O,l}. Suppose first that deg(lV) = O.
Then fl(W) = :~;. Suppose that L C VV is a holomorphie subbundle, then L i8
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destabilizing if and only if either (i) deg(L) 2:: 1 01' (ii) deg(L) = 0 and LP1 intersects
the fiag at PI nontrivially. Using fOrInulas (17) alld (18) of [4], it BOW follows that
Pt(C~~) = O.

As for the case deg( Hf) = 1, then IL( ~V) = 1 ;:~ anel one can show that any holo­
nlorphic subbundle LeW ls dcstabili2ing if anel only if deg(L) 2:: 1. Using fornndas
(17) alld (18) of [4], and it again follows thaL Pt(C~~) = O. This c0l11pletes the proof
of the claiIll.•

It now follows that

and an application of (5) gives that Pt(~) = 0, i.e. ~ = 0 and this cOlnpietes the
first exanlpIe.

For the second exanl pie, we SLIppose the weights are (0, ~, ~), (~, ~, ~) an cl (331 ' ~~ , ~~).

This is siIl1ilal' to the first exalnple and so we give only the results of the calculation,
leaving the details to the interested rcader..lust as bcfore,

Also, dil'ect COlllputation revcals

3t 2 + 5[4 + 20[6 + 5/,8 + :lt10

(1 - t 2 )4(1 - t4 )

3t2 + 10t4 +3t6

(1 - t2 )2(1 - t 4 )'

Applying fornlttla (5) gives
- 1 + [2

Pt (eH) = 1 _ t2 '

while applying Proposition 4.8 shows that Pt(~) = 1 + t2
. Thus, for these weights,

~ ~ COP 1
•

5 Results für Brieskürn Spheres

5.1 The SU(3) Representation Space of Brieskorn Spheres

In this section, we apply the resllits of the previous sections to thc the SV (3) rep­
resentation spaces of Brieskol'Il spheres. First, we use Theol'erll 3.1 to identify these
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representation spaces with certain cotnponents of the representations of an associated
triangle group. Then we use Theorelll 4.1 of [4] to identify the latter representation
spaces with nl0duli spaces of certain parabolic bundles. It is important to ensure that
the condition C3 = C3S is satisfied by thc bundles which arise. This can be verificd in
two ways, either by working directly with bunelles 01' by using the correspondence be­
tween selnistable bunelles and representations and arguing that there are no reducible
representations. For exalnplc, considcr thc tl'iangle gl'OUPS T(2, p, q), (p, Cf odd and
relatively prinle). 8ince there are no nontrivial reducible SU(3) repl'csentations, thc
corrcsponding parabolic structures on rank 3 bundles satisfy Cs = CH'

The other way to check that C3 = C33 uses "nunlerology." For exalnple, suppose
that E is a rank 11. parabolic bundle anel pd(E) = O. Suppose further that no sub­
collection of weights has integer sunl. Then this forbids pd(E') E Z for aay proper
subbundle, anel it [ol1ows thaL C3 = CS3 ' In the case of rank 3 bundlcs, it sufficcs to
check that no choice of weights, one for each parabolic point, ha.s integer SUtTI.

Exanlple: The representation space o[ E(2, 3, 7).

First we prove a result sitnilar to hut stronger than Theorenl 3.1 for this special
case.

Clailn: lf p relativcly pl'ilne to 6, then R* (E(2, 3, p), SU(3)) ~ R* (T(2, 3, p), SV (3)).

proof of clainl: Theorenl 3.1 shows that we can unelerstand the irreduci ble S U(3)
represcntations of L:(2, 3, p) by studying those irrcducible SU(3) representations P of
the tl'iangle group

with P(X2)3 a centra! eletnent. But p irreducible implies that p(xd is conjugate to
the nlatrix diag( -1, -1, 1), and, by Proposition 3.2, it fo11ows that each of p(X2) anel
P(X3) 111USt have three distinct eigcnvalucs. It is now a sinlple cxercise to write out
a list of all 9th 1'oots of unity with three distinct eigenva.lues which are also cube
roots of a. centl'al elelnent. There is only one such lnatrix (up to conjugacy), nalnely
exp(diag(O,~,~)). This shows that P is an irreducible representation of T(2, 3,p). The
claitn now follows since any irreducible SU(3) representation of T(2, 3, p) has p(X2)
conj ugate to exp( d1:ag(O, ~, ~)).•

Now aSSUI11e p = 7 and let T = T(2, 3, 7). Then by Theorenl 3.2, it follo\vs thaL
every nonelnpty conlponent Re; C R(T, 8U(3)) has ditnension zero. i\101'eover, writing
a list of all 2nd

, 3"d and 7th roots of uni ty in SO(3) we see that (}:1 = exp(diag(O, ~, ~))

and 0'2 = exp(diag(O,~, 3))' Using the natural inclusion 80(3) C 80(3), the rcsults
of [8] show that there are two irreducible representations PI, P2 with PI (X3) anel P2(X3)
conjugate to exp(diag(O, %, ~)) anel exp(diag(O,~, *)). The llew bit of infonnation is
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that there are precisely two additional irreducible SU(3) representations, neither of
which is thc cOInplexification of 50(3) reprcscntations. For exatnple, sctting 0:3 =
exp(diag(t,~, *)) and interpreting R'i; as a moduli space of parabolic bundles, an
application of the inductive procedure shows that Ra is a point. In a sinlilar way,

we find that (i) Rä is a point for 0'3 = cxp(diag(~,~, ~)), and (ii)R'5 is elnpty for all
other possible choices for 0'3' This shows that ll*(E(2, 3, 7) consists of 4 points.

Of course, such si Inple results (c.g. distinguishing these two new SV (3) representa­
tions for E(2, 3, 7)) requi res repeated a.pplication of tbe inductive procedure, which is
itself a sOlllewhat long anel cUI11ber80Ille C0I11putation. Since it i8 not entirely reason­
able to cxpcct to have thc tinlC (ncver t11ind tbc paticncc) to elo this by hand, I have
written a batch of :~llAPLEprogranls for this purpose. Specifying thc Brieskol'I1 sphere
~(]J, q, 1') as input j one obtains output consisting of the vectors ä with Ra nonelnpty.
In addition, thc total nUlnbcl' of points anel 2-sphere cOInponents in Il"'(E, 5U(3)) is
given. In thc case E = E(2, p, q), R"'(E,5U(3)) is a eliscl'ete collection of points and
thc table at thc end of this section SUt11111arizes S0I11e of the output of this MAPLE
prograt11 by listing X(R"'). In addition, since all of these repl'esentations have eve'1l

spectral flow, this table also gives the leaeling term in a gauge-theoretic definition of
the generalized Casson invariant for the group 5U(3) (see the next seetion for ITIOre
details ).

"Ve renlark, howevel', that no cOInputer has enough patience necessary to produce
al/ the output listed! The problenl is of course that the computer only provides finitely
nlany COll1putations, whereas we have listed results for infinite falllilies of Brieskorn
spheres, e.g. the lnanifolds E(2, 3, 6h.~ ± 1). VVe now indicate, as briefty as possible,
the argtunent used to lnake this last dcduetion in the spccifie case of L:(2, 3, 6k ± 1);
the other cases being sinlilar.

Consider the group r = (Xl, X2, X3 j xi = x~ = XIX2X3 = 1). For a representation
p : r -t 5U(3) to be irreelucible, P(Xl) anel P(X2) must bc conjugate to the lnatrices
~X"I = exp(diag(O,~, t)) and X 2 = exp(diag(O,~, 5)), respeetively.

There are surjeetions frOI11 r onto the triangle groups rT(2, :3, 6k ± 1) gottcn by
in1posing the relation x~k±l = 1. Thus, there are injcctions

R'" (T (2, 3, 6k ± 1), SU(3)) -7 R'" (r, 5U(3) ).

It turns out that we ean paral11eterize J?"'(f, SU(:J)) as a subset of SU(3)/conj, ncunely
the subset of a/lowab/e values for X 3 , a diagonal Illatrix eonjugate to p( X3)' As we
shall see, this i8 is thc shaded region in Figul'e l.

One word about ehoiee of eonventions. 'A'e paranlcterizc SU(:3)1conj by idcntirying
the two regions

6./ = {(x, y, z) I 0 :::; x :::; y :S z :::; 1,.7; + y + z = I}

6. r = {(x, y, z) I°:::; x :::; y :::; z :::; 1, x + y + z = 2}

in IR? I.e. 5U(3)1conj = D:.l U", D:. r where D:.I 3 (0, x, y) I'V (x, y, 1) E D:. r •
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Now for convenience set R = R*(f,8U(3)). For 0' E 8U(3)/conj, letRo C R
elenote those irl'eelucible l'cprcsentations p with P(X3) E a. As before, we can use
parabolic bunelles to study Ra:. In particulal', it follows frOln an easy din1cnsion count
that each nonelllpty Ra is a point. As 0' varies, Ra changes fron1 being thc elnpty set
to being a point along hypet'planes in SV (3) / conj (this is a specific exalnple of the
general phen0I11enOn studiecl in [5]).

To be more specific, write 0' = exp(diag( 0'1,0'2,0'3))' Then if a change OCCUI'S, it
lnllst occur along one of the hyperpla,nes illllstratecl in Figure 2 anel given algebraically

by the equations O'i E {O, k,~,~,~, ~}. (Not all of these hyperplanes are drawn since
S0I11e woulel violate the conditions 0 :::; 0'1 ~ Q'2 :S 0'3 < 1 and Li O'i E {I, 2}, e.g.
GI = ~ and 0'3 = k.) In pal'ticular, the topological type of Ra: is constant within
chalnbc'I's, i.e. the connected cOlllponents of the cOI1lplelllent of these hyperplanes.
There are only fini tely I1lany chanlbers, and doi ng one (cOInpu ter-aidcd) C0I11putation
for each chamber, one finels that the 0: with Ra nonenlpty is precisely the shadecI
region in Figure 1. No change occurs along the hyperplanes interim' to the shaded
region; this is strictly a genus zero phenorTIcnon anel is a, consequence of certain moeluli
spaces of rank 2 parabolic bundles being enlpty.

A little thought convinces one that R-(T(2, 3, 6k±1),8U(3)) can be identified with
certain lattice points in R, nanlely those whose coordinates are rational nurnbers with

denorTIinator 6k ± 1. 80, not surprisingly, the nUlllber of irrcelucible representations
of I:(2, 3, 6k ± J) are given by cOllnting lattice points inside R. Using syn1I11etry, wc
can instead count (with correct 111111tiplicity) the nUlllber of lattice points in cithcl'
6.1n R 01' 6. r n R, the correct 1l1ultiplicity being 2 for intel'ior points anel 1 for points
a.Iong the C01111110n boundary of 6.1 n R anel 6. r n R. Thc fornllda rcsults frolll thc
following elell1elItary considerations: first, enlarge the region by 11llrltiplying by 6k ± 1
anel count intege'r lattice points in this larger region (with the same convention for
tllultiplicities). Next, project down to a region in the plane z = 0 (since x, y E Z
anel x + y + z = 6A: ± 1 itllplies z E Z). This is the convex quadrilateral illustrated
in Figure 3, It is an easy exercise to show that the nUll1ber of integer lattice points,
counted with the appropriate nntltiplicities, is given by 3k2 ± k.

SU(3) REPRESENTATIONS OF BRIESKORN SPHERES

Brieskorn spherc ~ X(R-)
~(2,3,6k±1) 3k2 ± k
I:(2, 5, lOk ± 1) 33k2 ± 9k
I:(2, 5, lOk ± 3) 33k2 ± 19k +2
~ (2, 7, 14ft~ ± 1) 138k2 ± 26k
I:(2, 7, 14ft~ ± 3) 138k2 ± 62k + 4

~(2, 7, 14k ± 5) 138k2 ± 102ft: + 16
E(2, 9, 18k ± 1) 390k2 ± 58k
):(2,9, 18k ± 5) 390k2 ± 210k + 24

E(2, 9, 18k ± 7) 390k2 ± 298k +52
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5.2 Spectral Flow and Generalized Casson Invariants

Taubes gave a gauge theoretic description of Casson 's invariant in [18]. For exanlple,
it is proved that if ~ is a JE hOIllology sphere such tbat H1 (~, ClD p ) = 0 for all p E
R· p-::: ,SU(2)), then

A(~) = ~ L (_1)sF(8,p).
... pER-

(18)

Here, SF(G, p) is tbe spectral flow of the self-duality operator [raIn the product
connection G to the flat connection ll1duced by p. The sallle [orInula holds in the
general case of an arbitrary Z hOTllOlogy sphere, provided one first perturbs the fla.tness
conditions to obtain a perturbed representation space R* which is Hnite [18].

1\10re recently, tvlrowka anel vValker have generalized this approach to providc
a gauge theoretic description of vVaIkcr's invariant of Q homology spheres. Their
invariant has the fOrIn of two surns, the first given by equation (18) and -the second
includes contributions fronl each reducible representation in the fornl of a Ivlaslov
index, which can be expressed in tenns of the spectral flow a.nd the Chern-Silllons
invariant.

Their approach seenlS very prolnising for providing a rigorous definition and aHow­
ing for explicit COlllputatlons of thc generalized Casson invariants AC. 1n particular,
OBe expects that the leading order tenn in ASU(n) (~) to be given by the sunl

L (-1 )SF(8,p) ,

pER'

(19)

where R* = RW; ('L. , SU(n)) is suitably perturbed so that it is finite. There are adnlit­
tedly suhtle and difficult questions regarding the invariance of the generalized Casson
invariants under perturbations, however, we can obviate these deliberations when
working with SU(3) rcpresentations of 'L. = 'L.(2, p, q) because Proposition 2.4 ilnplies
that the reduci bles are isolated and Proposition 3.2 inlplies that R* (~, SU(3)) is fi­
nite. ]n this scction, we give a computation of (19) in this special case. The results of
the previous scction identify R· ('L., SU (3)) explicitly, which, together with a fornllIla
for the SU(3) spectra.l flow of any p E ll·(E, SU(3)), con1pletes the conlputation.

Suppose that 'L. = E(aI, ... , an)) is a Seifert fibere.d hOlllology sphere and that E
is a cOlnplex vector bundle over ~ with structure group SU(N). Then E is trivial, anel
a given trivialization a.llows us to identify thc space of connections A with n10!iu(iV).
Pick a, I11etric on ~. For a E A, consicler thc elliptic operator

defined by Do(f/J,T) = (d~T,*daT+daf/J) where da is the covariant derivativeof 0', d~

is its aeljoint, anel * is the Hodge star operator. Given another connection ß E A,
choose 0 < 8 < inf 1J11 whel'e 11 is any nonzero eigenvaluc of cithcr Da 01' Dß. Choose
a path at in A with ao = 0' anel al = ß. Then SF( 0:, ß) is defiried to be the spectraJ

22



-Aow of Dan i.e. the nUlnbcr 1n+ - r71._ , where TIl± is the order of the set 1'1± defined
by

M+ = {J-lt an eigenvalue of D at with Ilo < -8 ctnd PI > 8},

M_ = {Ilt an eigenval ue of }Jat with Po > -8 anel Il1 < 5}.

This nU111ber is not independent of the various choices (e.g. trivializatioll, path),
however its value in 7l4N is weil defined. This follows frol11 the Index Theorelll and
the sill1ple cOlnputation that C2( aDE 0 C) = 2Nc2(E) (see §2 of [13]). Note also that
by our convention, S'F(ß, 0') = - di111 SU(N) - S'F(a, ß).

The spectral ftow can be viewed as thc index of thc sclf-duality operator dA EB dA
where A elenotes the connection on l:: x [0, 1] gotten frol11 the path at. This gives the
fonl1ula (see Theorell1 7.1 of [13])

SF' (a, ß) = Inclex (d~\ EB dA ),

\vhere thc index is laken with respect to the Atiyah-Patodi-Singer boundary condi­
tions [2]. [n [8], Fintushel ancl Stern COll1pute thc S lJ(2) spectral flow of any repre­
sentation of L: anel prove that it is even. A generalization of their argunlellt con1putes
thc SV (N) spectral How of any irreclucible representation and shows it to be even. In
the proof of the following proposition, we adopt the notation of [8] and refcr Lo it for
those statemcnts which are routine.

Proposition 5.1 Suppose ~(al, ... ,an) is a Seifert, fibl'ed hom.ology sphe'l'e and thal
c.p E R*(~, SU(N)). Thcn SF(8, c.p) is cven.

proof: Consider t.he Inapping eylinder H1 of the Seifert fibration E --t 52. Then it is
weIl known that H1 is an orbifolel with singularities having neighbol'hoods which are
cones on the lens spaces L( (li, bi ). Let L denote the disjoint union of thcse lens spaces.
The orbifold fundalnental group of W is 1rl~/ (11. = 1). Thus, since p is irredueible,
p(h) is central and it follows that thc adjoint representation of p extends over H1.
Hence we can define an orbifolel bundle nD<p over ~v Let ltVo = H1\ C(L), where C(L)
is the union of open cones about the Iens spaces. Then 1r1 l'Vo is just a free group
on 11, - 1 generators. It is not hard to verify that Hlp:~,aD<p) = H1(I'Vo,aD<p) anel
H2 (H1o, aD<p) --t l-I2p:, aD<p) is injective (cf. Lenu11a 2.6 of [8]). By [2], it follows that

where hoo(F)wo is the din1cnsion of the subspacc of limiting values of extended L~.s

sections f of (n° EB n:.) 0 !iu(.N) satisfying (dÄ<p· EB dA<p)*(f) = O. But thc proof ~f
Proposition 3.3 of [8] shows that Inds(dA<p EB dA<p)(~Vo) = O. Furthennore we have

Claim: hoo(F)wo = O.

proof of clainl: As explained in [8], such flic in HO (\Vol aD<p) EB H: (Wo, aD<p), thus it
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is enough to show h°(l'Vo) = 0 = h~(l'Vo) (hefe, aDl,O coefficients understood). For each
generator Xi of 7rj~, let r i denote the isotropy group of <p(xd. By Proposition 3.2, it
follows that hl(l'Vo) = L~ di - 2diI11SU(N), where recall di = diI11SU(N) - dilll r\ is
the dilllension of the conjugacy dass of thc inlage of <.p(Xi). Also, since <p is irreducible,
hO(~Vo) = 0 anel additionally, h4 (vVO) = O. By duality, h30'Vo) = h.t(Wo, B U L) and
the exact sequence for the pair (\-Vo, ~ U L) illlplies

is an iS0l110rphisl11. Since 0 = hO(~) it follows that h,l(vVO' ~ U L) = L~ hO(L(ai, bd).
Now 7r I L(ai, bj ) = Zu; with generator Xi· Suppose <p(Xi) = exp(diag(Ol(i), . .. , ON(i))),
where 0 ::; Bt{i) ::; ... ::; BN(i) < 1. Since xii = 1, it follows that Bj(i) = 27rlj(i)/ai
for some integer lj( i). Becausc L( ai l bi ) has cyclic fundanlental group, thc restriction
of aDl,O to L(ai, bi ), decompases as

oDl,OIL(Uj,bd = E9 ILjdi ) EB IRN
-

I
.

j<k

Here, ILjk (n is a complex line bundle over L(ai, bi) and the 7r1L( (Li, bj ) = Zaj action
is given by rotation in an angle of Bk(i) - Bj(i) on ILjk and is trivial on lRN

-
I

• Every
pair j < k with BAi) = Bk(i) contributes 2 ta hO(L(ai' bi)) anel it is easy to vcrify
that hO(L(ai,bj ) = elilll 1\. Thus h3 (1-Vo) = L~dinlri anel sinceL~(-l)ihj(l'Vo)

diln SU(N)X(l-Vo) = e1inl SU(N)(2 - n), it fo11ow8 that

h2 (1-Vo) = dinl SU(N)x(l'Vo) + hl(l'Vo) + h?(l-Vo) = 0,

which proves the dainl.

Using 4.2 of [2], wc get

Index(dA EB dA)(<.p, 8)

(20)

and

Hefe, V_ is thc bundle of negative spinors and A and ch( \1_) are cOlnputed using

the Rietllannian connection. Also hoCX-) = hO(X; oDo) +hl(X; aDo) and 110 is the
7]-invariant of the signature operator twisted by 0' restricted to cven f01'111S.
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\,Ye can now build a. connection Ä over l,lf = Hf U (E X JR+) by using <p on Hf, the
connection A on ~ x [0, 1] gotten froll1 the path at with ao = Alp anel al = 8, anel thc
trivial connection on ~ X [1,00). Since Index( dA<p EB dA<p)( l'Vo) = 0,

SF(<p,8) = Index(d~ EB d:4)(<p, 8)

= Index(rI:l<p EB dA<p)(WO) + Index(d~ EB d:4)(<p, 8)

= Index(dÄ EB d::i)(vVo)

ßy aeleling (20) anel (21), it follows that

SF(ifJ,8) = r~ A(l,ifo)ch(\I_)ch(nDE) - hlp(E) - ~(he + 1}e(0))(~)
JH~ 2

1 n

+::; E( -htp + 1}lp(0))(L(ai, bj )). (22)
.... j;: 1

'ra proceed, evaluate the integral tern1 as in 4.19 of [2] using L. to elcBote the Hirze­
bruch L-polynol11ial allel E thc Euler rOrIll.

= f~ (2Pl(aDE) + ~dimSU(N)(L. - [))Jwo 2

= 2pI(A) + ~dimSU(N) (O"(Wo) - X(Wo) + '70(0)(81%)).

But a(l'Vo) - X(Hfo) = 11. - 1, so we get that

SF('fJ,8) = 21'1 (A) + ~dim SU(N)(n - 1) - h",(2,;) - ~(he + pe)(2,;)

1 n

+0" E( -hlp + ptp)(L(aj, bi)), (23)
.... i;:1

where Po = 7]0: - dim(a)1}o, Now by irrcducibility, hO(~, nDtp) = 0, thus

n

htp(~) = h1(L:, nDtp) = E d; - 2 diln SU(N)
i=1

by Proposition 3.2. Obviously, pe(~) = °anel he(~) = dirn SU(N). Furthern10re,
over L (a;, b;), the bundle aDlp lifts Lo 53 anel thus h1 (L, nDrp) = 0, so that

n

htp = hO(L, nDtp) = 2:: dinl rio
;=1

Using the fact that dj +ditn 1\ = diln SU(N) to rewl'itc (23), we get
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Sinee SF(8,ep) = -cIill1SU(N) - SF(ep,8), onee we show that

is even, it will follow that S F( 8, ep) is tao.
The renlaining tenns are the Chern-Silnons invariant PI (A) anel the p-invariants

ptp(L(ai, bi )) which can be calculateel as fo11ows .. Denote by ll...jk the complex line
bunelle over ßH/a which is trivialover E and is ILjkU) over L(ai, bi ). An elenlentary
obstruction theol'y argument shows that this extencls to a lille bundle over H/a. By
asselnbling these line bUllcIles tagether with a trivial JR.N-t bundle we get a reducible
bUlleile E' over l'Va which is equal to E over al'Va. Let A' denote a l'educible connection
on E'. Since E anel E' Inatch on the bouncIary, PI (A) = PI (A ' )(nlodZ) (this is lnerely
saying that the Pontl'jagin dass of a bunelle over a closed Inanifold is an integer).
\~Triting A' = EBj<k Ajk according to the deconlposition of E', we bave that

where P'-P;"k (L( (Li, bi )) is the contri bu tion of the ILjk part to Prp (L( (Li, bi )). Set Mjk
2PI (Ajk)+~ Li=l prpjk(L(ai, bi)), for convenience and let 1njk = #{i I/j(i) f. h(i)}. \,Ve
now claiIn that the parity of J\1jk iA the Sal11e as that of 1njk. This follows fronl the fact
that the invariant R(ejk) = Jltljk+n1.jk-3 of [9] is odd. Here, ejk denotes the Euler nU111­
bel' of the orbifold bunelle ILjk , it is gi ven by tbe fornl ula ejk = a Li=l (lk( i) -Ij (i)) / (Li.

Hut writing L~ di = Lj<k Djk , whel'e Djk = 2#{i I Ij(i) f. Ik(i)}, it is cleal' that
mjk - tDjk = O. Hence SF(8, ep) is even.•

Renlark: \Vith just a little Inore work, we could .geL SF(8, ep )lnod4JV. In fact,

leaving only the Lernl Pt (A), which is the Chern-Sinlons invariant. The techniqucs
of [3] anel [11), properly genel'alized, ShOltid give a precise computation of this. \Ve
hazard thc guess Lhat
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