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SLOPES OF F -ISOCRYSTALS OVER ABELIAN VARIETIES

MARCO D’ADDEZIO

Abstract. We prove that an F -isocrystal over an abelian variety defined over a perfect field of

positive characteristic has constant slopes. This recovers and extends a theorem of Tsuzuki for

abelian varieties over finite fields. Our proof exploits the theory of monodromy groups of convergent

isocrystals.
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1. Introduction

In this article we chiefly study the behaviour of F -isocrystals over abelian varieties. Our main result
is the following theorem.

Theorem 1.1 (Theorem 4.2). Let A be an abelian variety over a perfect field k of positive charac-
teristic. Every F -isocrystal over A has constant slopes.

If k is a finite field, we also prove the following stronger form of Theorem 1.1.

Theorem 1.2 (Theorem 4.3). If k is a finite field, every ι-pure F -isocrystal over A becomes constant
after passing to a finite étale cover.

Theorem 1.1 and Theorem 1.2 extend [Tsu17, Thm. 3.7] and they agree with the general expec-
tation that families of smooth projective varieties parametrised by abelian varieties have “small
monodromy”. To prove them we use the theory of monodromy groups of convergent isocrystals.
This was firstly introduced by Crew in [Cre92] and further studied in [Pál15], [LP17], [AD18],
[D’Ad20a], and [D’Ad20b]. Using this theory, it is possible to prove that the category of convergent
isocrystals over A, denoted by Isoc(A), has a rather simple structure. The key point is that the
monodromy groups in this case are commutative by next proposition.

Proposition 1.3 (Proposition 4.1). Let Isoc(A) be the Tannakian category of convergent isocrystals
over A. The Tannaka group of Isoc(A) with respect to any fibre functor is commutative.
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2 MARCO D’ADDEZIO

Proposition 1.3 is proved using an Eckmann–Hilton argument, exploiting the Künneth formula for
these Tannaka groups (Proposition 2.2). Theorem 1.2 then follows from a combination of the theory
of weights for overconvergent F -isocrystals, as developed in [Ked06], and the global monodromy
theorem, proved in [Cre92, Thm. 4.9] and [D’Ad20a, Thm. 3.4.4]. If k is not finite, we cannot rely
on the global monodromy theorem, since it is false already for ordinary elliptic curves over F̄p. To
prove Theorem 1.1 we reduce instead to the case of F -isocrystals of rank 1, where the constancy is
well-known.

If X is a smooth proper variety over an algebraically closed field k, we deduce from Proposition
1.3 the following result for the subcategory Isoc(X)F ⊆ Isoc(X) spanned by those convergent
isocrystals which can be endowed with a Frobenius structure (see Definition 3.5).

Proposition 1.4 (Proposition 4.4). For every rational point x of X, the associated Albanese mor-
phism f : X → AlbX induces a faithfully flat morphism

π1(Isoc(X)F , x)ab f∗−→ π1(Isoc(AlbX)F , 0AlbX
)

of affine group schemes, where π1(Isoc(X)F , x) and π1(Isoc(AlbX)F , 0AlbX
) are the Tannaka fun-

damental groups of Isoc(X)F and Isoc(AlbX)F with respect to x and the identity element 0AlbX
.

The kernel is a finite constant group scheme isomorphic to (PicτX/k/Pic0,red
X/k )∨(k).

This proposition is an analogue of [Lan12, Thm. 7.1] and [BdS17, Thm. 4.1]. The main tool we
use here, besides Proposition 1.3, is the fact that rank 1 objects in Isoc(X)F correspond to p-adic
characters of the étale fundamental group of X.

Acknowledgements. I am grateful to Tomoyuki Abe, Gregorio Baldi, Hélène Esnault, Chris
Lazda, and Fabio Tonini for many enlightening discussions. I would also like to thank Adrian
Langer for his suggestion to apply Proposition 1.3 to Albanese varieties, which led to Proposition
1.4. Finally, I thank the organisers of the workshop “F -isocrystals and families of algebraic varieties”
at the IMPAN, in Warsaw, for the interest shown in the results of this article.

The author was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) under Germany’s Excellence Strategy – The Berlin Mathematics Research Center MATH+
(EXC-2046/1, project ID: 390685689) and by the Max-Planck Institute for Mathematics.

Notation

Let k be a perfect field and let K be the fraction field of the ring of Witt vectors of k. For a smooth
variety X over k we denote by Isoc(X) the category of K-linear convergent isocrystals over X, as
defined in [Ogu84]. If X is geometrically connected and η is a perfect point of X, we denote by
π1(Isoc(X), η) the Tannaka group of Isoc(X) with respect to the fibre functor induced by η (see
[Cre92, §2.1]). We use an analogous notation for the other variants of Isoc(X) that will appear in
this article. If G is an affine group scheme, we denote by Gab the maximal commutative quotient,
by Gdiag the maximal pro-diagonalisable quotient, and by Guni the maximal pro-unipotent quotient.
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2. Künneth formula

In this section we want to prove the Künneth formula for the fundamental group of convergent
isocrystals. The main ingredient is the following existence theorem.

Theorem 2.1 ([LP17, §8]1). For a smooth morphism f : Y → X of smooth proper varieties, the
functor f∗ : Isoc(X)→ Isoc(Y ) admits a right adjoint f∗. The formation of f∗ is compatible with
base change with respect to morphisms Z → X where Z is smooth and proper.

Proposition 2.2. Let X and Y be two smooth proper connected varieties endowed with the choice
of rational points x and y. The projections of the product X × Y to the two factors induce an
isomorphism

π1(Isoc(X × Y ), (x, y))
∼−→ π1(Isoc(X), x)× π1(Isoc(Y ), y).

Proof. We denote by q : X × Y → X the projection to the first factor and by i : x × Y ↪→ X × Y
the natural inclusion. These morphisms induce the following cartesian diagram

x× Y X × Y

x X.

i

q q

i

Moreover, we get the following sequence of affine group schemes over K

(2.2.1) 1→ π1(Isoc(Y ), y)
α−→ π1(Isoc(X × Y ), (x, y))

β−→ π1(Isoc(X), x)→ 1,

where α is induced by i∗ and β by q∗. We use [DE20, Thm. A.13] to show that (2.2.1) is an exact
sequence. First, note that the projection X × Y � Y and the closed immersion X × y ↪→ X × Y
induce respectively a retraction for α and a section for β. This shows that α is a closed immersion,
β is faithfully flat, and i∗ : Isoc(X × Y )→ Isoc(X) is essentially surjective, thus observable. It is
also clear by construction that β ◦ α is trivial.

It remains to show that for every convergent isocrystal M over X × Y , there exists N ⊆ M,
such that i∗N is the maximal trivial subobject of i∗M. We claim that we can take as N the
convergent isocrystal q∗q∗M equipped with the adjunction morphism q∗q∗M→M. Indeed, by the
compatibility of the formation of direct image with base change given by Theorem 2.1, we have a
natural isomorphism i∗q∗q∗M' q∗q∗i∗M. Combining this with the fact that q∗i

∗M = H0(X, i∗M),
we deduce that i∗q∗q∗M is the maximal trivial subobject of i∗M. In addition, since i∗ is an exact
⊗-functor, this also implies that q∗q∗M→M is an injective morphism. This concludes the proof
of the exactness of (2.2.1). For symmetry reasons, we deduce that the analogue sequence where X
and Y are exchanged is also exact. Combining these two facts, we get the desired result. �

Remark 2.3. If X and Y are projective one can alternatively recover Proposition 2.2 from [LP17,
Thm. 7.1]. A variant of Proposition 2.2 is also proven in [DTZ18, Thm. III].

1Note that Theorem 2.1 can be also obtained as a consequence of [DTZ18] or [Xu19].
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3. Isocrystals with commutative monodromy

This section is an interlude on convergent isocrystals with commutative monodromy. The main
result in this section is Proposition 3.4. Thanks to Proposition 4.1, over abelian varieties every
convergent isocrystal has this property.

Notation 3.1. Let F : X → X be the absolute Frobenius of X. For a positive integer n, we write
Fn-Isoc(X) for the category of convergent Fn-isocrystals and F∞-Isoc(X) for 2- lim−→n

Fn-Isoc(X).

If (M,ΦM) is a convergent Fn-isocrystal, we write (M,Φ∞M) for its image in F∞-Isoc(X). By
[Ber96, Thm. 2.4.2], the category Fn-Isoc(X) is equivalent to the category of Fn-isocrystals over
the absolute crystalline site of X.

Lemma 3.2. Suppose k algebraically closed and let G be a pro-diagonalisable group over K. If V is
an irreducible K-linear representation of G, then V is of rank 1. The same is true if K is replaced
by Qur

p .

Proof. By [Lan52, Thm. 10], the field K is a C1 field, which implies that Br(K) = 0. Thanks to
Schur’s lemma, EndG(V ) is a division algebra over K, thus we have EndG(V ) = K. In turn, this
implies that EndG(V ⊗K K̄) = K̄, so that V ⊗K K̄ is an irreducible representation of G⊗K K̄. Since
G⊗K K̄ is isomorphic to the product of a split torus and a constant commutative finite group, we
deduce that V ⊗K K̄ is of rank 1, as we wanted. The second part can be proven in the same way
thanks to the fact that Qur

p is a C1 field by [Lan52, Thm. 12]. �

Lemma 3.3. Suppose k algebraically closed and let (M,ΦM) be a convergent Fn-isocrystal over
X. If (M,Φm

M) is irreducible for every m > 0, then M is irreducible.

Proof. Let N ⊆M be an irreducible subobject. Since ΦM permutes the isomorphism classes of the
irreducible subobjects of M, we deduce that (Fn)∗N ' N for n big enough. Therefore, N can be
endowed with some Fn-structure ΦN . Write (P,Φ∞P ) for (N ,Φ∞N )∨ ⊗ (M,Φ∞M). If T ⊆ P is the
maximal trivial subobject of P, it defines a subobject (T ,Φ∞T ) ⊆ (P,Φ∞P ). Up to replacing ΦN with
psΦr

N for some (s, r) ∈ Z×Z>0, we may assume that one of the slopes of (T ,Φ∞T ) is 0. Since (T ,Φ∞T )
comes from Spec(k), we deduce that (T ,Φ∞T ) has a non-trivial global section in F∞-Isoc(X). This
implies that there exists a non-zero morphism (N ,Φ∞N )→ (M,Φ∞M). Since (M,Φ∞M) is irreducible,
we deduce that (N ,Φ∞N ) = (M,Φ∞M). In turn, this implies thatM is irreducible, as we wanted. �

Proposition 3.4. Let (M,ΦM) be a convergent Fn-isocrystal over a geometrically connected va-
riety X over a perfect field k. If G(M, η) is commutative for some perfect point η, the slopes of
(M,ΦM) are constant.

Proof. By [Cre92, (2.1.10)] we may assume k algebraically closed. In addition it is enough to
look at the induced convergent F∞-isocrystal (M,Φ∞M). We may further assume that (M,Φ∞M) is
irreducible. By Lemma 3.3, we deduce thatM is irreducible as well. Therefore, Lemma 3.2 implies
that M is of rank 1. The result then follows from [Ked16, Thm. 3.12]. �

We end this section with a result that we will need in Proposition 4.4.

Definition 3.5. For a smooth connected variety X we write Isoc(X)F for the smallest strictly
full abelian ⊗-subcategory of Isoc(X) closed under subquotients containing all the convergent
isocrystals which can be endowed with a Frobenius structure. If k is algebraically closed and η is a
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geometric point of X, we denote instead by IsocQur
p

(X, η)F the category constructed in [D’Ad20b,

Def. 3.2.6].

Proposition 3.6. If k is an algebraically closed, there is an isomorphism

π1(IsocQur
p

(X, η)F , η)diag ∼−→ π1(LS(X,Qur
p ), η)diag.

Proof. The morphism is induced by the functor constructed in [D’Ad20b, Prop. 3.3.4]. By Lemma
3.2, the two affine groups are the Tannaka groups of the subcategory of IsocQur

p
(X)F and LS(X,Qur

p )

spanned by rank 1 objects. Therefore, thanks to [ibid., Prop 3.3.4], it suffices to show that every
rank 1 object (M, VM) ∈ IsocQur

p
(X, η)F is étale (cf. [ibid., Def. 3.3.3]). To prove this we notice

that by [ibid., Prop 3.2.4], if (M, VM) ∈ IsocQur
p

(X, η)F is a rank 1 object, the Qur
p -structure VM

is induced by some Fn-structure ΦM on M. Therefore, by [Ked16, Thm. 3.12], the convergent
Fn-isocrystal (M,ΦM) has constant slopes. This yields the desired result. �

4. Isocrystals over abelian varieties

Let A be an abelian variety over a perfect field k with identity point 0A. We first prove the following
result.

Proposition 4.1. The affine group scheme π1(Isoc(A), 0A) is commutative.

Proof. We want to prove that the fundamental group π1(Isoc(A), 0A) is commutative via an Eck-
mann–Hilton argument (see [EH62, Thm 5.4.2]). By Proposition 2.2, the two projections of A×A
to its factors induce an isomorphism

π1(Isoc(A×A), 0A × 0A)
∼−→ π1(Isoc(A), 0A)× π1(Isoc(A), 0A).

If m : A×A→ A is the multiplication map of A, the morphism

m̃∗ : π1(Isoc(A), 0A)× π1(Isoc(A), 0A)
∼−→ π1(Isoc(A×A), 0A × 0A)

m∗−−→ π1(Isoc(A), 0A).

endows π1(Isoc(A), 0A) with the structure of a group object in the category of affine group schemes.
This implies that π1(Isoc(A), 0A) is commutative, as we wanted. �

Theorem 4.2. If A is an abelian variety over a perfect field k of positive characteristic, every
Fn-isocrystal over A has constant slopes.

Proof. Let (M,ΦM) be an Fn-isocrystal over A. By Proposition 4.1, the monodromy group
G(M, 0A), being a quotient of π1(Isoc(A), 0A), is commutative. Thanks to Proposition 3.4, we
deduce that the slopes of (M,ΦM) are constant. This ends the proof. �

Theorem 4.3. If k is a finite field, every ι-pure Fn-isocrystal over A becomes constant after passing
to a finite étale cover.

Proof. By [D’Ad20a, Cor. 3.5.2], if (M,ΦM) is a ι-pure Fn-isocrystal overA, thenM is semi-simple.
Therefore, thanks to [ibid., Cor. 3.4.5], the neutral component G(M, η)◦ is a semi-simple algebraic
group. Combining this with Proposition 4.1, we deduce that G(M, η)◦ is trivial. Therefore, by
[ibid., Prop. 3.3.4], after passing to a finite étale cover of A, the isocrystalM becomes trivial. This
yields the desired result. �
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Finally, we get an additional consequence of Proposition 4.1, which was inspired by the work in
[Lan12] and [BdS17].

Proposition 4.4. Let X be a smooth connected proper variety over an algebraically closed field k
and let x be a k-point of X. If f : X → AlbX is the Albanese morphism mapping x to 0AlbX

, the
induced morphism

π1(Isoc(X)F , x)ab f∗−→ π1(Isoc(AlbX)F , 0AlbX
)

is faithfully flat. Moreover, the kernel is a finite constant group scheme over K isomorphic to

C := (PicτX/k/Pic0,red
X/k )∨(k).

Proof. Write G for π1(Isoc(X)F , x)ab and H for π1(Isoc(AlbX)F , 0). By Proposition 4.1, the
affine group scheme H is commutative, therefore both G and H decompose as a product of a
pro-diagonalisable affine group and a commutative pro-unipotent one. By [KL81, Lem. 5], the
morphism πét

1 (X,x)→ πét
1 (AlbX , 0AlbX

) is surjective and the kernel is isomorphic to C. Combining
Proposition 3.6 and [D’Ad20b, Prop. 3.3.2], this implies that Gdiag → Hdiag is faithfully flat with
kernel C. It remains to study the morphism Guni → Huni.

By [DE20, Thm. 5.4], there is an equivalence between the category of unipotent convergent isocrys-
tals over X (resp. A) and the full subcategory of Isoc(X)F (resp. Isoc(AlbX)F ) of unipotent
objects. By the discussion after [CLS99, Prop. 3.2.1], the Lie algebra of Guni (resp. Huni) is then
dual to H1

rig(X) (resp. H1
rig(AlbX)). Thanks to [Ill79, Rmq. II.3.11.2], we deduce that Guni → Huni

is an isomorphism, as we wanted. �
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