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Abstract

We prove that the abstract commensurator of a nontrivial free group, an infinite surface
group, or more generally a group that splits appropriately over a cyclic subgroup is not finitely
generated. This applies in particular to all torsion-free word-hyperbolic groups with infinite
outer automorphism group and abelianization of rank at least 2. We also construct a finitely
generated group which can be mapped onto Z and which has a finitely generated commensurator.

1 Introduction

Let G be a group. Consider the set Ω(G) of all isomorphisms between subgroups of finite index
of G. Two such isomorphisms ϕ1 : H1 → H ′

1 and ϕ2 : H2 → H ′
2 are called equivalent, written

ϕ1 ∼ ϕ2, if there exists a subgroup H of finite index in G such that both ϕ1 and ϕ2 are defined on
H and ϕ1 ¼H= ϕ2 ¼H .

For any two isomorphisms α : G1 → G′
1 and β : G2 → G′

2 in Ω(G), we define their product
αβ : α−1(G′

1 ∩ G2) → β(G′
1 ∩ G2) in Ω(G). The factor-set Ω(G)/∼ inherits the multiplication

[α][β] = [αβ] and is a group, called the abstract commensurator of G and denoted Comm(G).
Comm(G) is in general much larger than Aut(G). For example Aut(Zn) ∼= GL(n,Z) whereas

Comm(Zn) ∼= GL(n,Q). Margulis proved that an irreducible lattice Λ in a semisimple Lie group
G is arithmetic if and only if it has infinite index in its relative commensurator in G,

CommG(Λ) := {g ∈ G : gΛg−1 ∩ Λ has finite index in both Λ and gΛg−1}.

‘Mostow-Prasad-Margulis strong rigidity’ for irreducible lattices Λ in G 6= SL(2,R) implies the
statement that the abstract commensurator Comm(Λ) is isomorphic to the commensurator of Λ in
G, which in turn is computed concretely by Margulis and Borel-Harish-Chandra; see e.g. [7, 13].
Analogously, for many groups acting on rooted trees, their abstract commensurator equals their
relative commensurator in the automorphism group of the tree [10].
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Few abstract commensurators were explicitly computed. The group Comm(MCGg) was com-
puted for surface mapping class groups MCGg by Ivanov [4]. Farb and Handel proved in [3] that
Comm(Out(Fn)) ∼= Out(Fn) for n ≥ 4. Leininger and Margalit [5] computed the abstract com-
mensurator of the braid group Bn on n ≥ 4 strings: Comm(Bn) ∼= (Q∞ oQ∗)oMCG0,n+1, where
MCG0,n+1 is the mapping class group of the sphere with n + 1 punctures.

Clearly, if G is finitely generated, then Comm(G) is countable. We show that, in many cases,
it may be ‘large’ in the sense that it is not finitely generated. The cases we consider are groups
G which split into an amalgamated product or an HNN extension over 1 or Z, and satisfy some
technical assumptions (see Theorems 12, 13 and 15). We deduce for example

Corollary 1. Let G be either a non-abelian free group, or a surface group π1(S) where S is a
closed surface of negative Euler characteristic. Then Comm(G) is not finitely generated.

Then, using a result by Paulin [9], we deduce the more general

Corollary 2. Let G be a torsion-free word-hyperbolic group with infinite Out(G); suppose that G
can be homomorphically mapped onto Z× Z. Then Comm(G) is not finitely generated.

The following corollary of Theorem 19 seems to us nontrivial:

Corollary 3. There exists a finitely generated group which can be mapped onto Z and whose
commensurator is finitely generated.

This contrasts to the fact that Comm(Zn) ∼= GLn(Q) is not finitely generated. Moreover,
Theorem 19 shows that the assumption (2) of Theorem 15 cannot easily be weakened.

We start, in the next section, by a sufficient condition to ensure that an abstract commensurator
cannot be finitely generated.

2 Infinitely generated abstract commensurators

Two groups G,H are abstractly commensurable if there exist finite index subgroups G1 6 G and
H1 6 H, such that G1

∼= H1. The following useful lemma is well-known; for completeness we give
its proof.

Lemma 4. If G and H are abstractly commensurable groups, then Comm(G) ∼= Comm(H).

Proof. Without loss of generality we can assume that H is a subgroup of finite index in G. The
embedding of H in G induces a canonical map Ψ : Comm(H) → Comm(G). Now we define a map
Φ : Comm(G) → Comm(H) by the rule: for α : G1 → G2 from Comm(G) we set Φ(α) = α ¼H1 :
H1 → H2, where H1 = α−1(G2 ∩ H) ∩ H and H2 = α(G1 ∩ H) ∩ H. Clearly Φ(α) belongs to
Comm(H). We leave it to the reader to check that Ψ and Φ are homomorphisms, and that both
compositions Ψ ◦ Φ and Φ ◦Ψ are the identity.

A group G has the unique root property if for any x, y ∈ G and any positive integer n, the
equality xn = yn implies x = y. Groups with the unique root property are torsion free. It is well
known that, in torsion-free word-hyperbolic groups, nontrivial elements have cyclic centralizers [2,
pages 462–463]; so they have the unique root property, by the following standard

Lemma 5. Let G be a torsion-free group with cyclic centralizers of nontrivial elements. Then G
has the unique root property.
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Proof. If xn = yn, then Z(xn) > 〈x, y〉. But Z(xn) = 〈z〉 for some z, so there are p, q ∈ Z with
x = zp and y = zq. Then xn = yn gives zpn = zqn, so p = q and x = y.

The usefulness of the unique root property can be seen immediately in the following two lemmas.

Lemma 6. Let G be a group with the unique root property. Then Aut(G) naturally embeds in
Comm(G).

Proof. There is a natural homomorphism Aut(G) → Comm(G). Suppose that some α ∈ Aut(G)
lies in its kernel. Then α|H = id for some subgroup H of finite index in G. If m is this index,
then gm! ∈ H for every g ∈ G. Then α(gm!) = gm!. Extracting roots, we get α(g) = g, that is
α = id.

Lemma 7. Let G be a group with the unique root property. Let ϕ1 : H1 → H ′
1 and ϕ2 : H2 → H ′

2

be two isomorphisms between subgroups of finite index in G. Suppose that [ϕ1] = [ϕ2] in Comm(G).
Then ϕ1 ¼H1∩H2= ϕ2 ¼H1∩H2.

Proof. The equality [ϕ1] = [ϕ2] means that there exists a subgroup H of finite index in G such that
both ϕ1 and ϕ2 are defined on H and ϕ1 ¼H= ϕ2 ¼H . Clearly H 6 H1∩H2. Denote m = |(H1∩H2) :
H|. Let h be an arbitrary element of H1 ∩H2. Then hm! ∈ H and so ϕ1(hm!) = ϕ2(hm!). Since G
is a group with the unique root property, we get ϕ1(h) = ϕ2(h).

Let us call the subindex of a finite-index subgroup H 6 G the minimal n, denoted |G : : H|,
such that there exists a sequence of subgroups H = G0 6 G1 6 · · · 6 Gk = G with |Gi : Gi−1| ≤ n
for all i ∈ {1, . . . , k}. Observe that given F 6 H 6 G, we have |G : : F | ≤ max{|G : : H|, |H : : F |}.
Lemma 8. Let G be a group and let αi : Hi → H ′

i, for i = 1, . . . , r be isomorphisms between
subgroups of finite index of G. Assume that |G : : Hi| ≤ n and |G : : H ′

i| ≤ n for all i. Then any
finite product of [αi]’s can be realized by an isomorphism β : H → H ′, where H, H ′ are subgroups
of finite index and subindex at most n.

Proof. By induction, it suffices to consider α1 : H1 → H ′
1 and α2 : H2 → H ′

2, and their product
β = α1α2. Set K = H ′

1 ∩ H2, H = α−1
1 (K) and H ′ = α2(K), so that β : H → H ′. Let

H2 = G0 6 G1 6 · · · 6 Gk = G be a sequence of subgroups with |Gi : : Gi−1| ≤ n. The sequence
K = G0 ∩H ′

1 6 G1 ∩H ′
1 6 · · · 6 Gk ∩H ′

1 = H ′
1 shows that |H ′

1 : : K| ≤ n. Then

|G : : H| ≤ max{|G : : H1|, |H1 : : H|} = max{|G : : H1|, |H ′
1 : : K|} ≤ n;

and similarly |G : : H ′| ≤ n.

Lemma 9. Let G be a group with the unique root property. Let ϕ1 : H1 → H ′
1 and ϕ2 : H2 → H ′

2

be two isomorphisms between subgroups of finite index in G. Suppose that

(1) H2 is a normal subgroup of G;

(2) ϕ1 ¼H1∩H2= ϕ2 ¼H1∩H2.

Then ϕ1, ϕ2 have a common extension, that is there exists an isomorphism ϕ : H1H2 → H ′
1H

′
2,

such that ϕ¼Hi= ϕi for i = 1, 2.
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Proof. We define ϕ : H1H2 → H ′
1H

′
2 by ϕ(h1h2) = ϕ1(h1)ϕ2(h2) for any h1 ∈ H1 and h2 ∈ H2.

This definition is unambiguous because of Property (2). We prove first that ϕ is a homomorphism.
Take x ∈ H1H2 and y ∈ H1H2. Then x = g1g2 and y = h1h2 for some g1, h1 ∈ H1 and

g2, h2 ∈ H2. Since xy = g1h1 · h−1
1 g2h1h2, where h−1

1 g2h1 ∈ H2 by Property (1), we have

ϕ(xy) = ϕ1(g1)ϕ1(h1) · ϕ2(h−1
1 g2h1)ϕ2(h2).

On the other hand we have

ϕ(x)ϕ(y) = ϕ1(g1)ϕ2(g2)ϕ1(h1)ϕ2(h2).

Thus it is enough to verify that

ϕ2(h−1
1 g2h1) = ϕ1(h1)−1ϕ2(g2)ϕ1(h1). (*)

Since H1 ∩ H2 has finite index in H2, we have gm
2 ∈ H1 ∩ H2 for some positive integer m. Then

h−1
1 gm

2 h1 ∈ H1 ∩H2 and so

ϕ2(h−1
1 gm

2 h1) = ϕ1(h−1
1 gm

2 h1) = ϕ1(h−1
1 )ϕ1(gm

2 )ϕ1(h1) = ϕ1(h1)−1ϕ2(g2)mϕ1(h1).

Since G is a group with the unique root property, we can extract m-th roots from both sides of the
last equation and get (*).

Clearly ϕ maps onto H ′
1H

′
2. Assume for contradiction that ϕ is not injective; then, since G

is torsion-free, kerϕ is infinite. Since H1 has finite index, kerϕ ∩ H1 is non-trivial, so ϕ1 is not
injective, a contradiction.

Theorem 10. Let G be a group with the unique root property. Suppose that, for infinitely many
primes p, there exists a normal subgroup H of index p in G and an automorphism of H that cannot
be extended to an automorphism of G.

Then the commensurator of G is not finitely generated.

Proof. Suppose that Comm(G) is generated by a finite number of classes of isomorphisms αi :
Hi → H ′

i, for i = 1, . . . , k, where Hi,H
′
i are subgroups of finite index in G. Set n = max{|G : :

Hi|, |G : : H ′
i| : i = 1, . . . , k}.

Now take a prime number p > n. By assumption, there exists a normal subgroup H of index p
in G and an automorphism β of H, which cannot be extended to an automorphism of G.

Clearly [β] ∈ Comm(G). By Lemma 8, the class [β] can be realized by an isomorphism α :
A → B, where A,B are subgroups of finite index in G and subindex at most n. By Lemma 7, the
automorphisms β and α coincide on the subgroup H ∩A.

By Lemma 9, the automorphism β can be extended to an isomorphism ϕ : AH → BH. Note
that AH = BH = G because the indices of A and H are coprime and the indices of B and H are
coprime. We have reached a contradiction.

Proof of Corollary 1. It is well known that G has the unique root property (e.g. because G is a
torsion-free hyperbolic group, see Lemma 5; or more directly because G is a group of diagonalizable
2× 2 matrices).

First consider the case in which G is a free group with basis X = {x, y, . . . }. Given an integer
p > 1, let G → Z/pZ be the homomorphism which sends x to 1 and all other elements of X to 0.
The kernel H of this homomorphism is free on Y = {xp, y, x−1yx, . . . , x1−pyxp−1, . . . }. Clearly, the
automorphism of H which exchanges y and xp and fixes all other elements of Y cannot be extended
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to an automorphism of G, because xp is primitive in H but not in G. By Theorem 10, Comm(G)
is not finitely generated.

It is convenient to translate this argument to topological language. The group G is the funda-
mental group of a rose R, with petals indexed by the elements of X. Consider the regular degree-p
cover R̃ of R, in which a petal (say x) has been unfolded p times to a “gynoecium” (central circle)
x̃. Consider another petal y of R, and its lift ỹ. The graph R̃ is homotopy equivalent to a rose,
so admits a homotopy equivalence ϕ that exchanges x̃ and ỹ while fixing (up to homotopy) the
other petals. Then ϕ cannot be induced by a homotopy equivalence of R, because it fixes (up to
homotopy) some lift of y while moves another.

Consider now the case in which G = π1(S) where S is a compact closed surface of negative
Euler characteristic. By Lemma 4 we may assume that S is orientable. Given an integer p > 1, let
S̃ → S a regular degree-p cover of S. Clearly S̃ is of strictly more negative Euler characteristic.

Consider two handles x, x′ of S̃ covering the same handle of S, and a handle y that covers a
different handle of S. Let T be a neighbourhood of x, y and a path connecting x to y that is
homeomorphic to a punctured 2-handlebody. Let ϕ be the homeomorphism of S̃ that exchanges x
and y and is homotopic to the identity outside of T . Again, ϕ is not induced by a homeomorphism
of S, since it moves x while it fixes its conjugate x′ . Therefore, the automorphism induced by ϕ
on π1(S̃) cannot be extended to an automorphism of π1(S). As above, Theorem 10 completes the
proof.

3 Free products of groups

Lemma 11. Let H be a finite-index subgroup of G; assume G is generated by the union of two
subgroups A,B and has the unique root property; let ϕ : H → H be an automorphism. If ϕ 6= id,
but ϕ¼H∩A= id, ϕ¼H∩B= id, then ϕ does not extend to an automorphism of G.

Proof. Write n = |G : H|, and let ψ : G → G be an extension of ϕ. Take an arbitrary element
a ∈ A. Then an! ∈ H ∩ A, and so ψ(an!) = an!. Since G has the unique root property, we get
ψ(a) = a, that is ψ is the identity on A. Analogously ψ is the identity on B, and hence ψ = id, a
contradiction.

Theorem 12. Suppose that two nontrivial groups A and B have the unique root property, and at
least one of them has finite quotients of arbitrarily large prime order. Then Comm(A ∗ B) is not
finitely generated.

Proof. Write G = A∗B, and assume without loss of generality that A has arbitrarily large quotients.
Consider a normal subgroup H / G of finite index n > 1 and containing B, e.g. the kernel of the
map A ∗ B → Q ∗ 1 for a finite quotient Q of A. By Kurosh’s theorem, there exists a nontrivial
splitting of the form H = (H ∩A)∗ (H ∩B)∗C with C 6= 1. Let b be a nontrivial element of H ∩B;
there is some, because H ∩B = B is nontrivial. Consider the automorphism ϕ of H, which is the
identity on H ∩A and on H ∩B and is conjugation by b on C.

By Lemma 11, this ϕ does not extend to G. We conclude by Theorem 10.

This gives another proof of Corollary 1 for free groups of rank n ≥ 2: if G = Fn, take A = Z
and B = Fn−1 and apply Theorem 12. Another proof of Corollary 1 for surface groups follows from
Theorem 13 or 15.

Note that the abstract commensurator of a free group admits an elegant description through
automata, see [6]. Lemma 8 essentially says that, given a finite collection of elements in the
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commensurator of Fm, there exists a finite alphabet (with n letters in the lemma’s notation) such
that these elements are represented by automata on that alphabet.

4 Groups splitting over Z

Following on Theorem 12, we now apply Theorem 10 to free products with amalgamation and HNN
extensions. In the proof we will use certain automorphisms of G, called Dehn twists.

Theorem 13. Let G = A∗C , where C is infinite cyclic group. If G has the unique root property,
then Comm(G) is not finitely generated.

Proof. The group G has the presentation 〈A, t | t−1Ct = C1〉, where t is stable letter and C = 〈c〉,
C1 = 〈c1〉 are associated subgroups of A.

Let n > 2 and let Hn be the kernel of the homomorphism G→Zn sending A to 0 and t to 1.
Then Hn is also an HNN extension, which has the following presentation:

〈
(
A ∗

C=tC1t−1
tAt−1 ∗

tCt−1=t2C1t−2
t2At−2 ∗ . . . ∗

tn−1C1t1−n
tn−1At1−n

)
, s | s−1(tn−1Ct1−n)s = C1〉,

where the stable letter s corresponds to tn in G. We denote the base of this HNN extension by K.
Consider the automorphism ϕ of Hn, which acts identically on the base K of the HNN extension

and sends s to sc1. Suppose that ϕ can be extended to an automorphism ψ of G. Then, since
tAt−1 6 K, for any a ∈ A, we have tat−1 = ϕ(tat−1) = ψ(tat−1) = ψ(t)ψ(a)ψ(t−1) = ψ(t)aψ(t)−1,
and so t−1ψ(t) ∈ CG(A). Since CG(A) = Z(A), we get ψ(t) = ta for some a ∈ Z(A)\{1}. We have
tnc1 = sc1 = ϕ(s) = ψ(tn) = (ta)n. Hence

t−1(t−1(. . . (t−1(t−1

︸ ︷︷ ︸
n−1

(a)ta)ta) . . . )ta)tac−1
1 = 1. (1)

Another cyclic form of this equation is

tata . . . tat(ac−1
1 ) t−1t−1 . . . t−1t−1︸ ︷︷ ︸

n−1

a = 1. (2)

Using normal form in HNN extensions we deduce from (1) that a ∈ C, and from (2) that ac−1
1 ∈ C1.

Thus, a = cp = cq
1 for some nonzero p, q. Since a ∈ Z(A) and Z(A) is closed under taking roots

(since G has unique root property), we get c, c1 ∈ Z(A). In particular, 〈c, c1〉 is a torsion free
abelian group with the identity cp = cq

1. Therefore this group is cyclic, that is c = zl and c1 = zr

for some z ∈ Z(A) and l, r ∈ Z. Thus, we have

a = zpl and t−1zlt = zr. (3)

Now we analyze the equation (1) deeper. Using formula (3), we recursively deduce

a = zpl,

t−1(a)ta = zpl(1+(r/l)),

t−1(t−1(a)ta)ta = zpl(1+(r/l)+(r/l)2),
...
t−1(. . . (t−1(t−1

︸ ︷︷ ︸
n−2

(a)ta)ta) . . . )ta = zpl(1+(r/l)+···+(r/l)n−2),
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Finally, we obtain from (1) that

1 = t−1(t−1(. . . (t−1(t−1(a)ta)ta) . . . )ta)tac−1
1 = zpl(1+(r/l)+···+(r/l)n−1)−r.

Hence

pl(1 + (r/l) + · · ·+ (r/l)n−1) = r.

Equivalently,
p(ln−1 + rln−2 + · · ·+ rn−1) = rln−2.

Note, that gcd(r, l) = 1, otherwise, using the unique root property of G, we could extract a root
from tzlt−1 = zr and get a wrong equation. Hence (ln−1 + rln−2 + · · · + rn−1) has no nontrivial
common divisor neither with r, nor with l. Therefore (ln−1 + rln−2 + · · · + rn−1) = ±1. This is
possible only if l = 1, r = −1 or l = −1, r = 1. If we assume the last, then G has the presentation
G = 〈A, t | t−1zt = z−1〉. Then its index 2 subgroup H2 has the presentation

H2 = 〈
(
A ∗

z=tz−1t−1
tAt−1

)
, s | s−1zs = z〉,

where s corresponds to t2 in G. Thus, if we replace G by H2 we will have l = r = 1. Thus,
after possible replacement, ϕ cannot be extended to an automorphism of G and we conclude by
Theorem 10.

Lemma 14. Let G = G1 ∗C G2, where C is infinite cyclic. If G2 is abelian, assume furthermore
that it is finitely generated and is not virtually cyclic. Then G has a nontrivial automorphism ϕ,
which acts trivially on G1.

Proof. It is enough to define a nontrivial automorphism ψ : G2 → G2, such that ψ|C = id. Then
such ψ can be obviously extended to the desired ϕ.

If C does not lie in Z(G2), we define ψ as the conjugation by a generator of C. If C lies in
Z(G2) and G2 is not abelian, we take an element g ∈ G2 \ Z(G2) and define ψ as the conjugation
by g. Suppose finally that G2 is abelian. Since G2 is finitely generated and is not virtually cyclic,
G2 = C1⊕K for some maximal infinite cyclic subgroup C1 containing C and for some infinite K 6= 1.
Then there is a nontrivial automorphism of K, and we extend it to the desired automorphism ψ of
G2.

Theorem 15. Let G be A∗C B, where C is infinite cyclic subgroup distinct from A and B. Suppose
that

(1) G has the unique root property;

(2) G can be homomorphically mapped onto Z× Z;

(3) if A or B is abelian, then it is finitely generated.

Then Comm(G) is not finitely generated.

Proof. First we show, that if one of the indexes |A : C|, |B : C| is finite, then G has a finite index
subgroup G1, such that G1 = A1 ∗C B1 for some A1, B1 with infinite indexes |A1 : C|, |B1 : C|.

Suppose, for example, that the index |A : C| is finite, that is A is virtually cyclic. Since G is
torsion-free, A is infinite cyclic. We note, that |B : C| must be infinite, otherwise B is also infinite
cyclic and so G = Z ∗nZ=mZ Z for some n,m; but such G cannot be mapped onto Z× Z.
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Let 1, a, a2, . . . , an−1 be representatives of A modulo C. Let ϕ : A ∗C B → Zn be the epimo-
morphism, which sends a to 1 and B to 0. The kernel G1 of this epimorphism can be presented
as the free product of groups a−iBai, i = 0, 1, . . . , n− 1, amalgamated over the common subgroup
C. Therefore G1 = B ∗C D, where D is the free product of a−iBai, i = 1, . . . , n− 1, amalgamated
over C. As was noticed above, |B : C| = ∞ and so |D : C| = ∞.

Since G1 has finite index in G, we have Comm(G) ∼= Comm(G1) and also that G1 satisfies the
conditions (1-3). Thus, w.l.o.g. we may assume that the indexes |A : C| and |B : C| are infinite.

We show that for any prime number p > 1, there exists a normal subgroup H of index p in G,
and an automorphism of H that does not extend to an automorphism of G. Then Theorem 10 will
complete this proof.

By (2), the quotient group G/CG can be homomorphically mapped onto Z and further onto
Z/pZ. Let H / G be the kernel of the composition of these epimorphisms. Then C 6 H and
|G : H| = p. Consider the induced decomposition of H as the fundamental group of a graph of
groups: H = π1(H, Γ). According to the Basse-Serre theory of groups acting on trees [11], the
vertices and edges of Γ can be identified with the double cosets of H and A in G, H and B in G,
and H and C in G:

V Γ = (H \G/A) ∪ (H \G/B), EΓ = H \G/C.

The vertices of the form HgA are called A-vertices, and the vertices of the form HgB are
called B-vertices. The edges of Γ connect only A- to B-vertices. An edge e = HgC connects the
vertices u = HgA and v = HgB. By definition, the vertex groups Hu and Hv are g(H ∩A)g−1 and
g(H ∩B)g−1 respectively, and the edge group He is g(H ∩ C)g−1 = gCg−1.

Let now e be the edge H1C in Γ and let u, v be its initial and terminal vertices. In particular,
He = H ∩ C = C and, after possibly renaming, Hu = H ∩ A and Hv = H ∩ B. There are two
subcases to consider:

Γ contains a non-separating edge. Let f be a nonseparating edge different from e. Then
H can be presented as an HNN extension: H = 〈K, t | tht−1 = h1〉, where K is the fundamental
group of the graph of groups associated with Γ \ {f}, where t is stable letter, h is a generator of
Hf 6 K, and h1 is the associated element of K. Note that H ∩A 6 K and H ∩B 6 K.

Consider a nontrivial Dehn twist automorphism ϕ : H → H along f . In terms of the above
presentation ϕ is trivial on K and sends t to th. In particular ϕ is trivial on H ∩A and H ∩B. By
Lemma 11, it cannot be extended to an automorphism of G.

Γ is a tree. We have |EΓ| = |H \G/C| = |G : H| = p > 1, since H is normal in G and contains
C. Similarly, the number of A-vertices is equal to

|H \G/A| = |G : HA| =
{

1 if A 
 H,
p if A 6 H.

The same holds for the number of B-vertices. Since in the tree the total number of vertices is
|EΓ| = p + 1, we conclude, that up to renaming, Γ contains a unique B-vertex and p A-vertices.
In particular, A 6 H. Thus, Γ has the form of a star with the central B-vertex v and p A-vertices
around it.

Let f be an edge of Γ different from e and let w be the vertex of f different from v. Then
H = H ∗Hf

Hw, where H is the fundamental group of graph of groups associated with the connected
components of Γ \ {f} containing v. In particular, H contains Hu ∗He Hv. Moreover, Hw =
g(H ∩A)g−1 = gAg−1 and Hf = gCg−1 for some g ∈ G.

Since we have assumed |A : C| = ∞, we have |Hw : Hf | = ∞, and so Hw is not virtually
cyclic. Note that if Hw is abelian, then it is finitely generated by (3). By Lemma 14, there is an
automorphism ϕ of H = H ∗Hf

Hw, which acts trivially on H and nontrivially on Hw.
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In particular, ϕ acts trivially on Hu = H ∩ A and on Hv = H ∩ B. We conclude, again via
Lemma 11, that ϕ cannot be extended to an automorphism of G.

Note, that if G is finitely generated, the condition (3) of Theorem 15 automatically holds.
To prove Corollary 2, we recall a theorem by F. Paulin:

Theorem 16 ([9]). Suppose G is a word-hyperbolic group with infinite Out(G). Then G splits over
a virtually cyclic group.

Proof of Corollary 2. By Theorem 16, G splits over a virtually cyclic subgroup, that is G = A∗C B
or G = A∗C , where C is virtually cyclic. Since G is finitely generated, A and B are also finitely
generated. Since G is torsion-free, C = 1 or C = Z. If C = 1, we apply Theorem 12. If C = Z, we
apply Theorems 13 and 15.

5 An Example

Recall that a group G is called complete if it has trivial center and no outer automorphisms. A
group is called perfect if it equals its own commutator subgroup. A subgroup C of a group G
is called malnormal if C ∩ g−1Cg = 1 for every g ∈ G \ C. We will use the following result of
V.N. Obraztsov (see Corollary 3 in [8] and its proof).

Theorem 17 ([8]). There exists a 2-generated simple complete torsion-free group G in which every
proper subgroup is infinite cyclic.

We note that such a group G has maximal cyclic subgroups; indeed otherwise it would contain
an infinite ascending sequence of cyclic subgroups; its union cannot be cyclic, and so it must coincide
with Hi. This is impossible since Hi is finitely generated.

Lemma 18. Let G be a group as in Theorem 17. Then every maximal cyclic subgroup of G is
malnormal. Moreover, G has the unique root property.

Proof. Let 〈z〉 be a maximal cyclic subgroup in G and suppose that it is not malnormal, that is
〈z〉 ∩ g−1〈z〉g 6= 1 for some g ∈ G \ 〈z〉. Then zs = g−1ztg for some nonzero s, t. Moreover, the
subgroup 〈g, z〉 is larger than 〈z〉, so it is noncyclic and therefore equals G.

If g−1zg /∈ 〈z〉, then 〈g−1zg, z〉 = G and hence zs lies in the center of G, a contradiction.
If g−1zg ∈ 〈z〉, then g−1zg = zk for some k. If |k| > 2, then 〈z〉 is not maximal, a contradiction.

If |k| = 1, then g2 lies in the center of G = 〈g, z〉, again a contradiction.
Now we prove that G has the unique root property. Suppose that for some x, y ∈ G holds

xn = yn, n 6= 0. If x, y generate a cyclic group, then clearly x = y. If they generate a noncyclic
group, then 〈x, y〉 = G. But then xn lies in the center of G, so xn = 1, and so x = 1. Similarly
y = 1.

Theorem 19. There exists a 3-generated group G = G1 ∗
u1=u2

G2 such that

(1) G/[G,G] = Z and ui /∈ [G,G];
(2) G has the unique root property;
(3) Comm(G) = Aut(G);
(4) Aut(G) is generated by inner automorphisms, a Dehn twist along 〈ui〉 and possibly one extra

automorphism which interchanges G1 and G2. In particular, Aut(G) is finitely generated.

9



Proof. Let H1, H2 be two groups as in Theorem 17. In each Hi we choose an element hi, generating
a maximal cyclic subgroup. We set Gi = Hi ×Ai, where Ai = 〈ai〉 is an infinite cyclic group, take
ui = hiai and define G = G1 ∗

u1=u2

G2.

We denote by u the image of ui in G. Note that the centralizer of the subgroup 〈u〉 in G has
the following structure: CG(u) = 〈u〉 × Z, where Z = 〈A1, A2〉. Since Ai ∩ 〈ui〉 = 1, we have
Z = A1 ∗A2

∼= F2.
Remark. Using Lemma 18 one can prove the following important property: if for some g ∈ G

we have that g−1usg = ut for some nonzero s, t, then s = t and g ∈ CG(u).
We are now ready to prove the statements.

(1) This statement follows from the fact that H1,H2 are perfect.

(2) Assume the converse: there are two different elements x, y ∈ G such that xn = yn. We
will analyze the action of x and y on the Bass-Serre tree T associated with the decomposition
G = G1 ∗

u1=u2

G2. Clearly, x, y are either both elliptic or both hyperbolic. For any edge e of T let

α(e) and ω(e) denote the initial and the terminal vertices of e respectively.

Case 1. Suppose that x, y are both elliptic. If they stabilize the same vertex of T , then (after
conjugation) we may assume that x, y ∈ Gi for some i = 1, 2. Then, using Lemma 18, we conclude
x = y.

Suppose that x and y do not stabilize the same vertices of T . We choose the shortest path
p = e1e2 . . . em in T such that x ∈ Stab(α(e1)) and y ∈ Stab(ω(em)). Then this path is stabilized
by xn(= yn), in particular, e1 is stabilized by xn. By conjugating and renaming the factors, we can
assume that Stab(α(e1)) = G1, Stab(ω(e1)) = G2 and Stab(e1) = G1 ∩G2 = 〈u〉. Since x ∈ G1, we
have x = zak

1 for some z ∈ H1, k ∈ Z. And since xn ∈ G1∩G2, we have xn = znakn
1 = ukn = hkn

1 akn
1 .

In particular, zn = hkn
1 and so z = hk

1 by Lemma 18. This implies that x = hk
1a

k
1 = uk

1 ∈ G1∩G2 =
Stab(e1), a contradiction to the minimality of the path p.

Case 2. Suppose that x, y are both hyperbolic. Since xn = yn, the axes of x and y coincide
and x−1y and x−2y2 stabilize this axis. By conjugating we may assume that x−1y and x−2y2 lie
in G1 ∩ G2. Thus y = xuk for some k ∈ Z and so y2 = x2 · x−1ukxuk. Hence x−1ukx ∈ G1 ∩ G2.
By the remark at the beginning of this proof, we conclude that x ∈ CG(u). Similarly, y ∈ CG(u).
Since CG(u) = 〈u〉 × Z ∼= 〈u〉 × F2 has the unique root property, we conclude from xn = yn that
x = y.

(3)–(4) First we describe finite index subgroups of G. Let B be a subgroup of finite index m
in G, and let N be a normal subgroup of finite index in G such that N 6 B. Since Hi does not
contain proper finite index subgroups, we have Gi ∩ N = (Hi × 〈ai〉) ∩ N = Hi × 〈ami

i 〉 for some
mi ∈ Z. Then N contains the normal closure of 〈H1,H2〉 in G. The factor group of G by this
normal closure is isomorphic to Z. Therefore B is normal and coincides with the preimage of mZ.

We claim that B = (H1 × 〈am
1 〉) ∗

um
1 =um

2

(H2 × 〈am
2 〉). Simplifying notations we write Gi,m =

Hi × 〈am
i 〉 and G(m) = G1,m ∗

um
1 =um

2

G2,m. Thus we want to prove that B = G(m).

It is enough to prove that G(m) is normal in G (then clearly G/G(m) ∼= Z/mZ and so B =
G(m)). Note that G(m) = 〈am

1 , am
2 ,H1,H2〉 and G = 〈a1, a2,H1,H2〉. Preparing to conjugate, we

deduce from the equations h1a1 = h2a2 and [hi, ai] = 1 the following:

a1a
−1
2 = h−1

1 h2 ∈ H1H2 6 G(m),

a−1
1 a2 = h1h

−1
2 ∈ H1H2 6 G(m).
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Then for ε ∈ {−1, 1} we have

aε
1a

m
2 a−ε

1 = (aε
1a
−ε
2 )am

2 (aε
1a
−ε
2 )−1 ∈ G(m),

aε
1H2a

−ε
1 = (aε

1a
−ε
2 )aε

2H2a
−ε
2 (aε

1a
−ε
2 )−1 = (aε

1a
−ε
2 )H2(aε

1a
−ε
2 )−1 6 G(m)

By symmetry we get aε
2a

m
1 a−ε

2 ∈ G(m) and aε
2H1a

−ε
2 6 G(m). This completes the proof that G(m)

is normal in G and so B = G(m). Thus, for every natural m there is a unique subgroup of index
m in G; it has the form

G(m) = G1,m ∗
um
1 =um

2

G2,m. (†)

We now investigate which isomorphisms can appear in Comm(G). Let n,m be two natural
numbers and let α : G(n) → G(m) be an isomorphism. We claim that Gi,n is nonsplittable over a
cyclic subgroup. Indeed, suppose Gi,n = K ∗L M , where L is a cyclic group. If one of the indices
|K : L| or |M : L| is larger than 2, then Gi,n and hence its direct factor Hi would contain a noncyclic
free group, contradicting the properties of Hi. If |K : L| = |M : L| = 2, then Gi,n

∼= Z/2Z ∗ Z/2Z
or Gi,n

∼= Z ∗2Z=2Z Z, again absurd in regard of Theorem 17. An analogous reasoning shows that
Gi,n cannot be a nontrivial HNN extension over a cyclic group.

This implies that α(Gi,n) is also nonsplittable over a cyclic subgroup and so is conjugated into
G1,m or into G2,m.

Case 1. Suppose that α(G1,n) is conjugated into G1,m and α(G2,n) is conjugate into G2,m.
After an appropriate conjugation, we can assume that α(G1,n) 6 G1,m and α(G2,n) 6 gG2,mg−1

for some g ∈ G(m). We prove that α(G2,n) 6 G2,m. We can assume that g, written in reduced
form with respect to the amalgamated product (†), is either empty or starts with an element of
G2,m \ 〈um〉 and ends with an element of G1,m \ 〈um〉.

Suppose that g is nonempty and write it in reduced form: g = g1g2 . . . g2k−1g2k, where gi ∈
G1,m\〈um〉 if i is even and gi ∈ G2,m\〈um〉 if i is odd. The element α(un) lies in α(G1,n)∩α(G2,n) =
G1,m∩gG2,mg−1, hence it can be written as α(un) = g1g2 . . . g2k−1g2kvg−1

2k g−1
2k−1 . . . g−1

2 g−1
1 for some

v ∈ G2,m and the reduced form of this product consists of only one factor which lies in G1,m.
Therefore v ∈ 〈um〉 and gi ∈ CG2,m(um)\ 〈um〉 for odd i and gi ∈ CG1,m(um)\ 〈um〉 for even i. This
implies

(a) gumg−1 = um;
(b) α(G1,m) ∩ α(G2,m) = 〈um〉;
(c) if w ∈ 〈um〉, then the reduced form of gwg−1 with respect to (†) is w;
(d) if w ∈ G2,m\〈um〉, then the reduced form of gwg−1 is g1g2 . . . g2k−1g2kwg−1

2k g−1
2k−1 . . . g−1

2 g−1
1 ;

it starts and ends with elements from G2,m\〈um〉 and contains at least one element from G1,m\〈um〉.
Using this we prove that the group generated by G1,m and gG2,mg−1 does not contain elements

of G2,m \ 〈um〉, and that will contradict the surjectivity of α. Let z be an arbitrary element of
〈α(G1,n), α(G2,n)〉. We write z as z = z1z2 . . . zl, so that zi lie alternately in α(G1,n) or in α(G2,n)
and l is minimal. First suppose that l > 1. Then zi /∈ 〈um〉, otherwise one can unify two consecutive
factors of z1z2 . . . zl and decrease l. Therefore the following hold:

(i) If zi ∈ α(G1,n), then zi ∈ G1,n \ 〈um〉.
(ii) If zi ∈ α(G2,n), then zi ∈ g(G2,n \ 〈um〉)g−1 by (a). By (c)-(d) the reduced form of zi with

respect to (†) starts and ends with elements from G2,m \ 〈um〉 and contains at least one element
from G1,m \ 〈um〉.

Therefore the normal form of z is the product of normal forms of zi’s, and so z /∈ G2,m \ 〈um〉.
If k = 1, then either z ∈ 〈um〉, or as above z /∈ G2,m \ 〈um〉. In both cases z /∈ G2,m \ 〈um〉.
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We have reached a contradiction. Thus g is empty and so α(Gi,n) 6 Gi,m for i = 1, 2.

Case 2. Suppose that α(G1,n) is conjugated into G1,m and α(G2,n) is also conjugated into
G1,m. After an appropriate conjugation, we can assume that, say, α(G1,n) 6 G1,m and α(G2,n) 6
gG1,mg−1 for some g ∈ G(m). Then arguing as in Case 1 we obtain a contradiction independently
of whether g is empty or not.

All other possible cases can be considered similarly. Thus (after a conjugation), we may assume
that α(G1,n) = G1,m and α(G2,n) = G2,m or α(G1,n) = G2,m and α(G2,n) = G1,m. In particular,
α(un) = uεm for some ε ∈ {−1, 1}. We consider the first case (the second case is similar).

Since Hi has no infinite cyclic quotients, we obtain α(Hi) = Hi. Since α carries the center of
Gi,n to the center of Gi,m, we have α(an

i ) = aσm
i for some σ ∈ {−1, 1}. Since Hi is complete, α|Hi

is a conjugation by an element wi ∈ Hi. Thus, α(un) = α(hn
i an

i ) = wih
n
i w−1

i aσm
i . On the other

hand α(un) = uεm = hεm
i aεm

i . Thus, we have wih
n
i w−1

i = hεm
i and σ = ε. By Lemma 18, wi = hki

i

for some ki and so n = εm, which implies n = m and σ = ε = 1. Then α|Gi,m
is the conjugation by

wi, which is the same as the conjugation by hki
i aki

i = uki
i . Thus, α is a product of two Dehn twists.

All inner automorphisms and Dehn twists, and the (possible) permutation of factors of G(n)
can be lifted to the corresponding automorphisms of G. Thus properties (3) and (4) are proven.

Finally we prove that G is 3-generated. Recall that hi generates a maximal cyclic subgroup in
Hi. First we choose an element yi ∈ Hi \ 〈hi〉, i = 1, 2, and then take a generator xi of a maximal
cyclic subgroup of Hi containing yi. Clearly, xi ∈ Hi \ 〈hi〉 and also hi ∈ Hi \ 〈xi〉.

We claim that the subgroup F = 〈x1, x2, u1〉 coincides with G. In the proof we will use the
equations h1a1 = u1 = u2 = h2a2. We have [xi, ui] = [xi, hiai] = [xi, hi] ∈ Hi. By Lemma 18, the
subgroup 〈xi〉 is malnormal in Hi and so [xi, hi] /∈ 〈xi〉. Then, by Theorem 17, 〈xi, [xi, ui]〉 = Hi.
In particular, Hi 6 F . Then Ai = 〈ai〉 = 〈h−1

i ui〉 6 F and hence G = 〈H1,H2, A1, A2〉 = F .

Note that G from the proof of Theorem 19 cannot be generated by 2 elements. Indeed, if G
were 2-generated, then its homomorphic image H1 ∗

h1=h2

H2 would be also 2-generated. But this is

impossible in view of Corollary 1 of [12], which states that if B is an analgamated product of type
n∗C
i=1

Bi where C 6= 1, C 6= Bi, and C is malnormal in B, then rank (B) > n + 1.
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