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We establish in a canonical manner a manifold structure for the completed space of bounded

maps between open manifolds M and N, assuming that M and N are endowed with

Riemannian metrics of bounded geometry up to a certain order. The identity component of

the corresponding diffeomormphisms is a Banach manifold and metrizable topological group.

1. Introduction The main goal of this paper is to supply one framework for nonlinear global

analysis on open manifolds. For linear differential equations and linear objects the basic

background is the theory of Sobolev spaces as presented for example in [3], [6], [7], [8].

For nonlinear objects such as connections, metrics, maps one has to find a completely new

approach. In [10] we presented such an approach for the space of connections. Here we devote

our efforts to spaces of maps between open manifolds. We fix our interest on the Banach

category since in solving nonlinear partial differential equations the implicit function theorem

plays a decisive role. On compact manifolds this theory has been developed by Bells, Palais,

Ebin, Fisher, Marsden and others. Their methods are essentially limited to the compact case.

They use properties like the independence of Sobolev spaces of the choice of a connection, the

bounded geometry of any compact manifold and that any compact manifold can be covered

by a finite number of charts. All these properties and many others are not available in the

noncompact case. The basis of our approach is to endow two given open manifolds M and

N with metrics 9 and h of bounded geometry up to a certain order. According to a theorem

of Greene, such metrics always exist After that we can make all constructions necessary for

uso As in the compact case, our manifold structure =locallinearization is given by exp and

its differentials. Therefore all estimates amount to estimates on Jacobi fields. We often have

to estimate hierarchies of inhomogeneous Jacobi fields of high order.

The paper is organized as follows. In section 2 we present the necessary basic no

tions of Sobolev spaces, bounded geometry, an apriori estimate for the connection

coefficients, embedding theorems, a fundamental module structure theorem for Sobolev

spaces and finally two invariance theorems for Sobolev spaces. Section 3 is de
voted to a very short review of uniform structures and their completions. The techni

cal heart of this paper is section 4. Let (M,9), (N, h), be of bounded geometry up

to order k, i.e. rinj(M),rinj(N) > 0, IViR91, IViRhl bounded, 0 ~ i ~ k and let

f E COO(M, N). ! E coo,m(M, N) if IVid!1 is bounded, 0 ~ i ~ m - 1. Let

~n(rTN)= {Y E Coo(rTN)lb,mlYl = i~ :~::'IViYlx < oo} and for 1 ~ m ~ k, 0 <

5 < Tinj(M), V6 = {(!,9) E coo,m(M, N) x coo,m(M, N)19 = exp Y, Y E ~f2(f*TN),

h,m IYI < 5}.Then ~ = {V6 }O<6<r' . (M) is a basis for a metrizable uniform structure on
ffiJ

coo,m(M, N). The proof occupies section 4 and half of this paper. Let b,mf2(M, N) be the

completion. We prove in theorem 4.19 that each component of b,mf2(M, N) is a Banach man

ifold. Let 1 < p < 00, k ;::: r > dimM/p+l.In a similar manner, we construct op,r(M, N)
and show in theorem 5.2 that each component of f2Pl r (M, N) is a Banach manifold and for

p = 2 is a Hilbert manifold. The model space of comp(f) C f2p,r(M, N) is f2P,r(!*TN) =

Banach space of measurable vector fields Y such that (Viy)P is integrable, 0 ~ i ~ r, Viy



the distributional derivative. Then we define in section 6 b,m D(M) = {f E b,mn(M, M)lf
is injective, surjective, preserves orientation and l"'lmin(df) > O} and prove in theorem 6.1
that each component of b,m D(M) is a Banach manifold. The identity component of b,mD(M)
is a metrizable topological group (theorem 6.3). In a similar manner, we define DP,T(M) and

prove that each component of Dp,T (M) is a Banach manifold and the identity component is

a metrizable topological group. Tbis are theorems 6.4, 6.5. After theorem 6.3, we list 9 re
marks which give certain background information. In particular, b,m D(M), DP,T(M) contain

the isometry group. In the cornpact case our construction coincides with those of Ebin, more
precise, they give the same result.

We show in a forthcoming paper that our final construction only depends on the components

cornp(g), comp(h) in the completed space of Riemannian metrics of bounded geometry.

Moreover, we study the configuration space of Riemannian metrics of bounded geometry

modulo diffeomorphisms of Einstein theory. Already now our approach gives a solid basis

for the theory of harmonic maps between open manifolds and for gauge theory on open

manifolds. Tbe author is grateful to U. Abresch and U. Bunke for many valuable discussions.

2. Sobolev spaces and their properties

In the sequel we need Sobolev spaces of different kind and list their main properties.

Assume (M",g) to be open, complete, (E, h) ~ M a Riemannian vector bundle with metric

connection '\JE = '\Jh. Then the Levi-Civita connection '\79 and vh define metrlc connections

\l in all tensor bundles Ti ® E in particular in AqT· M ® E, where AqT* M C Tg. We denote

by o.q(E) or n(T! ® E) =0.0 (Ti 0 E) the space of smooth q-forms or tensor fields with

values in E, respectively. For the sake of brevity, we consider only fOnDS with values in

E. The other case is quite parallel. Let o.g(E) denote the subspace of forms with compact

support. Then we define for pER, 1 ~ p < 00 and r a nonnegative integer

!W(E) = { ep E nq(E)lleplp,T := (1~ IV'ieplPdYO}/P < co },
ffl,p,T (E) = completion of n~,p(E)with respect to IIp,T'
nq,p,T(E) = completion of o.g(E) with respect to IIp,T
and

nq,p,T(E) = {cplcp measurable regular distributional

{ q- form with Icplp,T < 00}.

Furthermore, we define

b,mnq(E) = {eplep cffi
- form and b, mlepl := f sup IV'ieplx < co}

i=O xEM

and
b, m ... q( ) . q( ) . b, m I10. E = the compleuon no E wtth respect to .

b, m nq(E) equals the completion of
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~n9(E) = {cp E n9(E)\b,m 1cpl < oo}
with respect to b,rn 11.

Proposition 2.1. The spaces nq,p,r(E), w,p,r (E), nq,p,r(E), b,rnnq(E), b,mnq(E) are alt

Banach spaces and there are inclusions

(2.1)

(2.2)

Ifp = 2 then nq,p,r(E),[fl,p,r(E),nq,p,r(E) are Hilbert spaces. x:x

In general nq,p,r(E), 'W,p,r (E), nq,p,r(E) are different. There are two geometrical conditions

on (Mn ,9) which assure their coincidence. A complete Riemannian manifold (Mn ,9) has

bounded geometry up to order k if it satisfies the conditions (I) and (Bk) = (Bk(M n ,9)),

rinj = inf rinj(x) > 0,

l~iRI ~ Ci,O ~ i ~ k,

where rinj denotes the injectivity radius, R = RU the curature tensor and 11 the pointwise

nonn. There are many classes of manifolds which are endowed with ametrie of bounded

geometry in a quite natural manner. Every Riemannian covering of a closed Riemannian

manifold or every Riemannian homogenous space has bounded geometry up to arbitrarily

high order. As a matter of fact, given Mn open and k ;::: 0, there exists a complete metric

9 of bounded geometry up to order k (cf. [13]), i.e. the existence of such a metric does not

restrict the underlying topological type. The key lemma for the sequel is

Lemma 2.2. If (Mn, 9) satisfies (Bk) and il is an atlas, of normal coordinate charts of radius
::; ro, then there exist constants Ca, Cßsuch that

(2.3)

IDßrij I ::; Cß, IßI ::; k - 1, (2.4)

where Ca, Cßare independent 0/ the base points of the normal charts and depend only on ro

and on curvature bounds including bounds for the derivatives.

We refer to [11] for the rather long and technical proof which uses iterated inhomogeneous

Jacobi equations. x:x

Lemma 2.2 earries over to the ease of Riemannian vector bundles (E, h, ~h) of bounded

geometry. For this we consider the condition

(Bk(E,~h)) l~iREI ~ Ci,O:::; i::; k.

Let P E M, (xl, ... , xn ) +-+ xl Xl + ... + xnXn = exp;l : Ur(p) --+ Br{O) C TpM be

a system of geodesie nonnal coordinates and let €}, ... , eN E 1r-
I (p) = Ep C E be an

orthonormal frame in Ep which defines (by parallel transport along radial geodesics) a field
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of orthonormal frarnes in Elu. This shall be called a synehronous frame field at UT(p).
Locally this defines a flat eonnection V'0 on Elu, defining e}, ... , eN as parallel sections,

henee V'°(f . e) = df ~ e, f E COO(U), e E COO(Elu). Then r = V'E - V'0 is aI-form

with values in ßE where ßElu, is the associated bundle of skew symmetrie endomorphisms

of E. r can be deseribed by

dx i ~ r:iea ~ ep = (}~eCl' ~ ep,

where V'~eCl' = r Cl' feß and eCl' is dual to ea with respect to the metrie in E.
8.s'

Lemma 2.3. Assume (Bk(M)), (Bk(E)), k ~ 1 anti r~i as above. Then

ID"tr~i I ::; Ci' 1,1 ::; k - 1, G, ß= 1, ... ,N, i = 1, ... , n, (2.5)

where C"t are constants depending on curvature bounds, ro and are independent 0/ p. tt

We refer to [11] for the praof.

Pro~tion 2.4. I/ (Mn, g) satisjies (I) and (Bk) then

nq,p,T (E) = fr/,p,T (E) = nq,p,T (E), 0 ::; r ::; k + 2.

We refer to [7] for the prao! tt

Proposition 2.5. Assume (Mn, g) is open, compiete, 0/ bounded geometry up to order 0,
i.e. satisfying (1) and (Bo(M)).

If r > ~ +m, then there are continuous embeddings,

(2.6)

(2.7)

Ij, additionally, (Mn, 9) satisfies (Bk (M)), k ~ 1, and k - ~ > k' - ;" k > k', then

nq,p,k(E) ~ nq,p',k' (E) (2.8)

continuousIy.

Proof. (2.6) was already proved in [3] and the proof earries over to (2.7), (2.8) is a special

case of

Proposition 2.6. Let (Mn ,g) be open, compiete, of bounded geometry up to order k, let
(E, h, \lh) -7 M be a Riemannian vector bundle satisfying (Bk (E, \lh)). Then every Sobolev

embedding theorem and theorem conceming the continuous module structure 0/Sobolev spaces
oforder r ::; k, which is valid/or an euclidean n·ball B, is valid/or the corresponding Sobolev
spaces on (Mn, g) too.

Proof: Let 0 < hM < rinj(M), (U6M(P),~) anormal chart, ~(U) = B OM ' e}, ... , eN a

synchronous frame. Then

(2.9)
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is according to (2.4), (2.5) an equivalence of Sobolev spaces where the constants in the
equivalence depend on b,1IRM1, b,1IRE1, DM and are independent of P E M. According to

an unpublished but very often used result of Calabi, there exists for manifolds satisfying (1)

and a uniformly locally finite cover of M by normal charts of radius 0 < DM < rinj(M).

Let 11 = {(Ui, ~i)}i be such a cover. There exists an associated partition of unity {1]il such

that dTJi, '\7dTJi, ... , '\71+1 d1]i are uniformly bounded (cf. [5]). Since r ::; k we have

Let

as a sum of Banach spaces, i.e. direct sum and completion. Then, according to (2.9) and the

independence of the constants of Pi, ~i

Unq,P,r(E) ~ L: nq,p,r (B6M X EN ) .

•
Let 'P E nq,p,T (E). Then 'P = ~ 1]i'P and 'P ~ {TJi'P} i is a bounded map

•

DP,r(E) -> Unq,P,r(E) ~ L:nq,p,r(B
6M

x EN )

I

nq,p,r (BOM X E N) C-.....+ nq,p,T (BOM X E N)

gives rise to an embedding

since d1]i, \1d1] i, ... , \1r-ld7]i are unifonnly bounded. We conclude that every continuous

embedding

nq,P,r(E) -> Unq,P,r(E) ~ ~ nq,p,r (B
6M

X EN )

•
"""""' AI' ( N) 11 " I IC-.....+ ~ nq,p ,r BOM X E -t nq,p ,r (E) ~ nq,p ,r (E)

•
by

nq,p,r (E) 3 'P --+ {1]i'P}i --+ {(7]iep)1 o~;I, ... , (7]iep)1 0«1>;1 }i

E L:nq,p,T(E)(B'1M x E N) --+ {(7]iep)10~il, ... ,(1]i'P):<I-il}.
. I

•
"""""' AI' ( N) 11 A I I '"' A I IE~ nq,p ,r Bl1M X E --+ {1]i'P} i E ng,p ,r --+ ~ 1]i'P = 'P E nq,p ,r (E).

I I

In an analogous manner, a continuous module structure is defined if rl, r2 ;::: r and

(r l - ;) + (r2 - ;) ~ r-~. (2.10)

Remark: No assertion was made conceming the compactness of the embeddings.
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Corollary 2.7. Assume (I), (Bk(M)), (Bk (E, \7E)), r ~ k, r > *;?:: r' - ~,r > r'. Then

(2.11)

continuously. t1

More carefully t we have to write nq,p,r (E) = nq,p,r (E, \7E) indicating the choice of \7 = \7 E
as metric connection with respect to the metric h. Let \7' be another metric connection which
is metric wiqt respect to h. There arises the quite natural question: under which conditions
do nq,p,r(E, \7) and nq,p,r(E, \7') coincide? We denole by CE(Bk) the set of all metric with
respect to h connections on E satisfying the candition (Bk), i.e.

l\7i RV
[ ~ Ci,O ~ i ~ k.

If \7, \7' E CE then \7 - \7' E n1(gE).

Proposition 2.8. Assume (I) anti (Bk(M)), k ;?:: r > ~ + L Then CE(Bk) wears a canonical

intrinsic metrizable Sobolev topology such that the completion 7YEr
(Bk) has a representation

as a topological sum;

7YEr
(Bk) = L (\7i +n1,p,r(ßE,\7i)).

iEI

(2.12)

Here I is an (in general uncountable) index set. Moreover, if\7 E GE(Bk) and comp(\7) is
its component in 7Ji:r (Bk), then

We refer to [10] for the proof.

t1

If \7 E CE then we write q\7 for the induced connection on i\qT*M ® E, q\7 = \79 ®
\7, (\79~ \7)(0 ® 1/;) = (\79 0) ® 1/; + 0 ~ \71/;. It follows, that q\7 - q\7' = id ~ (\7 - \7'),

i.e. for the pointwise norm

Since \7(id) = [\7, id] = 0, we have

more generally

(2.13)

The above question concerning the coincidence of nq,p,r(E, \7) and nq,p,r(E, \7') is answered

by the following

Proposition 2.9. Assume (1) and (Bk)for (Mn,g),k ;?:: r > ~ + 1, \7, \7' E CE(Bk), \7' E
r;P r-1

comp(\7) c CE (Bk) Then

(2.14)
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Proof: Aeeording to our assumption and to 2.4, nq,p,T = ?fl,p,T = nq,p,T, and it suffices

to prove

(2.15)

i.e. the equivalenee of norms IIp,T - IIV,p,T and 11~,r - llv',p,r. Sinee we are working with
pointwise nonns, we denote q\l = \l, q\l' = \l' , referring to (2.13). For r = 0 there is
nothing to show sinee IIp,o = Il~,o = Lp-nonn. Assume r = 1 and 1'Plp,l < 00. Then

\l'ep = (\l' - \l)ep + \lep, 1V7'epl ~ l\l' - \lllepl + l\lepl,

lV7eplP ~ CI (1\7' - \7[PlepIP + l\7epIP).

I I\7eplPdvol < 00 sinee ep E n~,p(E, \7), r > !!. + 1. Now r - !!. + 0 - !!. > 0 - !!. and we
p p p - p

eonclude from (2.10) that J1\7' - \7IPleplPdvol < 00 and

(J I'V' - 'VjP!'P1PdV01) I/p :::; C2J'V' - 'Vlv,p,r ·1'Plp,o,

lepl~,1 ~ Ca (1, p, \7, \7') . !eplp,l'

Sinee all arguments are symmetrie,

lep!p,1 ~ C4 (1, p, V7, \7/) lep I~,l ,

n~,p(E, \7) = n~'p (E, \7/).

Assurne now r 2:: 2 and (2.15) for 1,2, ... , r - 1. Let ep E n~,p(E, \7). Then

A simple induetion shows

r

\7'T ep = L \7i-l (\7' - V7) V7/r-iep + \7Tep,

i=l

I'V,r 'PIP :::; CI(~ I'Vi-I ('V' - 'V) 'V,r-i'PIP+ I'Vr'PIP).

Hy assumption

It remains to eonsider \7i-l(\7' - \7)\7'T-iep. Again iterating the procedure, Le. applying it
to V7'r-i and so on, we have to estimate expressions of the kind

with il + i 2 + ... + i T = r, i T < r.
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If we give V, V' - V and c.p the degree 1 then each tenn of (2.16) has degree i 1+...+i T +1 =
r +1. Using the chain and a nonn version of the Leibniz rule (cf. (6.10), (6.11) of [9]), we

find that (2.16) splits into a sum of tenns each of which can be estimated by

Cnl ...n".I~nl (~I - ~) I· .'l~n,-l (V' - V) IIVn'c.pl,

nl + 1 +... +n 6 + 1 = r + 1.
(2.17)

Let rj = r-nj. Then we have to assure (r1 - ~) +... + (rs - ~) 2: r - i,ri 2: r 2: O. But

t (r - ni) - s~ = s· r - (r + 1) + s - (s - 1}i - ~ = (s -1}(r + 1 -~) - ~ 2: 0 - i.
1=1
Therefore

and

(J l'V nl ('V' - 'V) IP.. ·1'Vn.-1 ('V' - 'V) IP. !'Vn'<PIPdVOl) l/p ~
6-1

::; D n1 ·..n , II I~ni (~I - V) I" _.' IVn'c.plv p T-n •v,P,T n, ".
j=l

This yields together wi th our induction assumption the following Ic.p I~, T ::; C (r, p, ~ l V') .
1c.plp,T' Hence for symmetry reasons,

1c.plp,T ::; D . 1c.p1~.T'
nq,p,T(E,~) = nq,p,T (E, V').

r.t

Remark: The conditions v, ~' E CE(BJ.) , ~' E comp(V) are sufficient. This can still be
weakened. It is sufficient for 2.6 that the connection coefficients of V, V' satisfy (2.5). (BJ.)
is sufficient for (2.5) but not necessary. Much easier to prove is the ern-version of 2.9. We

prepare this with

Proposition 2.10. Let (Mn l g) be open, E -? M a Riemannian vector bundle. CE the set of

metric connections. Then CE wears a canonical intrinsic metrizable C m
• topology such that

the completion b,m CE has a representation as a topological sum

b,mc = L ('V;+ b,mn1(ßE, Vi)).
IE]

Here I is an (in general uncountable) index set. Moreover, if~ E b,mCE, and comp(V) is
. . bmC hzts component In I E, t en

cümp(~) = ~ + b, mO l (gE, ~). (2.18)

The proof is quite analogous to that of 2.8 in [12], but easier since we do not have to apply the

module structure theorem for Sobolev spaces. Für this reason we can weaken the assumptiüns

in comparison with 2.8. n
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Proposilion 2.11. Assume (Mn, g) is open. V7, V7' E b,rn-I CE, V7' E comp(vr). Then

b,mn(E, V7) = b,mn(E, V7').

The proof is quite analogous to that of 2.9 using (2.16), (2.17), but we don't use the module
structure theorem for Sobolev spaces. 0

3. Uniform structures and their completion

Unifonn structures supply the appropriate framework for the definition of an uintrinsic"

topology in the space of bounded maps between open manifolds of bounded geometry. We
give a short outline of the basic concepts and results which are needed later on. Let X be a
set. A filter F on X is a system of subsets which satisfies

(FI)M E F, MI ~ M implies MI E F.

(F2 )MI, ... , Mn E F implies MI n ... n Mn E F.

(Fa)0 ~ F.

A system U of subsets of X xX is called a unifonn structure on X if it satisfies (FI ), (F2) and

(UI ) Every U E II contains the diagonal ~ C X xX.

(U2)V E U implies V-I E ll.

(U3 ) If V E U then there exists W E U such that Wo W C V.

The sets of U are called neighborhoods of the unifonn structure and (X, ll) is called uniform
space.

.c c ~(X x X) (= sets of all subsets of X x X) is a basis for a uniquely determined unifonn
structure if and only if it satisfies the following conditions.

(BI) If V}, V2 E .c then VI n V2 contains an element of .c.
(U~) Each V E .c contains the diagonal D.. C X xX.

(U~) For each V E .c there exists V' E .c such that V' ~ V-I.

(U~) For each V E .c there exists W E .c such that Wo W ~ V.

Every unifonn structure II induces a topology on X. Let (X, U) be a unifonn space. 1ben
for every x E X,U(x) = {V(x)}VEU is the neighborhood filter for a uniquely detennined
topology on X. This topology is called the unifonn topology generated by the unifonn
structure U. We refer to [1] for the proofs and further infonnation on unifonn structures.
We ask under which condition U is metrizable. A unifonn space (X, 11) is called Hausdorff if

11 satisfies the condition (UIH). The intersection of all sets E U is the diagonal ß C X x X.

Then the unifonn space (X,11) is Hausdorff if and only if the corresponding topology on X
is Hausdorff. The following criterion answers the above question.

Proposition 3.1. A uniform space (X, U) is metrizahle if and only if (X, U) is Hausdorff anti
U has a countable basis .c. 0

9



Next we have to consider completions. Let (X,l1) be a uniform space, V a neighborhood.

A subset A C X is called small of order V ifAx A C V. A system es c '.l3(X) has

arbitrary small sets if for every V E 11 there exists M E 6 such that M is small of order V,
i.e. Mx MeV. A filter on X is called a Cauchy filter if it has arbitrary small sets. A sequence

(XI')I' is called a Cauchy sequence if the associated elementary filter (= {Xl' Iv ;::: vo} 1'0) is a

Cauchy filter. Every convergent filter on X is a Cauchy filter. A uniform space is called

complete if every Cauchy filter converges, i.e. is finer then the neighborhood filter of a point.

PrO~tiOD 3.2. Let (X, 11) be a uniform space. Then there exists a compiete uniform space

(X ,11) such that Xis isonwrphic to adense subset of X. lf (X, 11)is also Hausdorff

then there exists a compiete Hausdorff uniform space (XU
, 11) uniqueiy determined up 10

isonwrphism, such that Xis isonwrphic to adense suhset of X. (XU
, 11) is called the

compietion of (X, 11).

We refer 10 [16}, p.1261127 for the proo!

Let (Y, 11y ) be a Hausdorff uniform space, X C Y adense subspace. If X is metrizable by

ametrie p then p may be extended to ametrie p on Y which metrizes the uniform space

(Y, 11y). In conclusion, if (X,l1) is a metrizable unifonn space and (XP
, 11p ) or (XU

, 11)
are its uniform or metric completions, respectively, then

X
U = x P

(3.1)

as metrizable topological spaces.

In the next section we will use the concept of uniform structures to give a natural and

canonical intrinsic Sobolev topology for the space of bounded maps between open manifolds

of bounded geometry.

4. Banach manifolds of maps in the Cm·category

Let (Mß,g), (Nß', h) be open, complete, satisfying (I) and (BJ;) and let f E COO(M, N).
Then the differential f* = df is a section of T* M ~ f*T N. f*T N is endowed with the

induced connection f*"V h which is locally given by

ri" = 8dO(x)r~;:'(J(x)),8i = 8~i'

"Vq and f*"V h induce metric connections "V in all tensor bundles TsQ(M)0f*T::(N). Therefore

"Vmdf is weH defined. Since (I) and (Bo) imply the boundedness of the 9ii, gkm, hpv in

normal coordinates, the conditions df to be bounded and 8if to be bounded are equivalent

In local coordinates
sup ..

X E M Idjlr = sup tr9 (f* h) = sup gl1 hp l'8ijP 8ijll.

For (Mß
, g), (Nß/, h) of bounded geometry up to order k and m < k we denote by

coo,m(M, N) the set of all f E COO(M, N) satisfying

b m-l

,m Idfl := L sup I"Vßdfl x < 00.

p=O xEM
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(4.1)

Let II be a uniformly locally finite cover of M by normal charts. Then txaa f'" is weH defined.

A very simple sufficient condition for f to be E coo,rn(M, N) is given by

Proposition 4.1. Assume (M",g), (N"',h) open complete, satisfying (1) and (Bk),f E

COO(M, N), 1 :::; m :::; k, aU/xaafv bounded, lai:::; m. Then f E coo,rn(M, N).

Proof: For m = 1 this is just the above remark. If m = 2 then the assertion follows from

~ idf = "V ,aiIV dxi = BiBi f'" dxi - rr,/ Br IV dxi+
r h,,,, a'fJlB'f"dxi

11'" J

and (2.4). Für 2 < m :::; k the assertion follows from covariant differentiation of (4.1), 2.2,

perfürming induction. tt

Let Y E O(f*TN) ='COO(f*TN). Then Yx can be weitten as (Yf(x),x) and we define a
mapgy:M~Nby

gy(x) := (exp Y)(x) := exp Yx := eXPf(x) Yf(x)'

Suppose now 0 < S < SN < rinj (N) and Y E O(f*TN) with

b
IY1f.h = sup IYf(x) Ih < 8.

xEM ,x

Theo the map gy as above defines an element of COO(M, N). More generally, if m :::;
rn

k, b,rn IYI = L: sup l"VIlYlx < 8, f E coo,rn(M, N) then the map gy belongs to
11=0 xEM

coo,m(M, N). This foHows from the chain and Leibniz rule for exp Y and the fact (Bk)
implies "VK(dexp) is bounded, 0 :::; K :::; k. The letter is a reformulation of 2.2. Moreover,

an explicit proof shall be given in this section.

We proceed as foHows. At first we define a fundamental system ..c on coo,m(M, N). This

defines a uniform structure ll. We consider its completion (coo,rn(M, N), ll), the generated

topology on coo,m(M, N) =b,mO(M, N) and show that each component of b,mO(M, N)
is a Banach manifold.

Definition. Let 0 < c :::; bN < rinj(N) anti set

V. = {U'9)1/'9 E ClX>,m(M, N) and there exists Y E ~OU*TN)

{SUCh thal9 = gy = exp Y and b, ffi lY1 < E:}.

Main theorem 4.2. The system .c = { V~ }0<~:56N is a fundamental system tor a uniform
structure ll.

We have to prove (Bl ) - (U~). The probf proceeds in several steps. (BI) follows from the

simple fact that for Cl < C2 V~l C ~:l and ~l n V~:l = Vrnin {~J,~:l} . (UD is trivial.

Proposition 4.3. ,c = {V~}! satisfies (U~).

ProoC: We have to show that for every c > 0 there exists c' > 0 such that (f, g) E ~,

implies (g, f) E ~, i.e. 9 = gy = exp Y, Y E ~O(f*TN), b,rn IYI < e' implies f =

11



fz = expZ,Z E ~n(g*TN) and b,mlZI < C. Let b,mlYI ::; DN < rinj(N)/2,g = gy =

exp Y, Y E b,rn n(f*TN) and PYg(x) the parallel translation of Yf(x) along eXPf(x) .sYf(x) to

eXPf(x) Yf(x) = g(x). Then it is clear that -PY E O(g*TN) and f = f-py = exp(-PY).

We still have to show that for given c > 0 there exists c' > 0 such that

implies

(4.2)

To prove this, i.e. to show the existence of such an c;' (c;) we need a very long series of

propositions.

According to (Bo), b IRN I < 00, we have an upper and lower bound for the sectional curvature

/( = /(N,D ::; K ::; ß. Here we choose ß > O,D < 0 such that /-L = (D + ß)/2 < O.

Moreover we assurne DN to be chosen< 1r /2.Ji5..

We have 10 estirnate IV"PY Ix' i.e. C,,~li. I(V"PY) (ii,,....I!i.) 1
2

) wherel}, ... , in E TxM

is an orthonormal basis. By definition, for a tensor field !(

(\7U K)(XI, . .. X n ) = (\7X u (\7u-1 K)) (XI, ... ,Xu- I)'

Then \7uK is weIl defined if \7u-I!( is weIl defined. Consider u = 2. Then (\72K) (X, Y) =
(\7y(\7K))(X). An easy calculation shows

(4.3)

(4.4)

We see, \7~xK = (\72/() (X, Y) can be expressed as an iterated derivative of second order
and a derivative of first order including an Y -derivative of X.

Proposition 4.4. \7Xu...Xt]< =(\7uK)(X1, ,Xu ) has a representation

(\7uK)(XI, ... ,Xu ) = \7Xv \7Xl K + lower order iterated

derivatives including mixed derivatives of XI, ... ,Xu - l .

Proof: For u = 2 this is just (4.3). Assume the assertion for 2, ... , u - 1. Consider now
\7u !(.

(\7uK)(XI, ... ,Xu ) = (\7X u (\7u-l K)) (X1, ...,Xu-d
u-l

= \7Xv [(\7U-I!<)(X1,...,Xu_I )] - L (\7u-l K)(X1,... ,\7XuXI, ...,Xu- I ).
i=l

By assumption,

(\7u-I]<) (XI, ... ,Xu-d = \7X
U

- I ••• \7Xl K + lower derivatives of K,

including mixed derivatives of the XI, ... ,Xu- l .

12



Therefore

(V'uK)(X1, ...,Xu ) = vXu V Xu - l ••• V x1K + V'xu(1ower derivatives of K)
u-l

-L (V'u-l K)(X1 .... ,VxuXi,'" ,Xu - 1),
i=l

which establishes (4.4).

In conclusion, we can estimate IVuPYI if we can estimate V X u ••• V Xl PY. Since
V'x+yV'X _y = (V'X)2 - (Vy )2 + VyV'x - V xVy and the curvature together with

its derivatives is bounded we are done if we can estimate V'xPY. Let x E M, X E

b,rn O(TM), {c(t)} -l<t<l be a curve in M with c(O) = x, ~(O) = Xx and set f(t) =
f oc(t). Then 7(t) is a curve in N with 7(0) = f (x). According to our assumption

f E coo.rn(M, N), (*i(t)), 0 ~ u ~ m - I, are bounded by a constant independent

of x E M and depending only on b,rn lXI.
Consider Y E b,rnn(f*N)and the I-parameter family of geodesies s --+ c(s, t) = eXPf(t) s .

YY(t)' This family defines Jacobi fields s --+ Jt(s) = -H;c(s, t). J(s) = Jt(s) satisfies the initial

conditions Jt(O) = i(t), J:(O) = ~Jt(O) = j;itcl.,=o = 1tj;cl.,=o = m-Y7(t). Moreover

Jt(I) = tt(gyoc(t)), ~J(I) = lr(PYlgYoc(t)). For t = 0 V'xPY = ~J(I)lt=o. We want
to estimate

For u = 1 we have to estimate J;(I), for u = 2

VV V'V ,
at as Jt(1) = as at Jt ((1) +R (Jt(1), c ) Jt(1))

and more general with ~ = V t, t; = V.,

V'~py = V'~-lV'"Jt(I) =
u-l

V'" V;-l Jt(1) + L V;-l-iR(Jt(l), c') V~-l Jt(I).
i=l

(4.5)

We derive from (4.5) that estimates for V'{ Jt(I), 0 ~ j :$ u - 2, and for V'"V'~-l Jt(I) deliver

an estimate for V'rPY. As we shall see below, the V: Jt are inhomogeneous Jacobi fields.

Their initial values are given by

1

V.,V{ Jt(O) = V{V"Jt(O) - L V{-iR(Jt(O), C') (V~-l Jt(O)) =
i=l

]

= V:'+l y - L V'~'-lR(f(t), Y) V:-1f(t).
i=l

13
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Therefore we have to solve the following problem. Derive estimates for the endpoint and

its derivative of a homogeneous (u = 1) or inhomogeneous (u > 1) Jacobi field, if the

initial values are· given. In what follows we assume, according to our construction, that

h,rn IYI ~ oN < rinj(N). The case u = 1 is very simple.

Proposition 4.5.

IV(PY)I ~ C [IVYI + IYI2(IVYI + 1)],

where C = C(bIRI,rinj(N), blf*I).
Proof: Let P be a parallel unit field along s -+ c(s, t). then

(J'(s), P)' = (J" (s), P).
1

Integration f ... ds gives
o

(4.9)

1 1

(J'(l), P) - (J'(O), p) =J(J"(8), P)ds = - J(R( J, c')c', p) (s )d8, (4.9)

o 0

from which we derive easily

1

IJ'(l)1 ~ 1J'(o)I+JbIRllc'12IJ(8)ld8,
o

since P was arbitrary. According to [2], p. 98,

IJ(.5)1 ~ IJ(O)1 cash ( MIYI .s) +IJ'(O) Isinh ( JI811YI .s)
~ Cl (1/(t)1 + IVtYI) =Poo ,

where we used IYI < rinj(N). (4.9) and (4.10) yield

1

IJ'(l)1 ~ IV'tYI+Cl Jb1R11Y12(lil +Iv'tYl)d8
o

~ C2 (IVtYI +IYI2 (I'VtYI + Ij(t)I)),
for t = 0

IJ;(I)lt=ol = l'Vx(PY)1 ~ ([IVYI + IYI2(IVYI +1)] lXI,

IV(PY)I ~ c[rVYI + IYI 2(IVYI + 1)].

For u = 2 we need an estimate for J' (s) and we need to sharpen 4.5.

Proposidon 4.6.
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ProoC:
8

(1'(s), p) I = (1" (s), p), integration Jgives

o
8

(J/(s),p) - (1'(O),P) = - J(R(J, C/)C' , P)(a)da
o

I}'(s)l ~ C [IVtYl + IYI2 (lVtYI + 1/1)] =P1,O.

):{

To clear up the general structure of the procedure we illustrate the case u = 2. We start as
1

above with (V8 Vt), P)' = (V'8 V' 8 Vt), P). Integration J... ds gives
o

1

IV',V'tl(1)1 ::::: IV',V'tJ(O)1 + J1V'.v,V'tllds :::::
o

1

::::: IV'N,J(O)I + IR(c', J(O))J(O)I +JIV',V',V'tJlds (4.14)

o
1

::::: IV'~YI + bIRI·IVI·liI2 +J1V'~V'tJlds.
o

Now, according to [11], p. 149,

where ~(X, Y) = (VsR)(X,c')Y + (VtR)(Y,c')c'
+2~(X,C/)V8Y + 2R(Y,c')V78 X.

The initial conditions are

Vt)(0) = VtI, V 8 Vt}(0) = \7tV8}(0) +R (C' , ) (0))J (0)

= \7;Y + R(Y, 1)/.

(4.15)

(4.16)

(4.17)

(4.18)

To complete the estimate (4.14) we need an estimate for !R(J, J) and VtJ. The estimate für
!R(J, J) is very easy,

IR(J, J)I ~ 2
b
lVRIIJI 21YI2 + 4 bIRIIJIIV'sJllYI ~

::::: Cl [(Iil + lV'tYlr . 1V12+ (111 + lV'tYI) (IV'tYI + 1V12(lV'tYI + 111)) .IVI]

= ~(Ifl, IYI, IVtY 1).
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We remark that Rn contains only derivatives of Y of O-th and 1st order, is of order::; 2 in

jVtYI and each tenn has IYl or !\1tY I as a factor.

Now we start to estimate \1 t J. For this we decompose (4.15), (4.17) into two problems:

the homogeneous equation with inhomogeneous initial conditions and the inhomogeneous

equation with zero initial conditions. The sum of the two solutions is the solution of (4.15),

(4.17).

We estimate the solution of the homogeneous equation with inhomogeneous initial conditions

as follows.

IV,J(.s)1 ::; l\1t J(O)1 cosh ( Ji8TIYI.s) + 1\18 V,J(O)1sinh ( Ji8TIYI . .s)

~ Cl [lVIII + Iv;yl + lY'I/n· (4.19)

The inhomogeneous equation with homogeneous initial conditions shall be decomposed into
the tangential and nonnal equation for (VtJ) T and (\1tJ)v. The tangential equation looks

((V,Jf,T)" = -(fJt(J,J),T),T= I~I'

which implies

! 8 lJ lJ'

I(V,Jr! ~JJIfJt(J, J)Ids"ds' ~JJRuds"ds' ~ C2 . Ru. (4.20)

o 0 0 0

Let TJ = Rn. Then according to [15], p. 269, [11], p. 150/151

(4.21)

where ~ is the solution of the equation

An easy calculation gives

sinh ( Ji8TIYI.s) J!
I(V,J)"I < Ji5f cash (Ji8TIYI..s) .T/ds- 1811YI

o

cosh ( M1Y j.s) J!
+ M sinh (Ji8TIYj .s) . TJds

1811YI o

::; Ca . Ra.

Addition of (4.19), (4.20) and (4.23) yields

IV,JI ~ Cl [IVtil + IV;yl +IYll/n +C2 . I4J +Ca . I4J =

= POl (111, l\1t/l, IYI, IV,YI, 1\1;yl)·
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We observe the following important properties of POl:

1. POl is linear in IV;YI.

2. POl is of second and lower order in IV,YI

3. POl is linear in IV,II and contains no products of

IV,/I with IVtYl, IV;YI·
Now we can continue (4.14) and obtain

1

IV.V,J(l)l:::; IV~YI + blRllYlljf +JCIRI' POl '1Y12 +Ro)dS:::;
o

:::; C4 [IV;YI + IYllif +PoJlYI 2 +Ho].

Analogous to the generalization of 4.5 to 4.6, we obtain the more general result

IV,VtJ(s)l:::; Cs [IV;YI + IYlljf +POl '1Y12 +Ho] =

= Pu (Iil, IVt/l, IYI, IVtYl, IV;YI)·
Pu has the same properties as POl and a further property.

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

4. Each tenn of Pllhas IYI or IV,YI or jv;yl as factor. (4.30)

The main step proving (U2) is the following

Proposition 4.7. Assume j ::; m - 1.

a. There exists an estimate

where Po; is a poLynomiaL with the foLlowing properties.

1 R 's l' . !n;+l I (4.32). Oj linear m v, y.

2. The proper derivatives can be arranged as

L Cioi1· ..ij jYjio IVtYlil .. ·lv{YI 1j

il+2i~+ +j.ij,:5j+l (4.33)

with Ci ij = Ci... ij (111, ... ,Iv{rhnj(N), bIR1 ,... ,blViRI).

3. Ci....ij is linear in IV!!I· (4.34)
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4. The proper derivatives of f can be arranged as

'"' 1';'1 k
oI ';'1 k

1 1 i+1';'1 ki-lL., Dkokl···ki_l f "Vtf ... "Vt f
k1 +2k1 + .. ·+(j-I)kj - 1 '5,j

with Dkok, ...ki_' = Dko ...ki_l CIRI,· .. , blViRI, Tinj(N»).

5. Monomials

(4.35)

(4.36)

containing proper derivatives 0/ 7and Y have total degree kI + 2k2 +... + (j - 1)ki-I +
II + 212 + ... + jlj ~ j.

b. There exists an estimate

(4.37)

(4.39)

where PI,j satisfies 1.-5. and the following condition.

6. Each term has at least IYI or some IV~yl as factor. (4.38)

Proof: For j = 0 this is (4.10) and(4.13). For j = 1 this is (4.24) and (4.29). Assume the

assertion for 0,1, ... ,j - 1 and consider V: l. According to [11],p. 152, (2.38),

V;V{l + R(V{J,c')c'

= -fR(J, V{-I l ) - VtfR(J, V:'-2 J ) _ ... - V{-lfR(J,J) =-fRj-1

with initial conditions

• J

V{J(O) = \7{7, \78 V{J(O) = V{V9J(0) - L v~'-iR(J(O)c') \7;-1 J(O) =
i=1

) . .
= \7;+ly - L \7{-iR (7, Y)V;-17.

i=I

(4.40)

We decompose onee again (4.35), (4.36) into the homogeneous equation with inhomogeneous

initial conditions and the inhomogeneous equation with zero initial conditioßS.

The estimate for the homogeneous equation with non zero initial conditions is very easy,

IV'{JI ~ !V'{J(O)Icosh ( v18iIYI' s) +Iv8 v{J(O) Isinh ( v18iIYI . .5)

~ CI [lvUI + IV{+IYI +jl+j,~$i_IIV{':fl'IV{'fl'IV{3YI]'
(4.41)

We decompose the inhomogeneous equation into the tangential and the normal equation.

Quite analogous to (4.20),

8 8'

I(V{J)' I ~ JJI(!1\(J), V{-IJ) 1+IVt !1\ (J, V{-2J) 1+" .+IV{-I!1\(J, J) I)ds"ds'.
o 0
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Therefore we have to estimate

~:91(J,~~J), i + k = j - 1.

This shall be done by considering the 4 classes of terms corresponding to the decomposition

(4.16).

a.I(~11~6R) (~1~J, ~13C')~14JI ~

~ !V1'V.RI·IV1'JI· (Iv.v13-1JI+~ IV13-1-iR(J,C/)V;-lJI) ·lv1·JI~

~ Pl,i1 . PO,h . (Pl,i>-, +. . L . IV;lRIIV;'JIIV;3c'llv;'JI) 'I~{'JI
11 +I~ +13 +14 =13-1

~ Pl,it . PO,h . (Pl,i3 - , +. . L. . PO,i,' PO,i, ·lv13C'I· PO.i.) I~{' JI,
11 +1~+13+14=13-1

~4.42)

where jl +j2 +j3 +j4 = j -1. Here POli, Pl,i are polynomials in b IRI, .. ') b l'Vi+1RI, \/1" .. ,
IV;+lfl, IYI. ... , IVjYllinear in IVjYI,IV;-lfl and satisfying the conditions 1.-5.• 1.-6.

This follows from 4.4 and the induction assumpUon.

Using

13-1
'V;3 C' = 'V8V;3-IJ + L~;3-1-iR(c', J)'V~-lJ

i=l

(4.43)

and our induction assumption, we see that IV;3 C' Ican be estimated by PI, i 3- 1+ lower order

terms.

In conclusion, (4.42) can be estimated by

" C' , . 'l'Vi1 yll'V1:l+1yIIVi3yll'Vi4+1yl+o Jl)~J3J4 t t t t

i1 +i~+j3+j4 =j-l

L Cioi1··.iJ,IYlio IVt Yl i l •• ·IV{Yllj = Ra,jl,12,i3,i.·

i l +2i~+···+j·ir5j

Writing down only the highest order terms of the t-derivatives of Y and 1, we have

1~{IV6RIIV{~.Jllv{3C'llv{4JI~
~ c· (Iv{1YI+ Iv11-1/IIY12 + ...) (Iv1H1yl + 1\7{~fl +.. -) .

.(Iv13yl+IV13-'il· 1Y1 2 +...) (Iv1H1 Yl +IV1'fi + .. -).
(4.44)
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Next we have to estimate

b.1 (V{lVtR) (V{2 J, V~'3C/) V{4 C'1 ~

:s IV{i+l RIIV{2Jllv{3c'llv{4 c'l
)3-1

< R 't'"7 't'"7iJ-l J + '"" r1iJ-l-iR( , J)'t'"7 i-1J_ PO,j1+1' 0,31' V" V t .L.-J V t C , V t .
i=l)4-1

. v"V14-1J + L V {4-1-iR(c',J)V;-lJ
i=l

< '"" C' ... ·IVil+1yIIVh+1YIIViJyIIVi4ylL )1)2)J)4 t t t t
il+h+iJ+h=j-1

+ L Cioil ...ijIYlioIVtYlil .. ·IV{Yllj = Rb,il,h,i3,i4
i1+2i2+ .. ·+j.ij~i

Analogous to (4.44)

Rb,jl,i2,iJ,j4' = C.(IV{1 Vi + IV{I-I!1 + .. -) (IV:'H1 Yl + IV{2il +.. -)
.(Iv13YI+ IV:'3-1illYI2 +.. -) (IV{4yl+ IV{4-1-i illYl2 +...),

. (4.45)
if we write down ooly the lightest order t-derivatives of Y and f.

c.1 (V{1 R) (V{2 J, V{3 C
/
) V{4V 3 V{~ JI

~ PO,i . PO,h ·IV{3C
/ I·IV{4V'"V{b I

~ L CiÜ2j3h 'IV~'lyIIV'{2+1yIIV'!3yIIV{4+lyl
jl+12+j3+j4=j-1

+ L Cioi, ...ijJYhY'tYli, .. ·1Y'{Yl
ij

= RC,jl,j,,j,,i,,

i l +2i2+···+j·ij~i

where Rc,iIJ12,iJ,i4 satisfies an equation analogous to (4.44), (4.45).

d. Similarly,

I(V{1 R) (V{2 J, V'{3 Cl) (V'{4\1"J) I~ Rd,it ,h,iJ,i4

with the same structure as the other R!s.

This proves, summing up all cases a.-d.,

I(Y'1 J) TI ~ C2· C+t:=i-
1

Ci,j,j,j,1Y'1'+' yllY'12

+J yllY'13yllY'1'yl+
+ L Cioi1···ij ·IYl io lVtYli l

•• ·lv{llj = C2 . Rj-1
i1+2i2+"'+iij~i (4.46)

= C3(l v11
+IY I + 1\1{I!IIYI~1 + ) (IV'{H1yl+ IV':'2!IIYI~2 +.. -) .

.(IV{3 YI+ IV{3-1!IIYI~3 + ) (Iv14yl + IV'14-1i11YI~4 +...),
ei = 0 or 2.
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Similarly,

(4.47)

(4.48)

(4.41), (4.46) and (4.47) imply

IV{JI ~ CI [IV{+ly!+ Ivfrl + il+j,t::5i_IIV{lfIIV{2fIIV{3YI]
+(C2 + C4)Rj-l = POj.

Poj has the desired properties 1.-5..

To prove 4.7. b., we first remark, that each term of Ra, Rb, Re, Rd has at least IYI or some

I"[<YI as factor. This follows from the fact that each term of a.-d. contains V'~c' whose
estimate produce by induction assumption on V'$V'i-l J by means of Pl,i-la factor of the

desired kind. Consequently, each tenn of Rj has at least IYI or some l"fYI as factor.

Now
$

Iv3 V{JI ~ IV3 VtJ(O) I+JCIRIIV{JI· IYI2 + Ri-I) ds ~
o

)

~ 1V'1+1yl+ L: 1V'1-iR(c',J(0))V':-lJ(0)1 + Cl (PO,jIYI
2 + Rj-l) ~

i=l

~ C2 [IV{+IYI + il+j,t::5i-1 IV{lyIIV{2fIIV{3fl + POiIY1
2
+Ri-I] = PI,i'

Hence PI,] has the desired properties.

We complete the proof of 4.3 by

Proposition 4.4. Assume J-L ::; m ~ k. Then

lV'r PY] ::; P/J' (4.49)

where P/J (b IRl, ... ,blV'mRI, I/(t) It=ol, ... , lV'r-lf(t) It= I, lYI, ... , IV'~YI) is a polyno

mial with the properties 1.-6. for t = 0, i.e. it is linear in fV'r Y lt=ol = !"kPYI, linear in

IVf-
l
/(1) It=o I ete.

Proof: For p. = 0 we have lpYI = IYI = Po(IYI). For p. = 1 this is (4.11), (4.12). Assume
the assertion for 1, 2, ... ,J-L - 1 and consider

V'~PY = V'r-
l
V'$J(I)lt=o'

u-l

V'f P = "r-lV'$J(l) = V'$V'r- l +L: Vr-l - iR(J(l), c' (1)) V';-l J(l),
i=l

for t = 0

IVxPYI ~ PI,I'-llt=o +. . L: (lVi'RI·IV{2JI·IV{3PYI·lv{' JI) 1=0 ~
)1 +n+)a).=/J-2

~ P1,p-llt=0 + L: Po, illt=o . PO,j2It=0 . Pia . pO,]{ It=o =Pw
il+h+iai.=1J-2

(4.50)
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According to 4.7, the right hand side of (4.50) is a polynomial of tbe desired kind. x:x

Now (u~) follows immediately from the continuity of polynomials and from the fact that

polynomials without constant tenn have arbitrary small absolute values. x:x

Our next task is to prove (U;). Let fE coo,m(M,N),g = gY1 = expY}, YI E ~n(f*TN),

b,m\Y11 < fJN < Tinj(N)/2,92 = exp Y2, Y2 E ~f!(giTN), b,mIY2! < ON < rinj(N)/2. Then

there exists a uniquely detennined Z E f!(f*TN) such that exp Z = exp Y2. (U~) would be

proved if we could establish

(4.51)

where Qm is a polynomial without constant term.

As in the case of (U~), we reduce the problem to the estimate of VxZ.

Let x E M,X E ~n(TM), {c(f)}-l<t<l a curve in M with c(O) = X,i(O) = Xx and set

f(t) = f ·c(t). Then f(t) is a curve in "N-with 1(0) = f(x). According to our assumption f E

coo,m(M, N), all f;;1t7(t) ='Vrt, 0 ~ fL ~ m - 1, are bounded by a constant independent

of x E M. Consider moreover the curves 91(t) = exp Y1 0 c(t) = exp Y1!(t)' 92(t) =
exp Y2 oc(t) = eXPgl(') Y2,92(t). Finally let Z(t) = exP7t,) 92(t), Z = Z(O). Then it suffices

to estimate VxZ = 'Vf Z(t)lt=o.

Let c(s, t) := eXp](t) (s . exP7(~) 92{t)). Then s --+ J(s) =J,{s) = -9tc{s, t) is a Jacobi

field along the geodesie s --+ c{s, t) from 7{t) to 92{t) with Jt{O) = j;c{O, t) = f{t) and

J,{l) = l;c{l, t) = 92(t). We have ~ exP7(~)92(t) = ~Z(t) = ~isc(O, t) = l;l;c(O, t) =

WJ1(0) - J;(O), fort = OV'xZ = J'(O)II=o. Consider Cr'lZ(t) = *GIZ(t)) = *J;(O) =

fu~Jt(O) +R(J,(O), d)J,(O). The knowledge of J,(O), fu~Jt(O) implies the knowledge of

(~)2Z(t). Therefore we have to study the inhomogeneous Jacobi field ttJ and to eonelude

from ~J(O); mJ(l) to the derivative ~(-m-J(O)), Le. to conelude from the boundary values

of an inhomogeneous Jaeobi field to the first derivative at the left endpoint. Write again

~ = V t ,1; = V.,. Then

Vr Z(t) = 'V;-I'V.,J(O) =
u-l

= V ...V;-1J(O) + LV~-1-iR(J(O),C')V:-1J(O).

i=1

(4.52)

According to our construction, v1 J(O) = V{[. Therefore we have to study the inhomoge

neous Jaeobi field 'V;-1 J and to conelude from the boundary values Vr-1(0), Vr-1J(1) to

the first derivative 'V.,V~-l J(O). Unfortunately V~-IJ(1) is not explicitly given. We ean

only establish estimates for it.

~t d( s, t) = exp (s . Y1,!(I)) , Jl(s) = ftd( s, t). Then d(O, t) = f(t), d(l, t) = 91 (t), Jl(0) =

/, Jl(l) = 9b \1!Jl(O) = VtYi. Let l(s, t) = exp (s, Y2,9:l('») , J;(s) = -9;l(s, t). Then

l(O,t) = 91(t) = d(l,t),l(l,t) = 92(t),Jl(O) = 91 = J,I(l), 'V.,Jl{O) = \!tY2.

Lemma 4.9.

(4.53)
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Proof. J(l) = -Nte(l, t) = fl(l, t) = J2(1) = 92' But IJ21 ~ Cl ~IJ2(0)1 + IJ2,(O)!] =
Cl [IJ1 (1)1 + IJ2I (O) I] ~ C1lC2 (1 / 1+ lV7tY11) + IVtY21] ~ C [li(t)1 + !V tY11 + IVtY21].
Corollary 4.10.

(4.54)

(with another C in 4.9).

Proof. According to [14], p.29, (2.28), für ON < tr/2 JXsin(JX'ldl) 'IJ(s)j 5

sin (JX ·1c'1· s) . IJ(l)1 + sin (JX ·le'l· (1 - s)) . IJ(o)l· Using 4.9, IJ(O)I = III and

dividing by sin JX . le'l yields the assertion. XX

Lemma 4.11. Let s -+ e(s, t) be a family of geodesics, J(s) the corresponding Jacobi jield

and tro" the parallel translationfrom c(O, t) to c(s, t) along s -+ c(s, t). Then
1

l1rod(O) - J(1)1 :::; blRI ·Jslc'1
2
1Jlds + 1J'(1)1· (4.55)

o

Proof.
(J(s) -tro"J(O) - J'(s))' = s· R(J,c')e',

"
IJ(s) - 1ro.J(O) - sJ'(s)1 ::; b lRI ·Js ·1c'12

·lJlds,
o

s

lJ(s) - 1ro.J(O)1 :::; b1R1 · Js ·lc'1
2 IJ lds + s ·IJ'(s)l,

o

(4.56)

i.e. for s = 1 the assertion.

Corollary 4.12. Let trg1 ür 7r~1 the parallel translation along d

or l, respectively. Then

I d":" • I I d 1 1 ItrOll - 91 = trOl J (0) - J (1) ::;

~ C1 1Yl 12 [1/ 1+ lV7t Yi I] + pl,o,

17r(lt91 - 921 = 111"01 J2(O) - J2(1) I~
~ C21Y2!2 [1/ 1+ l\7tYl 1+ lV7tY21] + P;,o,

where P1,O is the estimating polynomial for V7"J, i.e.

plo = C3 [IVtY11 + IYl I
2

(JV7 tY11+ lil)] ,P;o =

C4 [IV tY21 + IY2]2(I V7 tY2 1 + lV7tYiI + 1/1)].
Proposition 4.13.

(4.57)

(4.58)

IJ'(O)I ~ C[IY11'IY21 + IYiI
2(1/1 + IVtY11)+

+ lV7 t Y1 ] + jY212(Iil + ]V7tYt! + lV7tl-Zl) + IVtY2 1+ (4.59)

+ (IY11+ IY21)2[(l j l+ !V7tY11+ lV7tY2 1)].
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(4.60)

Proof. Für every parallel unit field P

(J (s) +(1 - s)J' (s), P)' = (1 - s) (J" , p) = - (1 - s) (R(J, c') c' , p) ,
1

(J, P) (1) - (J, P) (0) - (J' , p) (0) = - J(1 - s) (R (J, c') c' , p) (s)ds.
o

We übtain, since P was arbitrary and since

17r01 i - 921 = 1I - 1r10921
1

IJ'(O)I ~ 111'011 - 921 +JblRllc'I2 ·!Jlds ~
o

:::; 11r01i - 921 + Cl (lY) 1+ IYil)2 . (111 + IVtY) 1+ IVtYiI),

17r0lf - 921 :::; I curvature tenn I+ !7r81 7rglf - 7ro191 + 7r0191 - 921 :::;
:::; Icurvature tenn 1+ l1rgll - 911 + I1r0191 - 921·

According to [2], p. 92193 and the comparsion theorem for the surface of geodesic triangles,

we find

Icurvature tennI ::; C2 . IYl !. IY21·ljl.
Using the estimates (4.57), (4.58) and summing up yields the assertion.

Corollary 4.14.

(4.61)

where Qi ,0 is a polynomiallinear in 11, IV t Yll, IVt Y21, without products of IVt Yll andl Vt l'Z1
and such that each term has IY11 or }{Ior IV tY l ! or IV tYi Ias factor. tl

To indicate the general procedure, we still want to estimate V~Z (t) = V t J' (0) = V ~V t J (0)+
R( J(O), c')J(O), viZ(t)I,=o = V}Z. For this we still need an estimate for 1'(s). From the

proof of 4.11 immediately follows

1J'(s)1 ~ [lI'o.J(O) - J(s)1 +Is bIRI'lc'121JIdS] /s.

Repeating the procedure (4.60), we obtain

(4.62)

(4.63)

As we shall see a little bit later, an estimate for VtJ enters essentially into the estimate of

V $ V tJ. More generally r, an estimate of V ~V{ J enters into the estimate of viJ. Therefore
we start with an estimate for VtJ. Tbe defining equation is

V;VtJ +R(V,J, c')c' = -!R(J, J),

V,J(O) = Vtf, VtJ(l) = V t92.
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We decompose this problem into the homogeneous equation with inhomogeneous boundary

conditions and into the inhomogeneous equation with homogeneous boundary conditions and

start with the homogeneous equation

V';V'tJ +R(V'tJ, c')c' = 0,

V'tJ(O) = \1tf, V't J (l) = V'i92'

Then lV'tJj ~ Cl [1\1t/l + lV't92I] . Therefore we need an estimate for V't92 = V'tJ2(1).

lV't J2 1~ C2[IV'tJ2(0)1 + 1\16 V'tJ2 (0)IL

i.e. we have to estimate V'tJ2(O) and V'6 V'tJ 2(0). Since V'tJ2(O) = V'tJI(l) we have to
estimate V'tJI(l). According to (4.24),

IVtJII ~ Cl [IVtII + IV~YiI +IYilljl2 + R~] =pJI, (4.64)

i.e.

We have

1\18 \1 t J 2(0) 1 ~ 1V';Y21 + IR(c',J2(O))J2(0)1 ~

~ C2[IV~YI +IYzIIJI(1)n ~ C3 [IV~Y21 +IYzI (Ijl +IVtl'i i)2],

!Vd(21
1~ C3 [PJI + IV~YzI +IYzI(ljl + IVtYir + R~] = P~l'

hence for the homogeneous equation belonging to V'tJ

lV'tJ! ::; C4 [1V'tfl + perl]'

Consider now the inhomogeneous equation with homogeneous boundary conditions,

V';(V'tJ) + R(VtJ, c')c' = -fR(J, J),

V'tJ(O) = 0 = V'tJ(l).

For the tangential equation

we obtain immediately with

(4.65)

(4.66)

(4.67)

(4.68)

G( )=_{S(l-U), O~s~d
s, (J (1 _ S )0-, cl ~ S ~ 1

1

(('vtJ)t, T) = JG( s, (7) ( -fJ{(J, J)', T) da, T = c'/ le' I· (4.69)

o
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Let us denote for a moment (\1tJ)1J =J. Then we have to study

Remember 6 :s; K :s; ß,6 < 0, p = ~t6 < 0, e =~ > O. Consider additionally the
equation

A" + plc'1 2
A = _iRv

, A(O) = A(I) = O.

Then, according to [15], p. 267, (28),1 ( ulc'12
J - R(J, c')c', p) I~ elc'1 2

. IJI =AIJI, which

imPlies

I(J - A, P)" +pi c' 1
2
(J - A, P) I :s; eie' 1

2
. IJ I= AI J I·

Consider the equation

(4.70)

set (J - A,P) - b = {},I( = Mldl,sK = sinh(K· s). A very easy calculation gives

s

({J/SK)' = sj,/. J({ {}" .SK - {}s~ )ds =

o
s

= sIr?J(O" +l'{})sKds :::; 0
o

since {}"+p{} ~ O. We conc1ude from s;l{(J - A, P) - b}(O) = 0, (s;l{(J - A, P) _ b})' ~
o that (J - A, P) - b ~ 0 for arbitrary P and all s, i.e.

IJ - AI :s; b, III :s; b+ lAI·

(4.70), (4.71) imply

b" +pi c'1
2
b :s; eIc'I 2

b+eie'121Al,
b" + (/-l - e) Ic' [2 b ::; eIc'I 21AI.

Consider

an + (/-l - e) Ic'1 2
a = eie' 121AI.

a(O) = a(I) = O.

Quite analogous, b - a ~ 0, b :s; a,

III ::; lAI + a.

Therefore we have to study and to estimate A and a. The equation

(A, P)" + /-llc']2(A, P) = _(iR lJ
, P)

(A, P)(O) = (A, PHI) = 0
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has Green's function

{

sinh K'$ sinh K 1-(7'

( )
O~S~O'

G(s, C') = G s, C', K = - sinh K.(7' '~l~ K 1-$
.sm 0' ~ S ~ 1

1

(A, P) = JG( s, <7, K)(~V, ~)d<7,
o
lAI ~ Cl . J4J.

Quite analogous with w = Jlu - elle'l
1

a = JG(s, <7,w)clc'1 2IA ld<7,
o

a ~ C2(lYl l+ IY2l)2IAI ~ C3(IY1 1 + IY21)2 J4J , (4.73)

1(V7t J)VI ~ C4 [J4J + (IYII + IY21)2Ro],

IVtJI ~ C[IV7til + P~l + i?{J + (IYll + IY21)2J4J] = QOl.

Remark. We don't use the notation POl since we consider J, V7 t J, . .. as defined by initial

value problems.

Now we are able to estimate V7 $ V7 tJ(O). J:t

(VtJ + (1- s)V7$VtJ,P)' = (1- s)(V7;V7tJ,P) =

= -(l-s)(R(VtJ,CI)C' + 'Jt(J,J),p),
I

IV.vt1(0)1 ~ !11"0,1Vtf - Vt Y21 +JblR1(lYil + 11'21)2. QOlds+

o
1

+JRads ~
o

:::; !7rOl v/I - V7 t92 I+ Cl [J4J + (IYll + IY2l)2 QOI ]'

It remains to estimate I?rOl Vtl - V t921.
Lemma 4.14. Let J be a Jacobijield along s ---+ c(s, t), J defined by an initial value problem.

Then

Proof.

(V7tJ( s) - 7r0", V7tJ(O) - sV $ V7tJ(S))' = S(R(V7 tJ, c') c' + 'Jt(J, J)),

"'
IVtl(s) -lI"o.Vtl(O) - sV;9tl(s)1 ~ JsCIRIIVtlllc'I2 + 110 )dS ~

o

~ Cl (i?{J + POl IYI 2
) ,

IV t J(l) - 7r0l VtJ(O)1 ~ C2 [Ro+Pol IYI2 + Pu].

J:t
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We apply this to Jl and obtain

1

d ~ • I I 1 1 I'Trol\1tf-\1 t91 = 1r01\1tJ (O)-\1tJ (1) ~

~ Ca [m + pJl IYi1
2+ plI]'

t

l ":'" ..:..1 t l 2 2 I7T'OI "t91 - "t92 = 1rOI"tl (0) - "tl (1) ~

~ C4 [m + P~IIY212 + PlI]'
It follows

I"sVtl(O)1 ~ es [Iti I· IY21· t"tlt +m+IYi 12pJI +plI+
[+R5 + IY21 2p61 +plI +Ro +(IYll + IY21)2Q01 ] = Q~l'

More generally,

We have to analyze Ql1.

(4.74)

(4.75)

PJl' PlI
P~l' plI
m
m

are polynomials in

are polynomials in

is polynomials in

is polynomials in

[I ,"til, IYi I, l"tY11, 1";Y1 I,
191 , "t91 ,IY2 1, l"t1'2l, 1";Y2 1,

1I ,IYl], IV tY1L
1911, IY2 1, l\7tY2 1·

Rn is according to (4.54), (4.62) already a polynomial in 7 ,IY1I,IY211\1tYll, l\7 tY21. Replac

ing 1911 by pJo, l\7t91 I by pJl' we obtain Ql1 = Ql1 (I ,I"t/l, ll'il, l"tl'il, 1\7;l'iI),i =
1,2, as a polynomial with following properties.

1. It is linear in 1\7;Y1 1, 1\7;Y21 and contains no product 1\7;Yll . 1\7;1'21

(since this holds for pJl' plI ,P~l' pl1) .

2. It is of second and lower order in l"tY11, l"tY21

(4.76)

3. It is linear in 1\1tfl and contains no product of

4.Each tenn has Il'il or l\7tYiI or I\7FYiI as factor.

Therefore we obtain
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Proposition 4.15.

1V'~Z(t)j ~ IV'"V'tJ(O)1 + IR( J(O), c')J(O) I ~

b 1'1
2

~ Ql1 + IRI(IYII + IY21) 7 .

Corollary 4.16.

2 - 2IV'xZI ~ Ql1lt=o + C(IYII + IY21)Iflt=0! = Q2 (4.80)

where Q2 (1/It=ol, lV't/It=01, Il'il, IVxl'il) ,i = 1,2, is a polynomial satisfying (4.73) 

~~ 0

Now we are ready to prove

Proposition 4.17. Assume Jl ~ m.

There exists a polynomial QJJ = QJJ (Iij, ... ,Ivr-Iil, IYII,·· ., lV'rYt I, 1l'21,· .. , IVfY21)
such that

+ " C!2 . . , . . I/lkoIYIliOjY2IiolV'tYIlillV'tYIlil ...L.J "0 10)0 11' "ljA-l]jA-l

i1 +11 +2(i:z+h)+"'+(JJ-I)(i"-1 +i,,-t}=~

.. ·1~i-lY) li.-I
l~i-lY:!r-1+

"123 1"':"11'0 io jo+ L.J Cioiokoitil1'1···ijA-:zijA-').kjA-:zijA-tijA-1 f IYiI IY21 .
i l +:Zi'). + .•. +(jA-l)i JA-I

+h +').j:z+···+(jA-1)j,,_1 +
+,1;1 +').,1;'). +'" +(jA-').),I;jA-'). :SjA-l

(4.81)
where each term has IY1 1 or IY21 or some IV'iYll or lViY2 1 as factor anti the coefficients C:::
depend an b IR!, . .. , b lV'uRj and rinj(N).

Proof. For Jl = 0 this is just IZ(t)1 ~ IYII + IY21, for Jl = 1 or 2 this is 4.14 or 4.15,
respectively. Assume the assertion for 1,2, ... ,J-L - 1 and consider VrZ(t). Now

VfZ(t) = Vr-IV"Jt(O) =
~-1

= V"Vr-1Jt(O) +L V'r-1
-

i R(J(O), c')V'~-l J(O),
i=1

IVfZ(t)1 ~ IV3Vr-IJ(0)j + L IVfI RIIV{:zillV'!3/1' Qj4'

j1 +i:z+i3+14=~-2
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Therefore we have to ~nd estimates for V" V7r~1J(O), and \1{1 R, jl ~ I' - 2. According to
4.4, the estirnate of V~lR reduces to that of V~y,j ~ Ji - 3. Therefore we have to estimate

V7{J and \1" \1r-1
J(O).

Proposition 4.18. Assume j ~ Ji - 1. Then

a·IV{JI ~ QOj, (4.83)

b.IV"VtJI ~ QIj. (4.84)

Here QOj = C l\\1{+IYII + 1\1~'+IY21 + l\1fflJ + L: Cko---l)' {}, where L: Cko---lj {} consists
0/ terms

lil
ko

Iydoly:loIV1fr'1'\7IYlli'IVIY2ll, ....

·IV{-li(;-'IV{-Il1 r;-'IV{-IY2ll;_'IV{Y2li; IV{Y2ll'
o/total degree i l +kl +f1 +2(i2 + k2 + f 2)+··· +(j -: l)(ij-1 + kj-I + Ij_I) +j(ij + Lj) ~

j + 1, where terms containing proper derivatives 0/7 have total degree ~ j. QI,j has the

structure (4.81) replacing p. by j + 1.

Proof. For j = 0 or 1 this is .(4.54~, (4.62), (4.73), (4.75). Assume the assertion now for

1,2, ... ,j - 1 and consider \1: J. V7: J satisfies the boundary value problem

'V;\1{J + R(V{J, c')c' = -9\(J, V71- I J) - V7 t9\(J, \11-2J) - ... 

-v1- I 9\(J, J) =-Dlj_l,

j j~ j j~
VtJ(O) = Vtf, \1t J(l) = '\7t92'

We decompose this problem onee again into a homogeneous equation with inhomogeneous
boundary eonditions and an inhomogeneous equation with homogeneous boundary conditions.

For the first equation we have the estimate

(4.85)

The second equation we decompose into a tangential and normal equation. For the tangential

equation

((V{Jf,T)" = -(!1{Tj _ b T)
we obtain quite analogous to (4.69)

(4.86)

For the normal equation we have to eonsider

All + I '1 2A - MVJl C - -:.r\j_l)

A(O) = A(l) = 0

and

a+ (Jl - €) Ic'l2a = c; 1c' 1
2
A

a(O) = a(l) = O.
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Then
1

(A,P) = JG(s,lT,K)(-!:Rj_l,P)d17,
o
lAI ~ 03 . Rj-l, (4.87)

a ~ C4(IYll + IY21)21AI ~ C5 (IY1I+ 1Y21)2Rj-l,

I(V'{J) vI ~ C6 (Rj - 1 +(IYlI + IY2 1)2Rj_1) ,

summing up (4.85) - (4.87)

IV'~·JI ~ C[1V'{jl + IV{g21 + Rj-l + (IY11 + IY21)2Rj-l]. (4.88)

Consider

(V{J(s) + (1- s)V.V{J(s),p)' = (1- s) (V;VP(s), p) =

= - (1 - s) (R ( V'{,c') c' + ~ j -1 , P) ,

IV'..V'{ J(O) I ~ I?rOIV{f - V'{Y21 +Cl [IV'{ JI(IY11 + IY21)2 +Rj-l] ~ (4.89)

~ I?rOlV'{i - V'{g21 +C2[{ 1V'{jl +Rj-l + 1V'{921 + (IY11 + IY21)2Rj-l}'

[.( IYll + IY21)2 +Rj-l] .

Therefore we have to estimateI71"01V'ff - V'{Y21, 1V'{g21 and to find the right expression for

Rj-l in IYll,IY21, IfllV'tYiI, lV'tY21, lV'til,···. Quite analogous to (4.55), (4.57), (4.58),
(4.60) and (4.14) we have,

I1t"OlV'{j - V't92 I~ C3[IYll'IY211V'{j! + 1V'{JIIIYlI2+

+ [IV' s V'{J11 + 1V'~·J21IY212 + RJ-l + IV'..V~·J21] ~ (4.90)

~ C3 [IYlIIY21Itl +pJjlYil2+ R}_1 + plj + Po2j lY21
2+RJ-l + Plj]'

Here

We derive from 4.7 and its iteration as above that

31



+

+

Cl,i, ...ijlir'lydoIV,Yili,.. ·lv!Y1I
ij

+
il +~i~ +---+j-ij",,)-+I

C;'i, ...di,!"' IYd' IVt Y2l
i
• .. ·1 V!Y21ij+

il +~i~+---+jijCllj+1

+ L: cl;i,l, ...ijlj lir' IYd' 1Y2I" IVtyd'lv tY21
l
, ... Iv!Y1l

ij
IV,Y2Ilj+

i1+it+...+j(ij+lj)=j+I
+ L: cl;:'l, ...kj_,ijlj lil

k
' IYd' 1Y2I" IVtfr !Vtyd'lvtY2I

l
, ....

i 1+~i~ + ---+jd+
+ll+~l~+---+

+.Ir1 +2.Ir~ +---+(j-l).Irj_l:Sj

..... IV!-Ijlkj-, IV!-Iyll ij_. IV!-IY2Ilj_, ·1V!Y1nv!Y2llj.

I
. 2j -2 -2 -2

Quite analogous \7"V:J ::; PIj' where PIj has the same stru~ture as .pOj and satisfies the

additional condition that each term has IYII or IY2 1 or some 1V~YI I, I\l ~Y2 1 as factor.

Considering

RJ-I = RJ-I (1911,·· .l l\7j-I9I I, IY2 1,· .. ,1\l{Y21) ,
IV~gII = 1\l~JI(l)1 ::; pJil

we obtain

RJ-I ::; RJ-I (PJo, ... ,pJ,j-I, IY2 1,· .. , IV{Y2 1) =

= R~_I (lii,·· ., l\l{-I/I, I}) I,· .. ,Iv!yII, IY2 !, . .. , 1V1!Yi I),

where, according 10 (4.42), (4.43),... R~_I is a sum of monomials of total degree j + 1 and
no monomial contains a (j + 1)-th derivative. Moreover, each tenn has IYII or IYi I or same

1V'{yII or 1\l{Y21 as factor. Into (4.88) enters Rj_I,

Now we apply our induction assumption

which implies

Rj-I ::; Rj-I (1 / 1, ... ,1V1!-Iil, Qo, ... ,Qj) =

= Rj-I (1/1,· .. ,IV!-I/I, IYd,·· ., 1\l{yII, IY2I,·· ., IV!y2 1).
Inserting now these expressions into (4.88), (4.89), we obtain

Iv!JI ::; ([IV!fl +P~j +Rj-I +(IY11 + jY21)2Rj-I]

= QOj = QOj (Iij, ... ,IVfrl, IYII,···, 1\l{+Il') I, IY2I,···, IV{+I Y2 1)
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and

1V'"V'fJ(O)! ~ C[IYI IIY2 11 V7{tl + pJj ·IY112 + R}_l + plj + P~jIY212+
-2 -2- 2-,

+Rj_l + Pli + POj(IYl 1+ IY2 1) + Ri-l] = Qlj·

It is now very easy to see that

(4.91)

(4.92)

Inspeeting now the single tenns of QO,j and QI,j, we see immediately that QO,j and QI,j,
have the asserted prperties which finishes the proof of 4.18. n

We eontinue with the proof of 4.17.

According to (4.82), (4.91),

IV'~Z(t)1 ~ Q~,P-I + L Po,it ·1V7f4!11V7:3!1· Qjt = Q,,(t). (4.93)
it +i'J+i3+it =,,-2

We seperate from (4.93) the highest order terms and obtain exactly the tenn of (4.81) standing

before the first summation sign. The structure of the remaining terms of Q~i and the sum in

(4.93) is exactly that of the sums in (4.81). With Q" = Q,,(t)lt=o follows the assertion

(4.94)

This finishes the proof of 4.2.

~ defines a metrizable unifonn structure since nv = ß = diagonal and

{Vl.} is a countable basis. Let b,mO(M,N) be the metric uniform COffi
v O<~<5N

pietion ~f coo,m(M, N), 1 E b,mO(M, N), 0 < c < aN, b,rnU~(/) =

{9 E b,mO(M,N)19 = 9Y = exp Y, Y E b,mO(I*TN), b,mlYj < c}. Then {U~(f)}O<~<5N

is a neighborhood basis for 1 in the metrie topology of b,rn O( M, N).

Theorem 4.19. Assume (Mn ,9), (Nn
l

, h) are open, complete, oj bounded geometry up 10

order k ~ 1. Let m ~ k. Then each component oj b,mO(M, N) ;s a C k- m+1 _ Banach

manifold.

Proof. Let 1 E b,mO(M, N) and set Tfb,mO(M, N) := O(I*TN).

Then Y -+ 9Y = exp Y is for sufficiently small 8,0 < 8 ~ 8 < rinj(N), a homeomorphism

between B6(O) C b,mO(j*TN) and h,m U6(/), i.e. achart This follows immediately from

the definition of the neighborhood base above for f. To study the properties of the transiton

functions, we have to study the properties of left multiplication Wexp;l exp f' This is settled

by the w-Iemma which follows from the local euclidean version of the w-Iemma Let
U C ryti be an open, bounded subset, h E COO

,m+" (rytn , rytj). For f E b,mO (U, !Rn) -+

b,mo(U, ~j),wh(f) := ho /, is an element of b,mo(u, ~i). This follows from the chain
and Leibniz rule and h E coo,m+". l:l

Lemma 4.20. The map Wh : b,mo(U, ~n) -+ b,mO(U, ~j),wh(f) := h . /, ;s a C"-map.
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Proof. d(Wh) = wdh, similar for higher derivatives. tl

Now we apply this to our situation, (exp-l expf)(Y)(x) = exp~l) (expf(x)Yf(:z;)). But

exp;(~)eXPf(:z;) has according to 2.2 bounded differentials up to order k, i.e. the O-th, ... , k-th

covariant derivative of d(exp~~) ~XPf(X)) is bounded. If we now apply the local w-lemma to

a uniformly locally finite atlas of normal charts, we conclude Wexp;l expJ is of class Cl+k+m.
Finally we must show that each component is modelIed on the same Banach space (or, what is
the same, on equivalent Banach spaces). Using the exponential map, we see that b,rnn(M, N)
is locally contractible, therefore locally arcwise connected and components coincide with are

components.

We have to show for f' E comp(f)

b,mn(rTN,rVh) ~ b,mn(!'TN,rVh) (4.95)

as equivalent Banach spaces and start with I' = exp Y, Y E b,rnn(/*TN), b,rn IYI <
Tinj(N). We want to apply 2.11. But f*V h and (exp Y)*V h live in different bundles. Let

(E, V E ), (F, V F ) be Riemannian vector bundles over M with metric connections V E , V F

and let rjJ : E -+ F be a bundle equivalence over idM . Then rjJ -1 V Fisweil defined by
(rjJ-1VF)Z := rjJ-l (VFrjJZ). To apply 2.11, we have to show b,rn-1IV'E - </>-IV'F I < 00.

If </> is bounded up to order m it is sufficient to show

b, m - IltP .V E _ tP 0 (r1vF}1 < 00. (4.96)

We apply this to our case E = f*TN, F = (exp Y)*TN. Let (Zf(x), X) E (f*TN)x' Tben

4> = exp* shall be defined by

exp* (Zf(x),x) := (exp* Zf(x),X) E ((expY)*TN)x'

where exp* (.) = dexpg(:z;) [YJ(:I:)(·). According to 2.2 and b,rn [Y[ < rinj(N), this is a bundle

isomorphism bounded up to order k. As weIl known, exp* can be expressed very conveniently

by Jacobi fields. Let J be the Jacobi field along expf (x) (s . Yf (x)) ,0 ~ s ~ 1, with

J(O) = 0, J'(O) = Z. Then exp* Z = J(I).

Let

fJ = f*V h
- exp;l (exp Y)*V h

- V - V".

Then fJ is al-form with values in End(j*TN). fJ can be estimated by estimating fJx(Z). We

estimate exp* (7]x(Z)). Consider x E M, X E b,rnn(T, M), Z E b,rn n(f*TN), {c(t)} -1<'<1
a smooth curve in M with c(O) = X, ~(O) = X x ,7 = j 0 c and the 2-parameter family of

geodesics

c(s, t, r) = exp (s(Y + rZ))

in N. Then c(O,t,r) = I(t), J, = fj,JT = *,J,(O) = /,J;(O) = V',(Y +rZ),JT(O) =
0, J~(O) = Z, V,(exp* Z) = V,JT (1). Inspecting the initial values, we see that JT does

not depend on i and we write JT =J. Consider furthennore the Jacobi field .h,.h (0) =
0, J1 (0) = V',Z. Tben

14>(V'fZ) - 4>(4>- I V'[4>Z) I = lexp* fJJt(Z)1 =

= Ih(l) - \7,J(I)[ = IV,J(1) - h(l)l·
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Therefore we have to estimate

According to [11], p. 148,

Cr;JtJ)" +R(VtJ, c')c' = -v:t(Jtl J) =-v:to,t,

(4.97)

where
v:t(Jt , J) = (VIJR) (Jt, c')JT + (VtR)(J, i')+

+2R(Jt, c')V!J + 2R(J, c') VIJJt.
(4.98)

The initial conditions are

VtJ (0) = 0, VIJVtJ (0) = VtV!J (0) + R (c' , Jt(0))J (0) = VtZ.

JI satisfies the equation

1;.' + R ( J, c') c' = 0 .

with h(O) = 0, .11(0) = VtZ. Substraction yields

( V' tJ - h)" + R ( V'tJ - h, cl) c' = - 9\(J1, J),

(Y'tJ - 71)(0) = 0 = (Y'tJT - h)'(o) = o.
Hence, according to the proceding procedures of estimates,

IVtJ - .h I :::; C . Ro,t, (4.99)

where Ro t is defined as folIows.,

IfR(Jt , J)I :::; 21VRllc' 121JtllJI + 2IRllc'I(IJt IIV5 11+ IJ!lV3 Jtl),

IJtl :::; Cl [1'1 + lV tYI + ilVtZI]
lJI :::; C2 IZI,
IV!Jtl :::; Ca [lvtYl + i ·IVtZI + IYI2 (111+ jVtYI + ilvtZI)],

IV!JI :::; C4 [izi + jYl2lz r]
1!R(Jt, J)j :::; Cs[lYI 2

. IZI (1/ 1+ jVtYI + ilvtzl) + IYI· { (1 / 1+ IVtYl + ilvtzl)'

.(Izl + IYI2Izl)+

+IZI (IVtYI + ilVtZI + IYI2 (111 +IVtYI + ilVtZ I))}] = Ro,t,T'
This implies

IVt} -lt I :::; C . RO,t,T

for all T and the left hand side does not depend on T. Therefore

IVtJ - hl < C· Ro t=C· (lim Rot r).- , r-O"

Ho,t is a polynomial in IYI,IVtYI, where the coefficients are polynomials In

111, IZI, b IRI, b IVRI, with the following properties.

1. It is linear in IVtYI.
2. Each tenn has IYI or IVtYI as factor.
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The next step is to estimate

which reduces to the estimate of

(4.100)
V7u(l7x(Z)) = (V7ul7)x(Z) +l7Vux(Z) +l7x(V7u Z),

(V7ul7)x(Z) = V7u(l7x(Z)) - 7JV ux(Z) -l7x(V7u Z),
i.e. everything reduces to V7u(l7x(Z)), since the tenns without the derivative of 17 are already
controled by (4.99). But

V7u(7Jx(Z)) = V7u(V7x Z - V7xZ) =

= "VuV7x Z - V7uV7xZ - ("Vu - V7u)V7xX =

= V7u"VxZ - V7uV7xZ -l7u(V7xZ).

Hence we have only to estimate V7uV7 xZ-V7uV7XZ. Since (f*TN, f*V7 h ), (f*TN,exp;l ((exp yr"Vh )

satisfy (Bk-I) we have finally to estimate

V7kZ - V71-Z.

Hut

It is more convenient 10 estimate

exp* "VkZ - exp. V71z.

Define the Jacobi field J; by 1;(0) = 0, ~(O) = V7; Z. Then we estimate

1V7;J(I) - J2(1)1·

V7; J satisfies the equation

(V7; J) fI + 9\ (V7; J, c')c' = - 9\(Jt , V7tJ) - V7t9\( Jt, J) =

=-9\1 t 2 n, ,
"V; J(O) = 0, V7 ~ V7; J(O) = "V; Z,

since J(O) = 0 = V7 t J(O). We obtain

(V;J - 72)" + R(V;J - h,c')c' = -9\I,,2,T

(V;J - h)(O) = 0 = (V;J - h)'(0),

1V7;J - hl ~ C· R1,fJ,T

for all T. The left hand side is indePendent of T, hence

I"V;J - hl ~ C· R1,t'J, (4.101)

R1 t'J = lim R1 t'J T is a polynomial in IYI, lV7tY!, I"V;YI, the coefficients depending on
I T-O I I

Ij llV7til, IZI, 1V7tZI, b IRI, b 1V7RJ, b 1V72RJ with the following properties.

1. It is linear in 1V7;YI.
2. It is linear and quadratic in lV7 t YI.
3. Each tenn has IYI or jV7 t YI or jV7;YI as factor.
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The procedure for higher derivatives V7; is quite analogous. As in (4.100), the highest order

tenn of ('V'u7])(UI,"', UIl)x(Z) is given by

According to 4.4,

lower iterated derivatives including mixed derivatives of the UI, . .. Uu.

We assume the lower order derivatives already to be estimated. Then there remains to

estimate

which reduces to

Now
V7ü('V'xZ - 'V'x Z ) = V7üV7x Z - V7~-IV7uV7xZ

- V7Ü-
1 (V7u - V7u )'V'x(Z) =

= V7üV7xZ - V7Ü-IV7~V7xZ - V7Ü- I7]u(V7x Z).

Iterating this procedure, i.e. perfonning a simple induction, we obtain finally

V7ü(V7X Z - V7xZ) = 'V'ü V7 X Z - V7'ü~xZ - lower derivatives of interated eta's.

Therefore we have to estimate

i.e. finally (using polarization and (Bk_I))

We estimate

exp ~u+ I Z - exp V7/U+I Z
• X • X ,

u :s; m - 1, U + 1 :s; m.

Let L+I (0) = 0, ~+l (0) = V7r z. We have to estimate

I +l -... Ivr; J(l) - Ju+l (l) .

An induction (cf. [11], p. 152) gives

(V7~+1J)II + R(~;+l J, c')c' = -(9=t(JtV7;+l J,) +
+V7 t 9=t(Jtl V7~-2J) +... +V7;-l9=t((Jt , J)) = -9=tu,t"+t,T
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and we obtain

(4.102)

where Ru,tU+1 = ;~ Ru,tU+!,T is a poynomial in IYI, IVtYI, ... ,IV~+lYI, the coefficients

depending on 1/1, ... ,IVf/l, IZL· .. ,IVfZl, b IRI, ... , b IVU+1 RI, with the following prop
erties.

1. It is linear in

2. The total degree i 1 + 2i2 + ... + uiu of any monomial

" .
IYI10 IVtYI11 ... IV;YI1u

is ~ u.

3. Each tenn has some IV':YI, 0 ~ i ~ u + I,

as factor.

(4.103)

(4.104)

(4.105)

This one praves once again by an elementary but rather lang induction along the lines (4.42),

(4.43),....

In conclusion, using 2.11 t

as equivalent Banach spaces. If J' E comp(J) C b,m O(M, V), then fand f' can be connected

by an arc and this arc can be covered by a finite number of e-balls with centers fi, fi+1 =

exp Yi, Yi E b,m O(ftTN), Jo = J, J~ = f'. We conclude fi\J h E compJ* (\J h), in general
ft+1\J h E comp(Jt\Jh),J'*\Jh = J:V'h E comp(J*V'h) c b,m-1l j _TN , i.e. according to
(2.18), (2.11),

and

b,mO(J*N) = b,mn(f'*TN)

as equivalent Banach spaces. This finishes the proof of 4.19.
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5. Banach manifolds of maps in the Lp.category

Assume as in section 4 (Mn, g), (N"' , h) are open, complete, of bounded geometry up to

order k, r :::; m ::; k,l < P < 00, r > ~ + 1. Consider f E coo,m(M, N). According to 2.4
and 2.7 for r > ~ + s

(5.1)

(5.2)

IIp,r(coo,m(M, N)).

Proof. Properties (Bt} and (U~) are clear onee again. (U~) and (U~) are nontrivial. For (U~)

we need D' D < rinj(N)/2, i.e. blYj ::; D ·IYlp,r < D· D< rinj(N)/2. If we denote by PY
the vector field (PY)x = (parallel translation of Y/(x) from f(X) to g(x),x) then

b,SIYI = D ·IYlp,r'

(

r ) 1/p
where IYlp,r = Ji~ lyriYIP

dvol . Set for D> 0, D. D ::; DN < rinj(N)/2, 1 < p <

00 V6 = {(f, g) E coo,m(M, N) X coo,m(M, N) I There exists Y E n~(f·TN) such that

9 = gy = expY and {IYlp,r < D}.
Proposition 5.1. ~ = {V6 }O<6<r' .(N)/2D is a basis for a uniform structure

tn]

f = exp (-PY).

As in section 4, the main task is to prove

(5.3)

(5.4)

where P is a polYnomial in lyriYlp, i = 0," " r, without constant tenno Here one has to

take into aecount that Y and PY live in different bundles and the covariant derivatives in
IPYlp,r are associated to gyyrh. Qiute similar as we have seen in (4.2), (5.4) would imply

(U~).(5.4) would be proved if we could show

(5.5)

where PIJ,p is a polynomial in Iyriylp' 0 :::; i :::; r. Aceording to 4.8 and 4.4, for the pointwise

norm

where

+
P/J(IYI, . .. ,1~IlYI) = C'lyrIJYj+

" C~.. IYliol~Ylil .. '1~1l-1YI'I-'-1L...,; 10'1 .. "1-'-1

i1+2i. +.. '+(11-1 )il-'_I '511

(5.6)

(5.6)

is a polynomial without eonstant tenn. (5.6), (5.7) imply

lyrlJ(PY)IP ::; c [1~IlYIP + L Cioil".il-'_l (IYl iolyrYl il .. 'lyrll-1Yjil-'_1)P] .
i1+2i.+· "+(1'-1 )il-'-l $:1'
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By assurnption, f IVIJYIPdvol exists. We have to consider the monomials of the sum,

(5.8)

To apply the module structure theorem 2.10 for Sobolev spaces of section 2 we are seeking

F ~ 0 such that

is satisfied, Le.

io(r - ~) - (i1 + 2i2 + ... + (/l- l)i,.-t> + (i 1 + i2 + ... + i,.-I) (r -;) ~ r - ~.

Since i 1 + 2i2 +... + (p. - l)ilJ-l ::; J.L ::; r, we are done if even

io (r -~) - /l +(id + i,._1) (r -;) ~ r - ;,

io(r - ~) -r+ (id + i,._I) (r - ~) ~ r - ~.

If io = 0 then i 1 + ... + ilJ -1 2:: 1,

(. .)(n) n n n-r + 1.] + ... + 1. -1 V - - 2: -r + r - - = -- ~ 0 - -.
IJ P P P p

If io 2:: 1 then io(r -~) - r = (io -1)(r -~) -~, hence

(5.10)

We obtain in any case from (5.10), (5.11) that (5.9) is solvable with f = 0 and

U(1Yl io IV'Yli , ... IV',.-IYl i /l - IrdVOI) I/p :::;

::; Dio ...i~_lIYI~~T IVYI~l,v_] .. ·1\71J-1YI~;~(U-l)

which proves (5.5) and therefore (U;). Dur next task is to prove (U~). Let

f E coo,m(M, N),g E coo,m(M, N),g = gY
1

= exp Y],

Y] E n~(j*TN), IYi Ip,T < 8,8· D ::; 8N < ring(N)j'lJ.

(5.12)

Here D = D(f) is the constant of (5.2). Let g2 E coo,m(M, N), g2 = exp Y2, Y2 E

n~(giTN), IY2Ip,T < 8,8· D(g) ~ 8N < ring(N)/2. Then there exists a uniquely detennined

Z E O(j*TN) such that exp Z = exp Y2. (U~) would be proved if Z E n~(j*TN) and

(5.13)
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where Q I1,P is a polynomial in l~iYi lp, l~iY2Ip, 0 :5 i,9 :5 r, without eonstant tenn.
Aeeording to (4.17), 4.4 for the pointwise nonn (here we use IYII, 11'21 < ring(N) )

i.e.

+
1~11ZI :5 C' (!V7I1Yi 1+ IV'I1Y2D+

""' C~ , ., , +' 1Y;lliol~21;olV7Y;llillV7~2Iil...L..J .O)O.I11 .. ·.~-1 )~-1

i1+;1 +2(i~+i~)+···+(I1-I)( i~-1 +i~-1 ):511
.. '1~11-1ylli~-II~I1-1Y2Ii~-I,

I~JJZIP :5 C [1V7I1YIIP + 1~I1Y21 +. ?= Cioio'" (IYllio ... 1~I1-lY2Ii~-1)p] .
'1 +)1 +"·:511

(5.14)

By assumption J I~JJYlldvol, J IV'I1Y21
Pdvoi < 00, and we have to eonsider the monomials

M M
of the surn,

IYi lio IY21 io IV'Yllill~Y2ljl ... I~p-lYlli~-l 1\711-1Y2Ii~-1,

il +)1 + 2(i2 + )2) + ... + (Jl-l) + (i l1 - 1 + )11-1):5 /L.

But (5.14) has the same strueture as (5.8). We ean repeat the procedure (5.9) - (5.11) and
obtain onee again by the module structure theorem for Sobolev spaces

(J (IYilio .. ·IV,,-lY:lli.-,)'dV01Y/, ~
~ Diojo .. ·i~_d~_1 IYl1~~T IY21t~r I~Yll~l,r_llV'Y21~~r_l ...

. . . 1\711-1y; li~-l . lV'p-l~ li~-1
1 p,r-(I1-l) 2 p,r-(p-l)

whieh proves (5.13) and tberefore (U~).

(5.15)

D

IIp,r(coo,m(M, N)) is metrizable. Let mop,T(M, N) be the eompletion of coo,m(M, N).
From now on we assume r = m and denOle rop,T(M, N) = flP,r(M, N).

Theorem 5.2 Let (Mn, 9), (Nn, h) be open, complete, of bounded geometry up to order

k,l < P < 00, r ::; k, r > ~ + 1. Then each component 0/ op,r(M, N) is a C 1+.l:-T·Banach

manifold, and for p = 2 ;t ;s a Hilbert manifold.

Proor: Let 1 E f!p,r(M, N), 0 < 8 < rini(N)/2D. Let

UI,r (I) = {9 E np,r (M, N) 19 = 9Y = exp Y, Y E op,r (/*TN), IYlp,T < ö}.

Then {UI,r(/) }O<6<rinj(r)/2D is a neighborhood basis of f in o,P,r(M, N). This follows
irnmediately from the definition of a neighborhood basis of f, induced by the metrizable

, uniform space (op,r (M, N), U(coo,r (M, N))). For the sake of clarity we must strongly discuss

the nature of OP,T(f*TN). f is no longer smooth, for r > ~ +1 at least of class c. We have

to deseribe the eonneetion in f*T N. The eonnection eoeffieients of f*V'h are of the fonn
8f . fh(f). Since f E Cl they are weH defined. But literally caleulating V'(V'Y) ineludes

second derivatives of f whieh in general do not exist Therefore we have to take all higher
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derivatives in the distributional sense. Here once again arise some difficulties since I*TN
is not a smooth bundle in general but ooly a Cl-bundle. Therefore it is impossible to speak

of global smooth sections. Hut a distribution is al ready weH defined if it is defined on each

basis of a cover by small balls. In our situation we choose a unifonnly locally finite cover

of (Mn, g) by geodesie balls of a radius< rinj(M), trivialize f*T N over each ball by a
synchronous frame and have after that weH defined smooth sections with compact support

in the corresponding ball. Then flP,r (/*TN) is defined. Any other such cover generates an

equivalent space.
eXPJ

Let TfftP,r(M, N) := f!p,r(f* N). Then Y -+ exp Y is for 0 < 8 < rl(N)/2D a

homeomorphism between B5(0) C flP,r(f*T N) and Uf,r (I) C ftp,r(M, N), i.e. achart

Onee again we need the lemma and start with the local euclidean version. Let U c Rj be
an open bounded subset, h E Coo+r+"(Rn, Rq). For 1 E flp,r(u, Rq), hol is an element of

ftP,r(u, Rq). This follows from the chain and Leibniz role, h E COO,T+" and 4.1. Then the

locallemma says that Wh : flP,T(U, Rn) -+ flp,r(u, Rq),wh(f) := hof, is a C"-map. This

follows from dwh = Wdh and iteration. To study the properties of transition functions, we

have to study the properties of left multiplication Wexp;l eXPJ with exp;l eXPf' Hut according

to 2.2, V'id(exp;l eXPf) , 0 ::; i ::; k, is bounded. Then the local w-Iemma above applied to a

unifonnly locally finite atlas of nonnal charts yields that Wexp;l expJ is of class C l +k
-

T
• Finally

we roust show that each component is modelIed on the same Banach space (or equivalent

Hanach spaces). Usiog the exponential map, we see that flP,T(M, N) is locally contractible,

therefore locally arcwise connected and components coincide with are components. To apply

2.9, we must show

Jf*V'h - f'*V'h Ip,T-l < 00

for /' E comp(/) C f!p,T(M, N). We start with the case I' = exp Y, Y E flP,r(f*TN), IYlp,T'
D < rinj(N). From (4.103) and the reductions preceding (4.103) follows

lV'U (f*V'u - (exp yrV'h) I ::; RJl ,

where RJJ (I y I, ... , IV'JJ+1Y I) is a polynomial with the following properties.

1. It is linear in JV'JJ+lYI.
2. Tbe total degree 21 + 2i2 +... + Jl . i JJ of any monomial

(5.16)

is ::; Jl + 1.
3. Each tenn of RJl has some lV'iYI,O ::; i ::; p + 1, as factor.

Then we conclude word for word as in (5.8)-(5.12) that for Jl + 1 ::; r

IV'JJ (f*V'h - (exp y)*V'h) Ip ::; PJJ (lYlp,' .. , lV'hYlp) < 00. (5.17)

If I' E comp(/) C flP,r(M, N) then j and j' can be connected by an arc which can be

covered by a finite number of e-balls and we conclude as at the end of section 4
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and together with 2.9

Remark. The pointwise inequality (5.16) makes sense only for /, Y of class er, (5.17) is
weH defined also for distributions and follows from (5.16) for /, Y E er and from density
arguments.

This finishes the proof of 5.2.

o

6. The bounded diffeomorphism group

Let (Mn, g)be oriented, open, complete, of bounded geometry up to order k > 1. For

1 ~ m ~ k set

b,mD(M) = { / E b,mfl(M, M)I/ is injective, surjective, preserves}
orientation and JAlmin(d/) > 0

Theorem 6.1. h,m D (M) is open in h,mfl (M, M), in particular each component is a Cl+k-m_
Banaeh manifold.

The proof of 6.1 will be prepared by

Lemma 6.2. Let M be as above, f E b,mn(M, M) a C1-dijfeomorphism and 9 E

b,mn(M, M) a loeal C1-difjeomorphism whieh ean be eonnected with 1 by an are in

b,mfl(M, M) o/loeal C1-difjeomorphisms. Then g( M) = M.

Proof: Fix some point z E M and eonsider the open metric balls Bk = BJ;(z) =
{x E Mld(x,z) < k}. ThenB1 C B2 C ···andUBk = M. Moreover, I(B1) C I(B2) c ...

k
and UI(Bk) = M since 1 is a diffeomorphism. Consider an arc {9t}0<t<1 in b,mn(M, M)

k --

of local C 1-diffeomorphisms between 1 and g,1 = go,9 = gl. Fix ,so, 0 < ,so < rinj(M).
The arc {gdt can be covered by a finite number of ,so-balls in b,mn(M, M), says ,so-balls.

Suppose now Yo E M - g(M), d(yo, z) = e. Then we choose k such that k - c > 2r,s0 and

q > k such that f(B q ) > Bk. It is clear that for all x d(f(x),g(x)) < 2r' ,so. All gt(Bq )

are open manifolds.

Now gt(Bq ) = g(Bq ) :> Bk :> Bk-2r50 :> Bf!; which contradicts Yo ~ g(M).

o
Proof of theorem 6.1. Suppose f E b,mD(M), IAlmin(df) = inf lAx lmin(df)x > O.

xEM
According to the continuity of IAlmin(df) as a function of /, there exists a contraetible
neighborhood U(f) C b,mfl(M, M) such that IAlrnin(dg) > 0 for all 9 E U(f). According to

the inverse function theorem, U(f) consists of local diffeomorphisms. Lemma 6.2 now yields

that each 9 E U is a surjective Ioeal C1-diffeomorphism 9 : M -+ M, Le. a covering map. f
has leave number 1. By continuity the same holds for 9, 9 has to be a diffeomorphism.

o
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Theorem 63. Let (Mn, 9) be oriented, open, complete, 01 bounded geometry up 10 order

b 2: 1, 1 ~ m ~ k.

a. Assume f,9 E b,mD(M), 9 E comp(idM) C b,mD(M). Then g' f E b,mD(M)
and 9 . f E comp(f)·

b. Assume f E comp(idM) C b,m D(M). Then /-1 E comp(idM) C b,mD(M).
c. comp(idM) C b,m D(M) is a metrizable topological group.

Proof: Clearly, idM E b,rn D(M). Let f, 9 E b,m D(M), 9 E comp(id) and [;2 < rinj(M)/2.
Since 9 E b,mD(M), where exists EI < rinj(M)/2 such that g(U~l(f(x))) C U~2/~(gf(x))

for all x E M. There exists a diffeomorphism f' E coo,m(M, M) and Y; E b,mn(f'*TM)

such that f(x) = (exp Yj)(x) = expf'(x) Y;,jI(X) and b,mIY;1 < Cl/4' This follows from the

fact that b,m D(M) is open in b,mn(M, M) and the definition of b,mn(M, M) by completion.

Hence /' (x) E U~l/~ (f(x)) for all x E M. Quite analogous, there exists a diffeomorphism

g' E coo,m(M,M) and Y; E b,mn(g'·TM) such thatg(x) = (expy;)(x) = eXPg'(x) Y;,gl(x)

and b,mIY;1 < C2/2' This implies f(x) E UCl/4(f'(x)), g'f(x) E U~2/2(g'f'(x)). Define the

Cm-vector field Y1 by

-1 ( 1 ')Y1 =exPg,glfl(x) eXPg~,g,glf'(x)g.Yl , (6.1)

where expg,y is the exponential map with respect to the metric 9 at the point y E M and

(9:9) (X, Y) = 9((9:r l
Xl (9:r l

Y). Theo it is dear that Yi is a vector field aloog

g' /', blY1 j < c2/2 < rinj(M) and

", "
(exp Yl)(X) = eXPg~g,glf'(x) g.Y1 = 9 expg,f'(x) Y1 = 9 f. (6.2)

We want to show that b,rn IY1 1 can be made arbitrary small by choosing cl sufficiently small.

Assurne at first g' = exp U, U E ~n(TM), b,rn IUI < E < rinj(M). Then we have a geodesie,
rectangle exp f' (x) U, expf' (x) Y1 , expg' f' (x) Yj, exp f( x) U and conclude as in section 4

(6.3)

o~ i ~ I' - 1, 0 ~ j, k ~ 1', where PJl is a polynomial in the indicated variables, linear in

I\7J'- l df'l, I\7J'Uj, I\7J'Yl' l and each monomial has total degree ~ 1'. It follows

b,rnIY11<oo. (6.4)

Moreover g:Y; = (expU).Y;. According to 4.19,2.11 and their proofs

b,rnIY;I"J b,rnl(exp U).Y;I (6.5)

as equivalent nonns. Now

-1 ( ')Yi = eXPg eXP(expU)z9 (exp U).Yl

(exp U).g E comp(g) in the space of Riemannian metrics of bounded geometry (cf. [12]).

We can consider ((exp U).Y;,jI(X)' x) E (exp U).f·TM as an element of (exp U 0 f'fTM.
Hence the map

(6.6)
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is a (nonlinear) Cm-bounded map between b,mn((expU)./'*TM,(expU)*g) and

b,mn((expUo/')*TM) and if b,mlVI ~ 0 then b,mlexp;lexP(expU).g vI ~ 0 uni-

fonnly in V since bl"~id(exp;l eXP(exp U).g) I is independent of V. We conclude that for

sufficiently small Y;, Yl becomes arbitrary small (in the (b, m)-norm). If 9 E comp(idM),

then g' = exp U5' .. exp Ul and we can iterate our procedure. By assumption, there exists

a uniquely determined Cm-vector field along g'f such that g/(x) = (expYh)(X), b,m1Y2 1 <
c2/2 < rinj(M). Onee again we want to show that b,mIY2 ! can be made arbitrarily small

choosing c2 sufficiently small. Consider for this

I((g'/)'V) XY2.z1 = IV(g·noxY;.g'!(z)1 = 1(g'·V) !oXY;.!(z)I ::;

~ Id/IIXI·
b lV7ydl.

(6.7)

(6.8)

Similarly, using 4.4 and perfonning induction, for the higher derivatives.

By construction, there exists a unique Cm-vector field Z along g'f' such that gf(x) =
(exp Z)(x). We want to control Z and its derivatives by Yl, Y2 and their derivatives. This

has been carefully done in (4.52)-(4.94) and we are done. For every 0 < c < rinj(M) there

exists a diffeomorphism h E coo,m(M,M), h = g'/', and Z E b1mn(h*TM), b,mtZI <
c, such that (gf)(x) = (exp Z)(x). Moreover l..\lmin(df) > 0, 1..\lmin(dg) > 0 implies

1..\lmin(d(gf)) = 1..\lmin(dg 0 d/) > 0, g' / E b,m D(M). A simple caluclation shows

that if {gt} is an arc between idM and 9 then {gt· f} is an curve between / and g/.
Let / E comp(id) C b,mD(M), 0 < Cl < rinj(M), f(x) = (expY')(X)' Y' E

b,mn(f'*TM), b,m(y') < CI, /' E coo,m(M,M) a diffeomorphism. Then 1..\lmin(df-1) <

c, 1..\lmin (d/'-1) > O. The latter and /' a diffeomorphism E coo,m(M, M) implies that

/'-1 is a diffeomorphism E coo,m(M, M). Sinee / is aquasi isometry, for sufficiently small

cl < rinj(M) and corresponding choice of /', dist (x, /'-1 /(x)) < ~ < rinj(M) and we set

-1 ('-1) '(x)Y = eXPg ,exp(t-1 ).9,/,-1 f(x) f *Y

Then blYI < cz < rinj(M), Y is a Cm-vector field along /'-1 and (exp Y)/(x) = x, f- l =
exp Y. It remains to show that by sufficiently small choice of cl b,mlYI can be made

arbitrarily small. This follows as above. One starts with /'-1 = exp (U), by a rectangle

argument = two triangle arguments

(6.9)

(6.10)

(6.11)

is continous in the (b,m)-nonn and maps 0 to O. Hence /-1 E b,mD(M), moreover

f- I E comp(id). In conclusion, comp(id) C b,m D(M) is a group. We have to show

that comp(idM) is a topological group. Let i1 be the neighborhood filter of e = idM
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in comp(id) C b,rn D(M) . comp(id) is a topological group if and only if it satisfies the

following conditions (GI) - (G3 ) (cf. [4], p.48).

(GI) For each U E U there exists V E U such that V . V c U.

(02) For each U E U is U- l E U.
(G3 ) For each U E U and / E comp(id) there holds /U/-1 E U.

We start with the proof of (Gd. (Gd would be proved if we could show for each U~ E U =
{Ue; }o<~< rinj (M) there exists U6 E U such that

U6 . U6 C U~. (6.12)

Here

U~ = U~(id) = {exp YIY E b,rnO(TM), b,rn IYI < e}

and U = {UE}o<~<rinj(M) is a neighborhood basis of e = idM in our topology.

Let / := expYl,/2 = expY2, b,rnIYII, b, rn 1Y21 < 8 < rinj(M),f2fl = expY2expYI.

There exists a unique Crn-vector field Z, blZI < rinj(M), such that (exp Z)(x) =

(exp Y2 exp Yi)( x). We can consider Y2 as a Crn-vector field along exp Y, and we want
to show that Y2 E b,rnO((expYt}*TM). This is not clear. According 4.19,2.11 and their

proofs, V' and (exp YI ) *V' generate equivalent (b, m) norms b, rn I jv and b, rn I I(exp Y1f v,

in particular

b,rnl l(exp Y1f V ~ (CbIYII,'" ,b lV'rnYII) .b,rn I Iv, (6.13)

where eisa polynomial depending on the indicated variables. According to (4.94), there

exists a polynomial Q without constant tenn such that

b,mlZI ::; Q( bl YII,··· ,b lV'mYII,b IY21,··· ,1V7mY2(eXPYlfv), (6.14)

Hence, according to (6.13), (6.14), for gjven 0 < c < rinj(M) there exists 0 < 8 < c, rinj(M)
such that b,m IYi I < 8, b,m IY21 < 8 implies

b,mlZI < e.

We obtain

and established .the first property.

Let f E UE , f = expY, Y E b,mO(TM), b,mlYI < e. Tben f-l(y) = (expy)-l(y) =

expy (-PY), where P is the parallel transport of Y from x to (exp Y)(x) = y along

s --+ expx (sY) . (-PY) is a vector field along exp Y. According to (4.49), there exists

a polynomial P such that

b,mIPYI(exp YfV ~ P, (6.15)

where p( bIYI,' .. ,b IVmYI) is a polynomial without constant tenn. We consider PY as a

vector field along idM. According to 4.19, 2.11 and their proofs

b,mjPYlv ~ C ( blYI, . .. ,b l~mYI) .b,m IPYI(exp YfV' (6.16)
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Given 0 < ~ < rinj(M), (6.15), (6.16) imply that there exist 0 < 8 < rinj(M) such that
b,mIY]v < fJ yields

b,m IPYlv < ~,

i.e.
(6.17)

and we have established (G2).

Let U E ll, f E comp(id) C b,m D(M), U~ c U. (G3) would be proved if we could

establish the existence of fJ < rinj(M) such that

(6.18)

We start with f = expU, U E b,mn(TM), b,mlUI < rinj(M)/3, expY E U6, 8 <
rinj(M) /3. Consider (exp U) -1 ((exp Y 0 exp V)( x)). The distance of the ladder to X is

< rinj(M), and we set

Z = exp;~ (exP(exPU);-lg (exp U);lY(expU)(x))'

The standard rectangle argument = two triangle arguments above yields

According to 4.19, 2.11 and their proofs,

as equivalent nonns. Moreover, the map

(6.19)

(6.20)

(6.21)

(6.22)

is a Cm-bounded map between b,mn(TM, (exp U);1 9) = b,mn(TM, (exp U)*9) and

b,mn(TM) and if b,m lVI -+ 0 then b,m Iexp;l eXP(expU);-lg VI --+ 0 unifonnly in V since

bl\7id(exp;l eXP(expU);l) I < 00 is independent of V. Hence, given any 0 < ~ < rinj(M),

for sufficiently small 0 < S < rinj(M)

(6.23)

or what is the same,

If / E comp(id) then / = exp U~ ... exp VI, /, /-1, exp Uer , (exp Uer )-1 are quasi isometries

and for sufficiently small Y, there exist uniquely detennined Zer such that

eXPexpUcr ... expU1(x) Zer =

= (exp Uer+1)-1 ... (exp U,,)-l exp Y(exp U,,· .. exp Uer+d
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Zl = Z. An iterated rectangle argument = double number of triangle arguments gives

(6.24)

Moreover, b,mjYI ~ 0 implies b,mlZul ~ 0, b,rnlZul ~ 0 implies b,mIZu_11 ~ 0, 0' =

SI,·· . ,2, and we obtain that b,rn IYI ~ 0 implies b,mlZI ~ 0, i.e. for given 0 < E: < rinj(M)
and for sufficiently small 0 < 8 < rinj(M)

f-1U6f C U~

U6 C fU~f-l.

This finishes the proof of 6.3.

o
Remarks.

1. coo,m(M, M) nb,rn D(M) is a group, not only the identity component.

2. The isometry group J(M) is a closed subgroup of coo,rn(M, M) nb,m D(M).
3. The restriction to the identity component was necessary since then all induced metrics

or connections on TM then induce equivalent nonns.

4. On compact manifolds these difficulties do not arise since all connections in a given

vector bundle generate equivalent (b, m )-nonns.

5. If one had started with smooth (b, m)-diffeomorphisms D(M) which were bounded

from below, and defined the unifonn structure by perturbations of the fonn exp Y
(where Y E ~f2(TM) and b,mlYI < rinj(M) ), this would not have worked since

we would not necessarily have exp Y 0 f E coo,rn(M, M).
6. In conclusion, our approach seems to be very natural, canonical.

7. In a forthcoming paper, we show that b,mf2(M, N) is an invariant of

comp(9), comp(h) in the space of metrics of bounded geometry.

8. b,rn D(M) has a gruppoid structure over the space of components of metrics.

9. If Mn is compact, our construction gives the same structure as established by Eells,

Fisher, Marsden and others.

o
Let (Mn, 9) be open, complete, oriented, of bounded geometry up to order k, 1 < p <
00, k > r > ~ + 1. Set

DP,T(M) = {f E f2p,T(M, M)/ f is injective, surjective, preserves

orientation and 1..\lmin(dl) > O}.

Theorem 6.4. DP,T(M) is open in f2p,T(M, M), in particular, each component is a C1+.l:-T
_

Banach manifold.

The proof proceeds as in the proof of 6.1 where we used the fact that f E DP,T(M) implies

1 is a C1-diffeomorphism.

o
Theorem 6.5. Assume (Mn, g), k l P, r as above.

a. Assume 1,9 E DP,T(M), 9 E comp(idM) C DP,T(M). Then 9' f E DP,T(M) and

9 . 1 E comp(f).
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(6.25)

b. Assume f E comp(idM) C DP,r(M). Then /-1 E comp(idM) C DP,r(M).
C. comp(idM) C DP,r(M) is a metrizahle topological group.

Proof: Assume g, / E DP,r(M), 9 E comp(id). Once again we represent f =

expY;, Y; E op,r(f'·TM), /1 E COO,m(M,M) a diffeomorphism, 9 = expY;, Y; E

op,r(g'·TM), g' E coo,m(M,M) adiffeomorphism, IY;lp,r < f.l/4 < rinj(M), IY;[p,r <
C2/4 < rinj(M)f(x) E Ut:t/4 (f' (x)) , g'f(x) E Ut:2/ 2(9'!(X)). We define Yl as in (6.1) and
obtain for the pointwise norm (6.3). According to the structure of PIS' which we carefully
calculated in section 4, and to the module structure theorem for Sobolev spaces

JP"dvol < 00

M

and
(6.26)

According to 2.9, 5.2 and their proofs,
, ,

jY1 1p,r '" l(exp U).Y1 Ip,r

as equivalent nonns. Moreover

V -7 exp;1 eXP(exp U).9 V

is a nonlinear Ck-bounded map betweenOP,r ((exp U)./'·TM, (exp U).g) and op,r ((exp U 0 I') •TM)

and if IVlp,r -7 0 then Iexp;1 eXP(exp U).9 Vlp,r -+ 0 unifonnly in V. We conclude, for suf-
I

ficiently small YI , that Y2 becomes arbitrarily small (in the (p, r )-norm). If 9 E comp(idM)
then g' = exp U8 , •• exp U1, and we can iterate our procedure. Quite analogous to (6.7)
and induction, Y2 E op,r ((g' /)·TM). By construction, there exists a unqiue CI-vector field

Z along 9'!' such that gf(x) = (exp Z)(x). According to (4.94) and the module structure

theorem for Sobolev spaces,

[Zlp,r < 00

and IY;[p,r -7 0, IYdlp,r -+ 0 implies [Zjp,r -+ O. Hence for every 0 < f. < rinj(M) there
exists a diffeomorphism h E coo,m(M,M), h = g'/' and Z E op,r(h·TM), jZlp,r < f.,

such that (g/)(x) = (exp Z)(x), g' / E DP,r(M). The arguments for /-1 are quite parallel
to (6.8)-(6.11), replacing b,m I 1 -+ I Ip,r and observing

JP"dvol < 00

M

according to the structure of PIS and the module structure theorem for Sobolev spaces.

Next we have to establish (G2) - (G3 ). Here the arguments are once again quite parallel
to (6.13)-(6.24). We have to replace b,m I I by I [p,r, 4.19, 2.11 by 5.2, 2.9, observe the

special structure of the polynomials PIS' QIS and to apply the module structure theorem for

Sobolev spaces. For this aim we carefully calculated the structure of the polynomials in
section 4. 0
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The remarlcs after 6.3 are valid and make sense if we replace b,m D(M) by DP,r(M), b,mlYI

by IYlp,r'
We established here an important foundation for global nonlinear analysis on noncompact

manifolds. Many further developments and applications are under work. In a forthcoming

paper we study the configuration space of Einstein theory r = space of metricsldiffeomorphism

group for noncompact manifolds.
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