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We establish in a canonical manner a manifold structure for the completed space of bounded
maps between open manifolds M and N, assuming that M and N are endowed with
Riemannian metrics of bounded geometry up to a certain order. The identity component of
the corresponding diffeomormphisms is a Banach manifold and metrizable topological group.

1. Introduction The main goal of this paper is to supply one framework for nonlinear global
analysis on open manifolds. For linear differential equations and linear objects the basic
background is the theory of Sobolev spaces as presented for example in [3], [6], [7], [8].
For nonlinear objects such as connections, metrics, maps one has to find a completely new
approach. In [10] we presented such an approach for the space of connections. Here we devote
our efforts to spaces of maps between open manifolds. We fix our interest on the Banach
category since in solving nonlinear partial differential equations the implicit function theorem
plays a decisive role. On compact manifolds this theory has been developed by Eells, Palais,
Ebin, Fisher, Marsden and others. Their methods are essentially limited to the compact case.
They use properties like the independence of Sobolev spaces of the choice of a connection, the
bounded geometry of any compact manifold and that any compact manifold can be covered
by a finite number of charts. All these properties and many others are not available in the
noncompact case. The basis of our approach is to endow two given open manifolds M and
N with metrics g and & of bounded geometry up to a certain order. According to a theorem
of Greene, such metrics always exist. After that we can make all constructions necessary for
us. As in the compact case, our manifold structure = local linearization is given by exp and
its differentials. Therefore all estimates amount to estimates on Jacobi fields. We often have
to estimate hierarchies of inhomogeneous Jacobi fields of high order.

The paper is organized as follows. In section 2 we present the necessary basic no-
tions of Sobolev spaces, bounded geometry, an a priori estimate for the connection
coefficients, embedding theorems, a fundamental module structure theorem for Sobolev
spaces and finally two invariance theorems for Sobolev spaces. Section 3 is de-
voted to a very short review of uniform structures and their completions. The techni-
cal heart of this paper is section 4. Let (M,g),(N,h), be of bounded geometry up
to order k, ie. rini(M),ripi(N) > 0,[V'R?|,|V'R*| bounded, 0 < i < K and let
f € C®(M,N). f € C®™(M,N) if |V'df| is bounded, 0 < ¢ < m — 1. Let

m .
ba(rray = {y € Co(f*TN)Pm|Y| = 3 5P VY], < oo} and for 1 <m <k, 0<
=0

zem

5 < Tini(M),Vs = {(f,9) € C®™(M, N) x C*™(M,N)|g = expY, Y € LO(f*TN),

b™Y| < §}.Then B = {V5}0<5<,inj(M) is a basis for a metrizable uniform structure on

C°™(M, N). The proof occupies section 4 and half of this paper. Let >™Q(M, N) be the
completion. We prove in theorem 4.19 that each component of b'"‘Q(M , V) is a Banach man-
ifold. Let 1 < p < 00,k > r > dimM/, + 1.In a similar manner, we construct 7" (M, N)
and show in theorem 5.2 that each component of Q7" (M, N) is a Banach manifold and for
p = 2 is a Hilbert manifold. The model space of comp(f) C QP"(M,N) is QP"(f*TN) =
Banach space of measurable vector fields Y such that (V‘Y)p is integrable, 0 <: <r, V'Y



the distributional derivative. Then we define in section 6 >™D(M) = { febmQM, M)|f
is injective, surjective, preserves orientation and [A|, . (df) > 0} and prove in theorem 6.1
that each component of »™ D(M) is a Banach manifold. The identity component of *™ D(M)
is a metrizable topological group (theorem 6.3). In a similar manner, we define DP"{ M) and
prove that each component of D" (M) is a Banach manifold and the identity component is
a metrizable topological group. This are theorems 6.4, 6.5. After theorem 6.3, we list 9 re-
marks which give certain background information. In particular, ¥™ D(M), DP" (M) contain
the isometry group. In the compact case our construction coincides with those of Ebin, more
precise, they give the same result.

We show in a forthcoming paper that our final construction only depends on the components
comp(g),comp(k) in the completed space of Riemannian metrics of bounded geometry.
Moreover, we study the configuration space of Riemannian metrics of bounded geometry
modulo diffeomorphisms of Einstein theory. Already now our approach gives a solid basis
for the theory of harmonic maps between open manifolds and for gauge theory on open
manifolds. The author is grateful to U. Abresch and U. Bunke for many valuable discussions.

2. Sobolev spaces and their properties

In the sequel we need Sobolev spaces of different kind and list their main properties.
Assume (M", g) to be open, complete, (E, ) — M a Riemannian vector bundle with metric
connection VZ = V*, Then the Levi-Civita connection V¢ and V* define metric connections
V in all tensor bundles 7 @ E in particular in AYT*M @ E, where AYT*M C TJ. We denote
by QUE) or QT7 @ E) = Q°(T7 ® E) the space of smooth g-forms or tensor fields with
values in E, respectively. For the sake of brevity, we consider only forms with values in
E. The other case is quite parallel. Let QF(E) denote the subspace of forms with compact
support. Then we define for p € R, 1 < p < oo and r a nonnegative integer

T 1/p
QPF(E) = {w € V(E)el,,, == (/EW‘wlpdvol) < 00},

1=0
Q"P"(E) = completion of Q¢”(E)with respect to ||,
Q9P (E) = completion of Qf(E) with respect to ||, .
and
Q¥PT(E) = {p|e measurable regular distributional
{q- form with [¢], . < oo}-
Furthermore, we define
b,m = '
PmOIE) = {‘Pka c™ —form and " |p| := Y sup |Vig|, < oo}
M

i=07

and
b,m - b
'™ QW(E) = the completion OY(E) with respect to ' |].

b
’mﬂq(E) equals the completion of



103(E) = {tp e 9(B)| "™ o] < oo}

with respect o ®™||.

Proposition 2.1. The spaces Q077 (E), 07" (E), Qorr(E), ™04 (E), "™ QI(E) are all
Banach spaces and there are inclusions

Q9?7 (E) CQYPT(E) C QIPT(E), (2.1)
b,m » b,m
Q(E) & Q(E). (2.2)
If p = 2 then Q977 (E), 0"P"(E), Q9P7(E) are Hilbert spaces. o}

In general Q%P"(E),ﬁq’p’r(E), QoP7(E) are different. There are two geometrical conditions
on (M",g) which assure their coincidence. A complete Riemannian manifold (M™, g) has
bounded geometry up to order k if it satisfies the conditions (I) and (By) = (Be(M", g)),
(]) Tinj = inf T‘inj(.'r) > 0,

(Bx) |V'R| < Ci,0 <i <k,

where rj,; denotes the injectivity radius, £ = Rf the curature tensor and || the pointwise
norm. There are many classes of manifolds which are endowed with a metric of bounded
geometry in a quite natural manner. Every Riemannian covering of a closed Riemannian
manifold or every Riemannian homogenous space has bounded geometry up to arbitrarily
high order. As a matter of fact, given M™ open and k£ > 0, there exists a complete metric
g of bounded geometry up to order k& (cf. [13]), i.e. the existence of such a metric does not
restrict the underlying topological type. The key lemma for the sequel is

Lemma 2.2. If (M™, g) satisfies (By) and U is an atlas.of normal coordinate charts of radius
< ry, then there exist constants C, ng such that

|D%gij| < Ca, le| <k, (2.3)

|pPry| < cp Bl < k-1, (2.4)
where Cq, C”g are independent of the base points of the normal charts and depend only on ry
and on curvature bounds including bounds for the derivatives.

We refer to [11] for the rather long and technical proof which uses iterated inhomogeneous
Jacobi equations. o

Lemma 2.2 carries over to the case of Riemannian vector bundles (E,k, V*) of bounded
geometry. For this we consider the condition

(B,c (E,V")) |V‘RE' <CL0<i<k

Letp e M, (:rl,...,:c“) ot Xy 442X, = exp]‘,;1 : Up(p) — B;(0) C T,M be
a system of geodesic normal coordinates and let ej,...,exy € Tr_l(p) = K, C E be an
orthonormal frame in E, which defines (by parallel transport along radial geodesics) a field
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of orthonormal frames in E|y. This shall be called a synchronous frame field at U,(p).
Locally this defines a flat connection V° on E|y, defining e;,...,ex as parallel sections,
hence VO(f-e) = df @ e, f € C®U), e € C°(E|y). Then T' = VF — V0 is a 1-form
with values in ggp where gg|y, is the associated bundle of skew symmetric endomorphisms
of E. T can be described by

dr' @ nge“ Qeg = 956" ® eg,
where V s e, = 'y ‘_6 eg and e” is dual to e, with respect to the metric in E.

ox"

Lemma 2.3. Assume (Bi(M)),(B(E)), k 2 1 and Ffi as above. Then

‘D"frﬁ,. <Cul <k-1,0,8=1,...,Ni=1,...,n, (2.5)

where Cy are constants depending on curvature bounds, ro and are independent of p. o
We refer to [11] for the proof.
Proposition 2.4. If (M",g) satisfies (I) and (By) then

QP (B) = PT(E) = Q9P (E),0<r < k+2.

We refer to [7] for the proof. H
Proposition 2.5. Assume (M",g) is open , complete, of bounded geometry up to order O,
i.e. satisfying (I) and (Bo(M)).
Ifr > 1;- + m, then there are continuous embeddings,
R b, m -
Qerr(E)y = " TAYE), (2.6)
O (B) o ™), (2.7)
If, additionally, (M", g) satisfies (Bx(M)),k 2 1, and k— 2 > k' — 2%,k > k', then
Qq,p,k(E) — Qq,P'.k'(E) (2.8)
continuously.
Proof. (2.6) was already proved in [3] and the proof carries over to (2.7), (2.8) is a special

case of

Proposition 2.6. Let (M™ g) be open, complete, of bounded geometry up to order k, let
(E,h,V*) — M be a Riemannian vector bundle satisfying ( B,(E,V*)). Then every Sobolev
embedding theorem and theorem concerning the continuous module structure of Sobolev spaces
of order r < k, which is valid for an euclidean n-ball B, is valid for the corresponding Sobolev
spaces on (M™,g) too.

Proof: Let 0 < &y < rinj(M),(UgM(p),(I)) a normal chart, ®(U) = Bs,,,€e1,...,ex a
synchronous frame. Then
flq"’"(Elu) & (YT (BgM X EN),'

(2.9)
@ =¢%eq — ((,olotl)_l,. . .,cpNo(I)-l).



is according to (2.4), (2.5) an equivalence of Sobolev spaces where the constants in the
equivalence depend on "% |RM| »*|RE| 6,/ and are independent of p € M. According to
an unpublished but very often used result of Calabi, there exists for manifolds satisfying ([)
and a uniformly locally finite cover of M by normal charts of radius o < §yr < "inj(M ).
Let 4 = {(U;, ®:)}; be such a cover. There exists an associated partition of unity {#;} such
that dy,, Vdn;,, . . ., V¥*+1dy; are uniformly bounded (cf. [5]). Since r < k we have

Qo7 (E) = Q"P(E) = Q9P (E).

Herr(p) = 3 00 (Bl

1
as a sum of Banach spaces, i.e. direct sum and completion. Then, according to (2.9) and the
independence of the constants of p;, ®,

Hoanr gy = > e By, x EY).

Let ¢ € Q¥#P7(E). Then ¢ = En;tp and ¢ — {n;p}, is a bounded map

QIPT(E) — umﬂ"w) =) " qerr (35M x ENY )

since dn;, Vdn;, ...,V " ldn; are uniformly bounded. We conclude that every continuous
embedding
Qe (B,;M x EN ) < QP (BJM x EN )

gives rise to an embedding

Qo7 (B) - Herr(g) = S aeer (B, x BV)

> Y009 (B x YY) = N9 () - 99 ()

by
QG:P,"(E) 3 — {q,-(p}l- — {(qicp)lo‘b;-_], ceey (qi(p)lo@.-_l }i

€ ZQQ’P"(E)(B,,M X E”) - {(niw)loq’?l,---,(niso)gr‘l’a_’},.
e 30" (Byy, x B¥) > {nig); € Haaar > nip = ¢ € QP (E).

In an analogous manner, a continuous module structure is defined if ry,7 > r and
(1‘1 - -"’-) + (rg ~ 1) >r— 2 (2.10)
p1 P Yy

Remark: No assertion was made concerning the compactness of the embeddings.
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Corollary 2.7. Assume (I),(Bi(M)), (Be(E,VE)),r <kyr>2>¢ =2 r >+ Then
QP (E) o Q9P (E) (2.11)

continuously. =

More carefully, we have to write Q9P"(E) = Q47" (E, VE) indicating the choice of V = V¥
as metric connection with respect to the metric k. Let V' be another metric connection which
is metric with respect to h. There arises the quite natural question: under which conditions
do QPPT(E, V) and Q9P"(E, V') coincide? We denote by Cg{B;) the set of all metric with
respect to h connections on F satisfying the condition (By), i.e.

iV‘RV\ <CL0<i<k

If V,V' € Cg then V- V' € Ql(gg).
Proposition 2.8. Assume (I) and (Bx(M)),k 2 r > 2 + L. Then Cg(By) wears a canonical

intrinsic metrizable Sobolev topology such that the completion C (By) has a representation
as a topological sum;

C% (By) =Y _ (Vi+ QP (g, Vy)). (2.12)
1€l

Here I is an (in general uncountable) index set. Moreover, if V € Cg(By) and comp(V) is
. . =p,r
its component in Cp (By), then

comp(V) = V + QP (gg, V).

We refer to [10] for the proof.
o

If V € Cg then we write 7V for the induced connection on AYT*M ® E,'V = VI ®
V,(VI@V)(a®y) = (Vi) ® ¢+ a® V. It follows, that IV — V' = id ® (V - V'),
i.e. for the pointwise norm

oV — V' = [V - V).
Since V(id) = [V,id] = 0, we have
VvV -1V = [v(v-V)|
more generally
|V(7V - 97")| = |VH{(V - V)], (2.13)

The above question concerning the coincidence of Q9P7(E, V) and Q97" (E, V') is answered
by the following

Proposition 2.9. Assume (I) and (By) for (M",g),k 27> & + 1,V,V' € Cg(Bg),V' €
comp(V) C Efg"r_l(Bk) Then

Q¥P7(E,V) = QVP"(E, V). (2.14)



Proof: According to our assumption and to 2.4, Qorr = QPP = Q@PT - and it suffices
to prove

QIP(E, V)= Q2P (E, V'), (2.15)

i.e. the equivalence of norms ||, , = ||y ,, and ||;,’, = ||/ . Since we are working with
pointwise norms, we denote IV = V IV’ = V', referring to (2.13). For r = 0 there is
nothing to show since ||, , = ||, y = Ly-norm. Assume r =1 and ¢, , < co. Then

Vie= (V' = V)p+ Ve, |Ve| < |V' = V|l + Ve,
IVel? < Ci(|V' = V[Plelf + [VelP).

VlPdvol < oo since ¢ € QFP(E,V),r > 24+ 1. Nowr—240—-2>0—2 and we
¥ P P P
conclude from (2.10) that [ |V' — V|?|¢|Pdvol < co and

b~

1/p
([19' - VlePavat) " <l = Tl el
|(lo|;1,1 S C3(11P?V1V’) : I‘PIp,l'

Since all arguments are symmetric,

l‘P‘p,l < 04(1’}7) v, V’)I(lol;;,lv
Q*P(E, V) = 09 (E, V).

Assume now r > 2 and (2.15) for 1,2,...,r — 1. Let p € QPP(E, V). Then
Vip= (V' = V)V lp+ vVl

A simple induction shows

V'rtp — Z vi-l (Vf _ V)Vi‘r—itp + V7o,

1=1

Ivfr('plp <G (Z |Vi—1 (Vl‘ _ v)vfr—itpip + |Vr(,0|p) .

1=1

By assumption

1/p
(/ |Vr(p|pdvol) = [V7p|, < .

It remains to consider V*~1(V' — V)V'"~%,. Again iterating the procedure, i.c. applying it
to V'™* and so on, we have to estimate expressions of the kind

Vi (V' = V)V (V- W) Vi (V- )T (2.16)

With 37 4+ g+ -+ + iy = iy < 1.



If we give V, V'~V and ¢ the degree 1 then each term of (2.16) has degree t1+-- -+, +1 =
r 4+ 1. Using the chain and a norm version of the Leibniz rule (cf. (6.10), (6.11) of [9]), we
find that (2.16) splits into a sum of terms each of which can be estimated by

Cornn |77 (9 = D) - AV (7 = 9) [77,

2.17)
n+1l1+.--+n,+1=r+1.

Let r; = r —n;. Then we have to assure (n —2)+---+(Ts—%) 27—2,1i 2720 But

r
;§(T—n.)—s——s r-—(r+1)+s—(8—1) —%:(s—l)(r+1_%)_%20_
Therefore

Pdvol < oo

[

and

IA

1/p
( / v (V' =) |V (V= V)| |V"‘go|”dvol)

Dayon, [T IV (Y = V)| p s - V™0l g5

=]

This yields together with our induction assumption the following ]cpl;,r < C(r,p,V,V')-
||, Hence for symmetry reasons,

|‘10|p,r <D-: |(P|;J,T!
QUPT(E, V) = QOPT (E,V').

ol

Remark: The conditions V,V' € Cg(B;), V' € comp(V) are sufficient. This can still be
weakened. It is sufficient for 2.6 that the connection coefficients of V, V' satisfy (2.5). (Bi)
is sufficient for (2.5) but not necessary. Much easier to prove is the C™-version of 2.9. We
prepare this with

Proposition 2.10. Let (M™,g) be open, E — M a Riemannian vector bundle, Cg, the set of
metric connections Then Cg wears a canonical intrinsic metrizable C™-topology such that
the comp[enon ™CE has a representation as a topological sum

b
b’mC = E (V,'+ ’le(gE,Vg)>.
el
Here I is an (in general uncountable) index set. Moreover , if V € »™Cg, and comp(V) is

its component in "™ Cg, then

comp(V) =V + b’mﬂl(gE, V). (2.18)

The proof is quite analogous to that of 2.8 in [12], but easier since we do not have to apply the
module structure theorem for Sobolev spaces. For this reason we can weaken the assumptions
in comparison with 2.8, K



Proposition 2.11. Assume (M™,g) is open, V,V' € *™1Cg, V' € comp(V). Then

b,m b,m

QE, V) ="""Q(E,V").

The proof is quite analogous to that of 2.9 using (2.16), (2.17), but we don’t use the module
structure theorem for Sobolev spaces. A

3. Uniform structures and their completion

Uniform structures supply the appropriate framework for the definition of an “intrinsic”
topology in the space of bounded maps between open manifolds of bounded geometry. We
give a short outline of the basic concepts and results which are needed later on. Let X be a
set. A filter F on X is a system of subsets which satisfies

(F1)M € F, M, 2 M implies M; € F.
(Fo)My,..., M, € F implies MyNn...N M, € F.
(F3)b ¢ F.

A system U of subsets of X x X is called a uniform structure on X if it satisfies (1), (F2) and

(U1) Every U € U contains the diagonal A C X x X.
(Uz)V € U implies V™! € 4.
(U3) If V € U then there exists W € U suchthat Wo W C V.

The sets of 4l are called neighborhoods of the uniform structure and (X, 4) is called uniform
space.

£ C P(X x X) (= sets of all subsets of X x X) is a basis for a uniquely determined uniform
structure if and only if it satisfies the following conditions.

(B1) If V1,V € £ then V) NV, contains an element of £.

(U}) Each V € £ contains the diagonal A C X x X.

(U3) For each V € £ there exists V' € £ such that V' C V™1,
(U3) For each V € £ there exists W € £ such that Wo W C V.

Every uniform structure  induces a topology on X. Let (X, {l) be a uniform space. Then
for every z € X,U(z) = {V(z)}y¢y is the neighborhood filter for a uniquely determined
topology on X. This topology is called the uniform topology generated by the uniform
structure 4. We refer to [1] for the proofs and further information on uniform structures.
We ask under which condition U is metrizable. A uniform space (X, ) is called Hausdorff if
U satisfies the condition (U; H). The intersection of all sets € {1 is the diagonal A C X x X.

Then the uniform space (X, {) is Hausdorff if and only if the corresponding topology on X
is Hausdorff. The following criterion answers the above question.

Proposition 3.1. A uniform space (X, 4l) is metrizable if and only if (X, 1)} is Hausdorff and
U has a countable basis L. x



Next we have to consider completions. Let (X, 1) be a uniform space, V a neighborhood.
A subset A C X is called small of order V if A x A C V. A system & C PB(X) has
arbitrary small sets if for every V € 4l there exists M € & such that M is small of order V,
i.e. MxM C V. Afilter on X is called a Cauchy filter if it has arbitrary small sets. A sequence
(z), is called a Cauchy sequence if the associated elementary filter (= {zu|v > n}, ) is a
Cauchy filter. Every convergent filter on X is a Cauchy filter. A uniform space is called
complete if every Cauchy filter converges, i.e. is finer then the neighborhood filter of a point.

Proposition 3.2. Let (X, U) be a uniform space. Then there exists a complete uniform space
(Y ,ﬂ) such that X is isomorphic to a dense subset of X. If (X, )is also Hausdorff

then there exists a complete Hausdorff uniform space (Yu,ﬂ) uniquely determined up to

isomorphism, such that X is isomorphic to a dense subset of X. (fu,_ﬁ) is called the
completion of (X,U).
We refer to [16], p.126/127 for the proof.

Let (Y, Uy) be a Hausdorff uniform space, X C Y a dense subspace. If X is metrizable by
a metric p then p may be extended to a metric p on Y which metrizes the uniform space
(Y, Uy). In conclusion, if (X,{l) is a metrizable uniform space and (Yp,ﬂ_p) or (Tu,ﬁ)
are its uniform or metric completions, respectively, then

X=X G.1)
as metrizable topological spaces.

In the next section we will use the concept of uniform structures to give a natural and
canonical intrinsic Sobolev topology for the space of bounded maps between open manifolds
of bounded geometry.

4. Banach manifolds of maps in the C™-category

Let (M",g), (N”',h) be open, complete, satisfying (I) and (By) and let f € C°(M, N).
Then the differential f, = df is a section of T*M @ f*TN. f*T'N is endowed with the
induced connection f*V* which is locally given by

%, = 8 @ (S (0)), 85 =

V9 and f*V" induce metric connections V in all tensor bundles Ty (M)® f*T*(N). Therefore

V™df is well defined. Since (I) and (B,) imply the boundedness of the gi;,¢*™, hyy in

normal coordinates, the conditions df to be bounded and §;f to be bounded are equivalent.
In local coordinates

sup

— g E¥ry 7] fBO. v
v e pg\¥le=suptr?(£°h) = sup ¢ Thy 040, .

For (M",g), (N"',h) of bounded geometry up to order ¥ and m < k we denote by
C®™(M,N) the set of all f € C°(M, N) satisfying

bym m-l
"Uldf] =) sup [VPdf], < oo.
u=0 zeM
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Let 4 be a uniformly locally finite cover of M by normal charts. Then = f* is well defined.
A very simple sufficient condition for f to be € C*™(M, N) is given by

Proposition 4.1. Assume (M",g), (N "',h) open complete, satisfying (I) and (Bi), f €
C®(M,N),1 <m <k, all £5f* bounded, |a| < m. Then f € C>™(M, N).

Proof: For mm =1 this is just the above remark. If m = 2 then the assertion follows from
Vidf = V;0;f"de’ = 80;*dz’ ~ T/, fdz’ +
) . @.1)

T, f+0; fdz?

and (2.4). For 2 < m < k the assertion follows from covariant differentiation of (4.1), 2.2,
performing induction. o

Let Y € Q(f*TN) = C®(f*TN). Then Y; can be written as (Yf(z),,) and we define a
map gy : M — N by

gy (z) := (expY)(z) := exp Yz 1= expy(,y Yy(z)-
Suppose now 0 < § < by < rinj(N) and Y € Q(f*TN) with

b
|Y|f‘h = fgf{'}’}(z)lh,x < é.

Then the map gy as above defines an element of C°(M,N). More generally, if i <

kY™ Y| = Y. sup [VHY|, < & f € C™(M,N) then the map gy belongs to
u=0zeM
C*™(M, N). This follows from the chain and Leibniz rule for expY and the fact (Byg)

implies V¥ (dexp) is bounded, 0 < K < k. The letter is a reformulation of 2.2. Moreover,
an explicit proof shall be given in this section.

We proceed as follows. At first we define a fundamental system £ on C°™(M, N). This
defines a uniform structure 4. We consider its completion (Cwsm(M N ),ﬁ), the generated

topology on C%™(M, N) = »™Q(M, N) and show that each component of >™Q(M, N)
is a Banach manifold.

Definition. Let 0 < ¢ < by < rinj(N) and set

b
V. = {(f,g)If,g € C™"™(M, N) and there exists Y € mQ(f‘TN)
b
{such that g = gy = expY and ’mIYI < 5}.

Main theorem 4.2. The system £ = {V.}, s, is a fundamental system for a uniform
structure il.

We have to prove (B1) — (U3). The proof proceeds in several steps. (B) follows from the
simple fact that for €1 < €2 Ve, C Ve, and Ve, N Ve, = Viin (e, e5) - (U}) s trivial.
Proposition 4.3. £ = {V.}, satisfies (U;).

Proof: We have to show that for every ¢ > 0 there exists ¢/ > 0 such that (f,g)

€ Ve
implies (g,f) € Vi, ie. g = gy = expY,Y € PQ(f*TN),>™|Y| < ¢ implies f =
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fz =expZ,Z € PQ(g*TN) and "™ |Z| < ¢. Let P™|Y| < 6y < rinj(N)/2,9 = gy =
expY,Y € »™ Q(f*TN) and PY(,y the parallel translation of Yy, along exps(,) sYy(s) to
€XPf(z) Yf(z) = 9(z). Then it is clear that —PY € Q(¢*TN) and f = f—py = exp(—FPY).
We still have to show that for given £ > 0 there exists ¢ > 0 such that

m

Z sup

i=0 °

(f*V")iY‘ <é

implies

(g*v") ’:PY‘ <e. (4.2)

m
E sup
i=0 °

To prove this, i.e. to show the existence of such an £'(¢) we need a very long series of
propositions.

According to (By), ° |RN ] < oo, we have an upper and lower bound for the sectional curvature
K = KN, 6§ < K < A. Here we choose A > 0,6 < 0 such that u = (§ 4+ A)/2 < 0.
Moreover we assume 8y to be chosen < m/2v/A.

We have to estimate |V PY|_, i.e. ( > |(VEPY) (6, G,) |2) where b1,...,0, € T, M

is an orthonormal basis. By definition, for a tensor field K

(VEE)(X1,... Xa) = (Vx, (V* 1K) (X1, Xu=1).

yenny

Then V*K is well defined if V*~! K is well defined. Consider u = 2. Then (V2K)(X,Y) =
(Vy(VK))(X). An easy calculation shows

(VixK) = (V2K)(X,Y) = Vy(VxK) -~ Vy,xK. 4.3)
We see, V4 y K = (V2K)(X,Y) can be expressed as an iterated derivative of second order

and a derivative of first order including an Y -derivative of X.
Proposition 4.4. Vi K = (V'K)(X\,.,Xy) has a representation

(VEK)(X1,.., Xu) = Vx, --- Vx, K + lower order iterated (4.4)
derivatives including mixed derivatives of X1,..., Xy_1. )

Proof: For u = 2 this is just (4.3). Assume the assertion for 2,...,u — 1. Consider now
VK.

u—1
= Vx, [(V* T K) (X, X)) = D (VUK (X3, VX, X0, Xacy).

1=1

By assumption,

(V* 1K) (X1, Xuo1) = Vx,_, -+ Vx, K + lower derivatives of K,
including mixed derivatives of the X Xu_1.

12



Therefore
(VEKNX,. . Xu)=Vx.Vx,._,  Vx, K + Vx,(lower derivatives of K)

=Y (VIR) (X, Vx X, Xan),
1=1
which establishes (4.4). o

In conclusion, we can estimate |V*PY| if we can estimate Vy, ---Vx PY. Since
VxivVx_y = (VX)2 - (V’y)2 + VyV,; — VxVy and the curvature together with
its derivatives is bounded we are done if we can estimate V5 PY. Let z € M, X €
PRO(TM), {€(t)} _ji<y be a curve in M with 2(0) = z,5(0) = X, and set f(t) =
foé(t). Then f(t) is a curve in N with f(0) = f(z). According to our assumption
f € C®™™(M,N), (Ht_"f( )),0 < u < m — 1, are bounded by a constant independent
of z € M and depending only on ™ |X]|.
Consider Y € *™Q(f*N Jand the 1-parameter family of geodesies s — c(s,t) = eXpy,
¥4,)- This family defines Jacobi fields s — Ju(s) = #c(s,t). J(s) = Jy(s) satisfies the initial
conditions J¢(0) = f(t) Ji(0) = EV—J,(O) = azg‘ch-o = g——;-cls_g = 3- F(r)- Moreover
Jt(l) = F(gyoc(t)),-a—](l (Pyngoc(i ) Fort =10 VXpY 3-.]( )|t_0 We want
to estimate

. v\ v\*“lv
Vi Py = (a) (PY |yt ec = (5—5) ~ (Dhas.

For u = 1 we have to estimate J;(1), for u = 2

\YAAY \AAY
313571 = o5 0((1) + R(J(1), €) (1))

and more general with BVT = Vt,'g; =V,

V“PY = V{TIv,a(1) =

45
V,ViTl(1) +Zv" SR(J(1), ) Vi (D). @
i=1

We derive from (4.5) that estimates for V{Jt(l),O <7 £ u—2,and for V,Vi~1J(1) deliver
an estimate for V¥PY. As we shall see below, the V] J; are inhomogeneous Jacobi fields.
Their initial values are given by

Vi4(0) = VIf(1), 4.6)
, _ i .
V,ViJi(0) = ViV,Ji(0) = > Vi R(J(0),¢) (Vi J(0) =
; =1 (4-7)
= vty = S Vit R(F ), Y) Vi),

1=1

13



Therefore we have to solve the following problem. Derive estimates for the endpoint and
its derivative of a homogeneous (u = 1) or inhomogeneous (u > 1) Jacobi field, if the
initial values are given. In what follows we assume, according to our construction, that

bmlY| < by < rinj(N). The case u = 1 is very simple.
Proposition 4.5.

V(PY)| < C[IVY]+ IYP(9Y] +1)],

where C = C( |R|7 ln_]( ))blf*l)'
Proof: Let P be a parallel unit field along s — ¢(s,t). then
(J'(s), P)' = (J"(5), P)-
1

Integration [ ---ds gives
0

1 1

(J'(1), P) = (J'(0), P) =/ (J"(s), P)d ] (J,¢)d, P)(s)ds,

0 0
from which we derive easily

1

FWl< 7O+ [ il

0

since P was arbitrary. According to [2], p. 98,

17(5)] < 19(0)] cosh (VIEIIY |- s) +]'(0) sinh (V/IBTYT )
< ([7w)] +19:¥1) = Pu,

where we used |Y| < r; :(N). (4.9) and (4.10) yield

mj(
1

] <1+ [ IRy E([F] + 9y)as

0
<G+ Y19+ [70))),
fort =0
1) ool = 19x(PY)] < ([IVYT+ YWY+ 1)]1X],
V(PY)| < C[IOY|+ Y I*(IVY]+1)].

For u = 2 we need an estimate for J'(s) and we need to sharpen 4.5.
Proposition 4.6.

|[7(s)] < c[Ivay |+ 1Y P (191 + 7))
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Proof:

(J'(s), P)" = (J"(s), P), integration / gives
0

(J'(s), P) ~ (J'(0), P) = — / (R(J,)¢, P)(0)do

|7'(s)] < c[|v,y| +Y (V] + ‘?D] = P

o

To clear up the general structure of the procedure we illustrate the case u = 2. We start as

1
above with (V,V,J, P) = (V,V,V.J, P). Integration [ ---ds gives
0

1
V.VI(1)] < [V VI(0)] + / V.V, V2d|ds <
0

1
< [V.9.0(0)| + [R(<, J(0)) I (0)] + / IV, V.V, J|ds
0

1
=12
<92v ]+ IR w1 [T+ [ 1920jas
0

Now, according to [11], p. 149,

VH(VJ) + R(VJ, ) = —=R(J, J),

where R(X,Y) = (V,R)(X,c)Y + (ViR)(Y, )
+2R(X,¢)V,Y +2R(Y, )V, X.
The initial conditions are
V. J(0) = Vif, V.V, J(0) = V,V,J(0) + R(c, J(0)) J(0)

=Viy + R(Y,?)f.

4.14)

(4.15)

4.16)

(4.17)

To complete the estimate (4.14) we need an estimate for R(J, J) and V,J. The estimate for

R(J,J) is very easy,

b b
IR(J, )| < 2" |VR[IJHY P + 4 |R|JIIVLJIY] <

<[]+ 1wart)" e+ (7]« ) (oot (vart +[7])) ]

= Ro([7], 11, 19e¥1).
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We remark that Ry contains only derivatives of Y of 0-th and 1st order, is of order < 2 in
|V:Y| and each term has {Y| or {V,Y| as a factor.

Now we start to estimate V;J. For this we decompose (4.15), (4.17) into two problems:
the homogeneous equation with inhomogeneous initial conditions and the inhomogeneous
equation with zero initial conditions. The sum of the two solutions is the solution of (4.15),
4.17).

We estimate the solution of the homogeneous equation with inhomogeneous initial conditions
as follows.

Ve (s)] < [VeJ(0)] cosh (\/Wm )+|v V,J(0)| sinh (\/Fm 3)

<G th?( +|3v] +v([7] ] 4.19)

The inhomogeneous equation with homogeneous initial conditions shall be decomposed into
the tangential and normal equation for (V,J)™ and (V,J)". The tangential equation looks

((th)r)T)" = _'(m(‘h J)?T)’T = ﬁ’
which implies
s s
VtJ f/ (J,J |ds"d /]Rgds"ds' < Cy - Ry. (4.20)
0 0
Let = Ry. Then according to [15], p. 269, [11], p. 150/151
(V)| L€, @.21)

where ¢ is the solution of the equation
€' +8|Y %€ = 1,£(0) = €(0) = 0.

An easy calculation gives

sinh (\/—|Y|3) /cosh (\/15—||Y| . 3) - nds

(V< — 75
cosh (\/|T|Y|s)
VIgllY|

< Cs - Ryp. (4.23)
Addition of (4.19), (4.20) and (4.23) yields

(4.22)

o\.

sinh (\/WH’I . s) - nds

V| <Gy []vff’] + ||+ |Y||?|z] +Cy-Ro+Cs- Ry =
4.24)

=P01(;a

Y|, |v3Y|).
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We observe the following important properties of Fp; :

1. Py is linear in [V7Y].

2. Py; is of second and lower order in |V,Y|

3. Py is linear in |V¢?’ and contains no products of
|V:F| with |91, [V3Y .
Now we can continue (4.14) and obtain

1
IV?YI + bIRIIYlmz + / (b|R| Py - Y + R{))ds <

0

=2
<C [IV?YI A YI[F] + Py + Ro].

VsV (1)] <

Analogous to the generalization of 4.5 to 4.6, we obtain the more general result

19.923(6)| < Ca |93+ [T + P -1V + o] =
= Py (‘?| |v,?|, Y|, VY], |V,2Y|).
P11 has the same properties as Py and a further property.
4. Each term of Pyjhas |Y| or [V,Y| or [V2Y| as factor.

The main step proving (U3) is the following
Proposition 4.7. Assume j < m — 1.

a. There exists an estimate

|v{y‘ < Po,(m,]v,?],...,‘v{?|,|y|,|v3",..., vitly

)

where Po; is a polynomial with the following properties.

1Py, is linear in ‘V{“y’.

2. The proper derivatives can be arranged as
E Cioil...;j|Y|i°|V¢Y|il . \V{Y
f14204+54;<5+1

with Cj,..i; = Cio---i,-(

1

- - b b .
f{,...,\v{f|,rinj(fv), IR|,..., |VJR|).

3. Cj,...i; is linear in |V‘,’T|
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(4.28)

(4.29)

(4.30)

(4.31)
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4. The proper derivatives of -f can be arranged as

f"“"v,?‘ B ’V{-{-l?lk’._l

Z Dkohu-k,-_; 7

ky+2ky o (j=1)kj_1 <5

with Dgoky. ;s = Digeokyy (b|R|,. - b|VjR|,rinj(N)).
5. Monomials

i I i R R LA TER

containing proper derivatives of fand Y have total degree ki + 2ky + -+ + (7 — Dkj—1 +

o+ 20+ 4l < ).

b. There exists an estimate

lv,v{J\ < P,-(*,

(4.35)

(4.36)

y )v{?‘, Yl,..., lv{‘IYD. (4.37)
where Py ; satisfies 1.-5. and the following condition.

6. Each term has at least |Y| or some |VfY

as factor. (4.38)

Proof: For j = 0 this is (4.10) and(4.13). For 7 =1 this is (4.24) and (4.29). Assume the
assertion for 0,1,...,7 — 1 and consider V]J. According to [11),p. 152, (2.38),
VIVI T+ R(V{J, c') y
- - - 4.39)
=-9(s,vi7) - VR (4, V] 7)== VIR, = -y
with initial conditions
. (. . . j . + .
V3J(0) = VI, V,ViJ(0) = VIV.J(0) = > ViT'R(J(0)) Vi1 (0) =
; =1 (4.40)
= Vity - Y ViTR(F,Y) VT
=1
We decompose once again (4.35), (4.36) into the homogeneous equation with inhomogeneous
initial conditions and the inhomogeneous equation with zero initial conditions.

The estimate for the homogeneous equation with non zero initial conditions is very easy,

vid| < |V{J(0)lcosh (VY| ) +|V,¥i9(0)| sinh (VIBIIY1 - 5)

< vl

(4.41)
e+l ¥ (o
11+J:+Ja<1 1

vl

We decompose the inhomogeneous equation into the tangential and the normal equation.
Quite analogous to (4 20),

v’ ’<][ R(J), Vi) +HVR (S, 91720 )+ TR, ) ds"ds'

18



Therefore we have to estimate
v;‘m(J,va),i+k =1

This shall be done by considering the 4 classes of terms corresponding to the decomposition
(4.16).

a. 1 (v{* v,R) (v, V{“c’) vig

<

Ja-1 ) . . .
< ‘V{‘V,R -‘V{’J -(lv,v{a‘IJ\+Z|vga‘1-'R(J,c')v;-1J|) : ‘V{‘J <
=1
<pic P [Pt 3o |VER||VEI||Oie||wia] ) - |vit
t14iatiatia=ga_1
SpricPogp | P + > poy + Poy - [V 'Po.i.) |V3‘J ,
114423 +14=J3-1
(4.42)
where j) +j2 +73+71 = j— 1. Here po ;, p1 ; are polynomials in °|R], .. ., b|V‘+1R|, ]_f- yeees
LZi*l'f Y1, .., [V;Y| linear in |V}Y|, ‘Vi‘lfl and satisfying the conditions 1.-5., 1.-6.
is follows from 4.4 and the induction assumption.
Using
. ) -1 ‘
Vid =V, VeI 4 ) VP R(C, )i (4.43)
=1

and our induction assumption, we see that |‘\7]';3 c'| can be estimated by P;,i3_;+ lower order

terms.
In conclusion, (4.42) can be estimated by
Y Ciriasain
h+irtiatii=5—-1

Yo Ciiyi YRV IV{Y
+2ig+-+i6<5

viv||vitty||viy || vity]+

]
= Rﬂ:jl lj2)j3 lj! *

Writing down only the highest order terms of the t—derivatives of Y and ?, we have

co. (ot i)
. (‘v{ay| + V{LI? Y+ ) (|V{‘“Y| + IV{‘f;

Vi V,R

|vir - || v

|V{‘J <
vy

VY| +

)
)

(4.44)
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Next we have to estimate

b. |(v{' ViR) (Vi V)it <
< Vi R|| Vg ||vie||vite
< P05uan - Foga VSV:G_IJ + Z Vis_l_iR(C” ‘])V;_IJ )
i=1
' Ja-1 _
VsV + Y VIR(, )V
i=1

< Z ijj:jaj4 :

Ji+iztiatia=i—1

+ Z C,’o,',...,')- IYI'-[’ |V,Yli1 ... 1V{Y
i1+2i 4 5i5<g
Analogous to (4.44)

Rb,jh.fmja.ﬁ' =C- (lV‘ZIYI + lV‘:l'l?| + - ) (
(|vry |+ [V + ) |y

viny||viny||vRy||viv|

i
= Rb,j, 132,J3,J4

viny| 4 [ort

b

+|wi= T+,
(4.45)

if we write down only the lightest order ¢-derivatives of Y and T

o|(ViR) (Vi Vi) Oiv, v

< poj - Pojy - [VE'C

A
S Y Cippa |ViY||[VEVY||OPY||ViY
n+itia+ia=i—1
oo,y |1 iv]”
+ D Cang YOIV \VtY| = Feji,jaisios
i1+ 2inbkji <
where R, ;, j....5, Satisfies an equation analogous to (4.44), (4.45).
d. Similarly,
}(V{lR) (V{ﬂ.], V-{JCI) (V{*V,J)’ S Ry, dainie
with the same structure as the other R's.

This proves, summing up all cases a.-d.,

|(V{J)rl <Cy- ( Z Ciijagais
. 1

N+ +i=g—

viny||viny||vpy||viv]+

Y Caiei WOV |V = o Ry
i1+ 260+ ji; <) (4.46)

= Cs( V{‘+‘Y| + lv{1?||y|€1 i ) (’v{?ﬂy‘ ¥ |v{=? V| 4 )
(|wpr|+ el + ) (joir] + e+,
e =0or2.
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Similarly, ,
1(vg.7) | <Ci- Rimy (4.47)
(4.41), (4.46) and (4.47) imply

eofzallmlopei s ¥
Stiatia<i-1
+(C2 + C4)R;j—1 = Po;.

P,; has the desired properties 1.-5..

vig||vir

‘V{“Y

(4.48)

To prove 4.7. b., we first remark, that each term of R, Ry, R., Ry has at least Y| or some
|V,K Y| as factor. This follows from the fact that each term of a.-d. contains Vic' whose
estimate produce by induction assumption on V,V*~1J by means of Py ;_1a factor of the
desired kind. Consequently, each term of R; has at least |Y'| or some IV{( Y| as factor.

Now

V,viJ| < IV,9J0)] + / (bIRllva‘ P +R,-_1)ds <
0

< |v{+1y| + i ]v{-"R(c', J(O))V:*IJ(0)| +Cy (PO,,- IY)? + R,-_l) <
i=1

<G||[vify|+ X |ViY||VET||OET| + Pl P + Rimt| = Pu.
Jitiatia<i—1
Hence P ; has the desired properties. o
We complete the proof of 4.3 by
Proposition 4.4. Assume ¢ < m < k. Then
|ViPY| < Py, (4.49)

where P,,(bIRl,. .., b|V™R|, |?(t)|t_0|,...,‘Vf‘l?(t)lt_ |,|Y|,...,|V§{Y|) is a polyno-
mial with the properties 1.-6. for t = 0, i.e. it is linear in v Y| ol = IV“XPY|, linear in
lVf—IT(1)|t=o| etc.
Proof: For 1 = 0 we have |PY| = |Y| = Py(|Y]). For x =1 this is (4.11), (4.12). Assume
the assertion for 1,2,..., x4 — 1 and consider
VAPY = ViV, J(1)]i=o-
u—1
VIP =VTIV,J(1) =V VET 4 YT VI R(I(), (1) VT (1),

1=1

fort =0
IVYPY|< Piycthma+ Y (lv{*R| . |v{=J
ntptiaj=p=-2

: |v{°PY| : \v{‘J

) <
=0 —

S Pp-ile=0+ Z Po, J1lt=0 * Pojzlt=0 - P}y - Poj|i=0 = Py.

fNtiatiaja=p—2

(4.50)
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According to 4.7, the right hand side of (4.50) is a polynomial of the desired kind. =
Now (U;) follows immediately from the continuity of polynomials and from the fact that
polynomials without constant term have arbitrary small absolute values. o
Our next task is to prove (U3). Let f € C° ’“(M N),g = gy1 =expY1, V1 € Q(f*TN)
bmYi| < 8y < Tinj(N)/2,92 = exp¥2, Y2 € Qg TN), "™ Yy < 6y < rmj( )/2. Then
there exists a uniquely determined Z € Q(f*TN) such that exp Z = exp Yz. (U3;) would be
proved if we could establish

™2) < Qm(bIV‘i’ll,bIlele),i,j —0,...,m, @.51)

where @, is a polynomial without constant term.
As in the case of (U3), we reduce the problem to the estimate of V% Z.
Letze M, X e} mSUTM), {T(f)} ;<11 @ curve in M with T(0) = X,¢(0) = X, and set
F(t) = f-&(t). Then f(t) is a curve in N with f(0) = f(z). According to our assumption f €
C™(M, N), all E’t—tf—f(t) = V"f,O < p <m—1, are bounded by a constant independent
of z € M. Consider moreover the curves 7,(t) = expY) o ¢(t) = eprlf(!),gz( ) =
exp Yz 0 Z(t) = expy (1) Y2,5,(t). Finally let Z(t) = exp?(i)g2( ), Z = Z(0). Then it suffices
to estimate V}Z = V?Z(t)|t=o.
Let c(s,t) := expy, (s-exp?(lt)ﬁz(t)). Then s — J(s) = Ji(s) = Fels, ) is E.i Jacobi
field along the geodesic s — ¢(s,t) from f(t) to Fy(t) with J;(0) = £¢(0,t) = F(t) and
Ji(1) = Zc(1,t) = Fo(t). We have g;exp?(lt)ﬁz(t) = %Z(t) = -g;-aa;c(ﬂ,t) = g—’;%c(ﬂ,t) =
4 Jt(O) = JJ(0), fort = 0V xZ = J'(0)|e=o. Consider (3% )ZZ(t) F(ZZ(t)) = FJ3(0) =

3-.];( ) + R(J:(0), ¢ )Ji(0). The knowledge of Jt(O),a—B-J,(O) implies the knowledge of
(3)z (t) Therefore we have to study the inhomogeneous Jacobi field 37J and to conclude
from 3-.] (0); -3—.] (1) to the derivative 3;(3-.] (0)), i.e. to conclude from the boundary values
of an inhomogeneous Jacobi field to the first derivative at the left endpoint. Write again
-g% = Vt,gv; = V,. Then

VEZ(t) = VIV, J(0) =

u—1
=V, Vil(0) + ZV““ ~'R(J(0),¢)ViT1J(0). (4.52)

=1

According to our construction, V{ J(0) = V{T Therefore we have to study the inhomoge-
neous Jacobi field V{'~1J and to conclude from the boundary values V{~1(0), V¥~1J(1) to
the first derivative V,V¥~1J(0). Unfortunately V¥~1J(1) is not explicitly given. We can
only establish estimates for it.

Letd(s,t) = exp (s- ¥, 7 ), Ji(s) = §d(s,1). Thend(0,8) = T(1),d(1,£) = 71(8), J}(0) =

£ 1) = §,V.JH0) = ViYh. Let £(s,1) = exp (S'YZ,E,(t)),Jtz(S) 83(3 t). Then
€(0,t) = Gy(t) = d(1,1),£(1,1) = 9,(1), J}(0) = g1 = J} (1), VaJF(0) = ViY2.

Lemma 4.9. _
W) < C- [[f]+ 19311+ 19232l (4.53)
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1[[720)] +|7#()]] =

Proof. J(1) = £c(1,t) = 1) = J¥(1) =G, But [J?| < C
TCZ( )+ Vi + |V1Y2|]

a7+ 72| < aGo[f| + 1vinl) + vl < ¢ [[f@
Corollary 4.10.

1< C[[F] + 198l + 19:¥al) = Qoo @.54)
(with another C in 4.9).
Proof. According to [14], p.29, (2.28), for 6y < 7/2 VAsin (\/K- |c'|) J(s)| <
sin (VA 1¢]s) - [J0)] +sin (VA - [¢]- (1~ 5)) - |7(0)]. Using 49, 17(0)| = 7
dividing by sin v/A - || yields the assertion. o

Lemma 4.11. Let s — c(s,t) be a family of geodesics, J(s) the corresponding Jacobi field
and o, the parallel translation from c(0,t) to ¢(s,t) along s — c(s,t). Then
1

f| and

b
|mo1J(0) — J(1)] € "|R| - /3|c’[2|J|ds + ') (4.55)
0
Proof. .
(J(s) — m0sd (0) = J'(s)) = s R(J, ),
b -]
99 = moxd ) = s 6)| < “1RI- [[s- | s,
(4.56)
b 3
|J(8) — mas J(0)] £ |R]|- ]s - |c'|2|J|ds +s-|J'(s)],
0
i.e. for s = 1 the assertion. o
Corollary 4.12. Let 7, or 7f; the parallel translation along d
or £, respectively. Then
787 =51 = |#,1(0) = ()] <
2 [l . 4.57)
<ciml[[7] + 1vanil] + P,
76191 — G2| = [75:17%(0) — J*(1)| < @58
< WP [[F|+ 9] + IVival) + P, |

where P o is the estimating polynomial for V,J, i.e.
Pl =G|l + WP (19l + [7]) ] Pl =
Ca[1vaval + el (|93l + [90vi] + [£])]-
Proposition 4.13.
|7'0)] < ¢l - 1Yl + M *([ 7] + 19ai]) +
+ IVl + %P ([7] + 190 + (Va33]) +V.val+ (4.59)
+ (vl + Wl [([7] + 191+ 19al) .
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Proof. For every parallel unit field P

(J(s)+ (1 = 8)J'(s), P) = (1 —5)(J", p) —(1-38)(R(J,¢)<, P),
(J, P)(1) — (J,P)(0) - (J', P /(1 — s)(R(J, )¢, P)(s)ds.

We obtain, since P was arbitrary and since

‘7701?"?2|=I?—1T10?2l
1
7O < [rof -] + [ 1Rl s <
0
< |rorf = | + Cuil + WD) - ([7] + 1901+ (V.al),

|7r01f 92| < | curvature term | + ‘7’017"01f 6T + TG — 92| <

(4.60)

< | curvature term | + |7r01f —gll + |1r0191 —gzl-

According to {2], p. 92/93 and the comparsion theorem for the surface of geodesic triangles,
we find

|curvature term| < Cy - V1] - |Y2] - ’-f-|
Using the estimates (4.57), (4.58) and summing up yields the assertion. K
Corollary 4.14.
IVeZ(t)] = |J'(0)] < Quo=Qs (4.61)

where Q] o is a polynomial linear in 7 , |V, [ViYz|, without products of |VY1| and|VYa)
and such that each term has |Y1| or |Yz| or |ViY1| or |V:Y2| as factor. x
To indicate the general procedure, we still want to estimate VZZ(t) = V,J'(0) = V,V1J(0)+
R(J(0),c)J(0),ViZ(t)|t=0 = V%Z. For this we still need an estimate for J'(s). From the
proof of 4.11 immediately follows

3

|7(s)] < {WO,J(O) 1+ [ 1Al |a12u|ds] /s.

Repeating the procedure (4.60), we obtain
|/'(s)| < C- Qo= Quyo- (4.62)

As we shall see a little bit later, an estimate for VJ enters essentially into the estimate of
V,sVJ. More generally r, an estimate of V V,J enters into the estimate of V’ J. Therefore
we start with an estimate for V,J. The defining equation is

V2VJ + R(ViJ,d)d = —R(J, J),

- _ (4.63)
ViJ(0) = Vif,ViJ(1) = Vig,.
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We decompose this problem into the homogeneous equation with inhomogeneous boundary
conditions and into the inhomogeneous equation with homogeneous boundary conditions and
start with the homogeneous equation

V2iViJ + R(Vid, ) =0,
ViJ(0) = Vif,ViJ(1) = Vig,.
Then |V.J| £ C) ”VJl + |Vt§2|]. Therefore we need an estimate for Vg, = Vi J%(1).
|V 2| < Co[| V2 (0)] + [V, Vi T3(0)]],

i.e. we have to estimate V,J%(0) and V,V,J%(0). Since V;J%(0) = V,J}(1) we have to
estimate V,J!(1). According to (4.24),
1 ¥ 2 =2 ] 1
ie.
|V J2(0)| < Py (4.65)
We have
| V.V J3(0)] < |VEY2| + |R(<, J2(0)) J*(0)] <
- 2
< caIviv]+ il @] < ¢ [193wl + i (7] + 19l)

(4.66)
= 2
V@) < ¢y [Po‘l +|Vive| + ) ([7] + 1vanil) RS] = P,
hence for the homogeneous equation belonging to V,J
Vi) < C[|ViF| + PR (4.67)
Consider now the inhomogeneous equation with homogeneous boundary conditions,
ViV, )+ R(VJ, ) = =R(J, J),
ViJ(0) =0 =V, J(1).
For the tangential equation
d c
v.J) ) —(m J,J ‘,—)
(' 5 I
we obtain immediately with
_ s{l-0), 0<s</
Gls, ) = {(1—~s) d<s<1
. :
/ G(s,0)(~R(J,J)",T)do, T = ¢ /|| (4.69)
0

1(W) \ <C-Re.

25



Let us denote for a moment (V,J)” = J. Then we have to study
J"+ R(J,d)d =J"+ R(J, ) - ,u|c'12J + plc’|2J = —RY,

Remember § < K < A,§ < 0,p = &2 < 0,6 = 272 > 0. Consider additionally the
equation
A" 4 puld|PA = -R, A(0) = AQ1) = 0.

Then, according to [15], p. 267, (28),| (u|c’|2J — R(J,d)d, P)‘ < eld|* - |J] = AlJ|, which
implies

|(J — A, P)" + ||} (7 - A,P)l <e|ld|P - 1] = A
Consider the equation

B + ul|*b = AlJ], b(0) = b(1) =0, 4.70)

set (J — A, P) —b={},K = /]u]|¢}, sx = sinh (K - 5). A very easy calculation gives
(/sx) =57 ] (0" sk = Ok )ds

= 572 / (0" +p{})skds < 0
0
since {}"+u{} < 0. We conclude from s {(J — A, P) — b}(0) = 0, (s ' {(J - A, P) - b})' <
0 that (J — A, P) — b < 0 for arbitrary P and all s, ie.
|J — A< b,|J] < b+ Al 4.71)
4.70), (4.71) imply

b+ plc'|2b < 5|c'|2b + slc’|2|A|,
o' + (u— s)lc'lzb < €|c'|2|A|.

Consider

Quite analogous, b—a < 0,b < qa,
|J] < |A] + a.
Therefore we have to study and to estimate A and a. The equation

(A, P)" + u¢[*(4, P) = —(®*, P)
(4, P)(0) = (A, P)(1) =0

4.72)
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has Green’s function
sinh (K-s)sinh (K(1-0)) < < 4
G ,1=G ,,aK =—< _ A sin ’ P
(s,c) (s,c ) { mnh(K-I?:;;lggK(l-’)l’ c<s<l1

1
(A, P) = f G(s, 0, K)(R, P)do,
0

|A| < Cy - Ro.
Quite analogous with w = /|u —¢||c|
1

a=/G(s,a,w)s|c’|2|A|d0',
0

a < Co(Ia| + [V21)*|A] < Ca(IV3| + |¥a])* Ro, 4.73)
(V)] < Ca[Ro + (W1 + al)Ro),

[Ved) < C[|Vif| + P + Ro+ (Vi + [¥al)’ Ro] = Qur.

Remark. We don’t use the notation Fp; since we consider J, ViJ, ... as defined by initial
value problems.

Now we are able to estimate V,VJ(0). =
(Vid + (1 = 8)V,Vid, P) = (1 — 5)(VEiVyJ, P) =

= —(1 - s)(R(ViJ, ) + R(J,J), P),
1

- . b
IV,VI0)| < [ra9.F - Vigo| + [ CIRIGYI+ ¥6)° - Quuds+
0

1
+/R0d8 S
0

< I"'Olvt}: - Vt?gl + [Ro + (1] + |Y2|)2Q01]~
It remains to estimate Iﬂ'[)]Vg?— V‘%l'
Lemma 4.14. Let J be a Jacobi field along s — <(s,t),J defined by an initial value problem.

Then
701V (0) — ViJ(1)] < [Ro + P|YIE+ Pn].

Proof.
(Ved(8) — m0s V1 J(0) — sV, V1 J(3)) = s(R(V.J, &) + R(J, J)),

b
IV (8) = T6s Vi J(0) — sV, ViJ(3)| < ] s( |R||V,J||c’|2 + Ra)ds <
0

<Gy (Ro + P01|Y|2),
IV J(1) = 101V (0)] < C; [Rg + PoulY [ + Pua-
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We apply this to J! and obtain
|1rglvj— v,§1| = |71 Vi (0) - VI (1)] <
< Cs [3111 +P011|Y1|2+P111],
Iﬂglvtgl - Vt?zl = ‘ngVth(O) - V1J2(1)| <
< Cy [3121 +P021|Y2t2+P121]-
It follows
V.V (O)] < Cs [ IVl 1Yal - |[ViF| + Ry + PPy + Phy+

) 3.2 ) . . 4.74)
[+F3 + V2" P& + Py + Ro + (Vi + YD)’ Q1] = Q.

More generally,
IVsVe+ J(3)| £ C- Q1 = Quu. (4.75)

We have to analyze Q;.

P, Py are polynomials in  [f),|V4f], i, [Vavi], |V3Vs ],
P0211P121 are p01yn°mials in I-g_l ) thl » IYZL |V¢}’2|, IV%YZL
Ry s polynomials in |7} ik, 19233,

Rg is polynomials in |?l|a IY2|') |Vt},2|'

H

I
7

Ry is according to (4.54), (4.62) already a polynomial in

ing [5:] by P, |Vid1| by PY, we obtain Q1 = Qui (
1,2, as a polynomial with following properties.

1. It is linear in |V,2Y1|, |V§Y2| and contains no product |VfY1| . |V¢2Y2|

, 11, |Y2|{ViYi|, |ViYz|. Replac-
|t i, v, 93w i =

(since this holds for Pg,, Py, P&, Ph). (4.76)

2. Tt is of second and lower order in |V;Y}|,|V,Y2|

(since this holds for Ry, Pgy, Ply, RS, P&, Ph, Ro, Qo1)- 4.77)

3. It is linear in |V¢?| and contains no product of
Iv,?‘ with |V, Y|, |V2Y;]. (4.78)

4.Each term has |Y;| or |V,Y;| or |V?Y;] as factor . (4.79)

Therefore we obtain
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Proposition 4.15.
|ViZ(1)| < |V,V,J )|+ [R(J(0),¢)J(0)] <
< Qu + "RIGYi |+ b [7]

Corollary 4.16.
IV% Z| < Quili=0 + C(IYa| + |Y2))|Flt=0]? = Q2 (4.80)

where Q2(|?L_0|, vt?|t_0|,|y.-|,[vzy,-|),z' = 1,2, is a polynomial satisfying (4.73) —
(4.76). - - x

Now we are ready to prove

Proposition 4.17. Assume pu < m.
There exists a polynomial Q, = Q, (|f| ‘Vf_l?
such that

Qu = C[(IV4%] + |Vial) (1 + (%l + 1¥2D)?) + |2 Flaval + val)?] +

~tko . i _
+ Z Cklufoi1"'ip_1 ‘f\ |Y1 |m|th1|u . ’vf

i1 +2ig e H(p=1)iy oy =4

+ Z Czo,'o,',...,‘p_l

i 42ig4 - Hp—1)iyy =

R AN AR AR 1))

e L i —1y, [
A AL /e d

ko ) A . .
10 J0 11 n
+ > erimem 1 I E M T AT A
i+ +200+02)+ (8= w1+ Jum1)=p
- iu—l — j#—l
|v:J v viTly,
123 =1k o Jo
+ Z Clo]okol;];k], lp..qj,,._:k“_gi“_lh_._l f‘ |1/1| |Y’2| ’

Sy Aig e H(p=1)i
+i1+ i+ (u=1)jy 1+
+hy+2kg 4 Hp-k, g

|ty wi’

or

(4.81)
where each term has [Y1| or |Y2| or some IV'Y1| or |V’Y2| as factor and the coefficients C'
depend an *|R), ..., |V*R| and "'mj( ).
Proof. For g = 0 this is just [Z(2)] £ |Yi| + |Y2|, for 4 = 1 or 2 this is 4.14 or 4.15,
respectively. Assume the assertion for 1,2,...,u — 1 and consider V} Z(¢). Now

VEZ(t) = VIV, J4(0) =
= V,ViTU0(0) + Y VI R(J(0),¢) Vi (0),
=1
viz(t)| < |[v,9t" bol+ Y |viR||viT
J1tiatiatia=p—2

(4.82)

vi7

29



Therefore we have to find estimates for V,folJ(O), and V{‘R,jl < p — 2. According to
4.4, the estimate of V3' R reduces to that of Viy,j < p — 3. Therefore we have to estimate
VIJ and V,V¥71J(0).

Proposition 4.18. Assume j < p — 1. Then

a.lv{J| < Quj, (4.83)

b.IV,VJ| < Qy;. (4.84)

Here Qoj = C UV{'HYI‘ + |V{+1Y2’ + ‘V{T] + 3 Cry..t;{}, where 3 Ci,..t;{} consists
of terms

i i 2
AR

;-1

ke .
7] il

.|vg-’f ety vy ’lvgyz Y vm' ’

of total degree i1+ k1 +014+2(ta + k2 + £2)+- -+ (5 - )(Zj-1 + kj-1 + lj._1)+j(ij +4;) <
j + 1, where terms containing proper derivatives of f have total degree < j. @1,; has the
structure (4.81) replacing p by 3 + 1.

Proof. For j = 0 or 1 this is (4.54), (4.62), (4.73), (4.75). Assume the assertion now for
1,2,---,7 — 1 and consider V;J. V;J satisfies the boundary value problem

ViViJ 4 R(V{J, c’)c’ = _m(J, v{‘lJ) - v,m(.], v{*{]) o
—VIT'R(J, J) = -R;1,
ViJ(0) = Vif,ViJ(1) = Vig,.

We decompose this problem once again into a homogeneous equation with inhomogeneous
boundary conditions and an inhomogeneous equation with homogeneous boundary conditions.
For the first equation we have the estimate

vid| < ai[|viF|+ | vig. (4.85)

The second equation we decompose into a tangential and normal equation. For the tangential
equation

. T "
((viv) T) = —(R"j-1,T)
we obtain quite analogous to (4.69)
|(viv)'| < Coftyer. (4.86)
For the normal equation we have to consider
A + plc’le _ _m;’—la
A(0)=A(1) =0
and
a+(p— €)|c'|za = 5|c’|2A
a(0) = a(1) = 0.

30



Then

1
(A, P) = /G(s, 0, K)(-R?_,, P)do,
0

Al < Cs - Ry, (4.87)
a < Cy(IYa| + ¥2))*|A] < Cs(Ii] + |Val) Ry,
|(v49)"] < Co(Riwt + (Wil + VaD)* Ry 1),
summing up (4.85) — (4.87)
|Vid| < ©|[|ViT| +|Viga| + Ricy + (Wil + 1¥al) B . (488)
Consider
(Vid(s) + (1 = )V ¥iI(s),p) = (1= )(VEVII(s), P) =
= —(1 = )(R(Vi,¢)¢ + R, P),
|V.Vid(0)| < [rVif - Vig| + i [|[Vid|[(mil + e + R ] < @s9)
< l?rmvﬁ— V{§2| + C, [{lvﬁl + Rj-1 + |V{§2l + (Y] + |Yzl)2Ri—l}'
[ (il +1%2D? + Ry,

Therefore we have to estimate’vrmViT — V{jz

,|V{§2| and to find the right expression for

Rjy in |Yi|,[Yal, ‘T|,|V,Yl|, ViYal, ]vt?‘,---. Quite analogous to (4.55), (4.57), (4.58),
(4.60) and (4.14) we have,

|7 ViT - V| < G Wil - al|VEF| + |90 I+
+[|V,,V{J‘| + |V{J2||Y2|2 + R+ ’v,v{ﬂ” < (4.90)
< Cs[MIVal[F| + PEII + Bl + Py + PE I + B2, + P,
Here
Py = B ([l |V |, ol [ Vi),

3] < P = Ca[[f] + 1911

vig| < R ([7)- o [9iF L [0,
Pﬂzj(lﬁll """ |V:§1‘v|Y2| aaaa ‘V.I-H}/?D SPUZJ'(P(}O ???? POIJ’lyzl :::: |Y2|) =
—2 [|= .. . .
- poj(‘f| ..... |V{f|,|Y1| ..... ‘V{+l}’1|,|Y2| ..... |v{+1Y2D.

We derive from 4.7 and its iteration as above that
» ) —
|Vigz| = |V1J2(1)1 < Pg; <Py =
- of(fvin| s ot + o]
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1y i |
i 2 Choio-i; f| e v |- lV{Yl| +

l.1+2l.2+~~~+j‘lljﬂj+]

DS = M A E R T

S +2igteedyijaitl

¢ ¢ ’
+ X Clotyigs|[F|| WPl CIV1 VXl - | V3
Wi+ 3+ )=+
;ko ’.0 to ;kl "1 t?
+ DR - W I TV Tl 2] A T T
i1 42ig+ 455+
+21 428+ +
4k +2kg 4o+ (T -1k <5
. k— . i - Bt
-1 =1 -1 )1 3=1 J
..... viTF| T vitly .IV;YI

Quite analogous |V A% Jz‘ < P] ;» where PIJ has the same structure as PUJ and satisfies the
additional condition that each term has [Y;| or |Yz| or some |ViYy|,|ViY2| as factor.

Considering
By = B ([l [V Wal, | ViR,
Vig| = |V (V)] < Py,
we obtain

2 2 1 1
Rj——l < Rj-——l(PO(la“ ';Po,j—la |Y2|) 9y

)=

- Ff_l(\ﬂ,-.-,|V{‘1?},m|,---,|V{H|, Yal,....| vi¥a)),

where, according to (4.42), (4.43),... J _1 is a sum of monomials of total degree j + 1 and
no monomial contains a (j + 1)-th derivative. Moreover, each term has [Y;] or |Y2| or same
|V1Y1| or IV;’ Y2| as factor. Into (4.88) enters R;_1,

Rj = R,—_l(|7|,...,| .,|V{z(t)|).

Now we apply our induction assumption

viz@)| < Qi([7],. . [V Wl [ VI Y2, ViR,
which implies

Ry S By (7], |93 7] @0, ,@5) =
=B ([f], - [V il | e a9 ).
Inserting now these expressions into (4.88), (4.89), we obtain
w2 < ({|[727] + P + Rimr + (Wil + 1¥2) "R
= Qq; = on(|?|,...,|vg'?|, Wil | Vil L. [9i )
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and

- ‘_'_ —2
9. 91500)| < ¢ [Mllval|ViT| + P - P + By + Pl + Po I+

S s L, ’ 4.91)
+R;_1 + P1; + Poj(IYa| + [Y2])* + Rj] = Q-
It is now very easy to see that
|v,v{J(s)| <C-Ql=Qy (4.92)

Inspecting now the single terms of Qo; and Q) ;, we see immediately that Q@ ; and @ ;,
have the asserted prperties which finishes the proof of 4.18. o

We continue with the proof of 4.17.
According to (4.82), (4.91),

(VEZ(1) < Q) ,y + Yo B
Ntititio=p-2

vy Qi = Qul).  493)

jos7

We seperate from (4.93) the highest order terms and obtain exactly the term of (4.81) standing
before the first summation sign. The structure of the remaining terms of Q) ; and the sum in
(4.93) is exactly that of the sums in (4.81). With Q, = Qu(t)|t=0 follows the assertion

|V2Z] < Qq. (4.94)

x
This finishes the proof of 4.2.

B defines a metrizable uniform structure since NV = A = diagonal and
{vl_}kld is a countable basis. Let P™((M,N) be the metric uniform com-
v p N

pletion of C®™(M,N), f € bP™QMN), 0 < e < &P U.(f) =
{9€ ™M, N)lg = gy =expY,Y € "™0(*TN), "™ |Y| < e}. Then {Ue(f}ocecsy
is a neighborhood basis for f in the metric topology of >™Q(M, N).

Theorem 4.19. Assume (M™",g), (N ' h) are open, complete, of bounded geometry up to

order k > 1. Let m < k. Then each component of b""Q(M,N) is a C*=™+1_ Banach
manifold.

Proof. Let f € P™Q(M, N) and set T(>™Q(M,N) := Q(f*TN).

Then Y — gy = expY is for sufficiently small §,0 < § < § < "inj(N ), @ homeomorphism
between B5(0) C *™Q(f*TN) and *™Us(f), i.e. a chart. This follows immediately from
the definition of the neighborhood base above for f. To study the properties of the transiton
functions, we have to study the properties of left multiplication W, exp f+ THiS is settled

-1
exp,
by the w-lemma which follows from the local euclidean version c;f the w-lemma. Let

U C %/ be an open, bounded subset, h € C™™+ (R RJ). For f € "™ Q(U, R") —
bmOU, R9),wh(f) := ko f, is an element of >™Q(U, 7). This follows from the chain
and Leibniz rule and A € C®™+2, X

Lemma 4.20. The map wy, : 6""Q(U, R™) — b'mQ(U, D‘{j),wh(f) :=h-f,isa C*-map.
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Proof. d(w}y) = wyy, similar for higher derivatives. o}

Now we apply this to our situation, (exp~!exp;)(Y)(z) = expal) (epr(z) Yf(z)). But

exp;(’x) €Xp(z) has according to 2.2 bounded differentials up to order k, i.e. the 0-th, ..., k-th

covariant derivative of d (exp;(lz) exp f(,,)) is bounded. If we now apply the local w-lemma to
a uniformly locally finite atlas of normal charts, we conclude Wexpy! exp, 18 Of class C 1+ktm
Finally we must show that each component is modelled on the same Banach space (or, what is
the same, on equivalent Banach spaces). Using the exponential map, we see that >™Q(M, N)
is locally contractible, therefore locally arcwise connected and components coincide with are
components.

We have to show for f' € comp(f)

b b

’mQ(f"TN, f‘V") o ’mﬂ(f'TN, f"V") (4.95)
as equivalent Banach spaces and start with f' = expY)Y € b'"‘Q(f‘TN), bmiy| <
rio:(N). We want to apply 2.11. But f*V* and (expY)*V* live in different bundles. Let
inj
(E,VE), (F,VF) be Riemannian vector bundles over M with metric connections VZ, V¥
and let ¢ : E — F be a bundle equivalence over idpy. Then ¢~'V¥ is well defined by

(¢71VF)Z := ¢7'(VF$Z). To apply 2.11, we have to show ™! |VE — $-1VF| < co.
If ¢ is bounded up to order m it is sufficient to show

We apply this to our case E = f*TN,F = (expY)'TN. Let (Zy(;),2) € (f*TN),. Then
4 = exp, shall be defined by

exp, (Zg(z),z) = (exp, Zf(z),2) € ((expY)'TN)_,
where exp, (-) = dexpy(z) |y, (+). According to 2.2 and b,m Y| < '"inj(N)v this is a bundle
isomorphism bounded up to order k. As well known, exp, can be expressed very conveniently
by Jacobi fields. Let J be the Jacobi field along exps(,) (s Yf(5)),0 < s < 1, with
J(0) = 0,J'(0) = Z. Then exp, Z = J(1).
Let
n=f'V*—expl(expY)' V=V -V
Then 7 is a 1-form with values in End(f*TN). 5 can be estimated by estimating nx(Z). We
estimate exp, (7x(Z)). Consider z € M, X € "™ Q(T, M), Z € "™ Q(f*TN),{z(t)} _;<1<1
a smooth curve in M with ¢(0) = X,¢(0) = Xz,f = fo¢ and the 2-parameter family of
geodesics
c(s,t,7) = exp (s(Y + 72))
in N. Then ¢(0,t,7) = f(t), Js = 5, Jr = 52, J4(0) = T, J,(0) = V(Y +72),J-(0) =
0,J,(0) = Z,Vi(exp, Z) = ViJ-(1). Inspecting the initial values, we see that J, does
not depend on 7 and we write J- = J. Consider furthermore the Jacobi ficld Jy, J1(0) =
0,J:(0) = V,Z. Then

|6(VE2) - 6(¢79F 62)| = lexp, n2(2)) =
_ |j’1(1) _ V.J(l)\ - IVJ(I) — )l
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Therefore we have to estimate
v - 7] 4.97)
According to [11], p. 148,
(Vi)' + R(Vid, ) = —=R(Jy, J) = — Ry,

where , ,
m(Jg, J) = (V,R) (.]t, [ )Jf + (V{R) (J, T )-I- (4 98)
+2R( %, d)V4J +2R(J, )V, . |
The initial conditions are
ViJ(0) = 0, V,V:J(0) = V4V, J(0) + R(c', Ji(0)) J(0) = V,Z.
:fl satisfies the equation
j{' +R(.7,c')c' =0
with J;(0) = 0,J}(0) = V,Z. Substraction yields
~N\ —~
(Vs = 0) +B(Vid = Ji, ) = ~R(Js, ),
o~ —~ 1
(V- T)©)=0= (V,J, -J) (0 =o.
Hence, according to the proceding procedures of estimates,
Vi =T <€ Ry, (4.99)

where Rp: is defined as follows.
1R(Je, J)] < 2(VRI| P 1TI]+ 2RI (Vs T|+ IV el),
[l < G [7] + V¥ 1+ 71922
|J] < Cq)Z|,
[V, < G|V |+ 7 (9.2 + V(7] + 1901+ 719:21) |,
V.J1 < G121+ Y1 2]
R )| < GV 1ZI([F] + 191+ 719021) + Y1 { ([7] + 1V ] + 719.21)
121+ 1Y P121) +
+21(1Ver 1+ 719:2) + [ (|7 + 190 |+ 71Ve21) )} = Ror.
This implies
]Vt-] - «71\ <C- Royr
for all = and the left hand side does not depend on 7. Therefore
[V - B < ¢ Rog=C- (mRo,t,,).

Rp: is a polynomial in |Y|,|V,Y]|, where the coefficients are polynomials in
]7|, 121, *|R], |V R, with the following properties.

1. It is linear in |V,Y].
2. Each term has |Y| or |[VY| as factor.
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The next step is to estimate
1V
which reduces to the estimate of
[(Vun)x(2)|

Vu(nx(2)) = (Vun)x(Z) + n19,x(2) + 1x(Vy 2),

(Vun)x(Z2) = Vu(nx(2)) — n9yx(Z) — 1x(Vv Z),
i.e. everything reduces to Vy(nx(Z)), since the terms without the derivative of 7 are already
controled by (4.99). But

Vu(nx(2)) = Vu(VxZ - Vi Z) =
=VyVxZ-VyVsZ - (VU - V'U)VQ(X =
=VyVxZ - VyV%Z -y (V' 2).
Hence we have only to estimate ViV x Z—V, V' Z. Since (f*TN, f*V*), (f*TN,exp;! ((expY)*V?)
satisfy (Bg—;) we have finally to estimate

viz - Viz.

But
(4.100)

It is more convenient to estimate
exp, V%Z —exp, V22,
Define the Jacobi field J; by J»(0) = 0, J5(0) = V2Z. Then we estimate
[v2I(1) - B()|-
V2%J satisfies the equation
(V20)" + R(VEJ, ) = —R(J, Vi) = ViR(J4, J) =
= —ml,tz,ﬂ
ViJ(0) = 0,9,V1J(0) = Vi Z,
since J(0) = 0 = V,J(0). We obtain
~N\ 1 ~
(V2I-0) +B(ViI - D5, ¢)d = -Ryn,
~ ~z 1
(VI - %) =0= (Vi - T) 0),
‘Vf'] - '72| <C-Ryn,
for all 7. The left hand side is independent of 7, hence
Vi - % <C R, (4.101)
Rip = ]il’!(ll Ry 42 is a polynomial in |Y], |V¢Y|,|V3Y|, the coefficients depending on
. . T_'
|7|, vJ|, 121,921, *|R|, |V R, *|V?R| with the following propertics.

1. It is linear in |V}Y]|.
2. 1t is linear and quadratic in |V,Y)].
3. Each term has |Y| or |[V,Y]| or |V}Y]| as factor.
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The procedure for higher derivatives Vy is quite analogous. As in (4.100), the highest order
term of (V*n)(Uy,---,U,) x(Z) is given by

(V¥(nx(2)) (U, - ., Uy)-

According to 44,

(V¥Hax ()01, ..., Uu) =V, - Vi, (1x(2))+

lower iterated derivatives including mixed derivatives of the Uy, ... U,.

We assume the lower order derivatives already to be estimated. Then there remains to
estimate

Vo, Vu,(nx(Z)).
which reduces to
Vi(nx(2)).
Now
VH(VXZ - V'%2) =VHVxZ - V51V V2~
= Vi (Vv - Vy)Vx(2) =
=V§VxZ - ViV V% Z - Vi iy (Vi Z).
Iterating this procedure, i.e. performing a simple induction, we obtain finally
Vi(VxZ —V'%Z) =V} VxZ — ViiV'x Z — lower derivatives of interated eta’s.
Therefore we have to estimate
ViVxZ - ViV Z,
i.e. finally (using polarization and (Bg_))
vtz - V')}“”Z.
We estimate

eXp, V“X+1Z — exp, Vi{i"’lz,

u<m-1lu+1 < m.
Let J,41(0) = 0, j:"+1(0) = V{Z. We have to estimate

V(1) = Tana (1)
An induction (cf. [11], p. 152) gives
(V)" 4+ R(VET, ) = —(R(IVEHT) +
+VR(J, Vi) + -+ VETIR((J, ) = =Ry guts 1
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and we obtain

(VT = Tua) 4 B(VIPT = T, €)= Ry,
(V:‘HJ - j:.+1) (0)=0= (V;‘HJ - L+1)’(0), (4.102)

‘V:“HJ - :fu+1’ < Ry qun,

where Ry g1 = lim Ry guss - is a poynomial in |Y1,|ViY],..., |Vet1Y|, the coefficients
A2),..., V2], R],..., |V

depending on lfl,...,‘Vﬁ
erties.

, with the following prop-

1. It is linear in

|Vetty|. (4.103)

2. The total degree 77 + 2t2 + - - - + ui, of any monomial
Y[V - iy (4.104)

is < u.
3. Each term has some |ViY|,0 < i <u+1,

(4.105)

as factor.

This one proves once again by an elementary but rather long induction along the lines (4.42),
(4.43),... .

In conclusion, using 2.11,
b b
’mQ(f*TN, f‘V") = ’mn((expy)*TN, (exp Y)‘V")

as equivalent Banach spaces. If f' € comp(f) C bmO(M, V), then f and f' can be connected
by an arc and this arc can be covered by a finite number of e-balls with centers f;, fiy1 =
exp¥;,Y: € "™ Q(f!TN), fo = f, fs = f'. We conclude f;V* € compf*(V*), in general

11 V" € comp(ff V), f*V* = f1Vv* € comp(f*V*) ¢ P™1esry, ie. according to
(2.18), (2.11),

b’m—"l ftvh_fltvhl < 00
and ; b
) m * ) m *
a(rN) = BTN
as equivalent Banach spaces. This finishes the proof of 4.19. o
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5. Banach manifolds of maps in the L,-category

Assume as in section 4 (M™,g),(N™,h) are open, complete, of bounded geometry up to
order k,r <m < k,1 <p <oo,r>2+1. Consider f € C*>"™(M, N). According to 2.4
and 2.7 for r > -;-+s

QPT(f*TN) > bsaiTN, (5.1)

b, s
|Y|=D-|Y| (5.2)

p]r,

where Y|, = (f );a |ViY [Pdvol )”p. Set for § > 0,6- D < 8y < rip;(N)/2,1 < p <
oo Vs = {(f,9) € C®™(M,N} x C®™(M,N)| There exists Y € QF(f*TN) such that
g =gy = expY and {|Y|p,r < 6}.

Proposition 5.1. B = {Vg}kkrinj(N)/gD is a basis for a uniform structure
UPT(C*™(M, N)).

Proof. Properties (B;) and (U]) are clear once again. (Uj) and (U}) are nontrivial. For (U3)
we need §- D < rini(N)/2, ie. Y|Y| S D-|Y|,, < D& < rip;(N)/2. If we denote by PY
the vector field (PY’), = (parallel translation of Yy(x) from f(X) to g(x), ) then

f =exp(—PY). (5.3)
As in section 4, the main task is to prove
PYl,, < P(|9'Y],), (5.4)

where P is a polynomial in |V'Y|p,i = 0,---,r, without constant term. Here one has to
take into account that Y and PY live in different bundles and the covariant derivatives in
|PY|W. are associated to g{,V". Qiute similar as we have seen in (4.2), (5.4) would imply
(U3).(5.4) would be proved if we could show

IVA(PY)|, < Pup,u <, (5.5)

where P, ; is a polynomial in [V*Y| ,0 < i < r. According to 4.8 and 4.4, for the pointwise
Nnorin
IVA(PY)| < Pu, (5.6)

where .
P(Y),...,|VAY]) = C'|VFY |+

+ 3 Clir i LIYIPIVY [ [Ty (5.6)
4204+ (p—1)i - <p
is a polynomial without constant term. (5.6), (5.7) imply

[VAPY)P < C|IV*YP + > fiviyes (VIPIVY 2 [0ty )7

173 PIEEEY PR

i+2ia+H(p=1) 1 <p
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By assumption, [|V#Y|Pdvol exists. We have to consider the monomials of the sum,
Y [owy [ | vety e (5.8)

To apply the module structure theorem 2.10 for Sobolev spaces of section 2 we are seeking
T > 0 such that

io(r—z)+i1(r—-1-—2)+---+ip—1(7‘—(#-1)“2) >F-= (59
P p p p

is satisfied, i.e.

iO(r_E)—(il+2z‘2+"'+(#_1)ip—l)+(il+i2+"'+ip—l)(r_2)2?_2'
P P p
Since iy + 2ig+ -+ (p — 1)iy—y < p £ r, we are done if even
. n ) : n _ n
tg(r——)-—,u-l-(zl+-~-+zp_1)(r——)Zr——,
r P P
: n : ) n _ n
zo(r——)—r+(11+---+zp_1)(r——)21‘——.
p p p
If 59 =0 then iy + -+ 2,01 2 1,
-—r—i—(i]-f—-u—i—i,,_l)(v—ﬁ)2—r+r—£=——220—2. (5.10)
P p p p
Ifigzllhenig(r—-;})—r=(ig—1)(r—%)—%,hencc
ig(r—g)—1‘+(i1+"'+ip—1)(7"—£)2(50_1)(”_2)"22 ~=. (.11
p P p D p

We obtain in any case from (5.10), (5.11) that (5.9) is solvable with ¥ = 0 and

1/p
YIRIVY " VA Yy — 1) dvol <
U(I (oY 19 - 1) ) < 512

< Dio'~-fp-1 IYl;'::erY”J"U_I T |VP_IY|;‘,‘1-—1(25—1)

which proves (5.5) and therefore (U;) Our next task is to prove (Ué) Let

fEeC®™(M,N),ge C™(M,N),g =gy, =expl],
Y1 € B(f*'TN), Mlpr < 6,6-D < 6x <ring(N)/D.

Here D = D(f) is the constant of (5.2). Let g € C™(M,N),g2 = expYs,Y2 €
P (g1TN),|Ya|pr < 6,6 D(g) < N < ring(N)/2. Then there exists a uniquely determined

Z € Q(f*TN) such that exp Z = exp Yz. (U;) would be proved if Z € Q2(f*TN) and
IV*Z|p < Qup, £ S, (5.13)
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where @, is a polynomial in |V‘}’1|p,|V‘}/2|p,0 < 1,9 < r, without constant term.
According to (4.17), 4.4 for the pointwise norm (here we use {Y1],|Y2| < ring(N) )
|V*Z| < C'(IV*n| + VY2 +
: VAR AL\ 2 AP AR

+ Ciojoi1j1"'iu-1+j#-1
7142042+ H (=) (a1 i ) Sa

.. |V#-—1y1 li.u-x ‘Vﬂ—1Y2|j#—1,
ie.
VEZP < C VP + 9%+ 30 Ciogorn (M- [V 1Ya P
h+n+-<p
By assumption [ |V#Y)|dvol, [ |V#Y,|Pdvol < oo, and we have to consider the monomials
M M

of the sum,
RN\ A T\ eI At €Tkl e T
i] +j1 +2(i2 +j2) + (F - 1)+(i,u—-—l +jp—l) S H.

But (5.14) has the same structure as (5.8). We can repeat the procedure (5.9) - (5.11) and
obtain once again by the module structure theorem for Sobolev spaces

: , 1/p
(/ (lyllso .. |v#-—1Y2|Jp-1)Pde]) <

(5.14)

- 5.15
< Digjoviparipr V12 Va2 VAR (V3|2 - 6.15)
-1 ’p—l -1 J -1
which proves (5.13) and therefore (U;).
O

UPT(C™(M, N)) is metrizable. Let ™QP7(M, N) be the completion of C™(M, N).
From now on we assume r = m and denote "QP"(M,N) = QP"(M, N).

Theorem 5.2 Let (M™,q),(N", k) be open, complete, of bounded geometry up to order
k,1<p<oo,r<kr> -:-+ 1. Then each component of QP"(M,N) is a CY+*=7_Banach
manifold, and for p = 2 it is a Hilbert manifold.

Proof: Let f € 2P"(M,N),0 < é < ripj(N)/2D. Let

U (f)={g € QP"(M,N)|g=gy =expY,Y € Q"' (f*TN),[Y|p, < 6}.

Then {Ug'r(f)}o<6<r.-.,,-(r)/w is a neighborhood basis of f in QP (M, N). This follows
immediately from the definition of a neighborhood basis of f, induced by the metrizable
~uniform space (07"(M, N), U(C°>" (M, N))). For the sake of clarity we must strongly discuss
the nature of QP"(f*TN). f is no longer smooth, for r > % + 1 at least of class ¢. We have
to describe the connection in f*TN. The connection coefficients of f*V* are of the form
af -T*(f). Since f € C?! they are well defined. But literally calculating V(VY') includes
second derivatives of f which in general do not exist. Therefore we have to take all higher
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derivatives in the distributional sense. Here once again arise some difficulties since f*T'N
is not a smooth bundle in general but only a C'-bundle. Therefore it is impossible to speak
of global smooth sections. But a distribution is al ready well defined if it is defined on each
basis of a cover by small balls. In our situation we choose a uniformly locally finite cover
of (M",g) by geodesic balls of a radius < ri,j(M), trivialize f*T'N over each ball by a
synchronous frame and have after that well defined smooth sections with compact support
in the corresponding ball. Then Q"(f*TN) is defined. Any other such cover generates an
equivalent space.

Let TyQP™(M,N) = QPT(f*N). Then Y = expY is for 0 < 6 < ri(N)/2D a
homeomorphism between B;s(0) C QP"(f*TN) and UP"(f) C OP"(M,N), ie. a chart.
Once again we need the lemma and start with the local euclidean version. Let U C R’ be
an open bounded subset, h € C®+"4(R™ R9). For f € QP"(U, R?), ho f is an element of
QP7(U, RY). This follows from the chain and Leibniz rule, A € C®"** and 4.1. Then the
local lemma says that wy, : QP"(U, R™) — QP"(U, R9),wy(f) := ho f, is a C*-map. This
follows from dwy = wgy and iteration. To study the properties of transition functions, we

have to study the properties of left multiplication Wexp;* exp, with exp_;;1 exps . But according

t0 2.2, V'd(exp; ! exp;),0 < i < k, is bounded. Then the local w-lemma above applied to a
uniformly locally finite atlas of normal charts yields that Wexp;! exp, is of class C1+*~_ Finally
we must show that each component is modelled on the same Banach space (or equivalent
Banach spaces). Using the exponential map, we see that QP"(M, N) is locally contractible,
therefore locally arcwise connected and components coincide with arc components. To apply
2.9, we must show

If#vh _ f’*vhip,r—l < 00

for f' € comp(f) C OP'(M, N). We start with the case f = expY,Y € QP'(f*TN), |V,
D < rin;(N). From (4.103) and the reductions preceding (4.103) follows

|v® (f*V" — (exp Y)"V")[ <R,, (5.16)

where R,(|Y],---,|V#*1Y]) is a polynomial with the following properties.

1. It is linear in |V#+1Y].
2. The total degree 2; + 213 + - -+ + p - 1, of any monomial

Y[ |VY [ [VEY |

is < g+ 1.
3. Each term of R, has some |[V'Y|,0 < i < p + 1, as factor.

Then we conclude word for word as in (5.8)-(5.12) that for p +1 < r
94 (£ V% = (exp Y) T*) |y < Pa([¥lps- -+, [V7Y ) < o0. (5.17)

If f' € comp(f) C QP"(M,N) then f and f' can be connected by an arc which can be
covered by a finite number of e-balls and we conclude as at the end of section 4

FAAARSE v PP Ce
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and together with 2.9
QP ( F*TN, f‘V") = QP ( JTN, p'*v").

Remark. The pointwise inequality (5.16) makes sense only for f,Y of class C", (5.17) is
well defined also for distributions and follows from (5.16) for f,Y € C” and from density
arguments.

This finishes the proof of 5.2.

6. The bounded diffeomorphism group

Let (M", g)be oriented, open, complete, of bounded geometry up to order ¥ > 1. For
1 <m < k set

b (M) = {f € Y™Q(M,M)|f is injective, surjective, preserves}

orientation and |A|min(df) >0

Theorem 6.1. »™D(M) is open in Y™Q(M, M), in particular each component is a C1+¥-m.
Banach manifold.

The proof of 6.1 will be prepared by

Lemma 6.2. Let M be as above, f € bY™Q(M,M) a C'-diffeomorphism and g €
bmQ(M, M) a local C'-diffeomorphism which can be connected with f by an arc in
bmQ(M, M) of local C'-diffeomorphisms. Then g(M) = M.

Proof: Fix some point z € M and consider the open metric balls By = Bi(z) =

{z € M|d(z,z) < k}. Then By C By C ---and |J By = M. Moreover, f(B1) C f(B2) C ---
k

and |J f(Bi) = M since f is a diffeomorphism. Consider an arc {g:}oc;<;, in *™Q(M, M)

of loZal C!-diffeomorphisms between f and g, f = go,9 = g1. Fix 85,0 < 8 < rinj(M).
The arc {g:}, can be covered by a finite number of 6p-balls in ™Q(M, M), says &;-balls.
Suppose now yp € M — g(M), d(yo, 2z) = €. Then we choose k such that k — & > 2ré, and
g > k such that f(B;) > By. Itis clear that for all z d(f(z),¢(x)) < 2r - 6o. All g(By)
are open manifolds.

Now g:(By) = 9(B,) D Bx D Bi_2:5, D B, which contradicts yo & g(M).
O
Proof of theorem 6.1. Suppose f € Y™D(M),|A|min(df) = ié]ﬁ{ll\zlmin(df)z > 0.

According to the continuity of |A|min(df) as a function of f, there exists a contractible
neighborhood U(f) C »™Q(M, M) such that |A|min(dg) > 0 for all g € U(f). According to
the inverse function theorem, U( f) consists of local diffeomorphisms. Lemma 6.2 now yields
that each g € U is a surjective local C*-diffeomorphism g : M — M, i.e. a covering map. f
has leave number 1. By continuity the same holds for g, ¢ has to be a diffeomorphism.

O
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Theorem 6.3. Let (M™,g) be oriented, open, complete, of bounded geometry up to order
b> 1,1 <m <k

a. Assume f,g € Y™D(M), g € comp(idyy) C *™D(M). Theng- f € »™D(M)
and g - f € comp(f).

b. Assume f € comp(idy) C Y™ D(M). Then f~! € comp(idps) C ™ D(M).

c. comp(idy) C >™D(M) is a metrizable topological group.

Proof: Clearly, idy € ®™D(M). Let f,g € »™D(M), g € comp(id) and & < riy;(M)/2.
Since g € ™ D(M), where exists €1 < rin;(M)/2 such that g(Ue,(f(z))) C Ue,, (9f(z))
for all z € M. There exists a diffeomorphism f € C®™(M, M) and Y, € b'mn( f‘*TM)
such that f(z) = (expY1)(z) = exp s (z) Y]' (=) and J"'"‘llr"]'l < €1/4. This follows from the
fact that 5™ D(M) is openin »™Q(M, M) and the definition of 4™Q(M, M) by completion.
Hence f'(z) € U, 1 (f(z)) for all z € M. Quite analogous, there exists a diffeomorphism
g € C®™(M,M)and ¥, € »™Q(g"T M) such that g(z) = (exp Yz')(fv) = eXPyi(z) Y2r,g'($)
and b™|Y,| < 2/,. This implies f(z) € Uey4(f'(z)), ¢'f(z) € Ue,,(¢'f'(z)). Define the
C™-vector field Y7 by
‘-l ! i

Y = €XPyg ¢! f1(z) (eng'..g,y’f'(z) g*Yl)’ (6.1)

where exp, y is the exponential map with respect to the metric ¢ at the point y € M and
' A 1

(g_g) (X,Y) = g((gt) X (g,) Y). Then it is clear that Y; is a vector field along
af, M| < €33 < rinj(M) and

(exp Y1)(z) = eXPyig,ppi(z) 9. Y1 = 9 exbypim) Y1 =g f. (6.2)

We want to show that ®™|Y]| can be made arbitrary small by choosing ¢; sufficiently small.
Assume at first ' = exp U, U € %, Q(TM), »™|U| < € < rinj(M). Then we have a geodesic
rectangle expyi(z) U, exp (=) Yl', €XPyt(z) Y1, €XPf(z) U and conclude as in section 4

4] < B (197, IV, 1947, ) 63)

0<i1<u-1,0<Ly,k < pu, where P, is a polynomial in the indicated variables, linear in
|V#=14f'|, |V#U|, |[V*Y,| and each monomial has total degree < u. It follows

bmyi| < oco. (6.4)
Moreover g,Y, = (exp U ),Yl" According to 4.19, 2.11 and their proofs
S AR CIORA (6.5)
as equivalent norms. Now
Y] = exp;! (exp(expm,g (expU ).Yf)

(expU),g € comp(g) in the space of Riemannian metrics of bounded geometry (cf. [12]).
We can consider ((exp U)*Y;’f,(z), x) € (expU), f*TM as an element of (exp U o f') T M.
Hence the map

V — e:-:pl_1 exp( | % (6.6)

expU).g
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is a (nonlinear) C™-bounded map between >™Q ((exp U),f*TM,(expU ),g) and
bmO((expU o f')*TM) and if >™|V| — 0 then *™|exp;! eXP(expt),g V| — 0 uni-
formly in V since "lV‘d(expg‘l €XP(exp U)_g)l is independent of V. We conclude that for
sufficiently small Yl',Yl becomes arbitrary small (in the (b, m)-norm). If ¢ € comp(idyys),
then ¢’ = expUs---expU; and we can iterate our procedure. By assumption, there exists
a uniquely determined C™-vector field along ¢’ f such that gf(z) = (exp Y3 )(z), »™|Y,| <

€2/2 < rinj{(M). Once again we want to show that ®™|Y3| can be made arbitrarily small
choosing ¢ sufficiently small. Consider for this

((@9)'9) Yaul = Vg x¥a g0 = (4°9) | Yagiapl <
< |df] 1X] 2 |VY, .

(6.7)

Similarly, using 4.4 and performing induction, for the higher derivatives.

By construction, there exists a unique C™-vector field Z along ¢’ f' such that ¢f(z) =
(exp Z)(z). We want to control Z and its derivatives by Y1,Y, and their derivatives. This
has been carefully done in (4.52)-(4.94) and we are done. For every 0 < € < rjp;(M) there
exists a diffeomorphism h € C®™(M, M), h = ¢'f', and Z € Y™QR*TM), b™|Z| <
€, such that (gf)(z) = (exp Z)(z). Moreover |A|min(df) > 0, |Almin(dg) > 0 implies
Mmin(d(9f)) = |Amin(dgodf) > 0, g-f € >™D(M). A simple caluclation shows
that if {g:} is an arc between idy and g then {g;- f} is an curve between f and gf.
Let f € comp(id) C »™D(M), 0 < &1 < rinj(M), f(z) = (expY')xy, Y' €
b’mn( f'*TM), bm(Y!) < &1, f € C™(M, M) a diffeomorphism. Then |A|min{df~!) <
¢, |Almin (df"l) > 0. The latter and f’ a diffeomorphism € C*™(M, M) implies that
f"1 is a diffeomorphism € C°*™(M, M). Since f is a quasi isometry, for sufficiently small
€1 < 7inj (M) and corresponding choice of £, dist (a:, f"lf(:c)) < £ < rin;(M) and we set

Y = expphexpyon g (7)Y (€8
Then ?|Y| < &3 < rin; (M), Y is a C™-vector field along f ~! and (expY)f(z) =z, f~! =
expY. It remains to show that by sufficiently small choice of ¢y  ®™]Y| can be made
arbitrarily small. This follows as above. One starts with f ~' = exp (U), by a rectangle
argument = two triangle arguments

V1| < B (IVU] |v“y;|), bmy| < oo, (6.9)
by | ~ 5™|(exp U)Y; 1, (6.10)
V — expT} V(@ (6.11)

pg,exp(“p U)ssg )

is continous in the (b,m)-norm and maps 0 to 0. Hence f~!' € ®»™D(M), moreover
f~1 € comp(id). In conclusion, comp(id) ¢ >™D(M) is a group. We have to show
that comp(idys) is a topological group. Let i be the neighborhood filter of e = idy
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in comp(id) ¢ ®™D(M) - comp(id) is a topological group if and only if it satisfies the
following conditions (G1) — (G3) (cf. [4], p. 48).

(Gy) For each U € U there exists V € U such that V- V C U.
(Gy) Foreach U € U is U™! € 4.
(G3) For each U € 4l and f € comp(id) there holds fU ™! € 4.

We start with the proof of (G;). (Gy) would be proved if we could show for each U, € U =
{Uc}o<e<rin; (M) there exists Us € i such that

Us-Us C U,. (6.12)

Here
Ue = Ue(id) = {expY|Y € *™Q(TM), b™[Y| < e}

and U = {Ue }ocer,,;(ar) 18 @ neighborhood basis of e = idy in our topology.

Let f := expY1,fa = expYa, P™Yi|, ™Y2| < & < rinj(M), f2fi = expYzexpYi.
There exists a unique C™-vector field Z, ®|Z| < ris;(M), such that (exp Z)(z) =
(exp Yaexp Y1)(z). We can consider Y, as a C™-vector field along expY, and we want
to show that Y; € 5™Q((expY1)*TM). This is not clear. According 4.19, 2.11 and their
proofs, V and (expY1)*V generate equivalent (b, m) norms »™| |y and >™| |(exp 13)' 0>
in particular

b'ml |(epr1)'V < (Cb|Ylla Tt )b |Vm}/1|) bim I |V: (6.13)

where C' is a polynomial depending on the indicated variables. According to (4.94), there
exists a polynomial @ without constant term such that

bm 2] < Q("lYll,---," YL Yol IV ™Yoo iy )- (6.14)

Hence, according to (6.13), (6.14), for given 0 < € < rip;(M) thereexists 0 < § < ¢, ri;(M)
such that ®™|Yj| < 6, b™|Y3| < § implies

bmiZ| < e.
We obtain
Us-Us Cc U,

and established the first property.

Let f €U, f=expY, Y € b™QTM), ¥"|Y| < €. Then f~1(y) = (expY) (y) =
expy (—PY), where P is the parallel transport of Y from z to (expY)(z) = y along
s — expy (sY) - (—PY) is a vector field along expY. According to (4.49), there exists
a polynomial P such that

Y| PY |(expvy'w < P, (6.15)

where P(b|Y],---,*|V™Y]) is a polynomial without constant term. We consider PY as a
vector field along idy. According to 4.19, 2.11 and their proofs

b1 PY [y < C(IY] - P I9PY]) A7 PY |iexpyyro- (6.16)
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Given 0 < € < rinj(M), (6.15), (6.16) imply that there exist 0 < § < r;i;;(M) such that
bmYly < 6 yields

bm PY|y < e,

ie.
Uyt c U (6.17)

and we have established (Ga).

Let U € 4, f € comp(id) C >™D(M), U. C U. (G3) would be proved if we could
establish the existence of § < rj,;(M) such that

UsC f-Uft. (6.18)

We start with f = expU, U € S™Q(TM), b™|U| < rinj(M)/3, expY € Us, 6§ <
rinj(M) /3. Consider (expU)™'((expY oexpU)(z)). The distance of the ladder to z is
< rinj(M), and we set

Z = exp73 (XPerp )=t (X0 UDT Yierpt)(s) ) (6.19)
The stzindard rectangle argument = two triangle arguments above yields
bm|Z] < co. (6.20)
According to 4.19, 2.11 and their proofs,
PPV~ 5 (exp U Liexp )t (6.21)
as equivalent norms. Moreover, the map

1% (6.22)

-1
V — expg ; eXP(exp )t g,z

is a C™-bounded map between "”"Q(TM, (exp U] g) = mQO(TM,(expU)*g) and
bmO(TM) and if 5™|V| — 0 then b"“lexp;l EXP(exp 1) V| — 0 uniformly in V since
b|vid(exp;1 €XPexp U):1)| < oo is independent of V. Hence, given any 0 < € < ri,;(M),
for sufficiently small 0 < § < rin;(M)

(exp U) 'Us(expU) C UL, (6.23)
or what is the same,
Us CexpU - Ue(exp U)-l.

If f € comp(id) then f = expU,---exp Uy, f, f~1,exp Uy, (exp U,)_l are quasi isometries
and for sufficiently small Y, there exist uniquely determined Z, such that

€XPexp U, ---exp U, (z) Zg =
= (expUps1)™ -+ (expUs) " expY(exp Uy - - exp Ug 1)
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Z1 = Z. An iterated rectangle argument = double number of triangle arguments gives
b Z,| < o0. (6.24)

Moreover, ®™|Y| — 0 implies ®™|Z,| — 0, »™|Z,| — 0 implies »™|Z,_1] = 0, ¢ =
s1,-++,2, and we obtain that »™|Y| — 0 implies >™|Z| — 0, i.e. for given 0 < € < rinj(M)
and for sufficiently small 0 < § < rip;(M)

f—1U6f C Ue
Us C fUf).
This finishes the proof of 6.3.

Remarks.

1. C™(M,M)n»™ D(M) is a group, not only the identity component.

2. The isometry group J(M) is a closed subgroup of C®™(M, M) N»™ D(M).

3. The restriction to the identity component was necessary since then all induced metrics
or connections on 7'M then induce equivalent norms.

4. On compact manifolds these difficulties do not arise since all connections in a given
vector bundle generate equivalent (b, m)-norms.

5. If one had started with smooth (b, m)-diffeomorphisms D{M) which were bounded
from below, and defined the uniform structure by perturbations of the form expY
(where Y € 4, Q(TM) and ®™|Y| < r;,;(M) ), this would not have worked since
we would not necessarily have expY o f € C*™(M, M).

6. In conclusion, our approach seems to be very natural, canonical.

7. In a forthcoming paper, we show that ®»™Q(M,N) is an invariant of
comp(g), comp(h) in the space of metrics of bounded geometry.

8. 5™ D(M) has a gruppoid structure over the space of components of metrics.

9. If M™ is compact, our construction gives the same structure as established by Eells,
Fisher, Marsden and others.

O
Let (M™,g) be open, complete, oriented, of bounded geometry up to order k, 1 < p <
oo, k >r>%+1. Set
DPT(M) = {f e Q""(M,M)/f isinjective, surjective, preserves
orientation and |A|min(df) > 0}.
Theorem 6.4. DP’(M) is open in QP (M, M), in particular, each component is a C'¥¥—"-
Banach manifold.
The proof proceeds as in the proof of 6.1 where we used the fact that f € DP"(M) implies
f is a C!-diffeomorphism.
[
Theorem 6.5. Assume (M™",g),k,p,r as above.
a. Assume f,g € DPT(M), g € comp(idpy) C DP"(M). Then g - f € DP"(M) and
g - f € comp(/).
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b. Assume f € comp(idp) C DP"(M). Then f~! € comp(idpy) C DP"(M).

c. comp(idy) C DP"(M) is a metrizable topological group.
Proof: Assume g,f € DP"(M), ¢ € comp(id). Once again we represent f =
expY,, Y, € Qv (f"TM), f' € C™(M, M) a diffeomorphism, ¢ = expY,, Y, €
934 (g'*TM), g € C*™(M, M) a diffeomorphism, |Y]'|1,,,r < €1/4 < rin;(M), [Y,_,'|,,,, <
e2/4 < rinj(M)f(2) € Us,ja(F'(2), ¢'1(2) € Us,jalg' (). We define ¥; as in (6.1) and
obtain for the pointwise norm (6.3). According to the structure of P,, which we carefully
calculated in section 4, and to the module structure theorem for Sobolev spaces

/ P,dvol < oo (6.25)
M

and
[Y1]p,r < o00. (6.26)

According to 2.9, 5.2 and their proofs,
[Yilp,r ~ {(expU). Y1 lp,r
as equivalent norms. Moreover

Vv

V- exp;;1 €XP(expU), g

is a nonlinear C*-bounded map betweenQ)?" ((exp U),f*TM, (exp U),g) and (" ((exp Uo f') *TM)
and if |V|,r — O then |exp,! exp(exp ).y Vlp,r — 0 uniformly in V. We conclude, for suf-
ficiently small Yl', that Y2 becomes arbitrarily small (in the (p,r)-norm). If ¢ € comp(idy)
then ¢’ = expU,---expl, and we can iterate our procedure. Quite analogous to (6.7)
and induction, Y; € Q7" ((¢' f)’TM). By construction, there exists a ungiue C!-vector field
Z along ¢'f' such that gf(z) = (exp Z)(z). According to (4.94) and the module structure

theorem for Sobolev spaces,
|Z]pr < 00

and |Y,|p, — 0, |Y,|p, — 0 implies |Z],, — 0. Hence for every 0 < € < rin;(M) there
exists a diffeomorphism k € C™(M, M), h = ¢'f' and Z € QP7(R*TM), |Z|,, < ¢,
such that (gf)(z) = (exp Z)(z), g- f € DP"(M). The arguments for f~! are quite parallel
to (6.8)-(6.11), replacing ™| | — | |,, and observing

] P,dvol < o0
M
according to the structure of P, and the module structure theorem for Sobolev spaces.

Next we have to establish (G3) — (G3). Here the arguments are once again quite parallel
to (6.13)-(6.24). We have to replace ™| | by | |, 4.19, 2.11 by 5.2, 2.9, observe the
special structure of the polynomials P,,Q, and to apply the module structure theorem for
Sobolev spaces. For this aim we carefully calculated the structure of the polynomials in
section 4. O
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The remarks after 6.3 are valid and make sense if we replace 4™ D(M) by DP"(M), »™|Y|
by Y|,

We established here an important foundation for global nonlinear analysis on noncompact
manifolds. Many further developments and applications are under work. In a forthcoming
paper we study the configuration space of Einstein theory r = space of metrics/diffeomorphism
group for noncompact manifolds.
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