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ABSTRACT

We construct many variabled S-adic L-functions for weight 2
modular forms over CM fields, S being a finite set of primes

away from the conductor of our form. This S-adic L-function is
given by a measure on the Galois group of the maximal unramified-
outside~-S abelian extension of our CM ground field. We obtain this

measure by playing the modular symbol game in an adelic language.

In chapter § 0 we recall the adelic definition of a modular form
and fix notations. In chapter § 1 we define the harmonic form

on the symmetric space associated with our modular form. In
chapter § 2 we study the "periods"; these are first defined via
an adelic integral, than after Lemma 1, we transform it to an
archimeadian integral, and finally after Lemma 2, we show it is
given by an itegral of our harmonic form againsﬁ a cycle. Besides
giving us a geometrical intuition, we can deduce from this
interpretation that the module generated by these periods is
finitely generated. In chapter § 3 we prove the crucial "Birch
Lemma", expressing the critical value of the associated L-function
as a linear combination of the above periods. In chapter § 4,

we construct for each ideal r a distribution u(r) on -EESO* G*

k
with values in a certain module- the module of universal modular
symbols that are Hecke eigen-symbols. In chapter § 5 we specialize
this universal distribution with our modular form, and avaraging
over all ideal classes, we use class field theory to get our

distribution on the Galois group. We prove that the S-adic L-func-

tion interpolates the critical values of the classical zeta



function of the twists of our modular form by finite characters
of conductor supported at S, and that it satisfies a similar

functional equation

We would like to thank Barry Mazur for many exciting conversa-
tions, and the Max-Planck-Institut flir Mathematik for its hospi-

tality.



§ 0. Notations (mainly those of [W]).

k denotes a CM field, i.e. a totally imaginary qudratic extension
of a totally real number field. We denote by ©ge e the non-con-
jugate embeddings of k into €, [k:Q] = 2n. We denote by P's

the primes of kK, and we denote by v's the places of k whether

finite or not.

0k= integers of k.

w
i

completion of k at v

v
Op = integers of kp
ke... =k ® limZ/N2 = finite adeles
fin 7 <
N

n
k, =k @8R = '21 keoj = infinite adeles

ky = kgip * k, = the adeles
*
k:j = real and positive elements of kmj
n
ko= T X
j=1 _

k59" = e1 £ absolute value 1 in k.
wj = ements of absolu . o

n *
kzgn = [l kign so that k_ = k:~ksg?
i=1



let ® denote a grossencharacter of k, i.e. a continuous
homomorphism w: k; -+ c* of the idele group k; into c*,
which is trivial on k*. Let F denote its conductor.
We denote by w the associated multiplicative function on
ideals defined by w(P) = 0 if P|F, w(P) = w(mp) if P+F
where 1w, is a uniformizer of . kp. We let  wy
denote the restriction of w to k; c k3 .
Let Ix[A = glx[v be the normalized absolute value of
x € k;, we can write |w(x)]| = !x]g with o0 = g(w) € R.
We fix a character P kA + C* of the adeles kA' ttivial on g
for definiteness let us take ¢ = I wv with

v

w,j(x) = eﬁzﬂl(X+x) and with vp given by k:

. tr +27ix
Vp: kp ——> o, —> 0/ 2, > /2 “—> RZEB— 5 c’

We let 3 denote an idele representing the absolute
different ? of Xk, i.e. the associated ideal (3) is
and for vi}0P, including v = =50 3, = 1. So that E;IOP
is the orthogonal complement of OP with

respect to the pairing x,y + wP(xy). Similarly we let £
denote an idele representing F, the conductor of w; and

we let a denote an idele representing a, the conductor of

our modular form  F.



We let G denote the algebraic group GL(2)/k.
We denote by Gk' Gv ’ Gfin' G, GA the

points of G with values in k, Kyr Keine kK o k, respectively.
Gfin and G_ are viewed as subgroups of GA = Gfin

x G_
and for g € G, Wwe write 9ein' Yo for its Gein and G_
components. Zk’ Zv’ Zfin' zm, Ip denote the centers of the

def x -
above groups. We let B = {(x,y) = (0 {) € G} = Gm u:Ga

and Bk' Bv’ Bfin' B, By its rational points, thus e.g.
BA = k; x kA is the "adelic half plane”. As a general rule,
whenever we are given an element g = {gv} defined for some

set of v's of some group, we add units for all the missing v's;

We define our level groups by:

K | = )
- SU(Z,kmj)
x a;ly *
Kp = ({2 3Pz w Y, X¢Y:2,w € OP’ det = Xw - apyz € OP}

n
K =0 Kpj Ko = T Kosi Kp = Kesp X Kgo
fin p P j=1 j A fin

We define a C-vector space V, the value space of our forms,

by:
VP = c-vP one dimensional,
ij = C°vij ecC vgj e c-v:; three dimensional,
Veev, | 3"-dimensional .

v



ei...e ei

Thus V has the basis V n . V.7 12e;,2-1.

Tes

3

We define a right action M of ‘AZA on V as follows:

for (_% %) € Koyr |a|2 + Iblz = 1, we let “»j‘-% g) act

on V“j via the symmetric square representation:

a’?  2ab b2
Moy R By = {-aB jal®-p|® & |
52 -23B %

: n
for k= (k_.) € K we set M(k) = © M __.(k .); we extend
o s j=l J J

this action to all of KAZA by setting M(kz) = M(k ),

k e KA, z € ZA.

We define a function W: k: + V as follows:

n
W(x) = jgl ij‘ij)
1l 1l 0 0 -1 -1
= . . . . . | 7 v .
ij(x) wwj(x) ij + Woj(x) ij + wj(x) =j

0 2
wwj(x) = |x]| °K0(4n|x|)

+1
et 1l
an(x) = %~[T*sgn(x)]il'!xlz-gtf4v|x|).

Here s8gn(x) = T§T is the projection of k:j onto ki?n.

K are Hankel's functions [F].

o' X1



Let F denote our modular form; F is a continous function

from GA - BAZAKA into V , such that

P(gkz) = P(g)M(k) for bk € KA..z € 2 and

A.'
def _a=1

Assume: that F is an eigenform of all the Hecke operators
Tp. For Pa we have TpF = 1,°F, and the Hecke operator

is defined by T,F(g) = KP(! oK F(gk)dk, where mp is
1
p! P

a uniformizer of kp, dhk is the Haar measure normalized
such that [ dk = 1. Since Kp(®p,0)Kp =
K
P

wp(u;l,O)KP v (np,ui;l)KP we get:

u mod P

-1 -1
ToF(g) = F(g(n, ,0)) + ) F(g(ny,udy))
PF P s mia P prulp
Assume further that F is cuspidal at infinity,

kf F(x,y)dy = 0 for all x € k; so that F has a Fourier
A

expansion at infinity of the form: F(x,y) = Eék*C((EX))W(Exa)'W(EY)’

(this restriction can be dropped, but it will simplify things

considerably). Let us write Lglw) = z C(b) wlb) for the

associated L-function, here the sum is extended over all ideal b,

but C(b) =0 4f b is not integral, and w(b)= 0 if b is

not prime to F. Note that C(P) = AP-NP-1. Since F 1is a Hecke

‘eigenform, L (w) has an Euler product, LF‘”) = H.EPGNP m(P)) -1

with Pp(T) = 1 - AT + NPT? = (1-p,T) (1-5,T) for Pa.



Note that as in [W], everything is normalized so that the
functional equation for finite w 'has the form

LF(w) = (-1)n-€P'1(w)2- LF(m—1), (i.e. the critical value

ig at ®S = 0"); here the Gaussain sums t(w) are defined

as follows: T (w) =TITP(m), for PYF 1,(w) =w,(3), and for P|F:

TP(N) - |£'%/2 Z w‘.l(x_g_.l_f__l

-1_-1
JWp(x3,"£57)

1
= (1-wP7h |£,] fupan) ‘l’ﬁ wpl () vp (xap E51 ax,

(the multiplicative Haar measure d*x being normalized by

f* d*x = 1)
0p



§ 1. Associated harmonic form (cf. [K]) and [W))

Let Ty i=1,...,h, denote a set of finite ideles

representing the class group Q&k of k.

let X = Gk\ GA/KAZ-’ we have a natural map
* % *
det: X —»» kh/k -I; Op-k“ - g,g,k. Decomposing X into

the fibers of this map we get:

h

h, ()

= = X
X = 66 /K2, GQ\E;{ Gk“fi'°“‘fin‘;u;/1< 2, = &:{ X

) (r
with X Yur i’\c;m/:cﬂ,z,,,, r i G O Utry, 00K, (r31,0).6.).

fin
We shall next associate with F a harmonic form QF on X.

let H = G,/Z K, . We use the projection

B: = {(x,y) € B, with x € k:}-:-H, as identification,

and thus we have a group structure on #H = k: X k_, and

we have coordinates (x,y) on #H. We have a Riemannian
2

structure on “-j given by ds‘ = -%-(dx2 + dydy) and
x

G, /%2, acts on H
we denote this action by Yy ¢ h,y € Goj, h€ Haj.

as a group of isometries;
b
For Y = ‘: d) € G-jo h = (X,Y) € H"j' we define:

sgn (y)* (cy+d) -sgn (y)-cx
J(y,h) = cx (cy+d) €K, I,

sgn

where sgn (y) = sgn (det v)€ k
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An easy calculation gives the automorphy relation:
T(Y Yaeh) = (v ,7,0h)T(vyeh) .

On H we definean n-form with values in V* = vector space

dual to V, by:

e

n
B=1 A8 3 v where {V } is the dual
E1oo.en jgl ﬂj e1uooen 4 e.‘...en ‘
l1>e,.>-1
— j...
e‘...en
basis of {V }, and
e Yo .
Bw = - X if eJ = 1 '
e AX e
ij = g L if ey = 0,
j j
d 00
B = ""}:""1 if e. = -1 .

B is defined in this manner to ensure that BIY(h) = B(h)-tM(J(Y,h))
for YEG”che“'

0] * -
Fix r € kfi a finite idele. With our modular form F

n
we associate an n-form on # given by Q(;'?(h) = F(h(g g)fin) *B (h)
Let IJ:"')=¢ Gk N ((r,O)Kfin(r-l,O)Gm) it's a congruence subgroup

of Gy which we view as a discrete subgroup of G_. An easy
calculation gives F(yoh(r,0)) =F(h(r.0))M(J(y,h) )'—l Y € l‘m, and

hence ﬂ‘;’ is 1™ invariant, and can be viewed as a

form on !F’= I‘K\H.
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(Note that 2 i not a manifold because the elliptic

elements in I¥ give whole geodesics that are singular.

But we can always find a normal subgroup of finite index

I‘%’ < l‘w that has no torsion, Then X‘g) = I‘%\H is a manifold and

x“’ is the quotient of x%’ by the finite group ';m = I‘m/I‘u,?.
We can now view n‘? as a form on x‘g invariant under I‘w ).
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1
Moreover, the properties of Hankel's functions, K0= §k1 + K; ’

K, = —K(') imply that ff;‘? is harmonic, hence can be viewed as

an element of n“(x“’,c) (i.e. as an element of Hn(x?,m?m).
We finally define QF’ on X by npleQ’ n@i) i = 1,..h

We let H=4#H Ul’l(k).
no_

For h = (x,y) we set: |h|_ = _nlx“j, the "distance"™ of
v 3=
1 x (|- ]2 + x2.), the "distance”
h from =; Ihln = 3'21 xmj({n ¥loj -y) ’
of h from n € k. The topology on H is

defined by taking for neighborhoods of n € P.lfk) the sets
{n} v {nh € H| ]hln < r}, for all r > 0. It is easy to

see that this topology is separated and that the action

of G, on H is continuous. We let ¥ = Aq,

Remark:

Because of the estimates of Hankel's functions we have:
|F(h(x,0)) | = O(Ihlg) for all o € R if and only if
F(h(r,0)) is cuspidal at n. By using the fact that ¥ is

cuspidal at =, one gets that for (f) = F prime to a

®

* *
(=conductor of F), a € 0. = J Op,r € kfin prime to F¢

FooplF
|F(ragx, -a)| = 0(|x|°) as |x| + 0 or =, for all o €R.
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§2, The periods L(r,n) (cf. [KX])

We fix Haar measure d*x = @ d*xv on ki normalized

v
- la8-ar| where x_. = re>®

by: dx, = 1 d d*x . =
Y é* | 4 an xuj r “j

P

in polar-coordinates. We let Fs: Gy » € denote the

0 0 0 _ - *
v---ae V_i-compone :
o) ponent of PF: GA V. FPor r € kA’ n € kfin’

we define (if convergent, e.g. by the remark at the end of § 1):

L(r,n) = —~%-» / Fo(rgg,-n)d*x

(%) y .1 0%
P

where E 1is any subgroup of totally positive units, of

finite index in 0*, satisfying the congruence conditions:

(l-e)n € Tein g 0P for all € € E,

Lemma 1:
(i) L(r,n) depends only on the ideal (r).
(ii) L(r,n) depends only on the image n € k /rfln OP‘

P
(iii) L(xr,n) = L(r{,nf) for £ € k*.

Pf. (i) follows since -F(rgx,~n) = F((;gx,—n)(u,O)) =

F(rdux,-n) for u € I 05 and Fo(;ix,-n) =

F(r3ux,-n) for u € ksgn
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(ii) follows since F(r3x,-n) = F((;Ex,~n)(l,—r'%ﬁ“lx'lu))

F(rdx,-n-u) for uwe€rm OP'
P

(iii) follows since F(r3dx,-n) = F(({,0) (xr3dx,-n)) =

F(Er_a_xv"gn) .

Thus if n € k, which by (ii) we may assume without loss

of generality, we have

1

L(r,n) = —=—
(0*:E) k} g OE

Fo((1,n) (r3x,-ng; ))d"x =

= ”“%"”” f+ Fo(xrax,n, )d*x an archimedian integral.
(0 :E) k_/E

We shall next describe some relative cycles in §F3) against
which integrating 9%3) we shall obtain L(r,n), thus

justifying the name "periods" for L(r,n). Let

Ts {(toltl'coo tn-l)lo ito _(_oo' 0 i tl"‘tn__l il}
I = {(tyety .ot _§) € ?|o <ty < =)

I,= {(0,t;...t ;) € T}, 1, = {(=,ty...t ;) €1}

so that T =11, VU TUVI, . Fix a basis ¢€;...e for E,

0
n-1 (

I (ek

k=1

A
and define x: 1 + k: by x(t)mj = t, mj)) k, so

that k: = L_J €*x(I}). PFPor n € k we define an n-simplex
€€EE
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c(E,n): T + H Dby

n tEIO
c(E,n) [t] = (x(t),n) t€]
© ter,

It is easily seen that c¢(E,n) 1is continuous on 'f, and
smooth on I. We have (1,(gp-1)n)ec(E,n) [{t € T}tk=0}] =

c(E,n) [{t € T|t, = 1}]. Thus if

c&a)(E,n) T clE,n), 7 Proj, I‘k—a-\ﬂ' =3?ﬁ:-3-), than ck-?)(fm) is

a cycle in ')'(‘r-?-) relative to the boundary 'R‘r-a) = I&E\Pl (k);
def

é‘-"-’(s.n) e u_(¥3,5%Y,2). Moreover, FHn) =

1 FVe,, e H (T o5, is independent of E.
(0 :E)
Lemma 2: L(xr,n) = [ ‘&-3)-
c‘rg)(n)

Pf. We have:

I Qka) integration in .fr-a-
Cra)
={(n)
= __...;3:..__. J g(r_Q) integration in H
(0 :E) clE.n)
= *1 J F((x(t),n)”(rg_,O))-(c(E.n)*B)(t) integration in 7t
(0 :E) 1
Note that all the "y- components"are constant, Yy wj 50 thus
1 dx(t) _ 1 F.(rdx, Ne:.)a*x
= Fo(rax(t),n,) * o'\XeX,"Nesn
0 i TR IRy ST ke

= L(r,n).
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Corollary: The Z-module generated by all L(xr,n)'s is

finitely generated.

Pf. Hn(f,BY;Z) is finitely generated and the denominators

—-;l—— are bounded.

(0 :E)
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§ 3 Twists and Mellin transforms ([M]'s and [K]'s generalization

of the basic idea of [B], which really goes back as far as
Dirichlet...).

let w be a finite character, so that w_ 1is trivial.
Let F be its conductor. Write w®(x) = w(x)°|x|:, so that
on ideals gﬁ(ﬁ) = u(b) Ny °. Define the twist

F(x) = § c((Ex))g((Ex)) W(Ex). Fix finite ideles
Eek*

FyeeoTy representing 95k such that ry is prime to F.

2

Lemma Let n24m5)=((2n)' T'(s+ 1))2n. For Re s large we have:

h -8 1 F” r.x b4 d*x
2 s, -1 S r —_— i¥e! " 1% ’
) - = N + ( i ) l |
(47) ntz(w LE(W ) | Xl ( i) (0 :E) { /E 0

Pf. An easy calculation gives

/ F”(x)-lxlzd*x =] cb)u®(b)-f W(xw)'lxwlsd*xm-
ki/k* b k

*
]

Thus only the Vo"’oecomponent FO gives a contribution and we get:

(8m) 7T, (%) L) = Fo (x)«|x|zd*x =

*
ki/k

h
N(r,) ® F(r x_ ) |x_|%a*x_ =
PR {:/0, 0y

h -
= o™ ] NE)Tt A

i=1 (0*:E)
. s
;{:/E Fo(rsx)-lx,|%asx,
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Here E is any subgroup of totally real units of finite
index in 0%*, but we shall consider only F satisfying

the congruence conditions of §2 in all that follows.

*

Lemma let r € k be prime to F, i.e. rp = 1l for

fin
all P|F.
For x € k: we have:
-1
F (rx) = t(w)NF 2 ) m(ur.a_-l_f_:'_—l)F(rx,-—qu"lf_-l) .

a€ (0 /F)*

Pf. An application of Fourier inversion gives for § € k*:

1
2

-1,-1 -1.-1
(ad £ )Y (-ags £ TE)
aE(gF/?)* - - -

W((E)) = T(w)INF

And so we get:

]
F(rx) = |  ClErNwl(r))wl((E))W(EX) =
g€k

N

]

T(N)NF‘ ) (nraslf—l) C W ~apd Y le) =
uE(Or/?)tw - - Eék* ((Ex)IW (L) ! agd “f 78

= T (w)NF

LS

wlord e F(rx, ~apa7le7Y)

a€ (0 /F)* -

1
Birch Lemma [B]: LE(m) = T({w)NF 2(4‘1!)2n w(uri)L(riL.ﬁ;)

i£1 aE(gF/?) *

Pf. Combining the last two lemmas we get for Re s large:
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1
T ,71'r5(4,,°2n,.2 (%) Lplw)® =

h - -] .- -
Inc)™ 7 wlera teh—3— |  Folrgx mapd f
i=1 ae(OF/?)* (0 :E) k:/E

‘by the remark at the end of § 1 the right hand side converges for

all 8, at s = 0 we get:

1

rw) N (4 2P () -

-l.-1 1 -1.-1
= * F (3 . - .
i=1 aé(op/;)*m(aria £ (0*:E) i:/f 0(r1xw3 api £ Tratx

let [ek+ be such that (E)y = (3£ 1), multiplying a

*
by ngg € OF we continue the equality

otarg g3y a7t ey L [ Fy(ryx ,mapb)dx,

3121 uE(zF/?) ~ T(0":E)y Kkl

multiply the argument of Fb by (5-1,0) and use left Gk—invariance,

then put E-lx for x_
s g . ofdr (E3)g3 ) 1 . Fo(r Eo) x ,-ap )d*x
i=] a€e( F/F) 1 (0% :E) {:/E 0 iif;n o F o
substitute ri(zg);¥g£fin for r; we finally get

h
1
- ) wlar;)—=— [ Folr ;3fx_ ,-o)d*x_
121 ue(gr/?)* 1 (0*:E) k}/E 04 F
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§ 4 Universal modular symbol and associated distribution

(IM]'s adelization of [M,S-DJ}).

Let S denote a finite set of primes. Let L(S) denote
by the Z[p,';Pesl-module generated by the symbols L(r,n), r€kj, .

n € [] kp , subjected to the following relations:

Pes
Rel(i) : Li(r,n) depends only on the ideal (r).
Rel(ii) : L(r,n) depends only on the image of n in TT kﬁ/épop.
PES

Rel(iii): KL(r,n) = L(r&,rE) for &€ k*.

For p€S define the operator RP"1 acting on L(S) by

1

Rp-1L(r,n) = L(rP” ',n). For r prime to S, define the operator

U, by UpL(r,n) = ) L(rp,n+u), and extend this operator

u mod
to all of L({S) wvial Rel(iii) (here and in the following,

u mod
means that we sum over u€ op running through a complete set of
representatives for the residue field k(P)). It is easy to see
that these operators are well defined. We let [*(S) =

L(S)/(AP - RP‘1 - UP)L(S). For the formal convinience we also
define RPL(r,n) = L{rp,n) whenever np £ kP/rPOP was given

by the context as n €IkP/PrP0P,and similarly we let

p
zu L(r,n) = L{xr,n+u) for ueikp; these are not operators because
we can possibly have e.g. L(r,n) = 0, RPL(r,n)*O . SO0 whenever
we have an éxpression involving Rp's,lu's, and L{r,n)'s we
first apply the Rp's and the zu's and only then look at the
image of the resulting expression in L*(S). Thus by abuse of

language we have the following Hecke relations:



P9
[

o

[

+

-
o~

»

(*) +op =
frogr umod P Y

(**)

1]
| o g ]
*

.2, = HP
fr ‘PP umod P U

when applied to L(r,n) with r prime to P ; (*) 1is just the
relation AP = RP‘I"UP , and (**) follows from Rel(ii),

L(rptu) = L{x,n+u') for any u,u'€o,

Fixing I'ekfin prime to § we shall define an L*(S)-valued

distribution u(r) on 0*=TT 0* , by giving its value on "ele-

PES o
mentary sets". We write S = S0 u Sl’ F= 1 P P, ep > 0, and
PESl

» * *

let v1€0F = 1 OP extended to erOS by decreeing that
Pes
1 ,def
np=0 for PESO; we let n+ (F) =
%*

R 0 n ep * * .

PES p* P€Sl (n + P OP) < OS . Every open set in OS is a

finite union of such elementary open sets n + (F)*'s

Definition
(r) —ordpF ordPF
(n+(Fr*)= [ 1 (1-p} Yrp) 10 (1-pp RP ) pp Rp ' I1L(x,n).

PES PES

*
This depends only on the image of n in OF/(1+(F)) by Rel (ii).

Theorem u(r) is indeed a distribution:

(r)(Lj i) f u(rNUi)for disjoint open sets U, €0
i=1
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Pf. 1It's enough to check that

(1) ) P+ (FPyy = Pne(F))
n' mod FP
n'sn mod F

for P € s, F divisible by all P € S, n € O;; and to check
that

e e
(I1) 1 uwkn + .2 u; + (F 1

P = W + (F)#)
uimod Pi i=]1 i=]1

* »
where so = {Pl,...,Pe}, n € OF' with the above convention

We begin with (I), so that SO = @g. Let (--1)d denote
0

the M8bius function : (—1)d =
(-119 = -1y #{Plal

if led some P, and

if d is sgquare free.

_ ordP d
Extend RP and ~ﬁ> by multiplicativity Ry = 1 RP R

Pla
ordP a

ydz ]i[ Pp . Then u‘r)(n"'(F)) =
Pld

-1 -1 -1 S § d -1
[ I (1-p, "Ry )1 P ReL(r,n) = [ (-1) R _,lL(r,n).
peg TP NP N IPE Ry PrF d%; Pa Rpm1

Choose E € k* such that (E)s = F, where we write

(g) = (E)S(E)S with (E)S ‘prime to S. Write

(n') =n + Eu with u € 0p running through a complete
set of representatives for the residue field k(P). We

have:
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) Wnt+(FP)) = -1 (-1)% 1r -7 Llr,n+ug) =
n' moad FP u mc);d pLFP d}FP Pa Tppgm1

n'sn mod F

writing ; as + ); and substituting 4P for 4
djFp dlF alFp

Pfa Pla

in the second sum

-1 d,-1 -1 -1 -2 -1 _
=Pr ﬁ?F(--'l) Pa ) {PP L(xFPd ,n+u5)-ﬁp L(xrFd ~,n+uf)} =

u mod P
Pta

by Rel(iii) we can divide £ and get

- y;ld}F(-—l)dygl R L
u mo

P+d - ppintza~t(g™h %, ne Tt )

using Hecke relations (*) and (**) for the first and second

terms in { } respectively

d — -
= prt ,}‘_F(-1)dyglff;l(pp+fp)n(rd“1(£ L8, e h
a

P ool ra (5 5P e 32 pppntza g7 e h)

canceling terms inside { }, and using Rel(iii),

to multiply by £, we get

-pF ;F("l)c}f‘;]‘{L(er-l,n)TP"L(er-lP-l,n)} =
a

Pa

-1 da -1 (r)
= | (-1)%p"R _1L(xr,n) = w(n+(F)) ,
br d%F Pa Tpal
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As to  (II) we have with S = {Pi's}:

) t’(n+ + -
u; mod P, 2 1 i (Flﬂl"i”
uy ¥0

-1
= (1) - ) L |L(x,n)

'PF"P }FHP ‘Pd F(Np,)d 1711 u, mod P, Yi ’

1 1 1 h 4
ui # 0

JSSo PES poes g 4V
150
u; #0

-1 a -1 ) $3,-1
= . (1) R R ] | ) £ Ju(r
l}rn?i d}F JFa Fa~1 ) .PnP P 1 P, ui]

= TTu R )RTT{(R y 1 2, )|L(rm) =
FnPi PIF -1 RF P .Prlu mea P, Ui

u; # 0

using the Hecke relations (*) and (**) we get

_1 -l ~ —l
l '(1 Rp )*R l.’{(-R -Rp™)
[.Prnri pIF Pr Rp F b, ri’fPPi*:PPi P,

-1 o~
- ‘ ‘1)} L(r,n) =
«PPi .Pri-PPi ]

r ]
-ord,F ord F
P -1.-1 P -1_~-1 -1
(1~ R )R {(-1- Rp™) (1-pn.- . =

-ord,F ord F
| ] P P I ] -1 -

PES

= n+(F) ey, g.e.d.
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Note that by Rel(i) and Rel(ii) we have for e € 0*
Lir,en) = Lie tr,n) = L(r,n). Hence P en+(F)*) = Fne(Fr %),

€ € 0*, and we can view ) ag a aistribution on 17 03, 'Jk.
Pes

where U;f denote the closure of 0; in 0%.
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§ 5 Measure associated to a modular form

Let F denote a modular form and let Li(r,n)'s denote its
periods. Fix a finite set of finite places S away from a=
conductors of F. By the remark at the end of § 1 the periods
L(r,n) converge for n¢€ OS, rEZkEin , and by Lemma 1 of § 2
these periods satisfy Rel(i), Rel(ii), Rel(iii) of § 4. More-
over, since F 1is assumed to be a Hecke eigenform we have for

PES, and r prime to P,

AP-L(r,n) = TPFo(pgx,-n)d*x =

—5—
(0" :g) k! I 0p/e

: ©® P E
P

-1 = -1 . A -C ]L(r )-
= P + L{rP,n+u) [R + R X M
L(r ) ) p ' P P gp v

and so L(r,n) satisfy the extra Hecke relation (*) of § 4.

Thus we have a well define map KL(r,n) e L(r,n), L*(S)-*LS F '
’

where LS F is the z[p;1;PE S}-module generated by the periods
14
L(r,n)'s, re k%in' ne€ OS. The construction of § 4 gives now for
* - { i * *
every rEkfin an LS,F valued distribution on OS Ok.

Let k(1) denote the Hilbert class field of k, and let
k(S) denote the maximal abelian extension of k unramified

outside S. By means of the Artin symbol we have isomorphisms
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a;/o"l k*HO;kq/ﬁT_W‘F}:-Gal(k(S)/k(l))
P Pés -
1 ~
v
* ot
k"mws ¥ e-Gal (K (S) /K)
! !

cs, = k;/fgo;k}icax (k (1) /K)

We use these isomorphisms as identifications, and define a
h (ry)
s = Gal(k(S)/k), by Bp = Z éri*uF . Where

* 1 .
r.l...rnE'.kfin represents ék and are prime to §S; that is for

distribution on G

a locally constant function g on Gg, we have

du = 7 )
fg.9au =1 [ glrsmau *(n),
s i=) o"
s’k
The distribution L is determined by its values on finite
characters w. Let Z2[w] denote the ring obtained by adjoining

to % the values of w, and let LS,F[w] = Z{w] @ LS,F .

Theorem For a finite character, m:GS-+ Z{wl, F= conductor of

w, we have in LS,F[”]’

1
G = 1 (pplu(P)) (1-p5La(p)).

r(m)(4n)n'LF(w)
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h )
pf. f wdp= ] o) [ wmdy T(n) =
Cp F o= 0;/5;

h ()
=1 I . oe(xme TR
i=1 nE(OF/F)*

]

h

-1 da -1_-
= 1 I . w(xn): % (-1) R
i=1 ne(0p/F)  * FF afnp Fa "g

1 d

' -1
(-1) R..°R.*L{xr,n
d,'%”’ Parfar"NF
-PES PESO

without loss of generality we may assume (a,F) = 1, otherwise

we get a "denominator" Fd-l and by ‘Rrel (ii) of §4,

- - *
L(rd'Fd 1,n) depends only on the image n, € (0p/F(F,d) 1)

of n, but ; . w(n) = 0; thus the above ts equal to
nE€(0p/F)*
~1
n=n, (mod F(F,d) 7)
=p;t 1 (-1) 4 (-1 p7tp7t I3 @(r;n)L(r;da'a tF,n) =
Foa,drme afat ;L e/t

PES,

by Birch lemma the last sum is independent of the choice
1

of ri's and we may replace ry by rid'd— obtaining
-1 d,-1 a' -1 -1
=. (-1) w (4) (-1) w(a') “-
Fr d}HP Fa afnp Far=
PESO PESO
h

) ~  w(r;,n)L(r.F,n) =
i=1 ne)%or/r)* SR

h
-1 -1 -1 -1
= T (l-po w(P)) (1~ppw(P) 7) § ~ W (r;n)L(x;F,n)
fr Pesy fr Fr i=1 ne(gr/ﬂ* e
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1l
= J’Fl Pgstl-.p,, Yo () (11»,, “L(Py) (v (wINF 5(41,)2“)“11,?(“-)
by Birch Lemma. g.e.d.

Assume that the pp's,Pe S, can be chosen to be P-units, hence

A
S-units. Let L

S,F - OS e LS,F denote the S-adic completion of
L + By the result of § 2, L is a finitely generated
S'F SIF A
z[qu;PES]-module, hence by the above assumption Ls P is a
[

finitely generated Os—module'; and so if OS[g] is an 0_.-algebra.

S

finitely generated as an Os-module, we can associate to very

continuous function g:Gg-~+ Osig] the well defined integral of
A A

g with respect to ., IGF gdpp € LS’F[gl = Os[q]GOSLS'F In

particular, for any continuous S—~adic character, w-GS+ 0. lw},

we can define the S-adic L-functions, L I mduF € L [ 1.

F, S

Remark: If the pP § were not S-adic units the u defined above

would still be a dlstrlbution but would not be bounded
Nevertheless, it would have"moderate growth"and hence any analytic

function{e.g. an S-adic character) could be integrated against it

But continuous functions could not be integrated and our

S-adic L-function would have infinitely many zeros, cf. [V ].

Theorem: We have the functional equation

Lp,s (@) = (D™ eput@ n, w7

Pf. One way of proving this is by using the functional

equation for LF(m) . PFor finite characters w we have
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by the previous theorem

LF(w)

I‘F,S(m) = -—,ETJT » (inv.,)

where (inv.) denotes a term invariant under w» w—l.

Using now the functional equation for LF(w), )
finite and T(m)-T(w-1)= 1, we obtain the functional
equation for LF s(m) for finite w's. Since the

’
measure u is determined by its values on finite w's

we obtain the functional equation for all w's.

A more direct proof is as follows. By using the functional

equation.

@) ) e
aa 0 ¥

fin -

one obtains for £ such that (f) = F is prime to a, r€k*; .

prime to F, and nec 0*

F
0 0 1l
F(gg?r-lbzx’l,-bog_r'ln)- 0 -1 o0
1 0 0
On the VO"'O— component this reads:

1l -1 -1

Folrafx,-n) = (-1)"ee -Folar "3fx ~,n 7).

*
Integrating this over k:-nog/g ‘with respect to d*x
P
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we get

1l

L(rF,m) = (-1)%e -Liar tF,-n7h.

Hence we obtain a functional egquation for our measures
) n “ay_ -1
Winy = (-1)Pee oF Bhop7h

from which the functional equation for LF S(m) follows
’
immediately. q.e.d.
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