p-adic L-functions for modular forms over CM fields

by

Shai Haran

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 D-5300 Bonn 3

ABSTRACT

We construct many variabled S-adic L-functions for weight 2 modular forms over CM fields, S being a finite set of primes away from the conductor of our form. This S-adic L-function is given by a measure on the Galois group of the maximal unramified-outside-S abelian extension of our CM ground field. We obtain this measure by playing the modular symbol game in an adelic language.

In chapter $\S 0$ we recall the adelic definition of a modular form and fix notations. In chapter § 1 we define the harmonic form on the symmetric space associated with our modular form. In chapter § 2 we study the "periods"; these are first defined via an adelic integral, than after Lemma 1, we transform it to an archimeadian integral, and finally after Lemma 2 , we show it is given by an itegral of our harmonic form against a cycle. Besides giving us a geometrical intuition, we can deduce from this interpretation that the module generated by these periods is finitely generated. In chapter § 3 we prove the crucial "Birch Lemma", expressing the critical value of the associated L-function as a linear combination of the above periods. In chapter § 4, we construct for each ideal r a distribution $\mu^{(r)}$ on $\prod_{p \in S} O^{*}{ }_{p} \vec{o}_{k}^{\star}$
with values in a certain module- the module of universal modular symbols that are Hecke eigen-symbols. In chapter § 5 we specialize this universal distribution with our modular form, and avaraging over all ideal classes, we use class field theory to get our distribution on the Galois group. We prove that the S-adic L-function interpolates the critical values of the classical zeta
function of the twists of our modular form by finite characters of conductor supported at S, and that it satisfies a similar functional equation

We would like to thank Barry Mazur for many exciting conversations, and the Max-Planck-Institut fur Mathematik for its hospitality.
\$0. Notations (mainly those of [W]).
k denotes a $C M$ field, i.e. a totally imaginary quadratic extension of a totally real number field. We denote by $\infty_{1} \ldots \infty_{n}$ the non-conjugate embeddings of k into $\mathbb{C},[k: \mathbb{Q}]=2 n$. We denote by $p^{\prime} s$ the primes of k, and we denote by v's the places of k whether finite or not.
$0_{k}=$ integers of k.
$k_{v}=$ completion of k at v
$0_{p}=$ integers of k_{p}
$k_{\text {fin }}=k \underset{\mathbb{Z}}{\otimes} \frac{\lim }{\mathbb{N}} \mathbb{Z} / N \mathbb{Z}=$ finite adele
$k_{\infty}=k \underset{Q}{\otimes} \mathbb{R}=\prod_{j=1}^{n} k_{\infty j}=$ infinite adele
$k_{A}=k_{\text {fin }} \times k_{\infty}=$ the adele
$k_{\infty j}^{+}=$real and positive elements of $k_{\infty j}^{*}$
$k_{\infty}^{+}=\prod_{j=1}^{n} k_{\infty j}^{+}$
$k_{\infty j}^{s g n}=$ elements of absolute value 1 in k_{∞}^{*}
$k_{\infty}^{s g n}=\prod_{j=1}^{n} k_{\infty j}^{\operatorname{sgn}} \quad$ so that $k_{\infty}^{*}=k_{\infty}^{+} \cdot k^{s g n}$.

Let ω denote a grossencharacter of k, i.e. a continuous homomorphism $\omega: k_{A}^{*} \rightarrow c^{*}$ of the idele group k_{A}^{*} into c^{*}, which is trivial on k^{*}. Let F denote its conductor. We denote by w the associated multiplicative function on ideals defined by $\underline{\omega}(P)=0$ if $P \mid F, \underline{\omega}(P)=\omega\left(\pi_{p}\right)$ if $P+F$ where π_{p} is a uniformizer of. k_{p}. We let ω_{v} denote tire restriction of ω to $k_{v}^{*} \subseteq k_{v}^{*}$.
Let $|x|_{A}=X_{V}|x|_{V}$ be the normalized absolute value of $x \in k_{A}^{*}$, we can write $|\omega(x)|=|x|_{A}^{\sigma}$ with $\sigma=\sigma(\omega) \in$ R. We fix a character $\psi: k_{A}+C^{*}$ of the adeles k_{A}.trivial on k for definiteness let us take $\psi=\| \quad \psi_{v}$ with
$\psi_{\infty j}(x)=e^{-2 \pi i(x+\bar{x})}$ and with ψ_{p} given by k;
$\psi_{P}: k_{p} \xrightarrow{t r} Q_{p} \longrightarrow Q_{p} \mathbb{Z}_{p} \longrightarrow Q / \mathbb{Z} \longrightarrow \mathbb{R}_{P} \mathbb{Z}^{\exp ^{+2 \pi i x}} c^{*}$

We let $\underline{\partial}$ denote an dele representing the absolute different D of k, i.e. the associated ideal (\underline{D}) is D and for $v \nmid 0$, including $v=\infty_{j}, \underset{v}{a}=1$. So that ${\underset{\partial}{p}}_{-1}^{O_{P}}$ is the orthogonal complement of 0_{p} with respect to the pairing $x, y+\psi_{p}(x y)$. Similarly we let f denote an dele representing F, the conductor of ω; and we let a denote an dele representing a, the conductor of our modular form F.

We let G denote the algebraic group $G L(2) / k$.
We denote by $G_{k}, G_{v}, G_{f i n}, G_{\infty}, G_{A}$ the points of G with values in $k ; k_{v}, k_{f i n}, k_{\infty}, k_{A}$ respectively. $G_{f i n}$ and G_{∞} are viewed as subgroups of $G_{A}=G_{\text {fin }} \times G_{\infty}$ and for $g \in G_{A}$ we write $g_{\text {fin }} g_{\infty}$ for its $G_{\text {fin }}$ and G_{∞} components. $Z_{k}, Z_{v}, Z_{\text {fin }}, Z_{\infty}, z_{A}$ denote the centers of the above groups. We let $B=\left\{(x, y) \stackrel{\operatorname{def}}{=}\left(\begin{array}{cc}x & y \\ 0 & 1\end{array}\right) \in G\right\} \cong G_{m} \propto G_{a}$ and $B_{k}, B_{v}, B_{f i n}, B_{\infty}, B_{A}$ its rational points, thus egg. $B_{A} \bar{z} k_{A}^{*} \propto k_{A}$ is the "adelic half plane". As a general rule, whenever we are given an element $g=\left\{g_{\mathbf{v}}\right\}$ defined for some set of v 's of some group, we add units for all the missing v 's; We define our level groups by:

$$
\begin{aligned}
& K_{\infty j}=S U\left(2, k_{\infty j}\right) \\
& K_{p}=\{\underbrace{x}_{\underline{a}_{p} a_{p} z} \frac{\partial \bar{p}^{-1} y}{w}, x, y, z, w \in O_{p}, \operatorname{det}=x w-\underline{a}_{p} Y z \in O_{p}^{*}\}
\end{aligned}
$$

$$
K_{f i n}=\prod_{p} K_{p} / K_{\infty}=\prod_{j=1}^{n} K_{\infty j} i \quad K_{A}=K_{f i n} \times K_{\infty}
$$

We define a c-vector space V, the value space of our forms, by:

$$
\begin{array}{ll}
v_{p}=c \cdot v_{p} & \text { one dimensional, } \\
v_{\infty j}=c \cdot v_{\infty j}^{1} \bullet c v_{\infty j}^{0} \oplus c \cdot v_{\infty j}^{-1} & \text { three dimensional, } \\
v=v_{v} & 3^{n} \text {-dimensional. }
\end{array}
$$

Thus v has the basis $v^{e_{i} \cdots e_{n}}=\sum_{p}^{n} v_{\infty}^{e_{i}}, 1 \geq e_{j} \geq-1$.

We define a right action M of $K_{A} Z_{A}$ on V as follows: for $\left(-\frac{a}{b} \frac{b}{a}\right) \in K_{\infty j},|a|^{2}+|b|^{2}=1$, we let $M_{\infty j}\left(\frac{a}{b} \frac{b}{a}\right.$) act on $V_{\infty j}$ via the symmetric square representation:

$$
M_{\infty j}\left(\frac{a}{-b} \quad \frac{b}{a}\right)=\left(\begin{array}{ccc}
a^{2} & 2 a b & b^{2} \\
-a b & |a|^{2}-|b|^{2} & \bar{a} b \\
\bar{b}^{2} & -2 \overline{a b} & \bar{a}^{2}
\end{array}\right) ;
$$

for $k=\left(k_{\infty j}\right) \in K_{\infty}$ we set $M(k)=\underbrace{n}_{j=1} M_{\infty j}\left(k_{\infty j}\right)$; we extend this action to all of $K_{A} Z_{A}$ by setting $M(k z)=M\left(k_{\infty}\right)$, $k \in K_{A^{\prime}} z \in Z_{A}$.

We define a function $W: k_{\infty}^{*}+V$ as follows:

$$
\begin{aligned}
& W(x)=\underbrace{n}_{j=1} W_{\infty j}\left(x_{\infty j}\right) \\
& W_{\infty j}(x)=W_{\infty j}^{1}(x) \cdot v_{\infty j}^{1}+W_{\infty j}^{0}(x) \cdot v_{\infty j}^{0}+W_{\infty j}^{-1}(x) v_{\infty j}^{-1} \\
& W_{\infty j}^{0}(x)=|x|^{2} \cdot K_{0}(4 \pi|x|) \\
& W_{\infty j}^{+1}(x)=\frac{1}{2} \cdot\left[\frac{1}{i} \cdot \operatorname{sgn}(x)\right]^{ \pm 1} \cdot|x|^{2} \cdot K_{ \pm 1}(4 \pi|x|)
\end{aligned}
$$

Here $\operatorname{sgn}(x)=\frac{x}{|x|}$ is the projection of $k_{\infty j}^{*}$ onto $k_{\infty j}^{s g n}$. K_{0}, K_{1} are Handel's functions [F].

Let F denote our modular form; F is a continous function from $G_{A}=B_{A}{ }^{2} A_{A}$ into V, such that
$F(g k z)=F(g) M(k)$ for $k \in K_{A^{\prime}}, z \in Z_{A^{\prime}}$ and $H F(g) \stackrel{\text { def }}{=} F\left(g\left(\begin{array}{l}0 \\ \left.\frac{\partial a}{} \quad-\frac{\partial^{-1}}{0}\right) \\ f i n\end{array}\right)=\varepsilon_{F} \cdot F(g), \varepsilon_{F}= \pm 1\right.$.

Assure: that F is an eigenform of all the Heck operators T_{p}. For P a we have $T_{P} F=\lambda_{P} \cdot F$, and the Heck operator is defined by $T_{p} F(g)=\int_{K_{p}\left(\pi_{p}, 0\right) K_{p}} F(g k) d k$, where π_{p} is
a uniformizer of k_{p}, $d k$ is the Haar measure normalized such that $\int_{K_{p}} d k=1$. since $K_{p}\left(\pi_{p}, 0\right) K_{p}=$ $\pi_{p}\left(\pi_{p}^{-1}, 0\right) k_{p} \cup \underbrace{\sum_{p}}_{u \bmod }\left(\pi_{p}, u \partial_{p}^{-1}\right) k_{p}$ we get:

$$
T_{P} F(g)=F\left(g\left(\pi_{p}^{-1}, 0\right)\right)+\sum_{u \bmod } p\left(g\left(\pi_{p}, u_{p}^{-1}\right)\right)
$$

Assume further that F is cuspidal at infinity, $\int_{k_{A}} F(x, y) d y=0$ for all $x \in k_{A}^{*}$ so that F has a Fourier expansion at infinity of the form: $F(x, y)=\int_{\xi \epsilon_{k}} C((\xi x)) W\left(\xi X_{\infty}\right) \cdot \psi(\xi y)$. (this restriction can be dropped, but it will simplify things considerably). Let us write $L_{F}(w)=\sum_{b} C(b) \cdot \underline{\omega}(b)$ for the associated L-function, here the sum is extended over all ideal b, but $C(b)=0$ if b is not integral, and $\underline{\omega}(b)=0$ if b is not prime to F. Note that $C(P)=\lambda_{P} \cdot \mathbb{D} P^{-1}$. Since F is a Heck eigenform, $L_{F}(\omega)$ has an Euler product, $\quad L_{F}(\omega)=\prod_{p}{\underset{X}{P}}\left(\mathbb{N} P^{-1} \underline{\omega}(P)\right)^{-1}$ with $B_{P}(T)=1-\lambda_{p} T+N P_{r}{ }^{2}=\left(1-\rho_{P} T\right)\left(1-\rho_{p} T\right)$ for P ta.

Nate that as in [W], everything is normalized so that the functional equation for finite ω has the form $L_{F}(\omega)=(-1)^{n} \cdot \varepsilon_{F} \cdot \tau(\omega)^{2} \cdot L_{F}\left(\omega^{-1}\right)$, (ie. the critical value is at "S = 0"); here the Gaussain sums $\tau(\omega)$ are defined as follows: $\tau(\omega)=\prod_{P} \tau_{p}(\omega)$, for $P \nmid F \tau_{p}(\omega)=\omega_{p}(\underline{a})$, and for $P \mid F$:

$$
\begin{aligned}
& =\left(1-N p^{-1}\right)\left|\underline{E}_{p}\right|^{-\frac{1}{2}} \omega_{p}(\underline{\partial \underline{I}}) \int_{0 ; p} \omega_{p}^{-1}(x) \psi_{p}\left(x \underline{\partial}_{p}^{-1} \underline{f}_{p}^{-1}\right) d^{*} x_{0}
\end{aligned}
$$

(the multiplicative Haar measure $\mathbf{d * x}$ being normalized by $\int_{0_{p}^{*}} d \star x=11$
51. Associated harmonic form (Cf. [K] and [W])

Let $r_{i}, i=1, \ldots, h$, denote a set of finite ideles representing the class group Cl_{k} of k.

Let $x=G_{k} \backslash G_{A} / K_{A} Z_{\infty}$, we have a natural map
$\operatorname{det}: x \rightarrow k_{A}^{*} / k^{*} \cdot \prod_{P} O_{P}^{*} \cdot k_{\infty}=C_{L_{k}}$. Decomposing x into
the fibers of this map we get:

$$
X=G_{k} \backslash G_{A} / K_{A} Z_{\infty}=G_{k} \backslash \sum_{i=1}^{h} G_{k}\left(r_{i}, 0\right) K_{f i n} G_{\infty} / K_{A} Z_{\infty}=\sum_{i=1}^{h} X^{\left(r_{i}\right)}
$$

with $x^{\left(r_{i}\right)}=r^{\left(r_{i}\right)} G_{\infty} / K_{\infty} z_{\infty}, r^{\left(r_{i}\right)}=G_{k} \cap\left(\left(r_{i}, 0\right) K_{f i n}\left(r_{i}^{-1}, 0\right) . G_{\infty}\right)$. We shall next associate with F a harmonic form Ω_{F} on X. Let $H=G_{\infty} / Z_{\infty} K_{\infty}$. We use the projection
$B_{\infty}^{+}=\left\{(x, y) \in B_{\infty}\right.$ with $\left.x \in x_{\infty}^{+}\right\} \xlongequal{\approx} H$, as identification, and thus we have a group structure on $H=k_{\infty}^{+} \propto k_{\infty}$, and we have coordinates (x, y) on H. We have a Riemannian structure on $H_{\infty j}$ given by $d s^{2}=\frac{1}{x^{2}}\left(d x^{2}+d y \overline{d y}\right)$ and G_{∞} / Z_{∞} acts on H as a group of isometries; we denote this action by $\gamma \cdot h, \gamma \in G_{\infty j}, h \in H_{\infty j}$. For $\gamma=\left(\begin{array}{ll}a & b \\ c & \mathbf{d}\end{array}\right) \in G_{\infty j}, h=(x, y) \in H_{\infty j}$, we define:

$$
J(\gamma, h)=\left(\begin{array}{cc}
\operatorname{sgn}(\gamma) \cdot(\overline{c y+d}) & -\operatorname{sgn}(\gamma) \cdot \overline{c x} \\
c x & (c y+d)
\end{array}\right) \in K_{\infty} Z_{\infty}
$$

where

$$
\operatorname{sgn}(\gamma)=\operatorname{sgn}(\operatorname{det} \gamma) \in k_{\infty}^{8 g n}
$$

An easy calculation gives the automorphy relation: $J\left(\gamma_{1} \gamma_{2}, h\right)=J\left(\gamma_{1}, \gamma_{2} \circ h\right) J\left(\gamma_{2}, h\right)$.

On H we define an n-form with values in V * vector space dual to V, by:
$\beta=\sum_{e_{1} \ldots e_{n}}{ }_{j=1}^{n} B_{\infty j}^{e_{j}} \cdot v_{e_{1}} \ldots e_{n}$, where $\left\{v_{e_{1}} \ldots e_{n}\right\}$ is the dual $1 \geq e_{j} \geq-1$
basis of $\left\{v^{e_{1} \cdots e_{n}}\right\}$, and

$$
\begin{aligned}
& \beta_{\infty_{j}}^{e_{j}}=-\frac{d y_{\infty}}{X_{\infty}} \quad \text { if } \quad e_{j}=1, \\
& \beta_{\infty_{j}}^{e_{j}}=\frac{d x_{\infty j}}{X_{\infty}} \quad \text { if } \quad e_{j}=0, \\
& \beta_{\infty}=\frac{d y_{\infty}}{x_{\infty j}} \text { if } e_{j}=-1 .
\end{aligned}
$$

β is defined in this manner to ensure that $\left.B\right|_{\gamma}(h)=B(h) \cdot{ }^{t_{M}}(J(Y, h))$ for $\quad r \in G_{\infty}, h \in H$.

Fix $\quad x \in k_{f i n}^{*}$ a finite dele. With our modular form F we associate an n-form on H given by $\Omega_{F}^{(r)}(h)=F\left(h\left(\begin{array}{ll}r & 0 \\ 0 & 1\end{array} f_{f i n}\right) \cdot \beta(h)\right.$ Let $I^{(r)}=G_{k} \cap\left((x, 0) K_{f i n}\left(r^{-1}, 0\right) G_{\infty}\right)$ it's a congruence subgroup of G_{k} which we view as a discrete subgroup of G_{m}. An easy calculation gives $F(\gamma \circ h(x, 0))=F(h(x, 0)) M(J(\gamma, h))^{-1} \quad \gamma \in f^{(n)}$, and hence $S_{F}^{(r)}$ is $[(x)$ invariant, and can be viewed as a form on $x^{(t)}=I^{(x)} H$.
(Note that $x^{(0)}$ is not a manifold because the elliptic elements in $f^{(r)}$ give whole geodesics that are singular. But we can always find a normal subgroup of finite index $I_{0}^{(x)} \subseteq I^{(f)}$ that has no torsion, Then $x_{0}^{(n)}=\int_{0}^{(1)} H$ is a manifold and $x^{(r)}$ is the quotient of $x_{0}^{(0)}$ by the finite group $\tilde{r}^{(n)}=r^{(x)} / \Gamma_{n}^{(n)}$. we can now view $\Omega_{F}^{(0)}$ as a form on $x_{0}^{\text {(t) }}$ invariant under $\tilde{f}^{(m)}$).

Moreover, the properties of Handel's functions, $K_{0}=\frac{1}{x} k_{1}+K_{1}$, $K_{1}=-K_{0}^{\prime}$ imply that $f_{F}^{(P)}$ is harmonic, hence can be viewed as an element of $H^{n}\left(X^{(n)}, c\right)$ (ice. as an element of $H^{n}\left(x_{0}^{n, c},\right)^{n^{n)}}$). We finally define Ω_{F} on x by $\left.\Omega_{F} \mid X_{x}\right)=\Omega_{F}^{\left(\sigma_{i}\right)}, i=1 \ldots h$

We let $H=H \cup P^{1}(k)$.
For $h=(x, y)$ we set: $|h|_{\infty}=\prod_{j=1}^{n} x_{\infty}^{-1}$, the "distance" of h from $\infty ;|h|_{\eta}=\prod_{j=1}^{n} x_{\infty j}^{-1}\left(|n-y|_{\infty j}^{2}+x_{\infty j}^{2}\right)$, the mistancen of h from $n \in k$. The topology on \bar{H} is defined by taking for neighborhoods of $\eta \in P^{\mathbf{2}}(k)$ the sets $\{n\} \cup\left\{h \in H\left||h|_{\eta}<r\right\}\right.$, for all $r>0$. It is easy to see that this topology is separated and that the action of G_{k} on \bar{H} is continuous. We let $\bar{X}^{(r)}=r^{(n)} H$.

Remark:
Because of the estimates of Hanker's functions we have: $|F(h(x, 0))|=O\left(|h|_{\eta}^{\sigma}\right)$ for all $\sigma \in \mathbb{R}$ if and only if $F(h(x, 0))$ is cuspidal at η. By using the fact that F is cuspidal at ∞, one gets that for $(E)=F$ prime to a (=conductor of $F), \quad \alpha \in O_{F}^{*}=\prod_{P \mid F} O_{p, r \in k_{f i n}^{*} \quad \text { prime to } F \text { : }}^{*}$ $\mid F(r$ gif x, $-\alpha) \mid=O\left(|x|^{\sigma}\right)$ as $|x| \rightarrow 0$ or ∞, for all $\sigma \in \mathbb{R}$.
52. The periods $L(x, \eta)$ (cf. [$K]$)

We fix Haar measure $d^{*} x={\underset{v}{e}}_{0}^{d} x_{v}$ on k_{A}^{*} normalized by: $\int_{0_{p}^{*}} d x_{p}=1$ and $d^{*} x_{\infty j}=\frac{|d \theta \wedge d r|}{r}$ where $x_{\infty j}=r e^{i \theta}$
in polar-coordinates. We let $F_{0}: G_{A} \rightarrow C$ denote the $v^{0} \ldots 0_{j=1}^{n} V_{\infty, j}^{0}$-component of $F: G_{A}+V$. For $r \in k_{A}^{*}, \eta \in k_{f i n}$, we define (if convergent, egg. by the remark at the end of § 1):

$$
L(x, \eta)=\frac{1}{\left(0^{*}: E\right)} \int_{k_{\infty} \cdot \Pi_{P} O_{p}^{*} / E} F_{0}(r \underline{\partial},-n) d * x
$$

where E is any subgroup of totally positive units, of finite index in 0^{*}, satisfying the congruence conditions:

$$
(1-\varepsilon) \eta \in r_{f i n} \prod_{p} O_{p} \quad \text { for all } \varepsilon \in E
$$

Lemma 1:
(i) $L(x, n)$ depends only on the ideal (r).
(ii) $L(x, \eta)$ depends only on the image $\eta \in k_{f i n} / x_{f i n} \|_{p} O_{p}$.
(iii) $L(x, \eta)=L(r \xi, \eta \xi)$ for $\xi \in k *$.

Pf. (i) follows since $\cdot F(r \partial x,-n)=F((r \partial x,-n)(u, 0))=$ $F\left(r_{\partial} \underline{u x},-\eta\right)$ for $u \in{\underset{P}{P}}_{O_{p}}$, and $F_{0}(r \partial x,-\eta)=$ $F(r \underline{\partial} u x,-\eta)$ for $u \in k_{\infty}^{s g n}$.
(ii) follows since $F(r \underline{\partial} x,-\eta)=F\left((r \underline{\partial},-\eta)\left(1,-r^{-1} \underline{\partial}^{-1} x^{-1} \mu\right)\right)$ $F(r \partial x,-n-\mu)$ for $\mu \in r \prod_{p} O_{p}$.
(iii) follows since $F(r \underline{\partial} x,-\eta)=F((\xi, 0)(r \underline{\partial} x,-\eta))=$ $F(\xi r \underline{\partial} x,-\xi \eta)$.

Thus if $\eta \in k$, which by (ii) we may assume without loss of generality, we have

$$
\begin{aligned}
L(r, n) & =\frac{1}{\left(0^{*}: E\right)} \int_{\mathrm{k}_{\infty}^{+}} \prod_{P} O_{P} / E F_{0}\left((1, \eta)\left(r \underline{\partial},-\eta_{f i n}\right)\right) \mathrm{d}^{*} x= \\
& =\frac{1}{\left(0^{*}: E\right)} \int_{\mathrm{k}_{\infty}^{+} / E} F_{0}\left(r \underline{\partial} x, \eta_{\infty}\right) \mathrm{d}^{*} x \text { an archimedian integral. }
\end{aligned}
$$

We shall next describe some relative cycles in $X^{(r)}$) against which integrating $\Omega_{F}^{(r)}$ we shall obtain $L(r, \eta)$, thus justifying the name "periods" for $L(r, n)$. Let

$$
\begin{aligned}
& I=\left\{\left(t_{0}, t_{1} \ldots t_{n-1}\right) \mid 0 \leq t_{0} \leq \infty, 0 \leq t_{1} \ldots t_{n-1} \leq 1\right\} \\
& I=\left\{\left(t_{0}, t_{1} \ldots t_{n-1}\right) \in \bar{I} \mid 0<t_{0}<\infty\right\} \\
& I_{0}=\left\{\left(0, t_{1} \ldots t_{n-1}\right) \in \bar{I}\right\}, I_{\infty}=\left\{\left(\infty, t_{1} \ldots t_{n-1}\right) \in \bar{I}\right\}
\end{aligned}
$$

so that $\bar{I}=I_{0} \cup I \cup I_{\infty}$. Fix a basis $\varepsilon_{1} \ldots \varepsilon_{n-1}$ for E, and define $x: 1 \rightarrow k_{\infty}^{+}$by $\left.x(t)\right)_{\infty j}=t_{0} \prod_{k=1}^{n-1}\left(\varepsilon_{k}^{(\infty j)}, t_{k}\right.$, so that $k_{\infty}^{+}=\bigcup_{\varepsilon \in E} \varepsilon \cdot x(I)$. For $n \in k$ we define an n-simplex
$c(E, \eta): \bar{I} \rightarrow \bar{H}$ by

$$
c(E, n)[t]=\left\{\begin{array}{cl}
\eta & t \in I_{0} \\
(x(t), \eta) & t \in I^{n} \\
\infty & t \in I_{\infty}
\end{array}\right.
$$

It is easily seen that $c(E, \eta)$ is continuous on \bar{I}, and smooth on I. We have $\left(1,\left(\varepsilon_{k}-1\right) \eta\right) \circ C(E, \eta)\left[\left\{t \in \bar{I} \mid t_{k}=0\right\}\right]=$ $c(E, n)\left[\left\{t \in \bar{I} \mid t_{k}=1\right\}\right]$. Thus if

 $\frac{1}{\left(O^{*}: E\right)} e^{(x+2)}(E, \eta) \in H_{n}\left(X^{(r)}, \partial X^{(r-2)} ; Q\right)$ is independent of E.

Lemma 2: $L(x, n)=\int_{d r \partial)_{n)}} \delta_{F}^{(r \partial)}$.

Pf. We have:
$\int_{c^{(r \partial)}(n)} \Omega_{F}^{(F \underline{\partial})} \quad$ integration in $\bar{X}^{r} \underline{\partial}$
$=\frac{1}{\left(0^{\star}: E\right)} \int_{c(E, n)} \Omega_{F^{(r a)}}^{(\underline{\partial})} \quad$ integration in H
$=\frac{1}{\left(0^{*}: E\right)} \int_{I} F\left((x(t), n)_{\infty}(r \underline{\partial}, 0)\right) \cdot(c(E, n) * B)(t) \quad$ integration in I
Note that all the " y-components" are constant, $y_{\infty j}=\eta_{\infty j}$, thus
$=\frac{1}{\left(0^{*}: E\right)} \int_{I} F_{0}\left(r \underline{\partial} x(t), \eta_{\infty}\right) \frac{d x(t)}{x(t)}=\frac{1}{\left(0^{\star}: E\right)} \int_{K_{\infty}^{+} / E} F_{0}\left(r \underline{\partial x},-\eta_{f i n}\right) d \star x$

Corollary: The \mathbb{Z}-module generated by all $L(x, n)$'s is finitely generated.

Pf. $H_{n}(\bar{X}, \partial \bar{X} ; 2)$ is finitely generated and the denominators $\frac{1}{\left(O^{\pi}: E\right)}$ are bounded.
§ 3 Twists and Mellin transforms ([M]'s and [K]'s generalization of the basic idea of [B], which really goes back as far as Dirichlet...).

Let ω be a finite character, so that ω_{∞} is trivial. Let F be its conductor. Write $\omega^{s}(x)=\omega(x) \cdot|x|_{A}^{s}$, so that on ideals $\underline{\omega}^{s}(b)=\mu\left(b ; \operatorname{NO}^{-s}\right.$. Define the twist

$$
F^{\omega}(x)=\sum_{\xi \in x_{*}} C((\xi x))_{\mu}((\xi x)) \cdot W\left(\xi x_{\infty}\right) \text {. Fix finite ideles }
$$

$r_{1} \ldots r_{h}$ representing $\underline{C l}_{k}$ such that r_{i} is prime to F.

Lemma Let $\mathbb{l}_{2}\left(\omega^{s}\right)=\left((2 \pi)^{-2} r(s+1)\right)^{2 n}$. For Re s large we have:

$$
(4 \pi)^{2 n} C_{2}\left(\omega^{8}\right)^{-1} \cdot L_{E}\left(\omega^{s}\right)=\sum_{i=1}^{h} N\left(I_{i}\right)^{-s} \frac{1}{\left(0^{\star}: E\right)} \int_{k_{\infty} / E} F_{0}^{\omega}\left(r_{i} x_{\infty}\right) \cdot\left|x_{\infty}\right|^{s} d^{\star} x_{\infty}
$$

Pf. An easy calculation gives

$$
\begin{aligned}
\int_{k_{A}^{*} / k^{*}} F^{F^{\prime}}(x) \cdot|x|_{A}^{s} d^{*} x & =\sum_{b} c(b) \underline{\omega}^{8}(b) \cdot \int_{k_{\infty}^{*}} W\left(x_{\infty}\right) \cdot\left|x_{\infty}\right|^{s} d^{*} x_{\infty} \cdot \\
& =L_{F}\left(\omega^{s}\right) \cdot \frac{1}{(8 \pi)^{n}} \mathbb{V}_{2}\left(\omega^{2}\right) \cdot v^{0} \ldots 0
\end{aligned}
$$

Thus only the $v^{0 \cdots}{ }^{0}$-component F_{0} gives a contribution and we get:

$$
\begin{aligned}
(8 \pi)^{-n} \cdot \Gamma_{2}\left(\omega^{s}\right) \cdot L_{F}\left(\omega^{s}\right)= & \int_{k_{A}^{*} / k *} F_{0}^{\omega}(x) \cdot|x|_{A}^{s} d^{*} x= \\
= & \sum_{i=1}^{h} N\left(x_{i}\right)^{-s} \int_{k_{\infty}^{*} / 0^{*}} F_{0}^{\omega}\left(r_{i} x_{\infty}\right) \cdot\left|x_{\infty}\right|^{s} d^{*} x_{\infty}= \\
= & (2 \pi)^{n} \cdot \sum_{i=1}^{h} N\left(x_{i}\right)^{-s} \frac{1}{\left(0^{*}: E\right)} \cdot \\
& \quad \int_{k_{\infty}^{+} / E} F_{0}^{\omega}\left(x_{i} x_{\infty}\right) \cdot\left|x_{\infty}\right|^{s} d^{*} x_{\infty}
\end{aligned}
$$

Here E is any subgroup of totally real units of finite index in $0 *$, but we shall consider only E satisfying the congruence conditions of 52 in all that follows.

Lemma Let $r \in K_{\text {fin }}^{*}$ be prime to F, i.e. $r_{p}=1$ for all $P \mid F$.

For $x \in k_{\infty}^{*}$ we have:

Pf. An application of Fourier inversion gives for $\mathcal{E} \in k^{*}$:

$$
\omega((\xi))=T(\omega) N F^{-\frac{1}{2}} \sum_{\alpha \in\left(0_{F} / \hat{F}\right) *} \omega\left(\alpha \partial^{-1} f^{-1}\right) \psi\left(-\alpha F^{\left.\partial^{-1} \underline{f}^{-1} \xi\right)}\right.
$$

And so we get:

$$
\begin{aligned}
& F^{\omega}(r x)=\sum_{\xi \in \mathcal{K}^{*}} C((\xi r)) \underline{\omega}((x)) \underline{\omega}((\xi)) W(\xi x)=
\end{aligned}
$$

$$
\begin{aligned}
& =T(\omega) N F^{-\frac{1}{2}} \sum_{\alpha \in\left(\delta_{F} / F\right) *} \omega\left(\alpha r \partial^{-1} \underline{f}^{-1}\right) F\left(r x,-\alpha F^{\left.a^{-1} \underline{I}^{-1}\right) .}\right. \\
& \text { Birch Lemma [B]: } L_{E}(\omega)=\tau(\omega) N F^{-\frac{1}{2}}(4 \pi)^{2 n} \sum_{i=1}^{h} \alpha \in\left(\delta_{F} / \hat{F}\right) \star \quad \omega\left(\alpha r_{i}\right) L\left(r_{i} f_{i}, \alpha_{F}\right)
\end{aligned}
$$

Pf. Combining the last two lemmas we get for Re s large:

$$
\begin{aligned}
& T(\omega)^{-1} \frac{1}{n} F^{\frac{1}{2}}(4 \pi)^{-2 n_{2}} r_{2}\left(\omega^{s}\right) \cdot L_{F}(\omega)^{s}= \\
& \left.\sum_{i=1}^{h} T\left(r_{i}\right)^{-s} \sum_{\alpha \in\left(0_{F} / \hat{F}\right) *} \omega\left(\alpha r_{i} \frac{\partial}{}_{-1}^{E^{-1}}\right) \frac{1}{\left(0^{*}: E\right)} \int_{k_{\infty}^{+/ E}} F_{0}\left(r_{i} x_{\infty},-\alpha_{F} \underline{\partial}^{-1} \underline{f}^{-1}\right) \cdot\left|x_{\infty}\right|^{s} \cdot d^{*}\right)
\end{aligned}
$$

by the remark at the end of $\S 1$ the right hand side converges for all s, at $s=0$ we get:

$$
T(\omega)^{-1} N F^{\frac{1}{2}}(4 \pi)^{-2 n} \cdot L_{F}(\omega)=
$$

$$
=\sum_{i=1}^{h} \sum_{\alpha \in\left(O_{F} / \hat{F}\right)^{*}}^{\omega\left(\alpha r_{i} \partial^{-1} \underline{f}^{-1}\right) \cdot \frac{1}{\left(O^{*}: E\right)} \int_{x_{\infty}^{+} / E} F_{0}\left(r_{i} x_{\infty j}-\alpha_{F} \partial^{-1} \underline{f}^{-1}\right) d^{\star} x_{\infty}}
$$

let $\xi \in k^{*}$ be such that $(\xi)_{F}=\left(\underline{\partial}^{-1} \underline{f}^{-1}\right)_{F}$, multiplying α by $\xi_{F} \partial f \in O_{F}^{*}$ we continue the equality
multiply the argument of F_{0} by $\left(\xi^{-1}, 0\right)$ and use left G_{k}-invariance, then put $\xi^{-1} \times$ for x_{∞}

$$
=\sum_{i=1}^{h} \alpha \in\left(\delta_{F} / \hat{F}\right) \quad \omega\left(\dot{\alpha} r_{i}(\xi \underline{\partial}) F^{\partial^{-1}} \frac{1}{\left(0^{*}: E\right)} \cdot \int_{k_{\infty}^{+} / E} F_{0}\left(r_{i} \xi_{f i n}^{-1} x_{\infty},-\alpha_{F}\right) d^{*} x_{\infty}\right.
$$

substitute $r_{i}(\underline{\xi})^{-1} \overline{\mathcal{l}}^{\partial} \xi_{f i n}$ for r_{i} we finally get

$$
=\sum_{i=1}^{h} \int_{\alpha \in\left(0_{F} / \hat{F}\right)^{\star}} \omega\left(\alpha r_{i}\right) \frac{1}{\left(0^{*}: E\right)} \int_{k_{\infty}^{+} / E} F_{0}\left(r_{i} \partial f x_{\infty},-\alpha_{F}\right) d^{\star} x_{\infty}
$$

§ 4 Universal modular symbol and associated distribution
([M]'s adelization of [M,S-D]).

Let S denote a finite set of primes. Let $L(S)$ denote by the $z\left[\rho_{p}^{-1} ; P \in S\right]$-module generated by the symbols $L(r, n), r \in k_{f i n}^{*}{ }^{\prime}$ $n \in \prod_{P \in S} k_{p}$. subjected to the following relations:

Rel(i): $L(r, n)$ depends only on the ideal (r). $\operatorname{Rel}(i i): L_{(}(r, \eta)$ depends only on the image of n in $\prod_{p \in S} k_{p} / r_{p} 0_{p}$. $\operatorname{Rel}(i i i): \quad L_{1}(r, \eta)=\mathbf{L}(r \xi, r \xi)$ for $\xi \in k^{*}$.

For $p \in S$ define the operator $R_{p}{ }^{-1}$ acting on $L(S)$ by $R_{P^{-1}}(r, \eta)=\mathbb{L}\left(r P^{-1}, n\right)$. For r prime to S, define the operator U_{p} by $U_{p} L(r, \eta)=\sum \quad L(r p, \eta+u)$, and extend this operator to all of $L(S)$ vial $\operatorname{Rel}(i i i)$ (here and in the following, u mod means that we sum over $u \in O_{p}$ running through a complete set of representatives for the residue field $k(P)$). It is easy to see that these operators are well defined. We let $L^{*}(S)=$ $L(S) /\left(\lambda_{p}-R_{p-1}-U_{p}\right) L(S)$. For the formal convinience we also define $R_{p} L(r, \eta)=L(r p, \eta)$ whenever $n_{p} \varepsilon^{k} p_{p} / r_{p} 0_{p}$ was given by the context as $\quad \eta_{p} \in{ }^{k_{P} / P r_{p} 0_{p}}$, and similarly we let $\ell_{u} L(r, n)=L(r, \eta+u)$ for $u \in k_{p}$; these are not operators because we can possibly have e.g. $L(r, \eta)=0, R_{p} L(r, n) \neq 0$, so whenever we have an expression involving R_{p} ' s, ℓ_{u} 's, and $L(r, \eta$)'s we first apply the R_{p} 's and the $\ell_{u}{ }^{\prime} s$ and only then look at the image of the resulting expression in $L^{*}(S)$. Thus by abuse of language we have the following Hecke relations:
(*) $\quad \rho_{p}{ }^{+} \tilde{\rho}_{p}=\lambda_{p}=R_{p}^{-1}+R_{p} \sum_{u \bmod p}{ }^{l_{u}}$
(**)

$$
\rho p \cdot \tilde{\rho}_{p}=\| P=\sum_{u \bmod p}^{\ell_{u}}
$$

when applied to $\mathrm{L}(x, n)$ with r prime to p; (*) is just the relation $\lambda_{p}=R_{p-1}+U_{p}$, and (**) follows from Rel(ii), $L(x, n+u)=L\left(x, n+u^{\prime}\right)$ for any $u, u^{\prime} \in O_{p}$.

Fixing $r \in k_{k}^{*}{ }_{f}$ prime to S we shall define an $L(S)$-valued distribution $\mu^{(r)}$ on $0_{s}^{*}=\prod_{P \in S} 0 \stackrel{*}{P}$, by giving its value on "ellmentary sets". We write $S=S_{0} \cup S_{1}, F=\prod_{P \in S_{1}} P^{e} P, e_{p}>0$, and let $n \in O_{F}^{*}=\operatorname{m}_{P \in S_{1}} O_{P}^{*}$ extended to $n \in O_{S}$ by decreeing that $n_{p}=0$ for $p \in S_{0}$; we let $n+(F)^{\star}=$
$\operatorname{II}_{P \in S} O_{p}^{*} \times \operatorname{II}_{P E S}\left(n+P^{e} P_{O_{p}}\right) \subseteq O_{S}^{*}$. Every open set in O_{S}^{*} is a finite union of such elementary open sets $\eta+(F){ }^{\prime \prime} \mathbf{s}$.

Definition

This depends only on the image of n in $0_{F}^{*} /(1+(F))$ by Rel (ii).

Theorem ${ }_{\mu}(x)$ is indeed a distribution:
$\mu^{(r)}\left(\bigcup_{i=1}^{N} u_{i}\right)=\sum_{i=1}^{N} \mu(r)\left(u_{i}\right)$ for disjoint open sets $u_{i} \subseteq O_{S}^{*}$.

Pf. It's enough to check that
(I) $\quad n^{\prime} \sum_{\text {mod } F P} \mu^{(F)}\left(n^{\prime}+(F P)\right)=\mu^{(I)}(n+(F))$ $\eta^{\prime} \equiv \eta \bmod F$
for $P \in S, F$ divisible by all $P \in S, \eta \in O_{S}^{*}$; and to check that
(II) $\sum_{u_{i} \bmod P_{i}} H^{(t)}\left(\eta+\sum_{i=1}^{e} u_{i}+\left(F \prod_{i=1}^{e} P_{i}\right)\right)=\mu^{(x)}(\eta+(F) *)$

$$
u_{i} \neq 0
$$

where $s_{0}=\left\{P_{1}, \ldots, P_{e}\right\}, n \in O_{F}^{*}$, with the above convention ${ }^{n} P_{i}=0$.

We begin with (I), so that $s_{0}=g$. Let $(-1)^{d}$ denote the MObbius function : $(-1)^{d}=0$ if $p^{2} \mid d$ some P, and $(-1)^{d}=(-1)^{\{(P \mid d\}}$ if d is square free.
Extend R_{p} and ρ_{p} by multiplicativity $R_{d}=\|_{p \mid d} R_{p}{ }^{\text {ord }_{p} d}$, $\rho_{d}={ }_{p \mid d}^{\pi} \rho_{p}$ ord $_{p}^{d}$. Then $\mu^{(r)}(n+(F))=$
$\left[\prod_{P \in S}\left(1-\rho_{P}^{-1} R_{P}^{-1}\right)\right] \cdot \rho_{F}^{-1} R_{F} L(r, n)=\left[\rho_{F}^{-1} \sum_{d F}(-1)_{\rho_{d}}^{d}{ }_{R_{F}}^{-1}\right] L(r, n)$.
Choose $\xi \in K^{*}$ such that $(\xi)_{S}=F$, where we write $(\xi)=(\xi)_{S}(\xi)^{S}$ with $(\xi)^{S}$ prime to s. Write
$\left(n^{\prime}\right)=\eta+5 u \quad$ with $\quad u \in O_{p}$ running through a complete set of representatives for the residue field $k(P)$. We have:
$\eta^{\prime} \sum_{\bmod F P} f^{(r)}\left(\eta^{\prime}+(F P)\right)=\sum_{u \bmod } P \rho_{F P}^{-1} \sum_{d F P}(-1) \int_{d}^{d}{ }_{F P d^{-1}}^{-1} L(r, \eta+u \xi)=$ $\eta^{\prime} \equiv \eta \bmod F$
writing $\underset{d \mid F P}{ }$ as $\left\{_{d F}+\sum_{d \mid F P}\right.$ and substituting $d P$ for a pf plo
in the second sum

$$
=\rho_{F}^{-1} \sum_{\substack{d F \\ P+d}}(-1)^{d} \rho_{d}^{-1} \sum_{u \bmod P}\left\{\rho_{p}^{-1} L\left(r F P^{-1}, n+u \xi\right)-\rho_{p}^{-2} L\left(r F d^{-1}, \eta+u \xi\right)\right\}=
$$

by Rel(iii) we can divide ξ and get

$$
\begin{aligned}
& =\rho_{F}^{-1} \sum_{d F}(-1)^{d} \rho_{d}^{-1} \sum_{u \bmod } p^{\{ } \rho_{p}^{-1} L\left(r P d^{-1}\left(\xi^{-1}\right)^{S}, n \xi^{-1}+u\right)- \\
& \text { pea } \\
& \left.-\rho_{P}^{-2} L\left(x d^{-1}\left(\xi^{-1}\right)^{s}, n \xi^{-1}+\mathrm{ta}\right)\right\}
\end{aligned}
$$

using Heck relations (*) and (**) for the first and second terms in \{ \} respectively

$$
\begin{aligned}
& =\rho_{F}^{-1} \int_{d F}(-1)^{d_{\rho}}{ }_{d}^{-1}\left(\rho \rho_{P}^{-1}\left(\rho_{P}+\tilde{\rho}_{P}\right) L\left(r d^{-1}\left(\xi^{-1}\right)^{S}, n \xi^{-1}\right)\right. \\
& \left.{ }^{P+d_{-}} \rho_{p}^{-1} L\left(r d^{-1}\left(\xi^{-1}\right) S_{P}^{-1}, \eta \xi^{-1}\right)-\rho_{p}^{-2}\left(\rho_{p} \cdot \tilde{\rho}_{p}\right) L\left(r d^{-1}\left(\xi^{-1}\right)^{S}, \eta \xi^{-1}\right)\right\}
\end{aligned}
$$

canceling terms inside $\}$, and using Rel(iii), to multiply by 5 , we get
$=\rho_{F}^{-1}\left\{_{d F}(-1) \int_{d}^{-1}\left\{L\left(r F d^{-1}, n\right)-\rho_{P} \cdot L\left(r F d^{-1} P^{-1}, n\right)\right\}=\right.$ Pf d
$=\left[\rho_{F}^{-1} \sum_{d}(-1)^{d} \int_{d^{-1}}{ }_{F d^{-1}}\right] L(r, \eta)=\mu^{(r)}(\eta+(F))$.

As to (II) we have with $S_{0}=\left\{P_{i}{ }^{\prime} s\right\}$:
using the Hecke relations (*) and (**) we get

$$
=\mu^{(F)}(n+(F) *)
$$

$$
\begin{aligned}
& =\left[\rho _ { F \Pi P _ { i } } ^ { - 1 } \prod _ { P | F } (1 - \rho P _ { P } ^ { - 1 } R _ { P } ^ { - 1 }) \cdot R _ { F } \prod _ { P _ { i } } \left\{\left(-R_{P_{i}}+\rho_{P_{i}}+\tilde{\rho}_{P_{i}}-R_{P_{i}}^{-1}\right)\right.\right. \\
& \left.\left.-\rho P_{i}^{-1}\left(\rho_{P_{i}} \tilde{\rho}_{P_{i}}-1\right)\right\}\right] L(r, n)= \\
& =\prod_{P \mid F}\left[\rho_{P}^{-o r d_{P} F}{ }_{\left(1-\rho_{P}^{-1} R_{P}^{-1}\right) R_{P}}^{o r d_{P} F}\right] \prod_{P_{i}}\left[\left(1-\rho_{P_{i}}^{-1} R_{P}^{-1}\right)\left(1-\rho_{P_{i}}^{-1} R_{P_{i}}\right)\right] L(r, \eta)= \\
& =\left[\prod_{P \in S}\left(1-\rho_{P}^{-1} R_{P}^{-1}\right) \rho_{P}^{-o r d_{P}}{\underset{R}{R}}^{R_{p}} \text { ord }_{P} F \cdot \prod_{P \in S_{0}}\left(1-\rho_{P}^{-1} R_{P}\right)\right] L(r, n)=
\end{aligned}
$$

$$
\begin{aligned}
& u_{i} \sum_{\bmod P_{i}} \mu^{(n)}\left(n+\sum_{i=1}^{e} u_{i}+\left(F \prod_{i=1}^{e} P_{i}\right)\right)= \\
& u_{i} \neq 0 \\
& =\left[\rho_{F \Pi P_{i} d}^{-1} \cdot\left\{_{F \Pi P_{i}^{(-1)}} \int_{d} \rho_{F\left(\Pi P_{i}\right) d^{-1}} \prod_{P_{i}} u_{i} \sum_{\bmod P_{i}}{ }^{\ell} u_{i}\right] L(x, n)\right. \\
& u_{i} \neq 0
\end{aligned}
$$

$$
\begin{aligned}
& u_{i} \neq 0 \\
& =\left[\rho_{F \Pi P_{i}}^{-1} \cdot \prod_{P \mid F}\left(1-\rho_{P}^{-1} R_{P}-1\right) \cdot R_{F} \prod_{P_{i}}\left\{\left(R_{P_{i}}-\rho_{P_{i}}^{-1}\right) \sum_{u_{i}}^{\bmod }{P_{i}} \ell_{u_{i}}\right\}\right] L(x, n)= \\
& u_{i} \neq 0
\end{aligned}
$$

Note that by Rel (i) and Rel(ii) we have for $\varepsilon \in 0^{*}$, $L(x, \varepsilon \eta)=L\left(\varepsilon^{-1} r, \eta\right)=L(x, \eta)$. Hence $\mu^{[r)}\left(\varepsilon \eta+(F)^{*}\right)=\mu^{(r)}(\eta+(F) *)$, $\varepsilon \in 0^{*}$, and we can view $f^{(r)}$ as a distribution on $\prod_{P \in S} 0_{P}^{*} / \bar{O}_{k}$. where ${\underset{k}{k}}_{\delta_{k}}$ denote the closure of 0_{k}^{*} in 0_{S}^{*}.

§5 Measure associated to a modular form

Let F denote a modular form and let $L(x, \eta)$'s denote its periods. Fix a finite set of finite places S away from $a=$ conductors of F. By the remark at the end of $§ 1$ the periods $L(r, \eta)$ converge for $n \in 0_{S}, r \in k_{f i n}^{*}$, and by Lemma 1 of $\S 2$ these periods satisfy Rel (i), Rel(ii), Rel(iii) of § 4. Moreover, since F is assumed to be a Hecke eigenform we have for $P \in S$, and r prime to P,

$$
\begin{aligned}
& \lambda_{p} \cdot L(r, \eta)=\frac{1}{\left(0^{*}: E\right)} \int_{k_{\infty}^{+}}^{\prod_{p} O_{p} / E} T_{p} F_{0}(\underline{r} \underline{x},-n) d^{\star} x= \\
& =\frac{1}{\left(0^{*}: E\right)} \int_{x_{\infty}} \prod_{P} O_{p}^{*} / E \quad\left\{F_{0}\left(r \underline{\partial} P^{-1} x,-n\right)+\sum_{u \bmod p} F_{0}(r \underline{\partial} P x,-n-u)\right\} d * x= \\
& =L\left(x P^{-1}, \eta\right)+\sum_{u \bmod p} L(r P, \eta+u)=\left\{R_{P}^{-1}+R_{P} \sum_{u \bmod } \sum_{u} \ell_{u}\right\} L(x, \eta) .
\end{aligned}
$$

and so $L(r, n)$ satisfy the extra Heck relation (*) of § 4. Thus we have a well define map $L(r, \eta) \mapsto L(r, \eta), L^{*}(S) \rightarrow L_{S, F}$, where $L_{S, F}$ is the $z\left[\rho_{P}^{-1} ; P \in S\right]$-module generated by the periods $L(r, \eta)^{\prime} s, r \in k_{f i n \prime}^{*} \eta \in 0_{S}$. The construction of $\S 4$ gives now for every $r \in k_{\dot{f} i n}^{*}$ an $L_{S, F}$-valued distribution on $0_{S}^{*} / \overline{0_{\mathcal{K}}^{*}}$.

Let $k(1)$ denote the Hilbert class field of k, and let $k(S)$ denote the maximal abelian extension of k unramified outside S. By means of the Artin symbol we have isomorphisms

$$
\begin{aligned}
& \downarrow \downarrow \\
& k_{A}^{*} / \underset{P \notin S}{ } \prod_{P^{*} k_{\infty}^{*}}^{\sim} \operatorname{Gal}(k(S) / k) \\
& \downarrow \cdot P \notin S
\end{aligned}
$$

We use these isomorphisms as identifications, and define a distribution on $G_{S}=\operatorname{Gal}(k(S) / k)$, by $\mu_{F}=\sum_{i=1}^{h} \delta_{r_{i}}{ }^{*} \mu_{F}\left(r_{i}\right)$, where $r_{1} \ldots r_{n} \in k_{\text {fin }}$ represents d_{k} and are prime to s; that is for a locally constant function g on G_{S}, we have

$$
\int_{G_{S}} g d \mu=\sum_{i=1}^{h} \int_{0_{S}^{*} / 0_{K}^{x}} g\left(x_{i} n\right) d \mu^{\left(r_{i}\right)}(n),
$$

The distribution μ_{F} is determined by its values on finite characters ω. Let $\mathbb{Z}[\omega]$ denote the ring obtained by adjoining to z the values of ω, and let $L_{S, F}[\omega]=\mathbb{Z}[\omega] \odot L_{S, F}$.

Theorem For a finite character, $\omega: G_{S} \rightarrow Z[\omega], F=$ conductor of ω, we have in $L_{S, F}[\omega]$:

$$
\int_{G_{S}} \omega d \mu=\prod_{P \in S}\left(1-\rho_{P}^{-1} \underline{\omega}(P)\right)\left(1-\rho_{P}^{-1} \omega^{-1}(P)\right) \cdot \frac{N F^{\frac{1}{2}} \rho_{F}^{-1}}{r(\omega)(4 \pi)^{n}} \cdot L_{F}(\omega)
$$

Pf.

$$
\int_{G_{F}} \omega d \mu_{F}=\sum_{i=1}^{h} \omega\left(r_{i}\right) \int_{0_{S}^{*} / \sigma^{*}} \omega(\eta) d \mu^{\left(r_{i}\right)}(n)=
$$

$$
=\sum_{i=1}^{h} \sum_{n \in\left(O_{F} / \hat{F}\right) *}^{\omega\left(r_{i} n\right) \mu^{\left(r_{i}\right)}(\eta+(F) *)=}
$$

$$
=\sum_{i=1}^{h} \sum_{\eta \in\left(O_{F} / \hat{F}\right)} \omega\left(r_{i} \eta\right) \cdot \rho_{F}^{-1} \sum_{d \prod_{P \in S}(-1)^{d} \rho_{d}^{-1} R_{d}^{-1} \sum_{d} \prod_{P \in S_{0}}(-1)^{d \prime} \rho_{d r}^{-1} R_{d} \cdot R_{F} \cdot L(r, \eta)}
$$

without loss of generality we may assume $(d, F)=1$, otherwise
we get a "denominator" Fd^{-1} and by Rel (ii) of 54 , $L\left(r d^{\prime} F d^{-1}, n\right)$ depends only on the image $n_{0} \in\left(O_{F} / F(F, d)^{-1}\right)^{*}$ of n, but $\sum_{\eta \in\left(O_{F} / \hat{F}\right) *} \omega(\eta)=0$; thus the above ts equal to
by Birch lemma the last sum is independent of the choice of $r_{i}{ }^{\prime} s$ and we may replace r_{i} by $r_{i} d^{\prime} d^{-1}$ obtaining

$$
\begin{aligned}
& =\cdot \rho_{F}^{-1} \sum_{d \prod_{P \in S_{0}}(-1)^{d} \rho_{d^{-1} \underline{\omega}(d)} d^{\prime} \sum_{P \in S_{0}}(-1)^{d^{\prime}} \rho_{d^{\prime}}^{-1} \underline{m}^{-1}\left(d^{\prime}\right)^{-1} .} . \\
& \cdot \sum_{i=1}^{h} \sum_{n \in\left(0_{F} / \hat{F}\right)^{*} \omega\left(r_{i} \eta\right) L\left(r_{i} F, \eta\right)=} \\
& =\rho_{F}^{-1} \prod_{P \in S_{0}}\left(1-\rho_{P}^{-1} \underline{\omega}(P)\right)\left(1-\rho_{P}^{-1} \underline{\omega}(P)^{-1}\right) \sum_{i=1}^{h} \sum_{\eta \in\left(\delta_{F} / \hat{F}\right)} * \omega\left(r_{i} \eta\right) L\left(r_{i} F, \eta\right)=
\end{aligned}
$$

$$
\begin{aligned}
& n \equiv n_{0}\left(\bmod F(F, d)^{-1}\right) \\
& =\rho_{F}^{-1} \sum_{d, d^{\prime} \mid \Pi P}(-1)^{d}(-1)^{d \prime} \rho_{d^{-1}}^{-1} \rho_{d^{\prime}}^{-1} \sum_{i=1}^{h} \sum_{\eta \in\left(0_{F} / \hat{F}\right)^{*}} \dot{\omega}\left(r_{i} \eta\right) L\left(r_{i} d^{\prime} d^{-1} F, \eta\right)= \\
& p \in S_{0}
\end{aligned}
$$

$=\rho_{F}^{-1} \underset{P \in S}{I I}\left(1-\rho_{P}^{-1} \underline{\omega}(P)\right)\left(1-\rho_{P}^{-1} \underline{\omega}^{-1}(P)\right)\left(\tau(\omega) N F^{-\frac{1}{2}}(4 \pi)^{2 n}\right)^{-1} L_{F}(\omega)$
by Birch Lemma.
q.e.d.

Assume that the $\rho_{p} ' s, P \in S$, can be chosen to be P-units, hence s-units. Let $\hat{\iota}_{S, F}=0_{S}$ IS,F denote the s-adic completion of $L_{S, F}$. By the result of $§ 2, L_{S, F}$ is a finitely generated $X\left[\rho_{P}{ }^{-1} ; P \in S\right]$-module, hence by the above assumption $\hat{L}_{S, F}$ is a finitely generated 0_{S}-module; and so if $0_{S}[g]$ is an 0_{S}-algebra. finitely generated as an 0_{S} module, we can associate to very continuous function $g: G_{S} \rightarrow{ }_{S}[g]$ the well defined integral of g with respect to $\mu_{F}, \int_{G_{F}} g d_{\mu_{F}} \in \hat{L}_{S, F}[g]=0_{S}[g] \oplus_{0 S} \hat{L}_{S, F}$. In particular, for any continuous S-adic character, $\omega: G_{S}+0_{S}[\omega]$, we can define the S-adic L-functions, $L_{F, S}(\omega)=\int_{G_{S}} \omega d \mu_{F} \in \hat{L}_{S, F}[\omega]$.

Remark: If the ρ_{p} 's were not s-adic units the μ_{F} defined above would still be a distribution but would not be bounded. Nevertheless, it would have" moderate growth "and hence any analytic function(e.g. an s-adic character) could be integrated against it. But continuous functions could not be integrated and our S-adic L-function would have infinitely many zeros, cf. [V].

Theorem: We have the functional equation

$$
L_{F, S}(\omega)=(-1)^{n} \cdot \varepsilon_{F} \cdot \omega(\underline{a}) \cdot L_{F, S}\left(\omega^{-1}\right)
$$

Pf. One way of proving this is by using the functional equation for $L_{F}(\omega)$. For finite characters ω we have
by the previous theorem

$$
L_{F, S}(\omega)=\frac{L_{F}(\omega)}{\tau(\omega)} \cdot(\text { inv. })
$$

where (inv.) denotes a term invariant under $\omega \boldsymbol{\omega} \omega^{-1}$. Using now the functional equation for $L_{F}(\omega)$, ω finite and $\tau(\omega) \cdot \tau\left(\omega^{-1}\right)=1$, we obtain the functional equation for $L_{F, S}(\omega)$ for finite $\omega^{\prime} s$. Since the measure μ is determined by its values on finite w's we obtain the functional equation for all $\omega^{\prime} s$.

A more direct proof is as follows. By using the functional equation.

$$
F \cdot\left(g\left(\begin{array}{lc}
0 & -\partial^{-1} \\
\underline{\partial}-\underline{a} & 0
\end{array}\right) \underset{f i n}{ }\right)=\varepsilon_{F} \cdot F(g)
$$

one obtains for \underline{f} such that $(\underline{f})=F$ is prime to $a, r \in k^{*}{ }_{f i n}$ prime to F, and $n \in O_{F}^{*}$

$$
F\left(\underline{a} \partial^{2} r^{-1} D^{2} x^{-1},-D_{0} \underline{a} r^{-1} D\right) \cdot\left(\begin{array}{rrr}
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

On the $v^{0 \cdots 0^{0}}$ component this reads:

$$
F_{0}(r \partial f x,-\eta)=(-1)^{n} \cdot \varepsilon_{F} \cdot F_{0}\left(\underline{a r}^{-1} \underline{\partial f x^{-1}}, \eta^{-1}\right)
$$

Integrating this over $k_{\infty}^{+} \cdot \frac{11}{P} 0_{P / E}^{*}$ with respect to $d^{*} x$
we get

$$
L(r F, \eta)=(-1)^{n} \cdot \varepsilon_{F} \cdot L\left(\underline{a} r^{-1} F,-\eta^{-1}\right) .
$$

Hence we obtain a functional equation for our measures

$$
u^{(I)}(n)=(-1)^{n} \cdot \varepsilon_{F} \cdot u^{\left(F^{-1}\right.} \cdot \frac{a}{\left(-\eta^{-1}\right)}
$$

from which the functional equation for $L_{F, S}(\omega)$ follows immediately.q.e.d.

Bibiliography

[B]
B.J. Birch: Elliptic curves over Q, a progress report. 1969 Number Theory Institute, AMS Proc. Symp. Pure Math. XX(1971), 396-400.
[T] S. Haran: p-adic L-functions for elliptic curves over CM fields, Ph.D, Thesis, Massachusetts Institute of Technology, May 1983.
[K] P.F. Kurcanov: Dirichlet seties of Jacquet-Langlands cusp forms over fields of CM-type, Math. USSR Izv. 14 (1980).
[F] W. Magnus, F. Oberhettinger: Formulas and Theorems for the Functions of Mathematical Physics, Chelsea, 1954.
[M] J.I. Manin: Non-archimedean integration and p-adic Hecke-Langlands L-series, Russian Math. Surveys, vol.31, no. 1 (1976).
[M,S-D] B. Mazur, H.P.F. Swinnerton-Dyer: Arithmetic of Weil curves, Inv. Math. 25 (1974), 1 - 61.
[V] S. Visik: Non-archimedean measures associated with Dirichlet series, Mat. sb. 99 (1976).
A. Weil: Dirichlet series and automorphic forms, Springer Lec. Notes in Math. 189 (1971).

