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Abstract

We study spectral asymptotics for the Laplace operator on differential forms
on a Riemannian foliated manifold equipped with a bundle-like metric in the
case when the metric is blown up in directions normal to the leaves of the
foliation. The asymptotical formula for the eigenvalue distribution function is
obtained. The relationships with the spectral theory of leafwise Laplacian and
with the noncommutative spectral gecometry of foliations are discussed.

Introduction

Let (M, F) be a closed foliated manifold, dim M = n, dimF = p, p+q = n, equipped
with a Riemannian metric gas. We assume that the foliation F is Riemannian, and
the metric gy is bundle-like. Let ' = T'F be an integrable distribution of p-planes in
TM, and H = F* he the orthogonal complement to F. So we have a decomposition
of TM into a direct sum:

T™ =FEH. (1)
The decomposition (1) induces the decomposition of the metric

gM = gr + gu. (2)
Define a one-parameter family gn of metrics on M by the formula

gh=gr +h %9y, 0 < h <1, (3)



For any h > 0, we have the Laplace operator on differential forms defined by the
metric ¢:

Ap =d;, d+ dd (4)

gr?

where d is the de Rham differential:
d: CO(M AT M) = C=(M, AT M), (5)

3, is the adjoint with respect to the metric on C%°(M,AT"M) induced by gr. The
operator Ay is a sell-adjoint, elliptic differential operator with the positive definite,
scalar principal symbol in the Hilbert space L*(M,AT~M, g5). By the standard per-
turbation theory, there are (countably many) analytic functions A;(f) such that, for
any h >0

spec Ay = {N(h) 10 =0,1,...}. (6)

The main result of the paper is an asymptotical formula for the eigenvalue distribution
function Ni(X) of the operator Ay:

Theorem 0.1 [f (M, F) be a Riemannian foliation, equipped with a bundle-like Rie-
mannian metric gpy. Then the asymptotical formula for Ny(A) has the following form:

—-gq/2 A
Ny(A)=h"1 v (4r) (A — T)"/Z(I,N}-(T) +o(h™%),h — 0, (8)

((q/2) +1) J-eo

where Nx(A) is the spectrum distribulion function of the tangential Laplace operator
Ap : C°(M, AT M) = C(M,AT*M). (9)

We refer the reader to Section 5 for a detailed formulation of this Theorem. We stated
also the asymptotical formula for the trace of an operator f(Aj) for any function
f € C.(R) (see Theorems 3.1 and 5.1 below).

The study of asymptotical behaviour of geometric objects (like as harmonic forms,
eta-invariants etc.) associated with a family of Riemannian metrics on fibrations as
the metrics become singular was stimulated by Witten’s work on adiabatic limits [28].
For further developments see, for instance, {22, 9, 11, 12] and references there.

In the spectral theory of differential operators, problems in question are related
with the Born-Oppenheimer approximation which consist in that the Schrodinger
operator for polyatomic molecule is considered in the semiclassical limit where the
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mass ratio of electronic to nuclear mass tends to zero (see, for instance, [16] and
references there). In particular, the result on semiclassical asymptotics for spectrum
distribution function in a fibration case is, essentially, due to [3].

The investigation ol semiclassical spectral asymptotics for foliations was started
by the author in {17, 18, 20]. There we considered the problem in the operator setting,
that is, we studied spectral asymptotics for the self-adjoint hypoelliptic operator Ay
of the form

Ap=A+1MB, (10)

where A is a tangentially elliptic operator of order y¢ > 0 with the positive tangential
principal symbol, and B be a differential operator of order m on A with the posi-
tive, holonomy invariant transversal principal symbol and obtianed an asymptotical
formula for spectrum distribution function of this operator when h tends to zero.

In this work, we adapted our results on semiclassical spectral asymptotics to the
geometric setting of adiabatic limits on foliations.

The main observation related with the asymptotical formula (8) is that its right-
hand side depends only on leafwise spectral data of the tangential Laplace operator
Ap. So, in a case when the foliation F is nonamenable, there might to be a A > 0
such that

lim h*VA(A) = 0. (11)

The formula (11) allows, in particular, to introduce spectral characteristics ri(A)
related with adiabatic limits which are nontrivial in the nonamenable case. We hope
that some invariants of the function r(A) introduced above near A = 0 might to bhe
independent of the choice of metricon M (otherwise speaking, to be coarse invariants),
and, moreover, be topological or homotopic invariants of foliated manifolds (just as
in the case of Novikov-Shubin invariants [13]). We discuss these questions and their
relationships with the spectral theory of leafwise Laplacian and with noncommutative
spectral geometry of foliations in Section 7.

The organization of the paper is as follows.

In Section 1, we recall some facts on pseudodifferential operators on foliated man-
ifolds.

In Section 2, we summarize some necessary properties of the Laplace operator on
a foliated manifold.

In the Sections 3 and 4, we formulate and prove the asymptotical formula for
trf(An) when h tends to zero for any function f € C.(R).

In Section 5, we rewrite the asymptotical formula of Section 3 in terms of spectral
characteristics of the operator Ap. In particular, this provides a proof of the main



Theorem 0.1 on an asymptotic behaviour of the eigenvalue distribution function.
Finally, in Section 6 we discuss some facts and examples related with the asymp-
totical behaviour of individual eigenvalues of the operator A, when & tends to zero,
and, as mentioned above, Section 7 is devoted to a discussion of various aspects of
the main asymptotical formula (8).
The work was done during a stay at the Max Planck Institut fir Mathematik at
Bonn. I wish to express my gratitude to it for hospitality and support.

1 Pseudodifferential operators on foliations

Here we recall some facts on pseudodifferential operators on foliated manifolds. The
main references here are {19, 20].

Let (M, F) be a compact foliated manifold, F' be a distribution of tangent planes
to F. The embedding £ C TM induces an embedding of differential operators
Dif f¥(F) € Dif f*(M), and differential operators on M obtained in such a way is
called tangential differential operators.

More generally, let £/ be an Hermitian vector bundle on M. We say that a linear
differential operator A of order i acting on C°(M, F) is a tangential operator, if|
in any foliated chart x : [? x I¥ - M (I = (0,1) is the open interval) and any
trivialization of the bundle £ over it, A is of the form

A=Y aq(e,y) DS, (w,y) € 7 x [, (12)

lr|<p

with @, being matrix valued (unctions on 77 x /9.

Let Dif f#(F, E) denote the set of all tangential differential operators of order
acting in C®°(M, £).

Now we introduce the classes Dif f™*(M,F, E) by taking compositions of tan-
gential differential operators of order p and differential operators of order m on M.
That is, we say that A € Diff™#(M,F, E) if Ais of the form

A=3" B,C,, (13)

where By € Dif f™(M, E), C, € Dif f*(F, E).

From symbolic calculus, it can be easily seen that:

(1) if Ay € Diffms(M,F,E), A, € Diffma#2(M F E), then A; 0 Ay €
Dif fritmats (AL F | [7):



(2)if Ae Diff™*(M,F,E), then the adjoint A* € Dif [™#*(M,F, ).

Classes Dif f™#(M,F, I2) can be extended to bigraded classes of pseudodiffer-
ential operators U™# (M, F, E), which contain, for instance, parametrices for elliptic
operators from the classes Dif f™*(M,F, ). We don’t give its definition here, re-
ferring to [19](see also [20]) for details and will be restricted by an introduction of
classes of differential operators.

Now we recall the definition of a scale of Sobolev type spaces H**(M,F, E),s €
R,k € R, corresponding to classes of differential operators introduced above.

The space H**(R™ RP,C") consists of all C"-valued tempered distributions u €
S'(R"*,C") such that @ € LlQOC(R", C") (u the Fourier transform) and

ll2s = [ [ 16+ IR + ) (1 + €Y dedy < oo (14)

The identity (14) serves as a definition of a norm || |, in the space H**(R"*, R?, C").

The space H**(M,F, E) consists of all « € D'(M, ) such that, for any foliated
coordinate chart & : [P x [ = U = s({? x 1) C M, any trivialization of the
bundle £ over it, and for any ¢ € C°(I/), the function x™(¢u) belongs to the space
H**(R",R?,C") (r = rank E). Fix some finite covering {U; : i = 1,...,d} of M
by foliated coordinate patches with the foliated coordinate charts x; @ [* x 17 —
U; = ri(IP x I9) and trivializations of the bundle £ over them, and a partition of
unity {¢; € C°(M) : i =1,...,d} subordinate to this covering. A scalar product in
H**(M,F,E) is defined by the formula

d
(u,v)ep = Z(ﬁ“(gﬁ;u),m'(q‘),-v)),'k, w,v € I'I”k(i'\')',]:, £). (15)
i=1
We have the following result on the action of differential operators of class D f f™*#(M, F, )
in the spaces H**(M,F, E) (see [19, 20] for a proof in the scalar case).

Proposition 1.1 An operator A € Dif f™*(M,F, E) defines a linear bounded op-
eralor from H**(M,F E) to H*=™ #(M F E) for anys € R, k € R.

Finally, the scale of Sobolev type spaces introduced above allows us to formulate
a Garding inequality for tangentially elliptic operators (for the proof, see [19]).

Proposition 1.2 If A is tangentially elliptic operator of order u with the positive
tangential principal symbol, then, for any s € R, k € R, there exist constanis C, > 0
and Cy such thal

Re (Au,u), ) > Cl||u||f‘k+“/2 — Co|ui? uw€ C®(M, ). (16)
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2 Geometric operators on Riemannian foliations

Here we summarize some necessary properties of the Laplace operator on a foliated
manifold.

As above, (M, F) denotes a closed foliated Riemannian manifold, dim M = n,
dimF = p, p+ q¢ = n, equipped with a Riemannian metric gay, 7 = TF be an
integrable distribution of p-planes in T'M. Recall that we choose the orthogonal
complement H to I, so

FEH=TM. (17)
The decomposition (17} induces a bigrading on AT*M by the formula

k

AT M = QAT M, (18)
=0 .

where N . _
AV M = A'F""@AJH". (]9)

Now we transfer the family Ay to a fixed Hilbert space L?(M,AT*M,g). For this
goal we introduce the isometry

Op 1 LA(M,AT M, gy) — L*(M,AT*M, g), (20)
where, for u € L*(M,ANT*M, g,), we have
Opu = hu. (21)

The operator Ay, in the Hilbert space L*(M,AT"M, g5) corresponds under the isom-
etry Oy to the operator
Ly = @hﬂh@;l (22)
in the Hilbert space L2(M,AT"M) = L}*(M,AT"M, g).
De Rham differential d inherits the decomposition (17) in the form

d=dp+dy + 0. (23)

Here the tangential de Rham differential dg and the transversal de Rham differential
dy are first order differential operators, and 8 is zeroth order. Moreover, the operator
dr doesn’t depend on a choice of the orthogonal complement H (see, for instance,
[251).

Then we have the following assertion on the lorm of the operator Lp.
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Lemma 2.1 ([11]) We have

Ly = dpdy + 6dy, (24)
where
(lh = (lF' + h([H + /?.29, (25)
and
(Sh = (SF‘ + h&H + ]?,20', (26)

is the adjoint, where 8, oy and 0% ave the adjoints to dp, dyy and 0 respectively. Here
we consider the adjoints taken in the Hilbert space L*(M,ANT"M).

By Lemma 2.1, the operator Ly is of the following form:
Ly =Ap+RPAy + A 3+ h Ky + P K, + h3 K, (27)
where
e The operator
Ap = dpdp + Spdp € Dif fO2(M,F,ANT*M) (28)
is the tangential Laplacian in the space C(M,AT*M).
e The operator
Ay =dudy + dpdy € Dif f*°(M,F,AT*M) (29)
is the transversal Laplacian in the space C®(M, AT*M).
o ALy = 00"+ 00 € Dif fO°M, F,AT"M)).
o Ky =dpdy + 6pydr + Spdyy + dydp € Dif f1oM, F,AT"M)).
o Ny =dp0™+0"dp + 5pb + 06p € Dif[O°(M,F,AT*"M)).
o Ny=du0"+0dy+ g0+ 05y € Dif [YOAM,F,AT*M)).

I'rom now on, we will assume that (M, F) is a Riemannian foliation with a bundle-
like metric gas, that is, it satisfies one of the following equivalent conditions (see [25]):

1. (M, F) locally has the structure of Riemannian submersion;
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2. for any X' € F' we have

where V7 is a Bott connection on H;
3. the distribution H is totally geodesic.

The following Lemma states the main specific property of geometrical operators on
Riemannian foliated manifold.

Lemma 2.2 If (M, F) is a Riemannian foliation with a bundle-like metric gar, then
the operators
dréy + dpdr and dpdy + dydr (31)

belong to the class Dif fO' (M, F,AT*M)). In particular, we have
Ki € Dif fOY (M, F,AT"M)). (32)

For any h > 0, the operator L, is a formally self-adjoint, elliptic operator in
L*(M, AT M) with the positive principal symbol. The following Proposition is a re-
inement of the classical Garding incquality for the operator Ly in H**(M,F,AT*M)

Proposition 2.3 Under current hypotheses, there exists constants C, > 0, C3 > 0
and C3 > 0 such that for any h > 0 small enough we have the following inequality:

(Lawyuw) > (1= CiR*) (A pu,u) + Coh|ul|} o = Callu|®, uw € C®(M,AT*M)).  (33)
Proof. By (27), we have

(Lpua) = (Arpu,u) + R Apu,u) + A (A gu,u)
+  h(Kju,u) + R Kou,u) + R3{( Kyu,u),
w € C°(M,AT"M). (34)

It clear that (A_,u,u) > 0. By Proposition 1.1, we have
(Kyuy) > ~Callull?, (K, u) > —Cillull. (35)
So we obtain
(Lpuad) > (Apu,u) 4+ R Apu,u) + (K u,w)
— Gl = ol (36)
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The operator Ap+ Ay is an second order elliptic operator with the positive principal
symbol, so, by the standard Garding inequality, we have

(Ap + Ap)u,u) 2 Collullf g — Crllu]l*, (37)
that implies the estimate
(Lpew) 2 (1 _ W) (Apu,u) + Coh?||u)? o + h(Ku,u)
~ Cflul® (38)
Finally, we make use of the inequality
(K1, w)] < Colleoallell < Colhllwllg, + " el?) (39)
and the tangential Garding estimate (see Proposition 1.2)
l[ellg.r < Col(Apu,u) + [Juf?), (40)
that completes immediately the proof.
Remark. In some cases, it is sufficient to use more crude estimate
(Lause) 2 Chllulis, + Cah?|fulll o — Callu|®,w € C®(M,AT*M)), (41)
which follows from (33), if we apply the standard Sobolev norm estimate
(Apw,u) < Crollulld,. (42)

Let Hy(t) = exp(~tLn),t > 0, be the parabolic semigroup, gencrated by the
operator Lj: ;
Hu(t) : C¥(M, AT M) = CC(M,AT™M). (43)

For any ¢ > 0, the operator H,(¢) is an operator with a smooth kernel. Proposition 2.3
implies the following norm estimates for operators of this semigroup in the spaces

H¥ (M, F,AT*M) (sec also [20]).
Proposition 2.4 We have the following estimates:
| Hp(0))r < Crapt 520277 ||, 0 € C°(M, AT M), (44)
fr>s,he(0,1,0 <t <1, and the estimate
[ Hu(tyulispe < Cot ™|y, u € CZ(M, AT M), (45)

ifr=she[0,1],0 <t <1, where the constanis don’t depend on i and h.



3 Asymptotical formula for the functions of the
Laplace operator

Form now on, we will assume that (M, F) is a Riemannian {oliation, equipped with a
bundle-like Riemannian metric gas. In this Section, we state the asymptotical formula
for tr f(Ay) when h tends to zero for any function f € C.(R).

We will denote by G the holonomy groupoid of (M,F). Recall that G# is
equipped with the source and the target maps s,r : G — M. We will make use of the
standard notation: G'Y) = M is the set of objects, G% = {y € Gz : r(y) = a},z € M.
Recall that (% is the covering of the leaf through the point z, associated with the
holonomy group of the leaf. We-will identify a point =z € M with the identity element
in (7. Finally, we will denote by Aj the Riemannain volume form on each leaf L of
F and by A% its Iift to a measure on the holonomy covering G%, 2 € M.

For any vector bundle £ on M, we denote by C®°(('r, ) the space of all smooth,
compactly supported sections of the vector bundle (s,7)"(E*@ E) over Gz. In
other words, for any £ € C®(Gx, F), its value at a point ¥ € Gr 1s a linear
map k(y) @ Eyy) = Enq. We will use a correspondence between tangential ker-
nels k£ € CP(Gr, E) and tangential operators K : C®(M, I7) — C®(M, E) via the
formula

Ku(z) = /G: E(y)u{s(7))dA*(y),u € C®(M, E). (46)
F

Now we introduce a notion of a principal h-symbol of the operator Ay. It is well-
known (see, for instance, [23, 25]) that the conormal bundle H* to the foliation F
has a partial (Bott) connection, which is flat along the leaves of the foliation. So we
can lift the foliation F to the foliation Fy in the conormal bundle . The leaf fq, of
the foliation Fp through a point v € H* is diffeomorphic to the holonomy covering
G% of the teaf Ly, = m(v) of the [oliation F through the point = (here m : H* — M
is the bundle map) and has a trivial holonomy.

Denote by

Ax, 1 CP(H, 7" AT M) - C®(H",n"AT"M) (47)
the lift of the leafwise Laplacian Ap to tangentially elliptic operator on H™ with
respect to Fpy.

Remark. If we fix z € M, the restriction of the foliation Fj; on HJ is a linear model
of the foliation F in some neighborhood of the leaf L, through a point z, so the
restriction A, of Agr, on H~,

Ay CO(HL wAT* L AHZ) = C®(Hz, m"AT* LR AH?), (48)

10



is the model operator for the tangential Laplacian Ap at the "point” 2 € M/F.
I & I

Definition. The principal h-symbol of the operator Ay is a tangentially elliptic
operator

oh(An) : C¥(H* 7" AT M) = C=(H", m* AT M) (49)

on H* with respect to the foliation Fyy, given by the formula
on(An) = Ar, + gn, (50)

where gy is the scalar multiplication operator by the function gy (v),v € H*.

The holonomy groupoid G, of the lifted foliation Fy consists of all triples
(v,v,m) € Gr x H* x H* such that s(v) = 7(v), r(y) = =(n) and (dh2)~"(v) = 7,
where dhZ is codifferential of the holonomy map, with the source map s : Gr, —
H*,s(y,v,n) = v and the target map r : Gr, = H™,7(v,v,n) = 1. The projection
m: H* = M induces the map ng : Gz, = Gx by

WG(7: v, 7)) =7 (7) v, 7?) € GFH' (51)

Denote by trr, the trace on the von Neumann algebra W>*(Gir,, m*AT*M) of all
tangential operators on H* with respect to the foliation Fy, given by a holonomy
invariant measure dz dv on H* [6]. For any tangentially elliptic operator K on
(H*,Fu), given by the tangential kernel k € C°(Gr,, n*AT*M), k = k(y,v,n) we
have

tre, (K) =/ Trrearear k(z, v, v)dedy. (52)
H‘
Theorem 3.1 For any function [ € C.(R), we have the asymptotical formula
tr f(AR) = (2m) " h" g, f(on(AR)) 4+ O(R'™%),h - 0. (53)

We will prove this Theorem in the next Section, and now we conclude the Section
with some remarks.

Remarks. (1) In a case of the Schrodinger operator on a compact manifold M with an
operator-valued potential V € L(H) with a Hilbert space H such that V(2)* = V(z)
(a fibration case)

Hyp=—h*A+V(z),x € M, (54)

the corresponding asymptotical formula has the following form:

tr f(Ay) = (2#)_"/1_"/ Tr f(h(z,&))dedé + o(h™"), h — 0+, (55)
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where h{z, £) is the operator-valued principal h-symbol
b €) = [EF + V(z), (2,6) € T"M. (56)

So the formula (53) has the same form as (55) with the difference that the usual
integration over the base and the fibrewise trace are replaced by the integration in a
sense of the noncommutative integration theory [6].

(2) We don’t make an essential use of a operator-valued symbolic calculus. Indeed, it
is a difficult problem to develop such a calculus in a general case. The introduction
of the principal h-symbol of the operator Ay allow us to simplify the nal asymp-
totical formula and also some algebraic calculations (see below for a passage from an
asymptotical formula for tr exp(—tAy,) to an asymptotical formula for tr f(Ay) with
an arbitrary function f € C(R).

4 Proof of Theorem 3.1

In this Section, we prove Theorem 3.1, concerning an asymptotical behaviour of
tr f(Ay) when h tends to zero.

First of all, let us note that, without loss of generality, we may consider an asymp-
totical behaviour of tr f(Lx). The proof of Theorem 3.1 relies on a comparison of the
operator Ly with some operator Ly of the almost product structure as in [20] with
a subsequent use of results of [20] on semiclassical spectral asymptotics for elliptic
operators on foliated manifolds.

So let the operator Ly € Diff*°(M,F,AT*M)) be given by the formula

I?Jh :Ap+h2AH. (57)

The operators L and Ly are generators parabolic semigroups of linear bounded
operators in the space L*(M,AT*M) denoted by

Hiy(t) = e 1>0, (58)
Hy(t) = e t>0, (59)

respectively. It is clear that, indeed, these operators are smoothing operators when
t>0. .
The operator L, satisfies the conditions of [20], that is, it is of the form

Lp=A+0%8, (60)

12
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where A = A is a second order tangentially elliptic operator with the scalar, positive
tangential principal symbol, and B = Ay be a second order differential operator on
M with the scalar, positive, holonomy invariant transversal principal symbol. Indeed,
it is easy to see that the transversal principal symbol of operator Ay, which is the
restriction of its principal symbol from 7™M to the conormal bundle H*, is given by
the formula

a(u)ng'(U)I:VEH*a (61)

and its holonomy invariance is equivalent to the assumption on the foliation F to be
Riemannian (see (30)).

Remark. The only necessary property which we need from holonomy invariance con-
dititon is the fact that the commutator [A, B], which, by general symbolic calculus, be-
longs to the class Dif f2' (M, F, AT*M), is an operator of the class Di f fY*(M,F,AT*M),
and this fact can be checked by a straightforward calculation and locks very similar

to the second assertion of Lemma 2.2.

By [20], the operators of the parabolic semigroup Hy (1) satisfy the same estimate
as in Proposition 2.4,

L) ullri € Crog st CTF 2R3 ]y, w0 € C°(M, AT M), (62)
ifr>s,h€(0,1],0 <t <1, and the estimate
N An(2)u]|sp € Cart ™2 ||ue)lgy e € C®(M,AT*M). (63)

if r=s,h€[0,1],0 <t <1, where the constants don’t depend on t and A.
Now we want to compare the semigroups H,(t) and Hy(t). First, we state the
norm estimates for the difference Hy(t) — Hu(t).

Proposition 4.1 We have the estimale
I(HA(®) = Ha(@)tellep < Cropt 2R gy u € C¥(M,ATM),  (64)
ifr>s,h€(0,1],0 <t <1, and the estimale
N(HA(E) = Fn())||sx < Cot ™ ||ue)ls,w € C(M, AT*M). (65)

ifr=s,h€[0,1],0 <t <1, where the constants don’t depend on { and h.
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Proof. For a proof, we make use of the Duhamel formula
_ ¢ - _
(Ha(t) = Hp(D))e = / Ha(r)(Ln = Do)t = 7)udr. (66)
0

We know the norm estimates for operators H,(t) and Hy(t) (sec Propositions 2.4 and
(62)) and the explicit formula for the difference Ly — Ly:

Ly — Ly =h'A_j o+ hKy + hPKy + b3 K. (67)
from where Proposition is proved in a usual way.

Now we pass from the Sobolev estimates for the operator Hy(t)— Hy(t) to pointwise
and trace estimates.

Proposition 4.2 Under current hypotheses, we have the estimales
| Hi(t) — Ha(1))] < Ch'Y. (63)
Proof. For the proof, we make use the following proposition (see [20] for a scalar
case):
Proposition 4.3 Lel (M, F) be a compactl foliated manifold, FE be an Hermitian
vector bundle on M. For any s > p/2 and k > q/2, there is a continuous embedding
H**(M,F,E) C C(M, E). (69)

Moreover, for any s > p/2 and k > q/2, there is a constanl C,y > 0 such thal, for
each A > 1,

sup [u(@)] € Cord (A lullos + elloero)s u € H5(M, F, ). (70)
zeM
Denote by Hy(t,2,y) (Hy(t,z,y)) the integral kernels of operators Hy(t) (H4(t))
respectively. Then, by Propositions 4.1 and 4.3, we obtain:

[Hi(t, 2, 2) — Hy(t,z,2)| S Ch'™9% 2 € M. (71)
that, due to the well-known formula for the trace of an integral operator K" in the
Hilbert space L*(M, AT=M) with a smooth kernel k(z,y):

tr K = /M Tr k(z, z)dz, (72)
immediately completes the proof.

Denote by hx(t,vy) € C®(Gr, AT*M) the tangential kernel of the smoothing
tangential operator exp(—tAg).
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Proposition 4.4 For any { > 0, we have the asymplotical formula
tr "t = (QTr)_qh._"/ (j e_ty”(”)dr/) Traream hre(t,z)dz + O(h' =), h — 0. (73)
s Ja:

Proof. By Propositions 2.4 and 4.3, we have the estimate
tre” < Ch™ % h — 0. (74)

Moreover, by Proposition 4.2, asymptotics of traces of the operators Hx(t) and Hy(t)
when A tends to zero have the same leading terms (of order 277), and we can apply
the asymptotical formula of [20] to complete the proof.

Remarks. (1) Since
/ e~touW dy = go/2y=e/2) (75)
H:

the formula (73) can be rewritten in a simpler form:
b e™thh — (4mt)~9/2) /ﬂ Tearess ha(t@)do + O('"), 1 5 0. (76)

From (76), we can also obtain an asymptotical formula for the spectrum distribution
function, but it is more convenient for us to use the formula in the form (73).

(2) For any = € M, the restriction hx(t,y) € C®(CG%,AT*M) of hy on (% is the
kernel of the operator exp(—tA;), where A, the restriction of Arp on G% (see also
Section 5). 'This fact doesn’t extend to more general functions f(Afg) (see [19]),
and this is closely related with so-called spectrum coincidence theorems and with
appearance of nonstandard asymptotical formula (11).

Proof of Theorem 3.1. The tangential kernel hz,(t) € C®°(Gr,,m*AT"M) of the
operator exp(—tAg, ) is related with the tangential kernel he(t) € C®(Gr, AT*M)
of operator exp(—tAg) by the formula

hr,(t,v,v,m) = n5hx(t, ). (77)

The essential difference of the case of Riemannian foliation from the general one
consists in the fact that the operators Ar, and gy considered as operators on H~
commutes. In particular, we have

e—tah(i\h) — e_tgH(V)e_LAFH’t > 0. (78)
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So the formula (73) can be rewritten in terms of the notation of this Section as follows:
tr e7r = h0rg, e7R (88 L O(R 1) R = 0. (79)

From where, using standard approximation arguments, the theorem follows immedi-
ately.

Remark. The passage from the operator L to the operator L resembles the passage
from the Riemannian connection on M to the almost product connection as in [1, 25].

5 Formulation in terms of leafwise spectral char-
acteristics

Here we will write the asymptotical formula (53) in terms of spectral characteristics
of the operator Ap. In particular, we obtain a proof of the main theorem on an
asymptotic behaviour of the eigenvalue distribution function.

Recall that Ap denotes the tangential Laplacian in the space C°(M, AT*M). Let
us restrict the operator Ap to the leaves of the foliation F and lift the restrictions to
holonomy coverings of leaves. We obtain the family

Ay C(GE,r" AT M) = C2(G%, v AT™M) (80)

of Laplacians on holonomy coverings of leaves. By the hypotheses of Riemannian fo-
liation, the operator A, is formally self-adjoint in L*(G%, »*AT"M), that, in turn, im-
plies iis essential self-adjointness in this Hilbert space (with initial domain CP(G%, r"AT™M))
for any ¥ € M. For each A € R, the kernel e(y,A),y € Gx of the spectral projec-
tions of the operators A, corresponding to the semiaxis (—oo, A] define an element of
the von Neumann algebra W*(G'r, AT*M). The scction e, A) is a leafwise smooth
section of the bundle (s*AT*M)* @ r*AT"M over (r.

We introduce the spectrum distribution function Nxg(A) of the operator Ap by
the formula

Ne(A) = /\ Tearess ez, Ade, A € R, (81)

By [19], for any A € R, the function Trapps e(z,A) is a bounded measurable
function on M, therefore, the spectrum distribution function Nrz(A) is well-defined
and takes finite values.
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Theorem 5.1 For any function [ € C®(R), we have the following asymplotic for-
mula:

( —qf2
q/ 2)

Proof. lLet I, (7) and Ea(c) denote the spectral projections of the operators gy
and Agx, in L*(H™,#"AT*M). Then, since these operators commute, we have

flon(An)) = f(AF +gn)
+co +co
- /_ | f(r+0) dEy,(7) dEA(o)

br f(Ly) = h™ j / 0" (1 4 o) do dN£(t) + O(h'™"), = 0. (82)

is a tangential operator on H™ with respect to the foliation Fy, which tangential
kernel has the form

+eo +o0
k!(ah(ﬁ‘-h))(%urn) = f_oo _/;00 flr+0) dEg, (T)(v) dEA(7,0). (83)
So we obtain

tre, f(on(Ar)) = / 11Ar- M Af(gh(ah))(f v)dzdy

fn: f*“ /*“’ flr +0) / A2y, (T){(v) dv)

1‘

1l

do(Trarens Ealz,0)) dr dz, (84)
from where, taking into account that
EgH(T)(”) = ,\’{gy(u)gr}fr-A'r-M (85)
and
/ B, (T)(v) dv = volume{v € H* : gu(v) < 7} = qu"ﬁ, (86)
He:
where 1
q
Wy = (87)

[((q/2) +1)
is the volume of the unit ball in R?, we immediaiely obtain the desired formula.

In a particular case when f is a characteristic function of the semiaxis (—o0, A),
Theoremla 5.1 gives the asymptotic formula for the spectrum distribution function

Na(N).



»

Theorem 5.2 Under current hypolhesis, we have

P CLO R ‘ -
Na(A) = h Wf_m“ ) ANg(r) 4 o(h™T),h 0 (88)

Jor any A € R.

Theorem 0.1 is, exactly, Theorem 5.2 formulated in terms of the operator Aj.

6 Limits of eigenvalues

Here we discuss the asymptotical behaviour of individual eigenvalues of the operator
Ay when & tends to zero.

As usual, we will, equivalently, consider the operator Lj instead A,. Moreover,
we will consider eigenvalues of this operator on differential k-forms. Therelore, we
will write L§ for the restriction of the operator Ly on C®(M,A*T*M) k= 1,..., n,
omitting & where 1t is not essential. '

For any h > 0, L, is an analytic family of type (B) of sell-adjoint operators in
sence of [15]. Therefore, for i > 0, the eigenvalues of L, depends analytically on h.
Thus there are (countably many) analytic functions A;(%) such that

spec Ly = {M(h):1=1,2,...},h > 0. (89)
Moreover, by [15], the functions A;(/) satisfy the following equality
M(h) = ((dLy/dh)vn,vh), (90)
where vy, is a normalized eigenvector associated with the eigenvalue A;(h).
Proposition 6.1 Under current hypotheses, for ant 1, there exists a limil
hl—igﬂr Ai(R) = Aimui- (91)

Moreover, if vy is a normalized eigenform assoctated with the eigenvalue X(h), then
we have the estimates

”vh”0,1 < Cla h‘”'”h”l,() < CQ, (9-2)

with constants Cy and Cy independent of h € (0,1].
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Proof. As above, let v, be a normalized eigenform associated with the eigenvalue
Ai(h):
Lavn = Ai(h)vn, Jlvsll = 1. (93)

By (90), we have
M(h) = ((2hAy + APA_ 3 + Ky + 20Ky + 3R Ka)vs, vs), (94)

from where, using the positivity of operators Ay and A_; in L2(M,AT*M), and
the estimates (35) and (39) (with & = 1), we obtain

Xi(h) 2 =Cillunllg, — Ck?|loall? o = Ca. (95)
The estimate (41) implies
Cillwnlly + Coah*llualllo € C3di(h) 4+ Cu, b € (0,1]. (96)
By (95) and (96), we conclude that
N(h) > —Cshi(h) = Ce. (97)
This estimate can be rewritten in the following way:

() + et 20, (98)
dh s
that means that the function (A;(h)+g%)e®" is increasing in h for h small enough. By
the positivity of the operator Ly in L*(M,AT*M), every eigenvalue A;(h) is positive,
so the function (A;(R) + %5)805" semibounded from below near zero. Therefore, this
function has a limit when / tends to zero, that, clearly, implies the existence of the
limit for the function A;.
The second assertion of this Proposition is an immecdiate consequence of the first
one and the estimate (96).

Proposition 6.1 allows us to introduce the limitting spectrum of the operator A
as a set of all limitting values A, ;, given by (91):

oim(Af) = {Af.; i =10,1,...}. (99)



By an analogy with the case of semiclassical asymptotics for Schrodinger operator,
we may assume that the structure of the limitting spectrum oy;, (A%) is defined in a
big extent by a limitting value of the bottoms of spectrum of the operator Af. So let

‘ Aku,u)
Ai(h) = (ARu,u)
ol) wec (AT JufE (100)
and
’\lumo = llm Ak o(h). (101)

There are two other quantities: "the bottom )\,;_0 of the spectrum of the operator Ak
in LM, AMT*M):
Ak )
pY min L 102
FOT ecomiarron) |l (102)

and the bottom A% ; of the leafwise spectrum of the operator A% in L2(L, A*T~M):

Aro = {o(AY): L e V/F}, (103)
where A
Ao = min M, (104)

weC (LARTM)  {|u|?

the operator A% is the restriction of the operator A% on the leal L.
Proposition 6.2 Under current hypotheses, we have the following relations:
o S Mmo S Mgy k=1,...,n. (105)
Proof. Let vy be a normalized eigenform associated with the bottom eigenvalue A(h):
thh = A (h)un, |l = 1. (106)
By the definition of A%y, we have the estimate
(AFu,04) = Mo, (107)
By (38), we obtain
Ag(R) > (1 — A% Mg + Cih2|Jun]|? gh( Kyom, vp) — Cah?, (108)
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where Cy and C; are positive constants. By (92), we have
}ll]_l;l‘(l) h(Kyvp,vr) = 0. (109)

Ta.king this into account, by (108), we immediately complete the proof of the inequal-
Ity ’\ < )"Ilmﬂ

T heomm 0.1 implies that Nf(A) > 0 for any A > A% and h small enough, from
where the desired inequality A, o < /\{}-,0 follows immediately.

We conclude this Section with some remarks and examples, concerning quantities
k k
’\F0= Alimo and Az,

Remarks. (1) When the [oliation F is a fibration or, more general, F is amenable
in some sense (see also Section 7), relations (105) turns out to be identities [19].

(2) We don’t know if the equality '\ﬁ*,o = )‘ﬁm,o is always true. It is, clearly, so for
k=0
/\(1)5' "\hm 0o - = 0. (l 10)

Another remark is as follows. If the Betti number b (M) is not zero, then Af(h) =0
for all 2, that also implies

Allm [

(3) Here we give an example of the foliation such that the bottom A%, = 0 of the
operator A% in L%(M) is a point of discrete spectrum.

Example. Let I' be a discrete, finitely generated group such that

(a) ' has property (1") of Kazhdan;

(b) T is be embedded in a compact Lie group G as a dense subgroup.
For definitions and examples of such groups, see, for instance,[14, 21].

Let us take a compact manifold X such that 7;(X) = I". Let X be the universal
covering of X equipped with a left action of I' by deck transformations. We will
assume that I" acts on ¢ by left translations. Let us consider the suspension foliation
F on a compact manifold M = X xp G (see, for instance, [5]). A choice of a left
invariant metric on & provides a bundle-like metric on M, so F is a Riemannian
foliation. We may assume that leafwise metric is chosen in such a way that any leaf
of the foliation F is isometric to X

There is defined a natural action of I on M and the operator AY is invariant under
this action. Let [£(0,A), A > 0, denote the spectral projection of the operator A% in
LE*(M), corresponding to the interval (0,A), and E(0,\)L*(M) be the corresponding
I-invariant spectral subspace.



Claim. In this example, the bottom A}, = 0 of leafwise Laplacian in L*(M) is a -
nondegenerate point of discrete spectrum of the operator A%, that is, an isolated
eigenvalue of the multitplicity 1.

[From the contrary, let us assume that zero lies in the essential spectrum of the
operator A% in L2(M). Then, for any € > 0 and A > 0, there is a function v, €
C*(M) such that u, belongs to the space E(0,A)L*(M), ||u]| =1 and

(Apue,u.) = ||Vrul <e, (111)

where Vi denotes the leafwise gradient. From (111), we can easily derive that the
representation of the group I' in £(0, A)L*(M) has almost invariant vector, that, by
the property (T'), implies the existence of an invariant vector vy € E(0, X)L*(M).

Since I' is dense in (7, [-invariance of vy implies its G-invariance, that, in turn,
implies that vg 1s a lift of some non-zero element v € C*(X) via the natural projection
M — X. It can be easily checked that v belongs to the corresponding spectral space
E(0,\)L*(X) of the Laplace operator Ax in L*(X). From other hand, the operator
Ay has a discrete spectrum, so zero is an isolated point in the spectrum ol Ay, and
E(0,A\)L%(X) is a trivial space if A > 0 is small enough. So we get a contradiction, -
which imply that zero lies in the discrete spectrum of the operator A% in L#(M).
(4) In the case of a fibration, we also have that zero is an isolated point in the
spectrum of the operator A% in L*(M), but, in this case, it is an eigenvalue of infinity
multitplicity, so that it lies in the essential spectrum of the operator A% in L*(M).
(5) Unlike the scalar case, it is not always the case that all of the semiaxis [Ajim 0, +00)
is contained in oy, (Ag). Indeed, let, as in Example of (3), )\?;,0 = 0 is a nondegencrate
point of discrete spectrum of the operator A%. Then, by means ol the perturbation
theory of the discrete spectrum (see, for instance, [15]), we can state that, for 2 > 0
small enough, A°(h) = 0 is the only eigenvalue of the operator A} near zero. So we
conclude that there exists a A; > 0 such that, for any 2 > 0 small enough,

Ttim (An) [Y[A1; +00) = 0. (112)

7 Some remarks on the main asymptotical for-
mula

In this Section, we discuss some aspects of the main asymptotical formula (8). We

are, especially, interested in a discussion of the formula (11). We will make use of the
notation of previous Sections.
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So recall that the whole picture which we observe in the foliation case is the
following. In a general case, for any £ = 0,1,...,n, we have only that
k k k .
AF,O ~<- ’\Iim,D S AF,D? (113)
and these relations turns into identities, if the foliation F is a (ibration or, more
general, is amenable in some sense (see Section 6 and [19] for discussion).

By (8), the function NF(X) behaves as usual when A is greater than the bottom
of the leafwise spectrum of A%

NEQA) ~ Ch™%, A > My, (114)

but, if Af., < A%, there might be limitting values for eigenvalues A¥(1) of the operator
A}, lying in the interval (A}, A% ). So the function Nf(A) is nontrivial on the interval
(Afmos A% o), but the fact mentioned above that the right-hand side of (8) depends
only on leafwise spectral data of the operator A% implies the formula

Jim ATNG(A) =0, A < A (115)
It means that the set of eigenvalues of A% in the interval (Af, o, }‘.kr,o) is "thin” in the
whole set of eigenvalues of Ay. By analogy with [27], (115) in the case £ = 0 may be
called as a weak foliated version of "Riemann hypothesis”.

This is quite different from what we have in the case of Schrodinger operator or
in the fibration case. For instance, if [} is the Schrodinger operator on a compact
manifold M (we may consider M, being equipped with a trivial foliation F which
leaves are points):

Hy = —h*A+V(z),x € M. (116)
we have
/\F',O = ’\lim,O = /\}',0 = inf V—'a (117)
where
V_(z) = min(V(2),0),z € M, (118)

and the following asymptotical formula for spectrum distribution function Ny(A) in
semiclassical limit:

Nuy(A) = (27 _"h_"/ dedf + o(h™"),h — 0 4. 119
W =En [ dede ol (119)



So, if h — 0. the picture is as follows:
Np(A) ~ Ch™™ A > inf V_, (120)

where n = dim M and
Nuy(A) =0, <infV_. (121)

It is worthwhile to note facts in spectral theory ol coverings, which are very similar
to ones in spectral theory of foliations mentioned above. Let us consider the case of
Laplace-Beltrami operator on functions.

Let M — M be a normal covering with a covering group I'. Recall that a tower
of coverings is a set {M;}2, of finite-fold subcoverings of this covering with the
corresponding covering groups ['; such that:

(1) for each ¢, I'; is a normal subgroup of finite index in I

(2) for each 7, ['iy is contained in I';;

(3) (T = e},

Let o(Ap,) be a set of eigenvalues of the Laplacian on M;, and Nas(A) be its
distribution function. For any ¢, we have an embedding

U(Aﬁ’fi) C U(AM;H)’ (122)

and when i tends to the infinity the spectrum o(Ajy,) of a finite covering approaches
to a limit

J“m(A) = UG(AM’.‘)' (123)
i
Then, the bottom Ay of limitting spectra oj;,(A) and the bottom Apro of the
spectrum o{Aar) of the manifold M are, clearly, equal to 0. By [4], the bottom Ay ,
of the spectrum o (A ) of the covering manifold is equal to Ay g:

Afro = Aaos (124)

if and only if the group I' is amenable.
Moreover, by [10], for any function f € CZ(R), we have

lim (vol Mi)™"tr f(Aar,) = tre f(Anr), (125)

=00

where {rp is von Neumann trace on the the algebra of Iinvariant operators on M [2].
In particular, if N;(A) is the cigenvalue distribution function of the Laplace-Beltrami
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operator Ay, then

lim(vol M;)"'N;()\) = Nr(A),A€R, (126)
1= o0
.l_ifn (vol Mi)T'Ni(A) = 0,A <Ay, (127)

where Np(A) is spectrum distribution function of the operator Ay, constructed by
means of the [-trace trr, Ag o = info(Ag)

A little bit more general possibility to arrange finite-dimensional approximation
of the spectrum of a covering, making use of sequences of finite-dimensional repre-
sentations of a covering group [, converging to the left regular representations ol I,
is considered in [27]. Analogues of (8) and (115) can be also found in [27].

We may point out two common features of spectral theory for Laplacian on a
covering and spectral theory for leafwise Laplacian on foliated manifold. From the
tangential point of view, both of them can be treated as type Il spectral problems
in a sense of theory of operator algebras, and asymptotical spectral problems men-
tioned above can be considered as finite-dimensional (of type 1) approximations to
these spectral problems. Actually, some spectral characteristics related with such an
approximation don’t depend on a choice of a bundle-like metric on M, and, moreover,
are invariants of quasi-isometry of metrics (coarse invariants in a sense of [26}). One
of the simplest characteristics of such a kind which we have already met is the notion
of amenability.

We can introduce some quantative spectral characteristics of the tangential Lapla-
cian AL related with adiabatic limits. For any A, let 7,(A) be given as

ri(A) = = limsupln NF(A)/ In h. (128)

h—o
Otherwise speaking, ri(}) equals the least bound of all » such that
Ni(A) ~Ch™" h = 0. (129)

If A < A0, we put rg(A) = —oo.
Then we can easily state the following properties of the function ri(A):

1. 0< Tk(’\) <q for any A 2 /\ILim,O::

[AN]

. re(A) is not decreasing in A;

re(A) = qif A> Mg

]



4. if the foliation F is amenable, then:

(A =q,  A> Ak,
re(A) = =00, A< A%,

5. rx(A) = 0 iff the interval [0, A] lies in the discrete spectrum of the operator A%
in L3(M,A*¥T=M). As we have seen in the previous Section, such situation can
happen (a property (1) case).

Then we expect that some invariants of the function rg(A) introduced above near
A = 0 might to be independent of the choice of metric on M (otherwise speaking,
to be coarse invariants), and, moreover, be topological or homotopic invariants of
foliated manifolds.

From transversal point of view, both ol them are related with some sort of "non-
commutative” fibration in sense of noncommutative differential geometry [7]. Here
the relation (115) reflects a nontriviality of geometry of these ”fibrations” in the
nonamenable case.

Now we point out two facts in noncommutative spectral geometry of foliations,
which are closely related with (115). When the foliation F is Riemannian, we can
consider M/F as a noncommutative Riemannian manifold. More precise, we can
define the corresponding spectral triple (in a sense of [8]) as follows:

I. An involutive algebra A is an algebra C2°((/x) of smooth, compactly supported
functions on the holonomy groupoid (/x of the foliation JF;

o

A Hilbert space H is a space L*(M, A H*) of the transversal differential forms, on
which an element & of the algebra A is represented via a smoothing tangential
operator with the tangential kernel k;

3. an operator D is the transverse signature operator dy + gy of a bundle-like
metric on M.

Let C*(Gx) (CH(Gx)) be the full (reduced) C*-algebra of the foliation respectively.
There is the natural projection m : C*(Gxr) = C:(Gr). We say that the foliation F
is amenable, if the projection 7 : C*(Gx) = C2(GF) is an isomorphism.

The first fact is that, in a case of the foliation F is nonamenable, this noncommu-
tative Riemannian manifold has pieces of various dimension with the top dimension,
being, certainly, equal to ¢ in the following sense.
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Let us consider subsets of V/F as involutive ideals in C*(Gr). We can speak
about the top spectral dimension of the pieces of our space which are contained Z in
the following way (see [8] for details). We say that this bound is less than &, if for
any « € 7 the distributional zeta function

Ca(2) = = a|D|™* (130)

extends holomorphically to the halfplane {z € C : Re z > k}. By the Tauberian
theorem, the top dimension of the subsetl in the space can be also detected by means
of asymptotics of the distributional spectrum distribution function

No(A) = tr(aE\(|D)),a € T, ) € R, (131)

where Ex(|D]) is the spectral projection of the operator |D), corresponding to the
semiaxis (—oo, A), or the theta-function

0,(t) = tr(aeP*),a € I, > 0. (132)

For instance, the top spectral dimensions of the pieces of our space which are contained
Z is less than &, if for any « € T the distributional theta function 0,(t) satisfies the
estimate

0.(t)<Ct™™ 0<1<1. (133)
Then we have (compare with Proposition 4.4 in [20]):
An involutive ideal T in C™(Gr) has the top dimension ¢ iff ZO=(Cr(Gx)) # 0.

In particular, if 7(Z) = 0, then the top spectral dimension of Z is less than .

The other fact is related with the support of the "noncommutative” integral, given
by the Dixmier trace T'r,. Namely, it can be shown that in the case under considera-
tion the Dixmier trace Tr,(k), corresponding to the spectral triple introduced above
exists and doesn’t depend on a choice of w for any & € C*(G'r). Then we have

Try(k) =0 (134)

for any k£ € C*(Gr),n(k) = 0. To relate these facts with the spectral theory of the
tangential Laplace-Beltrami operator Ap, we have to note that, by [19):
(1) the operator [{Ag) belongs to the C*- algebra C*((x) for any [ € C(R),

and,



(2) by spectral theory, n(f(Ar)) = 0 for any f € C®(R) such that supp f C
(Alim,ﬂa ’\.7'_,0)-

It seems also to be true that the function 7.(A) introduced above takes values in
the spectrum dimension Sd of the noncommutative spectrum space in question (see

().
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