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ON INFINITELY PRESENTED SOLUBLE GROUPS

YVES DE CORNULIER AND LUC GUYOT

Abstract. We exhibit an infinitely presented 4-soluble group with Cantor-
Bendixson rank one, and consequently with no minimal group presentation.
Then we study the class of infinitely presented metabelian groups lying in
the condensation part of the space of marked groups.

1. Introduction

Let G be a discrete group. Under pointwise convergence, the set N (G) of
normal subgroups of G is a Hausdorff compact, totally discontinuous space.
This topology, sometimes referred to as Chabauty topology, was studied in
many papers including [Cha50, Gri84, Cha00, CG05]. If Fn denotes the non-
abelian free group on n generators, we can view N (Fn) as Gn, the space of
marked groups on n generators through the identification N 7→ Fn/N . As
a topological space, the identification of Gn (n ≥ 2) seems to be a difficult
problem. We focus here on the Cantor-Bendixson analysis of Gn, decomposing
canonically this space into the disjoint union of a Cantor space Condn (its
maximal perfect subset, i.e. without isolated points) and a countable open
subset. We address the problem of deciding to which part of this splitting
belong soluble groups, depending on whether they are finitely presented or
not.

Given a finitely generated group Γ generated by n elements, the fact whether
it belongs to Condn does not depend on the marking nor on n [CGP07, Lemma
1]; if so we call Γ a condensation group.

Definition 1.1. We say that an action α of Z by group automorphisms on a
group K contracts into a finitely generated subgroup if there exists a finitely
generated subgroup K0 of K such that for every finitely generated subgroup
L of K there exists n ∈ Z such that α(n)(L) ⊂ K0.

In [BNS87, Theorem C], general sufficient conditions are introduced, ensur-
ing that a group is not finitely presented. Under further hypotheses, we obtain
that the group is condensation.
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Theorem A (Th. 4.9). Let G be a finitely generated group that fits in an
extension

1 −→ K −→ G −→ Z −→ 1.

Suppose that the action of Z on K does not contract into a finitely generated
subgroup and that K has no non-abelian free subgroup (e.g. K is nilpotent).
Then G is an infinitely presented condensation group.

Observe that conversely if the action contracts into a finitely generated sub-
group, then G is virtually an ascending HNN extension of some finitely gen-
erated subgroup H of K, so is in many cases finitely presented (e.g. when H
itself is finitely presented).

Example 1.2. The hypotheses of Theorem B are fulfilled by

• the lamplighter group Z/2Z o Z (which was already observed to be a
condensation group in [CGP07, Section 6]);
• the semidirect product Z[1/n]2 o(n,1/n) Z for n ≥ 2;
• the semidirect product Sym0(Z) o Z consisting of permutations of Z

which differ from a translation only in finitely many elements (this
group is investigated in [Neu37] and [VG98]);
• any finitely generated extension of the previous groups, provided it has

no non-abelian free subgroup.

A group presentation over finitely many generators Fn/〈〈R〉〉 is minimal if
no relator is redundant, i.e. for any relator r ∈ R, the natural group homo-
morphism

Fn/〈〈R \ {r}〉〉� Fn/〈〈R〉〉
is not an isomorphism (〈〈A〉〉 stands for the normal subgroup of Fn generated
by A). A group G satisfies max-n if every normal subgroup of G is finitely
generated as a normal subgroup. The following elementary lemma was already
used in Grigorchuk’s original paper [Gri84].

Proposition 1.3 (Prop. 4.5). A group with an infinite minimal presentation
over finitely many generators is a condensation group.

For instance, the lamplighter group has the presentation

Z/2Z o Z =
〈
t, b
∣∣ b2 = 1, [b, tibt−i] = 1, i ≥ 1

〉
,

which is minimal [Bau61]. Also, by a standard argument using Coxeter pre-
sentations (see Lemma 4.6), the presentation of Sym0(Z) o Z given by〈

t, b
∣∣ b2 = 1, (btbt−1)3 = 1, [b, tibt−i] = 1, i ≥ 2

〉
is minimal as well. However, the natural presentation of the group Z[1/n]2o(n,1/n)

Z of Example 1.2 given by〈
t, a, b

∣∣ tat−1 = an, t−1bt = bn, [a, tibt−i] = 1, i ≥ 0
〉

is clearly not minimal (since, denoting ui = [a, tibt−i], the relation ui−1 = 1 is
implied by ui = 1 together with the first two relations). We actually do not
know whether Z[1/n]2 o(n,1/n) Z has a minimal presentation.
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It is obvious that from any finite presentation, one can extract a minimal pre-
sentation. On the other hand, it is not obvious to find an infinitely presented
group with no minimal presentation (over a finite generating subset), and it was
not known, as far as we know, whether there exists an infinitely presented group
which is not a condensation group. We provide below such an example, which
also enjoys a peculiar property. In Gn, it is easy to observe (see [Gri05, Theo-
rem 2.1] or [CGP07, Proposition 2]) that isolated points are finitely presented
groups. By definition, an element of Gn has Cantor-Bendixson one if it is not
isolated but is isolated among non-isolated points. There are many instances
of finitely presented groups of Cantor-Bendixson rank one, e.g. PSLn(Z) for
n ≥ 3 (or more generally any finitely presented, residually finite, just infinite
group, see the lines following Problem 2.3 in [Gri05]).

Theorem B (Th. 3.8). There exists a finitely generated but not finitely pre-
sentable group with Cantor-Bendixson rank one and hence no minimal group
presentation. Moreover, such a group can be taken to be 4-soluble.

Our example fulfilling the hypotheses of Theorem B is based on the con-
struction by Abels of an finitely presented 3-soluble group A whose center is
infinitely generated [Abe79]. It turns out that the quotient of A by its center
is an infinitely presented finitely generated group which is not condensation
(hence has no minimal group presentation). However, it does not have Cantor-
Bendixson rank one and we have to carry out a more elaborate construction
to prove the full statement of the theorem.

Remark 1.4. The existence of infinitely presented groups without minimal
presentation can also be obtained from a result of Kleiman [Kle83], who con-
structs varieties of groups with no independent set of identities. It can indeed
be checked that free groups (on n ≥ 2 generators) in those varieties do not
have any minimal presentation. (We thank Mark Sapir for pointing out this
striking example.)

This paper is organised as follows. Section 2 encloses Cantor-Bendixson
analysis basics, while Sections 3 and 4 are devoted to the proofs of Theorem
B and Theorem A respectively.

2. Cantor-Bendixson rank

The Cantor-Bendixson rank is a general topological invariant with ordinal
values. It is defined as follows. If X is a topological space we define its derived
subspace X(1) as the set of its accumulation points. Iterating over ordinals

X(0) = X, X(α+1) = (X(α))(1), X(λ) =
⋂
β<λ

X(β) for λ limit ordinal,

we have a non-increasing family X(α) of closed subsets. If x ∈ X, we write

CBX(x) = sup{α|x ∈ X(α)}
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if this supremum exists, in which case it is a maximum. Otherwise we write
CBX(x) = C, where the symbol C is not an ordinal. We call CBX(x) the
Cantor-Bendixson rank of x. If CBX(x) 6= C for all x ∈ X, i.e. if X(α) is empty
for some ordinal, we say that X is scattered. A topological space X is called
perfect if it has no isolated point, i.e. X(1) = X. As an union of perfect subsets
is perfect, every topological space has a unique largest perfect subset, called
its condensation part and denoted Cond(X). Clearly, Cond(X) is empty if and
only if X is scattered and we have

Cond(X) = {x ∈ X|CBX(x) = C}.
The subset X \Cond(X) is the largest scattered open subset, and is called the
scattered part of X.

As Gn is compact and metrizable, its scattered part is countable for every n.
If n ≥ 2, the condensation part of Gn is homeomorphic to the Cantor set. If
n is sufficiently large, the condensation part has non-empty interior [CGP07,
Propositon 6]. If G ∈ Gn is a finitely generated marked group, its Cantor-
Bendixson rank as an element of Gn does not depend on the marking [CGP07,
Lemma 1], but only on the group isomorphism type of G.

3. A finitely generated group with no minimal presentation

In this section, we prove Theorem B. Our construction is based on Abels’
group An, which we define now. Let p be a prime and let Z[1/p] be the ring of
rationals with denominator a power of p. Let An ≤ GLn(Z[1/p]) be the group
of matrices of the form 

1 ∗ · · · ∗ ∗
0 ∗ · · · ∗ ∗
...

. . . . . . ∗ ∗
0

. . . ∗ ∗
0 · · · · · · 0 1


with integral powers of p in the diagonal. The group An is finitely generated
for n ≥ 3; A3 is not finitely presentable (this is classical but follows for instance
from Theorem A) but Abels [Abe79] proved that An is finitely presentable for
n ≥ 4. However its center Z(An) ' Z[1/p] is not finitely generated; therefore
An/Z(An) is not finitely presentable.

We first show that An/Z(An) has countable Cantor-Bendixson rank for n ≥
4 (Cor. 3.4). Then we build up from a subgroup of A5 a non finitely presentable
group B with Cantor-Bendixson rank one (Th. 3.8). As a preliminary step,
we investigate the normal subgroups of An/Z(An). For this we need further
definitions.

Let Ω be a group. A group G endowed with a left action of Ω by group
automorphisms, is called an Ω-group. An Ω-invariant subgroup H of G is called
an Ω-subgroup of G. If H is moreover normal in G then G/H is an Ω-group
for the induced Ω-action. An Ω-group G satisfies max-Ω if any non-descending
chain of Ω-subgroups of G stabilizes, or equivalently, if any Ω-subgroup of G
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is finitely generated as an Ω-group. If Ω is the group of inner automorphisms
of G, then the Ω-subgroups of G are the normal subgroups of G. If G satisfies
max-Ω in this case, we say that G satisfies max-n. As Z(An) ∼= Z[1/p], the
group An does not satisfy max-n. Still, we have:

Lemma 3.1. The group An/Z(An) satisfies max-n.

We denote by 1n the n-by-n identity matrix and by Eij (1 ≤ i, j ≤ n) the
n-by-n elementary matrix whose only non-zero entry is the entry (i, j) with
value one. We set Uij = 1n + Z[1/p]Eij.

Proof. Let D ' Zn−2 be the group of diagonal matrices in An. It is enough
to check that An/Z(An) satisfies max-D. Since the max-D property is stable
under extensions of D-groups [Rob96, 3.7], it is enough to observe that there is
a subnormal series of An whose successive subfactors are D itself and unipotent
one-parameter subgroups Uij for i < j and (i, j) 6= (1, n). As a group, Uij is
isomorphic to Z[1/p], and some element of D acts on it by multiplication
by p (because (i, j) 6= (1, n)), so Uij is a finitely generated D-module, hence
noetherian, i.e. satisfies max-D. �

Lemma 3.2. Let N be a normal subgroup of An. Then either

• N ⊂ Z(An), or
• N is finitely generated as a normal subgroup, and contains a finite index

subgroup of Z(An).

We denote by U(An) the subgroup of unipotent matrices of An.

Proof. Suppose that N is not contained in Z(An). Set M = N ∩ U(An). We
first prove that M ∩ Z(An) contains a subgroup Z ′ of finite index in Z(An).

The image ofN insideAn/Z(An) cannot intersect triviallyK = U(An)/Z(An)
as it is a non-trivial normal subgroup and since K contains its own centralizer.
Consequently M is not contained in Z(An). Since K is a non-trivial nilpotent
group, the image of M in K intersects Z(K) non-trivially. Thus M contains a
matrix m of the form 1n + r1E1,n−1 + r2E2,n + cE1,n where one of the ri is not
zero. Taking the commutators of m with Un−1,n (resp. U1,2) if r1 6= 0 (resp.
r2 6= 0), we obtain a finite index subgroup Z ′ of Z(An) = U1,n which lies in
M . The proof of the claim is then complete.

Now An/Z
′ satisfies max-n by Lemma 3.1, and therefore the image of N in

An/Z
′ is finitely generated as a normal subgroup. Lift finitely many generators

to elements generating a finitely generated normal subgroupN ′ of An contained
in N . As N is not contained in Z(An), N ′ cannot be contained in Z(An). The
claim above, applied to N ′, shows that N ′ contains a finite index subgroup of
Z(An). As the index of N ′ in N coincides with the index of N ′ ∩Z ′ in Z ′, the
former is finite. Therefore N is finitely generated as a normal subgroup. �

Corollary 3.3. [Lyu84, Theorem 1] The group An has only countably many
quotients, although it does not satisfy max-n.
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Proof. The centre of An is isomorphic to Z[1/p] which is not finitely generated.
Therefore An cannot satisfies max-n. As Z[1/p] has only countably many
subgroups, it follows from Lemma 3.2 that An has only countably many normal
subgroups. �

We get in turn

Corollary 3.4. There exists a non finitely presentable group with countable
Cantor-Bendixson rank and hence no minimal presentation. Namely, the quo-
tient of An by its centre for any n ≥ 4 is such a group.

Proof. Since An is finitely presented [Abe79], there is an open neighborhood
of An/Z(An) in the space of finitely generated groups which consists of marked
quotients ofAn. This neighborhood is countable by Corollary 3.3. AsAn/Z(An)
is not a condensation group it has no minimal presentation by Proposition
4.5. �

Actually the Cantor-Bendixson rank of An/Z(An) can be computed ex-
plicitely: this is n(n + 1)/2 − 3, which is the number of relevant coefficients1

in a “matrix” in An, viewed modulo Z(An). For n = 4, this is 7. Instead
of proving this, which we leave as an exercise, we carry out a more elaborate
construction to give an example of an infinitely presented group with rank one.
This is a slightly sophisticated variant of Abels’ group A4. The construction
below can be carried out in bigger dimension, but we fix the dimension for the
sake of simplicity.

Let A be the group of 5 × 5 upper triangular matrices over Z[1/p], with
diagonal coefficients integral powers of p, satisfying a11 = a44 = a55 = 1 and
a45 = 0.

Lemma 3.5. The group A is finitely presented. �

The proof is a direct application of Abels’ criterion and can be found in
[Cb10, Paragraph 2.2].

The centre Z = ZZ[1/p] of A is isomorphic to Z[1/p]2 and corresponds to the
coefficients 14 and 15. As ZZ = Z ∩ GL5(Z) is isomorphic to Z2, it follows
from Lemma 3.5 that A/ZZ is a finitely presented group.

Remark 3.6. In [CGP07, Section 5.4] we observed that the quotient of An
(n ≥ 4) by a cyclic subgroup of its centre, is an isolated group. This also holds,
with the same argument, for A/ZZ.

To carry through the construction, consider a matrix M0 with the following
conditions:

• M0 ∈ GL2(Z);
• M0 is not diagonalizable over Q;
• M0 is diagonalizable over Qp.

1Similarly, the Cantor-Bendixson rank of An is n(n + 1)/2− 2
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Example 3.7. The companion matrix of the polynomial X2+p3X−1 satisfies
the above conditions for any value of p (to check the third condition use [Ser77,
Chap. II, Sec. 2] to get that the root 1 of this polynomial modulo p3 lifts to a
root in Zp).

Let D and D′ be the two eigenlines of M0 in Q2
p. Define E = (D + Z2

p) ∩
Z[1/p]2; it is M0-invariant; similarly define E ′ from D′. Observe that the
decomposition Q2

p = D⊕D′ induces the decomposition (Z[1/p]/Z)2 = E/Z2⊕
E ′/Z2 through the natural identification (Qp/Zp)

2 ' (Z[1/p]/Z)2.

Let M1 be the 5 × 5-matrix

(
I3 0
0 M0

)
, and define M as the cyclic group

generated by M1. Observe that M normalizes A and leaves its center glob-
ally invariant. Also, still denote by E its image in Z(A) under the standard
identification Z[1/p]2 ' Z(A); it is globally M -invariant.

Finally, define
B = (AoM)/E

and fix some element w0 ∈ E ′ \ E of order p modulo Z2.

Theorem 3.8. The group B has Cantor-Bendixson rank one. More precisely,
if we consider the set V of quotients of A/ZZ oM in which w0 6= 1, this is a
clopen (closed and open) neighbourhood of B in the space of marked groups, in
which B is the only non-isolated point.

We first need

Lemma 3.9. Let N be a normal subgroup of AoM . Then either

• N ⊂ Z, or
• N is finitely generated as a normal subgroup, and contains a finite index

subgroup of Z.

Proof. We may and do assume that N * Z. We first claim that N ∩ A 6= 1.
We actually prove that the centralizer of A in A oM is contained in A; the

claim follows immediately. The group M acts on the coefficients

(
a14
a15

)
by

left multiplication by M0 whereas the inner automorphisms of A fix its center.
Thus the identity matrix is the only power of M1 which induces an inner
automorphism of A. The proof of the claim is then complete.

Arguing as in the proof of Lemma 3.2, we obtain that N must contain some
matrix of the form

1 0 u13 u14 u15
0 1 0 u24 u25
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 , (u13, u24, u25) 6= (0, 0, 0)

If u13 6= 0, then by taking commutators with elementary matrices in position
34 and 35 we obtain a finite index subgroup of Z contained in N .
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Otherwise (u24, u25) 6= (0, 0). Taking commutators with elementary matrices
in position 12 we obtain that N contains the Z[1/p]-submodule of the centre
Z ' Z[1/p]2 generated by (u24, u25). But N ∩ Z has to be normalized by M ,
which by assumption acts Q-irreducibly. It follows that N ∩Z has finite index
in Z. �

We need the following:

Lemma 3.10. Let N be an M0-invariant subgroup of Z[1/p]2. If N contains
Z2 and is not finitely generated then N contains either E or E ′.

Proof. Let N̄ be the closure of N in Q2
p. By assumption, it is a closed un-

bounded subgroup of Q2
p; therefore it contains a line. If this line is unique, it

is M0-invariant and therefore is equal to either D or D′, say equal to D. Since
N̄ contains Z2

p as well, it follows that E ⊂ N̄ . Actually, E ⊂ N , indeed if

x ∈ E, x = limxn with xn ∈ N ; so x − xn → 0 so eventually x − xn ∈ Z2
p.

On the other hand x − xn ∈ Z[1/p]2, so x − xn ∈ Z2 and therefore x ∈ N . If
the line is not unique, N̄ = Q2

p and we conclude by the same argument that

N = Q2
p. �

Lemma 3.11. Let X be the set of M0-invariant subgroups in Z[1/p]2 contain-
ing Z2 but not w0. Then X is closed and its unique non-isolated point is E
itself.

Proof. The closedness of X is clear. As E/Z2 identifies with Z[1/p]/Z, we have
E =

⋃
En where En is the pn-torsion modulo Z2. Therefore E is not isolated

in X . By [CGP10, Subsection 6.6], the set of finitely generated subgroups of
Z[1/p]2 containing Z2 are isolated in the space of all subgroups of Z[1/p]2 and
therefore are isolated in X . Using the decompostion (Z[1/p]/Z)2 = E/Z2 ⊕
E ′/Z2, we see that no subgroup in X can contain E properly. It follows from
Lemma 3.10 that E is the only non-isolated point of X .

�

Proof of Theorem 3.8. Let Zn be the pn-torsion of Z(A)/Z2, and En = E∩Zn.
As E is the increasing union of its subgroups En, and all En are normalized
by AoM , B is infinitely presented.

By construction, V contains B; since AoM is finitely presentable by Lemma
3.5, V is a clopen neighbourhood of B in the space of marked groups.

Let H = (A oM)/N belong to V . Since w0 /∈ N , N does not contain Z.
Since Z/ZZ has no proper subgroup of finite index, it means that N ∩ Z has
infinite index in Z. Hence N is contained in Z by Lemma 3.9. Therefore V
can be identified with X ; in particular H is isolated unless N = E. �

Remark 3.12. The trivial subgroup is isolated in N (B) (i.e., B is finitely
discriminable in the sense of [CGP07]), as the above proof shows the even
stronger property that B has a neighbourhood consisting of groups having B
as a quotient.
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4. Condensation groups

In this section, we give several criteria to show that a finitely generated
group is a condensation group; we prove then Theorem B.

4.1. Condensation criteria. We call a group G an intrinsic condensation
group if CBN (G)({1}) = C. The class of intrinsic condensation groups is easily
seen to be stable under taking free and direct product. The next lemma
provides us with a tractable proper subclass which is stable under these two
operations:

Lemma 4.1. Let G be a group with a non-abelian normal free subgroup. Then
G is an intrinsic condensation group.

Proof. Let F be a non-abelian normal free subgroup of G. Let V be an arbi-
trary neighbourhood of {1} in N (G). It suffices to show that V is uncountable.
Let F (n) be the n-th derived subgroup of F . By Levis’ theorem [LS77, Proposi-
tion 3.3],

⋂
n≥1 F

(n) = {1} and therefore we have F (n) ∈ V for n large enough.

By [Ol′70, Theorem A], F (n) contains uncountably many characteristic sub-
groups. Therefore V contains uncountably many normal subgroups of G. �

Let C be the class of groups having a non-abelian free normal subgroup. The
class C contains all non-trivial free products by Kurosh Subgroup Theorem
[LS77, Proposition 3.6]. We show that it also contains several examples of
amalgamated free products and HNN extension. Recall that an amalgamated
free product A ∗C B is non-degenerate if the edge group C has index at least
three in one of the vertex groups A or B. An HNN extension A∗C is non-
ascending if the two embeddings of C in A are proper.

Lemma 4.2. Let H be a group with no non-abelian free subgroup. Let G =
A ∗C B (resp. A∗C) be a non-degenerate amalgamated free product (resp. a
non-ascending HNN extension). Assume that there is an homomorphism π :
G −→ H whose restrictions to the vertex groups are injective. Then the kernel
of π is a non-abelian normal free subgroup of G.

Proof. It follows from the Normal Form Theorem [LS77, Theorems 2.1 and 2.6]
for amalgamated free products and HNN extensions that G contains in both
cases a non-abelian free subgroup. We call it F .

Let K be the kernel of π. As K acts freely on the Bass-Serre tree of G by
assumption, K is a free group. Since A contains no non-abelian free subgroups,
K ∩F is a non-trivial normal free subgroup of F . Therefore K is not abelian.

�

Remark 4.3. Using [CG05, Theorem 4.6] and reasonning as above, it is easy
to show that every non-abelian Sela’s limit group lies in C.

Let G be a group and let Z be its center. If Z is an intrinsic condensation
group, then so is G as N (Z) embeds continuously in N (G). A classification
of countable abelian groups which are intrinsic condensation groups can be
deduced from [CGP10, Theorem G.(i)].
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Proposition 4.4. Let G be a non-trivial group such that G ' G×H with H
a non-trivial group. Then G is an intrinsic condensation group.

Examples of non-trivial finitely generated groups G with G ' G × G are
constructed in [Jon74].

Proof. Let φ be an isomorphism of G×H onto G×{1}. Set Hn = φn({1}×H).
If A is a subset of the set of positive integers, then HA =

⊕
n∈AHn is normal

subgroup of G.
It is trivial to check that any neighbourhood of {1} in N (G) contains un-

countably many groups of the form HA. �

Finally, we get a seemingly different class of condensation groups by con-
sidering neighbourhoods that contain uncountably many extensions instead of
quotients.

Proposition 4.5. Let G be a finitely generated group having an infinite min-
imal presentation. Then G is a condensation group.

Proof. We can write G =
〈
X
∣∣ R〉 where X is a finite generating set of G

and R ⊂ F (X) an infinite set of independant defining relators. Let F1, F2 be
two finite sets such that F1 ⊂ 〈〈R〉〉 and F2 ⊂ F (X) \ 〈〈R〉〉. Let V be the
neighborhood of G consisting of all marked quotients H of F (X) such that
w = 1 (resp. w 6= 1) in H for every w ∈ F1 (resp. w ∈ F2). For I ⊂ R such
that F1 ⊂ I, set GI =

〈
X
∣∣ I〉. Then GI is clearly an extension of G which

lies in V . By the minimality of R, the GI are pairwise distinct marked groups.
As R is infinite, V is uncountable. �

Lemma 4.6. The presentation of Sym0(Z) o Z given by〈
t, b
∣∣ b2 = 1, (btbt−1)3 = 1, [b, tibt−i] = 1, i ≥ 2

〉
is minimal.

Proof. Let us first check that the group Γ = 〈t, b〉 defined by this presentation
is indeed isomorphic to Sym0(Z) o Z. Set bi = tiyt−i (i ∈ Z). Then Γ has the
presentation〈
t, (bi)i∈Z

∣∣ b20 = 1, (b0tb0t
−1)3 = 1, [b0, t

ib0t
−i] = 1, i ≥ 2, bi = tiyt−i (i ∈ Z)

〉
;

by adding redundant relators we obtain that Γ also has the presentation

〈t, (bi)i∈Z | b2i = 1, (bibi+1)
3 = 1 (i ∈ Z),

[bi, bj] = 1, (|i− j| ≥ 2), bi = tiyt−i (i ∈ Z)〉
from which we see that Γ = Γ0 o 〈t〉, where Γ0 has the Coxeter presentation〈

(bi)i∈Z
∣∣ b2i = 1, (bibi+1)

3 = 1 (i ∈ Z), [bi, bj] = 1, (|i− j| ≥ 2)
〉

;

and t has infinite order and acts by shifting the bi’s. If we map Γ0 to the set
of permutations of Z by sending bi to the transposition τi,i+1, this is known
[Bou68, Chap. 5, §4.4, Cor. 2] to be an isomorphism to the group Sym0(Z) of
finitely supported permutations of Z. So we obtain that Γ ' Sym0(Z) o Z.
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Let us now check that the presentation given by the lemma is minimal. If we
remove the relator b2 = 1, by modding out by the relator t = 1 we obtain the
cyclic group of order 6 generated by b. So the relator b2 = 1 is not redundant.
Now define σ1 = (btbt−1)3 and σk = [b, tkbt−k] for k ≥ 2. If we remove another
relator, this is σk for some k ≥ 1. We can consider the Coxeter graph whose
vertex set is Z and labels are the same as for the initial Coxeter graph (label 3
between i and i+ 1 and labels 2 between other pairs), except labels between i
and i+ k (for all i) which are replaced by∞. This defines a Coxeter group Λk

generated by elements (bi) in which (b0bk) has infinite order [Bou68, Chap. 5,
§4.3, Prop. 4], and mapping onto Γ0. In the group Λk o Z, all relators of the
presentation of Γ are satisfied, except the relator σk. So the relator σk is not
redundant and we conclude that the presentation is minimal. �

4.2. Metabelian condensation groups. This subsection is devoted to the
proof of Theorem A. The first-named author proved that the Cantor-Bendixson
rank of a finitely presented metabelian group is less that ωω [Cb10, Theo-
rem 1.2]. He also observed that some standard examples of infinitely related
metabelian groups, e.g. lamplighter groups, are (non-intrinsic) condensation
groups. We address the following question:

Question 4.7. Is any finitely generated metabelian group which is not finitely
presentable a condensation group?

Theorem A provides us with a wider class of groups supporting a posi-
tive answer, namely the class of infinitely presented abelian-by-cyclic groups.
The idea of the proof is to approximate a semidirect product K o Z by non-
ascending HNN extensions. We observe first that a non-ascending condition
follows from the non-contraction hypothesis.

Lemma 4.8. Let G = KoZ be a semidirect product. Suppose that the action
of Z = 〈t〉 on K does not contract (see Definition 1.1) into a finitely generated
subgroup. Then for any finitely generated subgroup M of K that t-generates K
(i.e. such that

⋃
n∈Z t

nMt−n generates K as a subgroup), we have no inclusion
between M and tMt−1.

Proof. Suppose by contradiction that tMt−1 ⊂ M (the case of a reverse in-
clusion is analogous). We claim that the action of Z contracts into M , which
contradicts the hypotheses. Indeed, let L be an arbitrary finitely generated
subgroup of K. Then since M t-generates K and tMt−1 ⊂ M , K is the as-
cending union

⋃
n∈Z t

nMt−n. As L ⊂ K is finitely generated, there is n0 ∈ Z
such that L ⊂ tn0Mt−n0 . �

Theorem 4.9. Let G be a finitely generated group that fits in a short exact
sequence

1 −→ K −→ G −→ Z −→ 1.

Suppose that the action of Z on K does not contract into a finitely generated
subgroup and that K has no nonabelian free subgroup. Then G is an infinitely
presented condensation group.
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Proof. Write G = K o Z and let t be the positive generator of Z. Since G
is finitely generated, there is some finite subset X ⊂ K which t-generates K
(in the sense of Lemma 4.8). Let (Kn) be an increasing sequence of finitely
generated subgroups of K containing X whose union is all of K. For every
n ≥ 0, let Mn be the subgroup of K generated by Kn and tKnt

−1. We consider
the HNN extension

Gn = HNN(Mn, Kn, tKnt
−1, τ)

with basis Mn, stable letter τ and conjugated subgroups Kn and τKnτ
−1 =

tKnt
−1. The identity map on Mn extends to a group homomorphism πn :

Gn −→ G such that πn(τ) = t. Since t does not contract K into any of its
finitely generated subgroups by Lemma 4.8, we deduce that Kn and tKnt

−1 are
not comparable with respect to inclusion. Therefore Gn satisfies the hypothesis
of Lemma 4.2 (with H = G) and hence is a condensation group by Lemma
4.1. As (Gn) converges to G by construction, G is a condensation group. Since
moreover Gn has free subgroups but not G, we deduce that G is not finitely
presented. �
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