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Abstract. Explicit formulas for the G2-components of the Riemannian cur-
vature tensor on a manifold with a G2 structure are given and the norm of the
Riemannian curvature is related to the norms of Ricci-type contractions. An
equation for the most general symmetric tensor derived from the Riemannian
curvature in terms of torsion components and their derivatives with respect
to the canonical G2 connection is presented. A topological obstruction for the
existence of a closed G2-structure on compact 7-manifold is obtained in terms
of the integral norms of the curvature components. Integral inequalities for
compact closed G2 manifold are produced and limiting cases are investigated.
A study is made of warped products and cohomogeneity one G2 manifolds
with non-trivial torsion and few or no non-zero curvature components. As a
consequence every Fernandéz-Gray type of G2 structure for which vanishing
of the scalar curvature is possible may be realized for some G2 structure so
that the associated metric has holonomy contained in G2.

1. Introduction

A 7-dimensional Riemannian manifold is called a G2 manifold if its structure
group reduces to the exceptional Lie group G2. The existence of a G2 structure is
equivalent to the existence of a positive, non-degenerate three-form on the mani-
fold, sometimes called the fundamental form of the G2 manifold. From the purely
topological point of view, a 7-dimensional paracompact manifold is a G2 manifold
if and only if it is an oriented spin manifold admitting a nowhere vanishing spinor
field [36].

In [22], Fernández and Gray divide G2 manifolds into 16 classes according to
how the covariant derivative of the fundamental three-form behaves with respect to
its decomposition into G2 irreducible components, see also [13]. If the fundamental
form is parallel with respect to the Levi-Civita connection then the Riemannian
holonomy group is contained in G2, we will say that the G2 manifold or the G2

structure on the manifold is parallel. In this case the induced metric on the G2

manifold is Ricci-flat, a fact first observed by Bonan [4]. It was shown by Gray [29]
(see also [22, 6, 38]) that a G2 manifold is parallel precisely when the fundamental
form is harmonic. The first examples of complete parallel G2 manifolds were con-
structed by Bryant and Salamon [9]. Compact examples of parallel G2 manifolds
were obtained first by Joyce [33, 32] and by Kovalev [35]. Examples of G2 manifolds
in other Fernández-Gray classes may be found in [20, 10, 8].

The geometry of G2 structures has also attracted much attention from physicists.
One reason is that G2 structures preserve a spinor field which may then play the
rôle of a supersymmetry in string theory [28, 27, 37].

Based on the general theory of Cartan, Robert Bryant observes in [8] that, for a
G2 structure, the diffeomorpism invariants, polynomial in derivatives up to second
order of the defining three-form, are sections of a vector bundle of rank 392. This
includes the Riemannian curvature tensor of the underlying metric. In the same
paper Robert Bryant describes the G2 invariant splitting of this bundle into eleven
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irreducible components. As a particular case the G2-irreducible components of the
Riemannian curvature are given.

In the present note we study the links between vanishing of curvature components
with the first order invariants of the G2 structure up and vice versa.

In our first main result we describe algebraically the curvature components in
terms of the Ricci tensor, ?-Ricci tensor introduced in [16] (here re-baptized “the
φ-Ricci tensor” to emphasize the dependency on the three-form φ rather than the
metric) and the scalar curvature, Theorem 4.3. We express the intrinsic torsion,
which is the obstruction to the Levi-Civita connection of the induced Riemannian
metric to be a G2-connection, in terms of the exterior derivative and co-derivative
of the fundamental three form and vice-versa. This allows us to connect explicitly
the canonical connection, i.e., the G2-connection with minimal torsion, to the Levi-
Civita connection. Consequently, we determine four of the curvature components in
terms of the intrinsic torsion and its derivatives. We consider linear combinations
of the Ricci and φ-Ricci tensors, the most general symmetric 2-tensor derived from
the Riemannian curvature, and give a formula in terms of the intrinsic torsion and
its covariant derivatives with respect to the canonical connection in Lemma 4.6.

All these facts help us attack the problem how each of the curvature compo-
nents depends on the intrinsic torsion and whether its vanishing determines the G2

structure. We apply this to nearly parallel G2 manifolds (for which the results are
well-known), as well as to G2 manifolds with closed fundamental three form. These
two cases have the peculiar property that the full space of second order diffeomor-
phism invariants is determined by the components of the Riemannian curvature
of the underlying metric. This is, in general, not true for a G2 structure [8] and
Remark 4.4.

We show that three of the curvature components of a nearly parallel G2 structure
vanish. This was observed by Ramon Reyes Carrion, see [12]. A few more details
may be found in [14].

A special case of G2 structures with closed fundamental form (closed G2 struc-
tures for short) is made. We find a topological obstruction to the existence of closed
G2 structures on compact manifolds in terms of the integral norms of the curvature
components. This constitutes our second main observation, Theorem 6.11.

It is known [16] (see also [8]) that any compact Einstein (i.e. the trace-free Ricci
curvature component is zero) closed G2 manifold is parallel. In Corollary 6.6,
we observe that the vanishing of the 27-dimensional curvature component on a
compact closed G2 manifold also implies the G2 structure is parallel. We show that
the 64-dimensional component of the Riemannian curvature vanishes exactly when
the 64-dimensional component of the covariant derivative of the intrinsic torsion
with respect to the canonical connection is zero. The concept of extremally Ricci
pinched (extremal for short) closed G2 structures was introduced and studied by
Robert Bryant in [8]. We demonstrate that extremal closed G2 structures are
precisely those for which the remaining component of the covariant derivative of
the intrinsic torsion is zero. This allows us to characterize compact extremal closed
G2 manifold with an integral equality in Corollary 6.12. Moreover, we obtain
that closed G2 manifolds for which intrinsic torsion is parallel with respect to the
canonical connection are precisely the extremal ones with vanishing 64-dimensional
curvature component. Our third main result is Theorem 6.21. We prove that all
extremal G2 spaces with such parallel torsion are locally isometric to the example
constructed by Robert Bryant in [8]. We conjecture that all compact extremal
closed G2 manifolds are of that kind.

In the last section we present some examples. Warped products and cohomo-
geneity one G2 manifolds with exactly one non-vanishing curvature component and
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non-trivial torsion are given. As a consequence every Fernandéz-Gray type of G2

structure for which the scalar curvature can vanish is possible may be realized for
some G2 structure so that the associated metric has holonomy contained in G2. Ex-
amples of manifolds admitting both parallel G2 structures and G2 structures with
torsion were given in [1] where a family of three-forms and metrics were shown
to contain G2-structure both parallel and with non-trivial torsion. The examples
we give here clearly also admit both compatible parallel G2 structures and ones
with torsion. One important difference between the types of structures considered
by Agricola et al and those we give here is that, for our part, the examples have
trivial and non-trivial torsion for G2-structures compatible the same metric, while
the metric associated to the G2 structures in [1] deform with the G2-structure.

Acknowledgments. The authors wish to thank Robert Bryant, Andrew Swann, Si-
mon Salamon, Ilka Agricola and Thomas Friedrich for inspiration and for making
their help available. R. C. thanks Ilka Agricola and Thomas Friedrich for their
support, patience and the stimulating work environment they provide, and the
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thanks the Max-Plank-Institut für Mathematik, Bonn for the support and the ex-
cellent research environment. S. I. is a Senior Associate to the Abdus Salam ICTP,
2003-2009.

2. The fundamental three-form

Let (V, 〈·, ·〉) be an n-dimensional Euclidean vector space. Say that an n-form
vol on V is a volume form for the given inner product if |vol| = 1 with respect to the
inner product induced on the exterior algebra Λ∗V ∗. Write iv : ΛpV ∗ → Λp−1V ∗

for the interior product. Suppose now that n = 7 and that φ is a three-form on V
such that

(2.1) iuφ ∧ ivφ ∧ φ = 6 〈u, v〉 vol

for some positive definite inner product 〈·, ·〉 and volume form vol. Then φ is non-
degenerate in the sense that X 7→ Λ2V ∗ is injective. It follows from this that the
isotropy group of φ is the simple Lie group G2, see e.g. [30]. Fix a unit vector
e ∈ V ∗ and let V ′ be the orthogonal complement of e in V ∗. Then φ = ω ∧ e+ ψ+

for some ω ∈ Λ2V ′, ψ+ ∈ Λ3V ′ and vol = vol′ ∧ e where vol′ is a volume form
of the inner product restricted to V ′. Since |e| = 1 follows that ω3 = 6. As the
isotropy group of any vector in V is isomorphic to SU(3) it follows that ψ+ is the
real part of some complex volume form normalized so that 2ω3 = −3ψ+ ∧ Jψ+,
where J is the complex structure defined by ω and ψ+, see e.g. [13]. A basis ei for
V ′ may then be chosen so that Je1 = e2 and so on. Then ω = e12 + e34 + e56 and
ψ+ = e135 − e245 − e146 − e236. Setting e = e7 we may write

(2.2) φ = e127 + e347 + e567 + e135 − e245 − e146 − e236,

and

∗φ = e1234 + e3456 + e5612 − e2467 + e1367 + e2357 + e1457.

From equation (2.1) it is clear that G2 is a closed subgroup of SO(7). Via the
inner product the Lie algebra g2 of G2 may be identified with the 14 dimensional
subspace of Λ2V ∗ complementary to the span of iuφ : u ∈ V . Say that a three-form
satisfying equation (2.1) for some positive inner product and volume form on V is
a G2 three-form or fundamental three-form of G2. The inner product and volume
form defined so are said to be associated to the three-form. Alternatively, fixing
an inner product and volume form, any three-form satisfying the relation (2.1) is
called compatible with the metric and given orientation. A basis of one-forms {ei}
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over a vector space V for which a G2 three-form φ has the expression (2.2) is called
G2 adapted.

A G2 three-form φ gives a splitting of the exterior algebra Λ∗V . We have equi-
variant projections pr

d : ΛrV ∗ → ΛrV ∗ given by

(2.3)

p2
7(α) = 1

3 (α+ ∗(α ∧ φ),
p2
14(α) = 1

3 (2α− ∗(α ∧ φ),
p3
1(β) = 1

7 ∗(∗φ ∧ β)φ,
p3
7(β) = 1

4 ∗(∗(φ ∧ β) ∧ φ),
p3
27(β) = β − (p3

1 + p3
7)(β).

Subscript d where d is 1, 7, 14, or 27 indicates the dimension of the image of the
relevant projection, denoted by Λr

d. These are irreducible representations of G2 for
each of the projections given above. Projection for r > 3 are obtained by composing
with the Hodge star operator ∗ : Λr → Λ7−r, pr

d := ∗ ◦ p7−r∗.
Suppose a is a non-zero constant. The G2 three-form φ̄ := a3φ has associated

metric and volume ḡ = a2g, v̄ol := a7vol. Since the Hodge operator ∗̄ of ḡ satisfies

∗̄ = λ7−2p∗ one easily verifies that the associated projections satisfy pr
d = pr

d and
so are invariant under rescaling of the G2 structure.

On several occasions in what follows we shall come across representations that
do not occur as subspaces in the exterior algebra of the standard representation.
We fix notation for these as follows. Choose a system of positive roots for g2

such that the standard representations has highest weight (1, 0) and the adjoint

representation (0, 1). Then we will write V
(µ1,µ2)
d for (the isomorphism class of) the

irreducible representation with highest weight (µ1, µ2) and dimension d. This means

for instance that the standard representation is V
(1,0)
7 , the adjoint representation

g2 is V
(0,1)
14 , while the space of trace-less symmetric tensors is V

(2,0)
27 . When the

dimension is sufficient to identify the representation the superscript will be dropped.
The 27 dimensional subspace Λ3

27 is isomorphic the space of traceless symmetric
tensors over V . This isomorphism may be given explicitly as the restriction of

(2.4) λ3(e⊗ e) := e ∧ (e y φ)

to trace-free tensors. A map in the opposite direction is given by contracting an
arbitrary three-form with the fundamental form over two indices

σ(α)(u, v) = 〈iuφ, ivα〉 .

The two-tensor σ(α) is only a symmetric tensor when p3
7(α) vanishes and trace-free

only if p3
1(α) = 0. Note that λ3(g) = 3φ. For a symmetric tensor h with zero trace

one has the simple relation

(2.5) |λ3(h)|
2 = 2 ‖h‖

2
.

A few words on how identities such as (2.5) and (2.3) are verified as these techniques
are well-established. All identities here are relations between maps to or from an
irreducible representation. Then Schur’s Lemma ensures that any two such maps
must be equal up to a constant multiple. It is then sufficient to calculate left-
and right-hand side on a test element. As a service to the reader we provide a
few samples. Choose a G2 adapted basis ei of V ∗ such that the G2 three-form
may be written as φ = ω ∧ e7 + ψ+ with ω and ψ+ as above. Then ω ∈ Λ2

7,
e12 − e34 ∈ Λ2

14 are test elements in Λ2V ∗. In degree 3 we have φ ∈ Λ3
1 while

ψ− := −e246 + e136 + e235 + e145 ∈ Λ3
7 and 4ω ∧ e7 − 3ψ+ ∈ Λ3

27. We give more
test elements and an example of how these are used in the proof of the following
Lemma.
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Lemma 2.1. Let V denote R7 equipped with G2 three-form φ (2.2) and associated
metric g. Let ∧3 : V ∗ ⊗ Λ2V ∗ → Λ3V ∗ be the map given by the wedge product
∧3(α⊗ β) = α ∧ β. The tensor product V ∗ ⊗ Λ2

14 decomposes as

V ∗ ⊗ Λ2
14

∼= V
(1,1)
64 + V

(2,0)
27 + V

(1,0)
7

and the restriction ∧3| : V
∗ ⊗ Λ2

14 → Λ3V ∗ has kernel V
(1,1)
64 and cokernel Λ3

1.
Moreover, the identity

7 ‖γ‖
2

= ‖∧3(γ)‖
2

holds for every γ in the 27 dimensional irreducible submodule of V ∗ ⊗ Λ2
14.

Proof. First, since V ∗ and Λ2
14 are non-isomorphic representation the decomposition

of their tensor product contains no trivial summand. So it is clear that the cokernel

of ∧3 : V ∗ ⊗ Λ2
14 → Λ3V ∗ must contain Λ3

1. Furthermore, as V
(2,0)
27 is real and

irreducible, there is, up to scale, precisely one invariant map S2(V
(2,0)
27 ) → R. By

Schur’s Lemma, there is a constant c so that the relation c ‖γ‖
2

= ‖∧3(γ)‖ holds

for all γ ∈ V
(2,0)
27 .

Let {ei} be a G2 adapted basis. Write π : V ∗ ⊗ Λ2V ∗ → V ∗ ⊗ Λ2
14 for the

orthogonal projection α⊗β 7→ α⊗p2
14(β). Then π(ei ⊗ ei7) provides a test element

in a submodule of V ∗ ⊗ Λ2
14 isomorphic to V ∗ ∼= V

(1,0)
7 and one may calculate

∧3(π(ei ⊗ ei7)) = −ψ− ∈ Λ3
7. This shows that coker(∧3|) can be at most Λ3

27 + Λ3
1.

Set γ′ := e7 ⊗ (e12 − e34) ∈ V ∗ ⊗ Λ2
14. Then ∧3(γ

′) = e127 − e347 ∈ Λ3
27 which

proves that coker(∧3|) = Λ3
1 and also shows that V ∗ ⊗ Λ2

14 contains irreducible
submodules isomorphic to V27 and V . The decomposition now by noting that the
dimension of the Cartan product V (1,1) of V ∗ ⊗ Λ2

14 is 64. It is then clear that

ker(∧3|) ∼= V
(1,1)
64 .

All we now need is to find a test element in V
(1,1)
64 ⊂ V ∗⊗Λ2

14. Since p3
7(∧3(γ

′)) =

0, γ′ itself must lie the submodule isomorphic to V
(1,1)
64 + V

(2,0)
27 . Composing inclu-

sion i : Λ3V ∗ ↪→ V ∗⊗Λ2V ∗ with the projection π we obtain γ ′′ := π(i(∧3(γ
′)))−γ′.

It is easy to check that

〈γ′′, γ′〉 = 0, ‖γ′′‖
2

= 16
3 , ‖γ′‖

2
= 4,

in the tensor-norm, and,

∧3(γ
′′) = 4

3 ∧3 (γ′).

We then have 4γ′′ − 3γ′ ∈ V
(1,1)
64 and γ := γ′′ + γ′ ∈ V

(2,0)
27 . Evaluating the norms

of γ and ∧3(γ) completes the proof. �

When maps are not between irreducible modules, but are still G2 equivariant,
calculations on the components of the tensors are facilitated by the fact that φ
generates the space of invariant tensors. This guarantees relations between con-
tractions of metric g, φ and ∗φ spelled out in [8] and also exploited in [16]1. For
ease of reference we give these identities here. Let φ be a G2-three-form and ∗φ
its dual four-form via the associated metric and orientation. Write φijk for the
components of φ and φijkl for the components of ∗φ with respect to a basis ei of

1We should warn that the choice of orientation in [16] is the opposite of the one here so
translations should be made with due care wherever ∗ appears.
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one-forms on V ∗. Then one has the identities, see [8]

φipqφpqj = 6δij ,(2.6)

φijpφpkl = δikδjl − δjkδil + φijkl ,(2.7)

φijpqφpqkl = 4(δikδjl − δjkδil) + 2φijkl ,(2.8)

φipqφpqjk = 4φijk ,(2.9)

φijpφpklm = δikφjlm − δjkφilm + δilφjmk − δjlφimk + δimφjkl − δjmφikl,(2.10)

where repeated indices here and below means summation is taking place. The
identities listed here are valid only when the basis chosen is orthonormal. For
a general basis one must replace δpqs with the components gpq of the associated
metric in this basis and simple summations must be replaced with contractions
with the inverse metric. This means, for instance, that the first identity becomes
φiprg

pqgrsφqsj = 6gij . To prove these identities one simply notes the symmetries
of the left hand side, for instance φijpqφpqkl must be the components of a tensor
in S2(Λ2V ∗). The space of G2 invariant elements of S2(Λ2V ∗) is generated by
g > g, where > is the Kulkarni-Nomizu product (see equation (4.18) below) and
∗φ. Therefore an identity φijpqφpqkl = c1(δikδjl − δjkδil) + c2φijkl , for constants
c1, c2, must hold for the components of ∗φ taken with respect to an orthonormal
basis. The constants are found easily by evaluating for two sets of index values,
say ijlk = 1212 and ijkl = 1234 where components are taken with respect to a G2

adapted basis.
When we speak of a calculation in a G2 adapted or orthonormal basis, we refer

to a calculation exploiting the identities (2.6)- (2.10).

Remark 2.2. Other standard forms of the G2 three-form may be used. Taking
ω =

∑

i∈Z/7Z
ei(i+1)(i+3) to be the standard three-form and e1234567 the volume

form results in the opposite orientation of V to the one indicated by equation (2.1).
One consequence of taking this different convention is that certain signs in the
formulas corresponding to (2.6)- (2.10) change, see [16]. Therefore translations of
results from one convention to another should be made with due care wherever ∗
appears. On the other hand, the choices of standard form of the three-forms here
and in for instance [8] are equivalent in the sense that one may be obtained from
the other by an even permutation of indices in (2.2).

The ‘standard’ form chosen here is particularly apt when dealing with examples
build over 6 dimensional geometries as we shall be in section 7, see also [13, 17].

3. Torsion of a G2 structure

3.1. Canonical connection and intrinsic torsion. First a few generalities. Sup-
pose P ⊂ F (M, g) is a G structure on a Riemannian manifold (M, g), i.e., a re-
duction of the bundle of oriented orthonormal frames over a Riemannian manifold
(M, g) with structure group G ⊂ SO(n). Write V for the induced representation
of G on Rn. Then the tangent bundle TM may be identified with the associated
bundle P ×G V . Similarly, if W ⊂ T (p,q)M is any bundle of tensors for which
the induced representation of G on fibers is W then W = P ×G W . Tensor fields
γ ∈ Γ(W) may be identified with equivariant functions γ : P → V, γ(pg) = g−1γ(p).
We adopt the convenient but somewhat abusive notation γ ∈ W , meaning γ is a
section of the bundle associated to W . Note that splitting W into G invariant
subspaces W = W ′ +W ′′ induces a corresponding splitting of associated bundles
and tensors. The G equivariant maps between representations give rise to bundle
maps on the associated bundles.

The structure function σ(P, g) of P may be defined as follows. Let g be the Lie
algebra of G. The isomorphism δ : V ∗⊗ so(n) → Λ2V ∗⊗V given by (δα)(X,Y ) :=



CURVATURE DECOMPOSITION OF G2 MANIFOLDS 7

−α(X)Y +α(Y )X sends V ⊗ g onto an isomorphic subspace of Λ2V ∗ ⊗ V . Let p⊥

be the projection to the orthogonal complement with respect to the inner product
induced by g. Pick any G connection on TM and let T be its torsion. Then the
structure function is σ(P, g) := p⊥(T ), see [38]. The structure function vanishes
identically if and only if the Levi-Civita connection ∇g is a G connection. Let
ξ ∈ V ∗ ⊗ g

⊥ be defined by δξ = σ(P, g). This is the intrinsic torsion of the G

structure. The canonical connection ∇ := ∇g − ξ is then the unique G connection
associated to P whose torsion T obeys T = p⊥(T ). Splitting the intrinsic torsion
into its G irreducible components allows one to classify G structures according to
their torsion type á la Gray, Hervella and Fernandéz.

Suppose that Φ is a tensor on M parallel with respect to some G connection
∇ on M . Then Φ is in particular invariant by the action of G on tangent spaces.
So contraction with Φ gives G-equivariant bundle maps cΦ : W → W ′ between G-
invariant bundles W and W ′ of tensors over M . Considered as a section of the
bundle Hom(W,W ′), cΦ is then again parallel with respect to ∇. This implies that

(3.11) ∇X(cΦ(Ψ)) = cΦ(∇XΨ), X ∈ Γ(TM), Ψ ∈ Γ(W ),

independent of the specific bundles and contractions involved. We will use this in
several places below.

For G2 structures the complement g
⊥
2 of g2 in so(7) is isomorphic to the standard

representation V = V7 of G2. So the decomposition of the intrinsic torsion ξ follows
from the splitting

(3.12) V ⊗ V = S2V + Λ2V = S2
0V + R + Λ2

14 + Λ2
7.

We write ξd for the projection of ξ to the d-dimensional subspace of V ∗ ⊗ g
⊥
2 so

corresponding to the decomposition (3.12)

ξ = ξ27 + ξ1 + ξ14 + ξ7.

We shall use . to denote the induced action of a lie algebra g on tensor product
of a representation V of G. Extending this to associated bundles we apply the

short-hand ∇gγ = ∇γ + ξ.γ. With the convention that ∧p : V ∗ ⊗ΛpV ∗ → Λp+1V ∗

is the map α⊗ β → α ∧ β we define

d∇β := ∧p(∇β) = dβ − ∧p(ξ.β)

for p-forms β on M .

3.2. Manifolds with G2 structure. A G2 structure or G2 three-form on a 7
dimensional manifold M is a three-form φ such that for any two vector fields X,Y

(3.13) iXφ ∧ iY φ ∧ φ = 6g(X,Y )vol(g),

where g is a Riemannian metric and vol(g) is a volume element for g. Fixing the
three-form, we say that g and vol(g) satisfying (3.13) are the metric and orienta-
tion associated to φ. A different viewpoint is offered by fixing a metric g and a
orientation. Then a three-form φ is called compatible with this choice when (3.13)
holds. Given a G2 structure local orthonormal frame fields ei may be chosen such
that φ in this basis takes on the standard form (2.2). Such a frame field is called a
G2 adapted frame.

3.3. Derivatives of the fundamental three-form. The torsion components of
a G2 structure are differential forms τp ∈ Ωp(M) such that [8]

(3.14)
dφ = τ0∗φ+ 3τ1 ∧ φ+ ∗τ3,
d∗φ = 4τ1 ∧ ∗φ+ τ2 ∧ φ.

This pair of equations are the structure equations for the G2 form φ.
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The torsion type or Fernandéz-Gray class of a G2 structure is determined by
vanishing of torsion components. We use the original notation so that τ0 ↔ 1,
τ1 ↔ 4, τ2 ↔ 2, and τ0 ↔ 3. For instance, a three-form has type 1+3 if τ2 = 0 = τ1
and strict, or proper, type 1 + 3 if τ2 = 0 = τ1, and τ0 6≡ 0 and τ3 6≡ 0. If all
components are zero we say that φ is parallel.

The torsion τ and intrinsic torsion may be related explicitly as follows. Let
ξ̄ denote the two-tensor obtained through the isomorphism g

⊥
2 → V ∗ given by

composition g
⊥
2 ' Λ2

7 → Λ1
7. In an orthonormal frame ei this is the contraction

(3.15) ξ̄ = ξipqφpqje
i ⊗ ej ,

where ξijk = g(ξei
ej , ek). The components of the intrinsic torsion may be recovered

from ξ̄ by the relation

ξijk = 1
6 ξ̄ipφpjk .

In fact, still working in an orthonormal frame ei one then has the pleasant looking
expression for the covariant derivative of φ: (∇g

iφ)jkl = − 1
2 ξ̄ipφpjkl which leads to

the relations

(3.16)
ξ̄1 = − 1

2τ0g, ξ̄7 = 2∗(τ1 ∧ ∗φ),
ξ̄14 = τ2, ξ̄27 = σ(τ3).

These may also be found in [34]. An example of an application of the identity (3.11)
is the component-wise relation of covariant derivatives of ξ̄ and ξ

∇iξjkl = ∇iξ̄jpφpkl.

4. Curvature of G2 manifolds

For a G structure on (M, g) the Riemannian curvature tensor may be given the

following expression in terms of the canonical connection ∇ and the intrinsic torsion
ξ:

Rg = R + (∇ξ) + (ξ2).

Here, R ∈ Λ2 ⊗ g is the curvature of the canonical connection, (∇ξ) ∈ Λ2V ∗ ⊗ g
⊥

is (∇ξ)X,Y := (∇Xξ)Y − (∇Y ξ)X and (ξ2) ∈ Λ2V ∗ ⊗ so(7) is the tensor

(ξ2)X,Y Z = ξ(δξ)(X,Y )Z + [ξX , ξY ]Z.

Alternatively, using the metric g we view Rg as a tensor with values in the bundle
S2(so(n)) and decompose so(n) = g+ g

⊥. For vector spaces V and W we define
V �W := (V ⊗W +W ⊗ V ) ∩ S2(V +W ). Then

S2(so(n)) = S2(g) + g� g
⊥ +S2(g⊥).

We may refine this a little further by introducing the map b: Λ2V ∗ ⊗ End(V ) →
Λ3V ∗ ⊗ V given by (br)(X,Y, Z) := r(X,Y )Z + r(Y, Z)X + r(Z,X)Y . Then the
Bianchi identity says bRg = 0, so Rg ∈ K := S2(so(n)) ∩ ker(b), the space of
algebraic curvature tensors. Let K(g) := S2(g) ∩ K = (Λ2V ∗ ⊗ g) ∩ K where the
last equality is the well-known fact that a tensor in Λ2V ∗ ⊗ g that satisfies the
Bianchi identity may be viewed as a symmetric endomorphism of g. We may then
simply decompose K into K(g) and it orthogonal complement

K = K(g) + K(g)⊥.

Proposition 4.1. Let P be a G structure on a Riemannian manifold M with metric
g. Then the components of the Riemannian curvature in K(g)⊥ are determined by

the components of the covariant derivative of the intrinsic torsion ∇ξ and the tensor
(ξ2) through b|−1

K(g)⊥
.
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Remark 4.2. A proof of Proposition 4.1 may be found in [18], but the argument is
well-known from the theory of holonomy groups, see for instance [38] and references.
Note that one may equally well express the Riemannian curvature as

Rg = R + (∇gξ) − [ξ2],

where [ξ2]X,Y := [ξX , ξY ]. In the almost Hermitian case g = u(m) and g
⊥ =q

Λ(2,0)
y
. It then follows that [ξ2] ∈ Λ2V ∗⊗((

q
Λ(2,0)

y
⊗

q
Λ(2,0)

y
)∩so(2m)) ⊂ Λ2V ∗⊗

u(m). Based on this it was argued in [19] that the components of Riemannian
curvature in K⊥ are determined by the components of ∇gξ. However, this does not
carry over to the G2 setting simply because [g⊥2 , g

⊥
2 ] 6⊂ g2 as one easily verifies.

For G2 structures the decomposition of K is easily obtained. Note that

S2(g⊥2 ) ∼= S2V ∼= V27 + V1, S2(g⊥2 ) ∩ K = 0,

S2(g2) = V
(2,0)
77 + V27 + V1, S2(g2) ∩ K = V

(2,0)
77 ,(4.17)

g2 � g
⊥
2
∼= V ⊗ g2 = V

(1,1)
64 + V27 + V7, (g2 � g

⊥
2 ) ∩ K = V

(1,1)
64 .

This may be proven by the standard method. Taking sample elements in each of the
spaces on the left one sees that their images under b, generically, has components in
Λ4

27 and Λ4
1. This suffices for the first line. The two last lines follow by identifying

the highest weight of the product representation (in the cases considered, the sums
of the highest weights of the factors) and calculating dimensions.

The decomposition of S2(so(7)) follows from this. Using that b restricted to
S2(so(7)) maps surjectively on to Λ4 one obtains [8]

K = V
(2,0)
77 + V

(1,1)
64 + 2V27 + V1.

Comparing to the so(7) decomposition of K, see e.g.,[3]

K = W + R0 + S, R0
∼= S2

0R
7, S ∼= R,

we see that the space of algebraic Weyl tensors W on a G2 manifold decomposes as

W = W77 + W64 + W27,

where W77 := K∩S2(g2)
∼= V

(2,0)
77 while W64 := K∩ (g2 � g

⊥
2 ) ∼= V

(1,1)
64 and W27 :=

W/(W77 + W64) ∼= Λ3
27

∼= S2
0V7. This, at least from the point of view of splitting

the space of algebraic curvature tensors K in to G2 irreducible subspaces, gives the
decomposition of the Riemannian curvature tensor of a G2 manifold. However, it is
sometimes useful to have a more explicit description of these submodules. To gain
this, we first need to do a little more linear algebra.

So let for the moment φ, g be the standard G2 structure on V7 = V = R
7.

Let rg be the usual Kulkarni-Nomizu product viewed as an SO(7) equivariant map
S2V ∗ → S2(Λ2V ∗),

(4.18) rg(h)(x, y, z, w) := (h> g)(x, y, z, w) =

h(y, z)g(x,w) − h(x, z)g(y, w) + h(x,w)g(y, z) − h(y, w)g(x, z).

This of course actually takes values in K, as one may easily verify. A G2 equivariant
map rφ also from S2V ∗ to K can be given as

rφ(a1 � a2) := (a1 y φ) � (a2 y φ) − 1
3b ((a1 y φ) � (a2 y φ)) .

Here and elsewhere, a � b := a ⊗ b + b ⊗ a. The Bianchi map must of course be
composed with the proper musical morphisms. Contractions going in the opposite
direction may be given as

cg(r)(u, v) := r(u, ei, ei, v),
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where ei is an orthonormal basis. This is just the usual Ricci contraction. Using
the isomorphism S2(Λ2V ) ∼=g S

2(Λ2V ∗) we set

cφ(r)(u, v) := 4r(u y φ, v y φ).

The first equations of (4.19) and (4.20) below, correspond to the result cg(h? g) =
(n − 2)h + trg(h)g of taking the Ricci contraction of a Kulkarni-Nomizu product,
see [3]. These and the remaining equations may be verified by a calculation in an
orthonormal basis.

(cg ◦ rg)|S2
0V ∗= 5, (cφ ◦ rg)|S2

0V ∗= 4,

(cg ◦ rφ)|S2
0V ∗= 1, (cφ ◦ rφ)|S2

0V ∗= 92
3 ,

(4.19)

(cg ◦ rg)(g) = 12g, (cφ ◦ rg)(g) = −24g.(4.20)

So in analogy to the characterization R0 = {rg(h) : h ∈ S2
0V

∗}, the space W27 may
be described as

W27 :=
{

rg(h) − 5rφ(h) : h ∈ S2
0V

∗
}

.

The last elements from the linear algebra of V are the projections

P g2 : S2(so(7)) → S2(g2), P� : S2(so(7)) → g2 � g
⊥
2 .

These maps may be given closed form expression in terms of the projections p2
d, d =

7, 14, (2.3).
Now let (M,φ) be a G2 manifold with associated metric g. As discussed above,

all maps extend to smooth bundle maps on the associated vector bundles. Define
the φ-Ricci tensor as 2

(4.21) Ricφ(X,Y ) := cφ(Rg),

and write Ricg = cg(Rg) and sg = trg(Ricg) for the Ricci- and scalar curvature of

g. The identities (4.20) show that trg(Ricφ) = −2sg [16]. As usual, a subscript
0 indicates the trace-less part of a symmetric tensor. We shall also introduce the
W-Ricci-tensor:

RicW := 1
20

(

4Ricg
0 − 5Ricφ

0

)

.

Its relevance is clear from

Theorem 4.3. Let (M,φ) be a G2 manifold with associated metric g. Then the
space of algebraic curvature tensors has the orthogonal splitting:

K = W77 + W64 + W27 + R0 + S,

where the space of algebraic Weyl curvatures is W = W77 + W64 + W27. In terms
of the scalar curvature, Ricci curvature and φ-Ricci curvature the orthogonal pro-
jections to these subspaces are

S = 1
84sgrg(g),

R0 = 1
5rg(Ricg

0),

W27 = 3
112 (rg − 5rφ)(RicW),

W64 = P�(W −W27),

W77 = P g2(W −W27).

(4.22)

The three G2 invariant components of the Weyl curvature are conformal invariants
of the associated metric.

In particular, W27 = 0 exactly when RicW = 0 and the norm of the Riemannian
curvature satisfies the equality

‖Rg‖
2

= ‖W77‖
2
+ ‖W64‖

2
+ 15

28‖RicW‖2 + 4
5 ‖Ricg

0‖
2

+ 1
21s

2
g.

2This is denoted the ∗-Ricci tensor in [16]
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Tensor
Components in K

Other components
V 77

(0,2) V 64
(1,1) V 27

(2,0) V 1
(0,0)

∇ξ1 V 7

∇ξ7 X X V 7, V 14

∇ξ14 X X V 7

∇ξ27 X X V 7, V 14, V 77
(3,0)

ξ1 ⊗ ξ1 X

ξ7 ⊗ ξ7 X X

ξ14 ⊗ ξ14 X X X

ξ27 ⊗ ξ27 X X 2×X X V 182
(4,0)

ξ1 � ξ7 V 7

ξ1 � ξ14 V 14

ξ1 � ξ27 X

ξ7 � ξ14 X X V 7

ξ7 � ξ27 X X V 7, V 14, V 77
(3,0)

ξ14 � ξ27 X X V 7, V 14, V 189
(2,1), V

77
(3,0)

R X X 2×X X V 7, V 14, V 77
(3,0)

Table 1. G2-irreducible components of tensors contributing to curvature.

Proof. The first statement, which is clear from the discussion above, is also con-
tained in [8]. Write the Riemannian curvature as

Rg = W77 +W64 + (rg(h1) − 5rφ(h1)) + rg(h2) +Krg(g),

where h1 and h2 are trace-less symmetric two-tensors and apply the contractions
cg and cφ to obtain the first three equations in (4.22). The last two relations
in (4.22) follow from the decompositions (4.17). The expression for the norm of the
Riemannian curvature is now a matter of applying the following relations

‖rg(h)‖
2

= 20 ‖h‖
2
, ‖rφ(h)‖

2
= 92

3 ‖h‖
2
, 〈rφ(h), rg(h)〉 = 4 ‖h‖

2
,

valid for any trace-less symmetric two-tensor h, while ‖rg(g)‖
2

= 336.
Conformal invariance of the three components W77, W64 and W27 follows from

the conformal invariance of RicW, see Corollary 4.7 below, and invariance of the
projections p2

7 and p2
14 under rescaling of the G2 three-form. �

Remark 4.4. Note that the components of ∇ξ and ξ � ξ given in the right-most
column of Table 1 correspond to the second order diffeomorphism invariants of
(M,φ) not captured by the Riemannian curvature, see [8]. Another interesting
point made in [8] (also made for almost Hermitian structures in [11]) is that the
first order identities for the torsion that derives from d2φ = 0 = d2∗φ are encoded
in a subspace isomorphic to 2V7 + V14. For G2 these relations between invariants
necessarily take their values in the complement of the space of algebraic curvature
tensors inside the much larger space of diffeomorphism invariants polynomial in
derivatives of φ up to order two. Andrew Swann has pointed out to us that these
first order constraints on the torsion also may be seen as coming from the fact that
cokernel of the restriction b : Λ2V ∗ ⊗ g2 → Λ3V ∗ ⊗ V is isomorphic to precisely
2V7 + V14, and the restriction b: Λ2V ∗ ⊗ g

⊥
2 → Λ3V ∗ ⊗ V being injective.



12 RICHARD CLEYTON AND STEFAN IVANOV

For the examples we shall be considering in section 5 and 6 all diffeomorphism
invariants up to order 2 are encoded in the Riemannian curvature tensor and the
exterior derivatives of the torsion components. This appears to be a distinguishing
feature of the wider class of G2-structures of type 1+2+4. We thank Robert Bryant
for reminding us of the importance of the full space of second order diffeomorphism
invariants of a G2 structure.

4.1. Ricci curvatures of G2 manifolds. The isomorphism (2.4) has striking
consequences. Most importantly, the covariant derivatives of ξ7, ξ14 and ξ27 each
have precisely one component in a 27 dimensional irreducible subspace of V ∗⊗V ∗⊗
g
⊥
2 . Each of these may be identified with corresponding 27 dimensional components

of suitable exterior derivatives. Similarly, each 27 dimensional component of the
‘algebraic’ curvature components ξd�ξd′ has an equivalent expression in the exterior
algebra. This was used in [8] to obtain an expression for the Ricci curvature of a
G2 manifold. An expression of the Ricci tensor when τ2 = 0 is given in terms
of covariant derivatives of the skew-symmetric torsion in [25] and a formula for
the Ricci tensor in terms of the covariant derivatives of the intrinsic torsion was
very recently presented in [34]. We give a generalization to more general trace-less
symmetric two-tensor formed G2 equivariantly from the Riemannian curvature.

For k = (k1, k2) ∈ R2 write

(4.23) Rick
0 := k1Ricg

0 + k2Ricφ
0 .

We shall call this tensor the generalized Ricci tensor and say that a G2 manifold
(M,φ) is generalized Einstein if Rick

0 = 0 for some k = (k1, k2).

Remark 4.5. Since rescaling of Rick
0 does not affect the generalized Einstein equa-

tion there is of course only really an RP (1) worth of such constraints.

Since S2
0V has multiplicity two in K any trace-less symmetric two tensor on a G2

manifold must equal Rick
0 for some k ∈ R2. Before given the formula we need to give

expressions for the way the component τ2 � τ3 and τ3 ⊗ τ3 determine three-forms.
Choose local G2 adapted frames (e1, . . . , e7). For a two-form α and three-form β
set

[α� β] :=
∑

k

iek
α ∧ iek

β, [β2]A :=
∑

k

∗(iek
β ∧ iek

β),

[β2]B :=
∑

k

((iek
φ) y β) ∧ iek

β.

Then this is independent of the chosen frame and so extend to smooth contractions
on M . The first two contractions are in fact SO(7) equivariant. Since V7 does not
occur in the decomposition of S2(V27) guarantees that for β ∈ Λ3

27 [β2]A, [β2]B ∈
Λ3

1 + Λ3
27. Since there is summand isomorphic to V7 in Λ2

14 ⊗ Λ3
27 it is not quite

obvious that [α � β] ∈ Λ3
1 + Λ3

27 should hold for α ∈ Λ2
14 and β ∈ Λ3

27 but this is
none-the-less true.

Lemma 4.6. Let (M,φ) be a G2 manifold. Then

(4.24) λ3

(

Rick
0

)

=
(

−(5k1 + 4k2)d∗(τ1 ∧ ∗φ) + 2(5k1 + 4k2)τ1 ∧ ∗(τ1 ∧ ∗φ)

− (k1 − 4k2)dτ2 + 1
2 (k1 + 2k2)∗(τ2 ∧ τ2) + (k1 + 4k2)∗dτ3 + k2[τ

2
3 ]A + 1

2k1[τ
2
3 ]B

− 1
2 (k1 − 4k2)τ0τ3 + (k1 − 4k2)τ1 ∧ τ2 + (3k1 − 4k2)∗(τ1 ∧ τ3) + 2k2[τ2 � τ3]

)

27
.

Proof. Theorem 4.1 and the remarks given above show that any symmetric two-
tensor formed from Rg contracting with φ and g must have an expression as a linear
combination of the terms on the right hand side where coefficients are determined
entirely in terms of the linear algebra of G2 and so in particular are independent
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of the underlying manifold. Obtaining the given expression is then a matter of
evaluating the left- and right-hand side on examples. �

A similar argument may be used to obtain the scalar curvature of a G2 manifold,
see [8, 26, 34]

(4.25) sg = 21
8 τ

2
0 + 12δτ1 + 30 |τ1|

2
− 1

2 |τ2|
2
− 1

2 |τ3|
2
.

Lemma 4.6 gives

Corollary 4.7. The symmetric trace-less tensor RicW is a conformal invariant of
a G2 structure.

Proof. Under a conformal change φ → φ̃ = e3fφ the torsion transforms as τ =
(τ0, . . . , τ3) → τ̃ = (e−f τ0, τ1 + df, ef τ2, e

2fτ3) - this much is well-known and easy
to check. Putting τ̃ in to formula (4.24) a simple calculation verifies that with
k1 = 4, k2 = −5 the only change of the generalized Ricci tensor is a rescaling. �

Remark 4.8. The subscript 27 at the end of equation (4.24) means the projection
p3
27 has been applied. It is rather pleasing to note that all possible contributions

are realized. This seems to confirms a ‘general principle’ for G-structures: if rep-
resentation theory tells us that a tensor may contribute in an expression as above,
then it does. Since there is a two parameter family of generalized Ricci tensors
and a two parameter family of contributions from τ3 ⊗ τ3 it is not surprising that
contributions from the chosen representatives A and B vanish for certain values k.
That those are precisely (1, 0) and (0, 1) appear to be pure coincidence.

As noted in [8], a generic G2 structure has a two-parameter family of ‘canonical’
G2 connections ∇(s,t). The generalized Ricci-curvature defined above should there-

fore have an interpretation as the symmetric part of the contraction cg(R
∇

(s,t)

) of

the curvature R∇
(s,t)

of ∇(s,t). One may obtain different formulas for the Ricci-
curvatures by expressing the exterior derivatives of the torsion components in terms

of d∇
(s,t)

instead. We do this below for ∇.

A rather long but straight-forward computation on test elements shows that

d∗(τ1 ∧ ∗φ) = d∇∗(τ1 ∧ ∗φ) + 1
2 ∗(τ0τ1 ∧ φ) + 8

3τ1 ∧ ∗(τ1 ∧ ∗φ) − 2 |τ1|
2 φ

+ 1
3τ1 ∧ τ2 + 4

3 (τ1 ∧ τ2)7 + 2
3 ∗(τ1 ∧ τ3) −

4
3 ∗(τ1 ∧ τ3)7,

(4.26) dτ2 = d∇τ2 + 2
3τ1 ∧ τ2 + 8

3 (τ1 ∧ τ2)7 + 1
6 ∗(τ2 ∧ τ2) + 1

6 |τ2|
2 φ

− 1
6 [τ2 � τ3] +

1
6 ∗((τ2 y τ3) ∧ φ),

and,

dτ3 = d∇τ3 −
1
6 ∗(τ0τ3) + τ1 ∧ τ3 −

8
3 ∗(∗(τ1 ∧ τ3)7) −

1
6 (τ2 y τ3) ∧ φ

− 1
6 ∗[τ

2
3 ]A − 1

6 ∗[τ
2
3 ]B + 1

6 |τ3|
2
∗φ.

It is somewhat surprising that there is no summand [τ2 � τ3] in the last expression.
More surprises are in store when this is used in formula (4.24). First, for β ∈ Λ3V ∗

define

[β2]C := [β2]A − 2[β2]B .

Then Lemma 4.6 is reformulated as
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Tensor Ricg
0 RicW Ricφ

∇ξ7 X X

∇ξ14 X X X

∇ξ27 X X X

ξ7 ⊗ ξ7 X X

ξ14 ⊗ ξ14 X X X

(ξ27 ⊗ ξ27)
C X X X

ξ1 � ξ27 X X X

ξ7 � ξ14 X X X

ξ7 � ξ27 X X X

ξ14 � ξ27 X X

Table 2. G2-irreducible components of tensors contributing to
Ricci curvatures.

Lemma 4.9. Let (M,φ) be a G2 manifold. Then

(4.27) λ3

(

Rick
0

)

=
(

−(5k1 + 4k2)d
∇∗(τ1 ∧ ∗φ) − 2

3 (5k1 + 4k2)τ1 ∧ ∗(τ1 ∧ ∗φ)

− (k1 − 4k2)d
∇τ2 + 1

3 (k1 + 5k2)∗(τ2 ∧ τ2) + (k1 + 4k2)∗d
∇τ3 −

1
6 (k1 − 2k2)[τ

2
3 ]C

− 2
3 (k1−2k2)τ0τ3−

4
3 (k1+2k2)τ1∧τ2+

2
3 (k1−4k2)∗(τ1∧τ3)+

1
6 (k1+8k2)[τ2�τ3]

)

27
.

Corollary 4.10. The components of the covariant derivative ∇ξ and symmetric
products ξd � ξd′ contribute to the traceless symmetric tensors Ricg,Ricφ and RicW

according to the ticks in Table 2.

Remark 4.11. There is a number of interesting features of this equation. The
most important is that only one combination of a two parameter family of possible
contributions from τ3⊗ τ3 are realized. This appears to break the principle referred
to in remark 4.8.

A classification of G2 structures with τ1 = τ2 = 0 for which the torsion is parallel
with respect to the uniqueG2 characteristic connection determined by having three-
form torsion: T (X,Y )Z = −T (X,Z)Y was made in [23]. One corollary of this
classification is that structures with torsion τ = τ3, parallel with respect to the
characteristic connection are never Einstein, at least when the stabilizer of the
torsion is not Abelian.

Note that when d∇τ3 = 0 the Einstein equation for a G2 structure of type 1 + 3
reduces to a quadratic equation [τ 2

3 ]C + 4τ0τ3 = 0 for a torsion tensor τ = (τ0, τ3).
Moreover, if such a structure is Einstein then it is generalized Einstein for any value
of k = (k1, k2). It is very likely that this system has non-trivial solutions.

Remark 4.12. The three-form ρ? introduced in [16] corresponds to k1 = −1/6 and
k2 = 1/24.

5. Curvature of G2 structures of type 1 + 4

The results of this section are well known. We take this class as a first example to
demonstrate how the results of the previous sections should be used as everything
is straight-forward.

We first analyze the structure equations. With τ2 = τ3 = 0 equations (3.14) are:

dφ = τ0∗φ+ 3τ1 ∧ φ, d∗φ = 4τ1 ∧ ∗φ.
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Taking the differential again yields dτ1 = 0, dτ0 + τ0τ1 = 0. An easy argument
now shows that either τ0 ≡ 0 and τ1 is closed or τ0 is never zero and τ1 is exact:
τ1 = −d ln(τ0). Therefore the class 1+4 of G2-structures consists in G2 structures φ
locally conformally equivalent to a parallel structure and those globally conformally
equivalent to a nearly parallel structure, see [15] for details.

5.1. Curvature. As the kernel b: S2(g2) → Λ4V ∗ is precisely W77 and the torsion
τ = (τ0, τ1, τ2, τ3) vanishes identically for a parallel G2 structure it is clear that the
only non-trivial component of the Riemannian curvature is precisely W77 for such
a structure.

By the conformal invariance of the components of the Weyl tensor, see Theorem4.3,
the components of the Riemannian curvature for a G2 structure with τ = τ1 satisfy

W64 = 0 = W27, sg = 12δτ1 + 30 |τ1|
2

λ3 (Ricg
0) =

(

−5d∇∗(τ1 ∧ ∗φ) − 10
3 τ1 ∧ ∗(τ1 ∧ ∗φ)

)

27
.

Compact manifolds with G2 structure locally conformal to a parallel G2 structure
were described in [31, 40].

Suppose now that τ = τ0. Then (M,φ) is nearly parallel and the structure
equations give dτ0 = 0. It is well-known that the associated metric of a nearly
parallel G2 structure is Einstein – this is also obvious from formula (4.24), in fact

Rick
0 = 0 for all k. Furthermore, checking Table 1 one sees that W64 = 0. Thus we

obtain (c.f. [12, 14])

Lemma 5.1. The Riemannian curvature tensor of the metric associated to a nearly
parallel G2 structure has the form

Rg = W + 1
32τ

2
0 rg(g),

where W ∈ W77.

For the strict class 1 + 4 one then again has W64 = 0 = W27 by the conformal
invariance of these components, Theorem 4.3. Moreover, if g is complete and Ein-
stein then (M, g) is conformally equivalent to the standard metric on the 7-sphere,
so W77 = 0. We will see these conformal changes of the unique (see [24]) nearly
parallel G2 structure on S7 turn up again when we consider examples in section 7.

6. Curvature of closed G2 structures

A closed G2 structure is by definition given by a closed G2 three-form φ. Let us
first examine the consequences of the structure equations (3.14). When dφ = 0 the
torsion τ has only one component τ = τ2:

(6.28) d∗φ = τ ∧ φ,

whence δgφ = τ = ξ̄. This is equivalent to the equation ∧3(ξ) = 0 for the intrinsic
torsion ξ viewed as a tensor in Λ2V ∗ ⊗ V ∗. Expressed in terms of the components
of ξ with respect to an orthonormal frame this is just the identity

(6.29) ξijk + ξjki + ξkij = 0.

Differentiating and applying Hodge star to the structure equation (6.28) yields

(6.30) dτ ∧ φ = 0, and δgτ = 0.

The first equation is equivalent to (dτ)7 = 0 while the second may be interpreted
as ∇gτ having no component in the 7 dimensional irreducible SO(7)-submodule of
V ∗ ⊗ Λ2V ∗. Using Table 1 and Lemma 2.1 either of the equations (6.30) can be
seen to be equivalent to statement of the following Lemma.

Lemma 6.1. Suppose dφ = 0. Then ∇τ ∈ V64 + V27 ⊂ V ∗ ⊗ Λ2
14. �
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Equation (4.26) then becomes

(6.31) d∇τ = dτ − 1
6 ∗(τ ∧ τ) −

1
6 |τ |

2
φ,

after rearranging. Lemma 6.1 shows that d∇τ ∈ Λ3
27. This gives the important

observation:

(6.32) 1
3 ∗d(τ

3) = 〈dτ, ∗(τ ∧ τ)〉 = 〈d∇τ , ∗(τ ∧ τ)27〉.

6.1. The Ricci curvature of a closed G2 structure.

Remark 6.2. Many of the results we give below have appeared in slightly different
form and for certain special cases in [8] and [16]. The main difference between
the results given here and those that have appeared earlier is the interpretation in

terms of the components of the covariant derivative ∇τ .

When the G2 three-form is closed the formula for the generalized Ricci curvature
(4.27) may be written

λ3

(

Rick
0

)

= −(k1 − 4k2)d
∇τ + 1

3 (k1 + 5k2)∗(τ ∧ τ)27.(6.33)

This leads to

(6.34) ‖Rick
0‖

2 = 1
2 (k1 − 4k2)

2|d∇τ |2 + 1
21 (k1 + 5k2)

2 |τ |
4

− 1
3 (k1 + 5k2)(k1 − 4k2)〈d

∇τ , ∗(τ ∧ τ)27〉

Here we have used equation (2.5) and the following relations, valid for any two-form
τ ∈ Λ2

14, see [8].

∗(τ ∧ τ ∧ φ) = − |τ |
2
, |τ ∧ τ |

2
= |τ |

4
, and, |(τ ∧ τ)27|

2
= 6

7 |τ |
4
.

All these may be verified by observing that, since the trivial representation occurs in
the symmetric powers S2Λ2

14 and S4Λ2
14 with multiplicity one, left- and right-hand

side of the two equation must be proportional. The constant of proportionality
is then found by evaluating on a sample element. Alternatively, the last equation
follows from the first two by projecting (τ ∧ τ)27 = τ ∧ τ + 1

7 |τ |
2 ∗φ and taking the

norm squared.

Remark 6.3. Identity (6.34) has some easy applications. For instance, integral
identities such as

∫

M

(

36 ‖Ricg
0‖

2
− 25‖RicW‖2 − 45

28s
2
g

)

dVg = 0.(6.35)

hold on a compact manifold M with closed G2 structure.
In particular, one gets the result established in [16], see also [8], that a compact

Einstein closed G2 manifold is parallel.

Keep in mind that the scalar curvature of the metric associated to a closed

G2 structure is sg = − 1
2 |τ |

2
. Equation (6.32) and Stokes’ Theorem applied to

integration of (6.34) then give

Proposition 6.4. Suppose (M,φ) is a compact G2 manifold with dφ = 0. Then
∫

M

‖Rick
0‖

2dVg > 4
21 (k1 + 5k2)

2

∫

M

s2gdVg ,

where equality holds if and only if k1 = 4k2 or d∇τ = 0.

For k = (1, 0) one gets the inequality established by Robert Bryant in [8].
Closely related statements are obtained by applying the Cauchy-Schwartz in-

equality to the last summand of equation (6.34).
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Proposition 6.5. Suppose M is a manifold equipped with a closed G2 structure
φ with torsion τ . Let k1, k2 be real numbers and set K1 := |k1 − 4k2| , K2 :=
|k1 + 5k2|. The inequality

(6.36) 1
2

(

K1|d
∇τ | −

√

2
21K2 |τ |

2)2
6 ‖Rick

0‖
2 6 1

2

(

K1|d
∇τ | +

√

2
21K2 |τ |

2)2

then holds everywhere in M .

As a particular instance we apply Theorem 4.3 to obtain,

Corollary 6.6. Suppose (M,φ) is a compact manifold with closed G2 structure φ.
If the 27-dimensional curvature component W27 is zero then φ is parallel.

Corollary 6.7. Let (M,φ) be a G2 manifold with dφ = 0. If the torsion satisfies

d∇τ = 0 then

(*) ‖Rick
0‖

2 6 4
21 (k1 + 5k2)

2s2g ,

and, in fact, equality must hold everywhere and for all values of k1 and k2.
If M is compact and real numbers k1, k2 exist so that the inequality (*) holds

everywhere in M then (k1 − 4k2)d
∇τ = 0.

Proof. Suppose φ is a closed G2 three-form with torsion such that d∇τ = 0. Then
the inequality (*) holds by the second inequality of (6.36) and taking the first
inequality in to account, equality must hold for any k1 and k2. This proves the first
part of Corollary 6.7. The second statement follows by using the inequality (*) in
formula (6.34) to obtain

(**) 1
2 (k1 − 4k2)

2|d∇τ |2 − 1
3 (k1 + 5k2)(k1 − 4k2)〈d

∇τ , ∗(τ ∧ τ)27〉 6 0

When M compact we may integrate the inequality (**). Using relation (6.32) we
obtain

1
2 (k1 − 4k2)

2

∫

M

|d∇τ |2dVg 6 0.

�

Motivated by Proposition 6.4 and Corollary 6.7, we shall say that a closed G2

structure φ is extremal or extremally pinched if the torsion τ satisfies d∇τ = 0.

Remark 6.8. Equivalently, φ has extremally pinched Ricci curvature, the original
term used by Robert Bryant in [8].

Corollary 6.9. Suppose φ is a closed G2 three-form on a manifold M . If Rick
0 = 0

for some k = (k1, k2) then

|k1 − 4k2| |d
∇τ | =

√

2
21 |k1 + 5k2| |τ |

2

If M is compact then the associated Riemannian metric is generalized Einstein for
k = (k1, k2) if and only if either

(1) k1 + 5k2 = 0 and φ is extremal, or,
(2) φ is parallel.

6.2. The curvature components W77 and W64 and topology of closed G2

structures.

Lemma 6.10. Suppose φ is a closed G2 three-form with associated metric g. Let

S : so(n) ⊗ so(n) → so(n) ⊗ so(n) be defined by S(α ⊗ β) = β ⊗ α. Let ∇ be

the canonical connection and ξ be the intrinsic torsion of φ. Write (∇ξ)64 for

the orthogonal projection of (∇ξ) to the irreducible 64 dimensional submodule of
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Λ2V ∗⊗g
⊥
2 and R64 for the projection R to the irreducible 64 dimensional submodule

of Λ2V ∗ ⊗ g2. Then the component W64 of the Riemannian curvature Rg satisfies

W64 = S((∇ξ64) + (∇ξ)64 = S(R64) + R64.

Let τ be the torsion of φ and write ∇τ64 and ∇τ27 for the respective components of

∇τ in the 64 and 7 dimensional subspaces of V ∗ ⊗ Λ2
14. Then

‖W64‖
2

= 2‖(∇ξ)64‖
2 = 2‖R64‖

2 = 1
3‖∇τ64‖

2.

Proof. Note that W64 ∈ S2(so(7)) so S(W64) = W64. Since ξ⊗ξ lies in a submodule
of S2(V ∗ ⊗ g

⊥
2 ) isomorphic to S2(g2) the tensor (ξ2) does not contribute to W64

and so W64 = R64 + (∇ξ)64 = S(R64 + (∇ξ)64). However, R64 ∈ g
⊥
2 ⊗ g2 while

(∇ξ)64 ∈ g2 ⊗ g
⊥
2 , so

g
⊥
2 ⊗ g2 3 R64 − S((∇ξ)64) = (∇ξ)64 − S(R64) ∈ g2 ⊗ g

⊥
2 .

Therefore R64 = S((∇ξ)64) and W64 = S((∇ξ)64) + (∇ξ)64 = S(R64) + R64.

Let ei be a local orthonormal frame. We write ∇iτjk = (∇ei
τ)(ej , ek) and so on.

Using equation (3.15) and (3.16) we get

(∇ξ)ijkl = ∇iξjkl −∇jξikl

= 1
6

(

∇iτjp −∇jτip)φpkl ,

= 1
6

(

(d∇τ)ijp −∇pτij)φpkl

= 1
6

(

(d∇τ)ijp − (∇τ27)pij − (∇τ64)pij)φpkl.

Here we make explicit use of the principle given by equation (3.11). Since d∇τ ∈ Λ3
27

by Lemma 6.1 projection gives:

(∇ξ64)ijkl = − 1
6 (∇τ64)pijφpkl.

Take the tensor norm and use equation (2.6)) to get

‖(∇ξ64)‖
2 = 1

36 (∇τ64)pijφpkl(∇τ64)qijφqkl,

= 1
6 (∇τ64)pij(∇τ64)pij ,

= 1
6‖∇τ64‖

2.

The final equation of the Lemma follows from this. �

Closed G2 structures are distinguished also by having certain topological data
naturally associated.

Theorem 6.11. Suppose M is a compact 7 dimensional manifold with a closed
fundamental three-form φ. Let g be the associated metric. Then
(6.37)

〈p1(M) ∪ [φ], [M ]〉 = −
1

8π2

∫

M

{

‖W77‖
2
− 1

2 ‖W64‖
2
− 9

7 ‖Ricg
0‖

2
+ 45

282 s
2
g

}

dVg ,

where p1(M) is the first Pontrjagin class of M .

This generalizes Proposition 10.2.7. of [32].

Proof. We shall be working in a local orthonormal frame ei. First, using equa-
tions (2.6) and (6.29) the expression

Rg
ijab = Rijab + 1

6 (∇iτjp −∇jτip)φpab + 1
36τpqτprφqijφrab

+ 1
36 (τiaτjb − τibτja) − 1

18τipτjqφpqab
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is obtained. This relates the Riemannian curvature Rg of the metric g associated

to φ with the curvature R of the canonical connection ∇ of φ with the the torsion
expressed in terms of τ rather than intrinsic torsion ξ.

Note that from Chern-Weil theory p1(M) may be represented by the 4-form

1
8π2 tr(Rg ∧ Rg) = 1

16π2 Rg
ijabR

g
klabe

ijkl.

Now,

8π2 〈p1(M) ∪ [φ], [M ]〉 =

∫

M

tr(Rg ∧ Rg) ∧ φ

=

∫

M

〈tr(Rg ∧ Rg), ∗φ〉 dVg ,

= 1
2

∫

M

Rg
abijR

g
cdijφabcddVg

= −

∫

M

‖Rg‖
2
dVg + 1

2

∫

M

(Rg
ijabφabt)(R

g
ijcdφcdt)dVg .

The contraction Rg
ijabφabt gives

Rg
ijabφabt = 1

6 (∇iτjp −∇jτip)φpabφabt + 1
36τpqτprφqijφrabφabt

+ 1
36 (τiaτjb − τibτja)φabt −

1
18τipτjqφpqabφabt

= ∇iτjt −∇jτit + 1
6τpqτptφqij −

1
6τipτjqφpqt.

where the identities (2.6)- (2.10) are applied. By definition ∧3(∇τ) =: d∇τ so

(6.38) Rg
ijabφabt =

(

(d∇τ)ijt −∇tτij
)

+ 1
6 (τpqτptφqij − τipτjqφpqt)

The evaluation of the integrand (Rg
ijabφabt)(R

g
ijcdφcdt) is now reduced to evaluating

9 different contractions. Some of these are easy, for instance

[(d∇τ)ijt −∇tτij ][(d
∇τ)ijt −∇tτij ] = 2|d∇τ |2 + ‖∇τ‖2,

τpqτptφqijτrsτrtφsij = 6τpqτptτrqτrt = 6 |τ |4

The last equality is obtained by the standard method: observe that the right hand
side is a fourth order homogeneous G2 invariant polynomial in τ ∈ Λ2

14. So up to

scale it must equal |τ |
4
. The constant of proportionality is found by evaluating

on a test element. In the same way one obtains τipτjqφpqtτirτjsφrst = 3 |τ |
4
, and,

τpqτptφqijτirτjsφrst = 0. To evaluate the remaining terms it is useful to first note
that

(∗(τ ∧ τ) + |τ |
2
φ)ijt = τpq(τptφqij + τpiφqjt + τpjφqti)

= 2(τipτjqφpqt + τjpτtqφpqi + τtpτiqφpqj ).

Lemma 6.1 and relation (6.32) then imply that (d∇τ)ijtτpqτptφqij = 2
3 ∗d(τ

3), and,

(d∇τ)ijtτipτjqφpqt = 1
3 ∗d(τ

3). Note that the contraction ∇kτijφijl is zero for all k

and l as ∇τ ∈ V ∗⊗Λ2
14. So ∇tτijτpqτptφqij = 0. Using this identity twice, applying

∧3(ξ) = 0 three times and juggling indices along the way we get

∇tτijτipτjqφpqt = −∇tτijτip(τpqφtqj + τtqφjqp)

= ∇tτijτpqτpiφqjt + ∇tτijτtq(τjpφqip + τqpφijp)

= ∇tτijτpqτpiφqjt −∇tτijτjp(τiqφqpt + τpqφqti),

= ∇tτijτpq(τpiφqjt + τpjφqti + τptφqij) + ∇tτijτipτjqφpqt.
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Thus,

∇tτijτipτjqφpqt = 1
3 ∗d(τ

3).

It is curious that the inner product of the two summands of equation (6.38) only
contributes to the norm squared through divergence. Moreover, the two terms in
the second summand are orthogonal. The net result is

(Rg
ijabφabt)(R

g
ijcdφcdt) = 2|d∇τ |2 + ‖∇τ‖2 + 1

4 |τ |
4

+ 2
9 ∗d(τ

3).

Using equation (6.34) with k = (1, 0), Lemmata 2.1 and 6.10 this may be reformu-
lated as

(Rg
ijabφabt)(R

g
ijcdφcdt) = 3 ‖W64‖

2 + 40
7 ‖Ricg

0‖
2 − 13

147s
2
g + 34

63 ∗d(τ
3).

Integrating this and applying Theorem 4.3 and remark 6.3 we arrive at the stated
identity. �

Corollary 6.12. Suppose M is a compact 7-dimensional manifold equipped with a
closed G2 structure φ. Then

〈p1(M) ∪ [φ], [M ]〉 > −
1

8π2

∫

M

{

‖W77‖
2
− 1

2 ‖W64‖
2
− 3

16s
2
g

}

dVg .

Equality holds if and only if φ is extremal.

Proof. Use Proposition 6.4 in equation (6.37). �

Corollary 6.13. Let M be compact and φ an extremal G2 three-form on M . Then

〈p1(M) ∪ [φ], [M ]〉 > −
1

8π2

∫

M

{

‖W77‖
2
− 3

16s
2
g

}

dVg .

Equality holds if and only if M with its associated metric g is locally isometric to
G/U(2), where G is the 11-dimensional Lie group described in Theorem 6.21.

Proof. Corollary 6.12 shows that for an extremal three-form φ the stated inequality

holds if and only if W64 = 0. By Lemma 6.10 this holds if and only if (∇τ)64 = 0.

For an extremal closedG2 three-form d∇τ = 0 so by Lemma 2.1 this implies ∇τ = 0.
The stated result is now a consequence of Theorem 6.21 below. �

Corollary 6.14. Suppose M is compact, equipped with an extremal closed G2 three-
form φ. Suppose furthermore that the component W77 of the Riemannian curvature
is zero. Then

〈p1(M) ∪ [φ], [M ]〉 > 0

and equality holds if and only if φ is parallel and the associated metric is flat.

Proof. From Corollary6.12 we get

〈p1(M) ∪ [φ], [M ]〉 > −
1

8π2

∫

M

‖W77‖
2 dVg

with equality if and only if s2g = 1
4 |τ |

2
= 0 and W64 = 0. �

Lemma 6.15 (Integral Weitzenböck Formula for τ). Let τ be the torsion of a closed
G2 structure φ on a compact manifold M . Then

(6.39)

∫

M

4Rg(τ, τ)dVg =

∫

M

(2|d∇τ |2 − ‖∇τ‖2 + 1
6 |τ |

4
)dVg .
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Proof. This may also be found in [16]. However, as conventions are different we
give an outline. Take the covariant derivative of the one-form Θ with components
Rg

ijklφpijτkl (expressed in terms of a local orthonormal frame) with respect to the
Levi-Civita connection and contract with the metric. The result is clearly a diver-
gence and so, by Stokes’ Theorem integrates to zero on the compact M . But we
also have

δgΘ = −(∇g
pR

g
ijkl)φpijτkl − Rg

ijkl∇
g

pφpijτkl − Rg
ijklφpij∇

g
pτkl

Writing δgφ = τ and applying the second Bianchi identity to the factor ∇g
pR

g
ijklφpij

gives

δgΘ = Rg
ijklτijτkl − Rg

ijklφpij∇
g

pτkl.

The proof is finished by expressing ∇gτ as a covariant derivative with respect to
the canonical connection and then using the identities derived in the course of the
proof of equation (6.37). �

Remark 6.16. The name we have given this Lemma stems from the equivalence of
equation (6.39) with the usual integral Weitzenböck formula, see [16]

∫

M

|dτ |
2
dVg =

∫

M

1
2

(

‖∇gτ‖
2
+ 2Rg(τ, τ)

)

dVg .

This is special instance of an example considered in [39], namely the Weitzenböck
formula for two forms in Λ2

14.

The integrand Rg(τ, τ) may be evaluated using Theorem 4.3 while the norms of
the derivatives and τ may be expressed in terms of curvature components using
formula (6.34) and Lemma 6.10. This gives

Proposition 6.17. Let (M,φ) be a compact G2 manifold M with closed G2 struc-
ture φ and torsion τ . Then the integral identity holds

∫

M

(4W77(τ, τ) + 3 ‖W64‖
2)dVg =

∫

M

(

16
7 ‖Ricg

0‖
2 + 127

198s
2
g

)

dVg .

Proof. A straightforward computation in an orthogonal frame shows that for any
symmetric two-tensor h

4rg(h)(τ, τ) = −4hpqτprτqr , 4rg(g)(τ, τ) = −8 |τ |
2

= 16sg,

4rφ(h) = − 8
3hpqτprτqr + 4

3 trg(h) |τ |
2
.

This gives

(6.40) 4Rg(τ, τ) = 4W77(τ, τ) −
1
4

(

Ric
(3,1/4)
0 )pqτprτqr + 4

21s
2
g .

The contraction τprτqr gives the components of the tensor τ ⊗g τ := (er y τ)⊗ (er y

τ) = 1
2τprτqre

p � eq. It is easy to check that

λ3(τ ⊗g τ) = ∗(τ ∧ τ) + |τ |
2
φ,

λ3

(

Ric
(3,1/4)
0

)

= −2d∇τ + 17
12 ∗(τ ∧ τ)27.

Equations (2.5) and (6.32) then imply that
(

Ric
(3,1/4)
0 )pqτprτqr = 1

2

〈

−2d∇τ + 17
12 ∗(τ ∧ τ)27, ∗(τ ∧ τ)27

〉

(6.41)

= − 1
3 ∗d(τ

3) − 17
7 s

2
g ,

whence

4Rg(τ, τ) = 4W77(τ, τ) −
5
12s

2
g + 1

12 ∗d(τ
3),
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and clearly

(6.42)

∫

M

4Rg(τ, τ)dVg =

∫

M

(4W77(τ, τ) −
5
12s

2
g)dVg .

On the other hand,

2|d∇τ |2 − ‖∇τ‖2 + 1
6 |τ |

4
= −‖(∇τ)64‖

2 + (2 − 6
7 )
(

2‖Ricg
0‖

2 − 8
21s

2
g + 2

9 ∗d(τ
3)
)

+ 2
3s

2
g

= −3 ‖W64‖
2 + 16

7 ‖Ricg
0‖

2 + 2·17
3·49s

2
g + 16

63d(τ
3).

This gives the following alternative expression for the Weitzenböck formula
∫

M

4Rg(τ, τ) =

∫

M

(−3 ‖W64‖
2

+ 16
7 ‖Ricg

0‖
2 + 2·17

3·49s
2
g).

We compare this expression to equation (6.42) and rearrange to get
∫

M

(4W77(τ, τ) + 3 ‖W64‖
2)dVg =

∫

M

(

16
7 ‖Ricg

0‖
2 + 127

198s
2
g

)

dVg

=

∫

M

(

16
7 ‖Ricg‖2 + 9

28s
2
g

)

dVg .

�

Corollary 6.18. Let M be a compact G2 manifold with closed G2 structure φ and
torsion τ . If the curvature components W77 and W64 are identically zero then M
is parallel and flat.

Remark 6.19. A computation similar to (6.41) of the proof of Proposition6.17 shows
that

1
4rg(Ricg)(τ, τ) = Ricg

pqτprτqr = − 1
6 ∗d(τ

3).

and so, for a G2 structure φ with torsion τ ∈ Λ2
14,

∫

M

rg(Ricg)(τ, τ)dVg = 0.

6.3. Closed fundamental three-forms with parallel torsion. We give a brief
description of the only known example of an extremal closed G2 structure on a
compact manifold due to Robert Bryant [8]. Let G be the space of affine trans-
formations of C2 preserving the canonical complex volume form. Then SU(2) is a
subgroup in G and M = G/ SU(2) is a 7-dimensional homogeneous space, diffeo-
morphic to R

7 admitting an invariant extremal closed G2 structure φ as well as a
free and properly discontinuous action of a discrete subgroup Γ ⊂ G for which φ
is invariant. So φ descends to an extremal closed G2 structure φ̃ on the compact
quotient M̃ := Γ \M .

Andrew Swann made us aware of the following alternative description of Bryant’s
example. Note that SL(2,C) = SU(2). Sol3 where Sol3 is the space of complex upper

diagonal 2× 2 matrices
(

et z
0 e−t

)

, with t real and z a complex number (by Iwasawa
decomposition, or simply applying the Gram-Schmidt process to the column vectors
of elements of SL(2,C)). This gives the alternative description of M as the Lie
group Sol3 oC2. Taking any basis of left-invariant one-forms e = (ei) on M thought
of as a Lie group gives a G2 three-form φ by requiring that e is a G2 adapted frame
field. Below we shall show that, up to isometries, despite the availability of the
construction of a multitude of invariant fundamental three-forms on M there is
only one extremal three-form.

Even better we shall show that any manifold M ′ with extremal G2 structure φ′

such that the torsion τ is parallel with respect to ∇, locally is isometric to (M,φ).
Lemma 6.1 and Proposition 6.10 give
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Lemma 6.20. A closed G2 form φ is extremal if and only if its torsion τ satisfies

(∇τ)27 = 0. The torsion of a closed G2 form φ is parallel with respect to the
canonical connection if and only if φ is extremal and the component W64 of the
Riemannian curvature is zero.

Theorem 6.21. Let (M,φ) be a G2 manifold such that dφ = 0, d∗φ = τ ∧ φ and

∇τ = 0, where ∇ is the canonical connection of the G2 connection. Then (M, g)
has extremally pinched Ricci curvature. Furthermore, (M,φ) is locally isometric to
a homogeneous space G/U(2) where G is the Lie group consisting of affine trans-
formations of C2 which preserve the norm of the complex volume form on C2.

Proof. If ∇τ = 0 then (M,φ) is extremal and the norm of the torsion is constant.
For an extremal three-form τ 3 = 0 if the torsion tensor has constant norm, see [8].

Then τ has constant rank 4 with stabilizer U(2) ⊂ G2 and the holonomy of ∇
reduces to a U(2) ⊂ G2. Which one of the two possible U(2)’s (up to conjugation)
is determined as follows. The subalgebras of g2 of dimension 4 are contained in the
maximal SO(4) and are (up to a finite quotient) homomorphic to U(2). The action
of SO(4) on R7 may be written in terms of the standard representations V+, V− of
so(4) = su+(2)+su−(2) as R7 = S2V+ +V+⊗V− (modulo complexifications). Take
a basis e1, e2, e3, e4 of V+V− and e5, e6, e7 of S2V+. Note that under the action of
SO(4) the space of two-forms is

Λ2 = 2S2V+ + (S3V+ + V+)V− + S2V−,

so

Λ2
14 = S2V+ + S2V− + S3V+V−.

We may give explicit bases of the subspaces S2V±. They are e12 + e34 − 2e56, e13 +
e42 − 2e67, e14 + e23 − 2e57 for S2V+ and e12 − e34 and so on for S2V−. Note that
elements of S2V+ always have rank 6. Therefore the stabilizer of a rank 4 element
of g2 is u+(2) = R− + su+(2) ⊂ so(4) ⊂ g2. Its action on R

7 is S2V+ + (L+ L̄)V+

and on Λ2

2S2V+ + (L2 + R + L̄2) + (L+ L̄)(S3V+ + V+).

We now fix U(2) ⊂ G2 as the stabilizer of τ := 6(e12 − e34), where U(2) acts on
R7 as su(2) ⊕ C2. The Berger algebra of u(2) with respect to this representation

is trivial, see [18] for details. So the curvature R of the canonical connection ∇ is
determined algebraically by the torsion squared through the Bianchi identity and

therefore ∇R = 0. A computation yields,

R = −4(e12 − e34) ⊗ (e12 − e34)

− 2(e12 + e34 − e56) ⊗ (e12 + e34 − 2e56)

− 2(e13 + e42 − e67) ⊗ (e13 + e42 − 2e67)

− 2(e14 + e23 − e57) ⊗ (e14 + e23 − 2e57))

The bracket on u(2)⊕R7 given by [A+x,B+y] = Ay−Bx− ξxy+ ξyx−Rx,y may
now be computed. It is a Lie bracket on an 11-dimensional algebra with group G
as stated. �

Remark 6.22. Note that this clearly does not imply uniqueness of homogeneous
spaces with closed G2 three-form. First of all, many examples of homogeneous
spaces (with compact quotients) admitting invariant closedG2-structures are known,
see [20, 21]. These, generically, do not admit an extremal three-form, by The-
orem 6.21. In fact, through equation (6.31), the extremallity condition may be
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seen as a non-degeneracy condition on the derivative dτ , which is, again generally
speaking, never satisfied on examples built over nilpotent and solvable Lie algebras.

Even the space M̃ = G/U(2) with its extremal, invariant three-form may be
described in several different ways, as we have already seen. Apart from the de-
scriptions given above, M̃ may be described as the U(1) quotient of the semi-direct

product of the space of matrices
(

reiθ z
0 r−1eiθ

)

with r > 0, θ real and z complex with

C2. As the isotropy group becomes smaller the number of invariant G2 three-forms
increase but, up to isometry, there is only one extremally pinched structure. It may
also be possible to enlarge the group G to the full space of isometries, but we note
here that G is the maximal group acting on M̃ leaving the extremal form invariant.

In the light of the evidence given here we make the following conjecture

Conjecture. Suppose M is compact and φ is an extremal closed G2 structure on
M . Then the universal covering space M̃ of M is isometric to Sol3 oC2 with its
unique invariant, extremal three-form.

7. Examples

The examples we will be considering here are all, locally, of the formM = I×M ∗

where M∗ is a 6-dimensional manifold carrying a one-parameter family of SU(3)
structures given by (ωt, ψ

+
t )t∈I . This gives G2 structures φ := dt ∧ ωt + ψ+

t with
associated metric g = dt2 +gt, where gt is the metric on M∗ determined by ωt, ψ

+
t .

Strictly speaking, pull-backs such as g = π∗
1(dt2) + π∗

2(gt) where πi is projection to
the i’th factor ought to be included, but to simplify notation we set dt := π∗

1(dt)
and so.

The examples all admit parallel or nearly parallel G2 structures. Some are flat,
and some has constant sectional curvature. In particular, all have curvature form
W77 + S, but for some W77 = 0 (constant sectional curvature) and some (parallel)
Scal = 0. The compatible three-forms, however, appear to range over pretty much
any torsion type not obstructed by the value of the scalar curvature.

7.1. Warped products. Let M∗ be an n − 1 dimensional manifold with metric
g∗. Write Rg∗, Ric∗ and (n − 1)(n − 2)ρ∗ = s∗ for the Riemannian, Ricci and
scalar curvatures of g∗. Set M := I ×M∗, where I is an interval (i.e., an open,
connected subset of R) with warped product metric g := dt2 + f2g∗ and curvatures
Rg , Ric, n(n− 1)ρ = s. An elementary calculation shows that the curvatures of g
are related to (the pull-backs through M →M ∗ of) those of g∗ via

(7.43) Rg = f2Rg∗ − 1
2 (ff ′)2g∗ > g∗ − ff ′′dt2 > g∗,

It follows straight from equation (7.43) that

Lemma 7.1. [3] The warped product metric g = dt2 + f2g∗ is Einstein if and only
if the conditions (1) and (2) are satisfied.

(1) g∗ is Einstein,
(2) (f ′)2 + ρf2 = ρ∗.

If g = dt2 + f2g∗ is Einstein, then f ′′ + ρf = 0, and

(7.44) Rg = f2W ∗ + 1
2ρg > g,

where Rg is the Riemannian curvature of g and W ∗ is the Weyl curvature of W ∗

considered as (4, 0) tensors. �
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7.2. Curvature of nearly Kähler and Calabi-Yau 3-folds. Let M ∗ be a 6-
dimensional manifold equipped with an SU(3) structure, i.e., with data g∗, J, ω, ψ+, ψ−

where g∗ is a Riemannian metric, J is an almost complex structure, ω is a non-
degenerate form, and ψ+ + iψ− is a complex volume form (of type (3, 0)). The
normalization conditions

ω = g ◦ J, 2ω3 = 3ψ+ ∧ ψ−,(7.45)

may be imposed to give relations

∗ψ+ = ψ−, Jψ+ = −ψ−,

and so on. When M∗ is Calabi-Yau or nearly Kähler structure it may be assumed
that the differentials of the forms above satisfy

(7.46) dω = 3σψ+, dψ− = −2σω2,

where σ is a non-negative constant related to scalar curvature s∗ and normalized
scalar curvature ρ∗ through σ2 = s∗/30 = ρ∗, see e.g. [2]. We fix terminology, by
saying that M∗ is nearly Kähler if (7.46) holds for some constant σ, Calabi-Yau if
σ = 0 and strict nearly Kähler if σ > 0. For nearly Kähler 6-dimensional manifold
the Riemannian curvature tensor takes the form similar to the one of type 1 and
parallel G2 structure

Rg∗ = K∗ + 1
2ρ

∗(g∗ > g∗),

where K∗(ω) = 0, K∗(ιXψ
±) = 0 for all X ∈ Γ(M∗), see [12]. We shall say that

a special almost Hermitian manifold (M∗, ω, ψ+) with curvature of this form is of
curvature type NK.

Proposition 7.2. Suppose (M∗, g∗, ω, ψ+, ψ−) is an SU(3) manifold with curva-

ture type NK. Then any warped product M = I×M ∗, g = dt2+f2g∗ has RicW = 0.

Any Einstein warped product M = I ×M ∗, g = dt2 + f2g∗ has Ricg
0 = 0 = Ricφ

0 .

Proof. This is an easy consequence of the forms of the curvature tensors of type
NK and NP and Einsteinian warped product metrics. �

7.3. Warped Products over nearly Kähler 3-folds. Let I ⊂ R be an open
interval and set M = M∗ × I where M∗ has an SU(3) structure (g∗, J, ω, ψ+, ψ−).
Define

ωt = f2ω,

ψ+
t = f3(cos θψ+ − sin θψ−),

ψ−
t = f3(sin θψ+ + cos θψ−),

for smooth functions f, θ : I → R with f > 0. A warped G2-fundamental three-form
φ is defined on M by

(7.47) φ = ωt ∧ dt+ ψ+
t .

This is compatible with the warped product metric

g = dt2 + f2g∗,

and has

∗φ = 1
2ω

2
t + ψ−

t ∧ dt.
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Suppose (M∗, g∗, J, ω, ψ+, ψ−) is nearly Kähler, normalized according to equa-
tion (7.45) with structure equations (7.46). We define the warped G2 structure
as in equation (7.47). Then

dωt = 2f−1f ′dt ∧ ωt + 3f−1σ(cos θψ+
t + sin θψ−

t ),

dψ+
t = 3f−1f ′dt ∧ ψ+

t − dθ ∧ ψ−
t + 2f−1σ sin θω2

t ,

dψ−
t = 3f−1f ′dt ∧ ψ−

t + dθ ∧ ψ+
t − 2f−1σ cos θω2

t ,

and the differentials of the fundamental forms are

dφ = −3f−1 (f ′ − σ cos θ)ψ+
t ∧ dt

+
(

θ′ + 3f−1σ sin θ
)

ψ−
t ∧ dt+ 2f−1σ sin θω2

t ,

and

d∗φ = 2f−1 (f ′ − σ cos θ) dt ∧ ω2
t .

¿From this the torsion components τp ∈ Ωp(M) are obtained. We have

τ0 = 4
7

(

θ′ + 6f−1σ sin θ
)

, τ1 = f−1 (f ′ − σ cos θ) dt,
τ2 = 0, τ3 = − 1

7

(

θ′ − f−1σ sin θ
) (

4ωt ∧ dt− 3ψ+
t

)

.

The following elementary fact is recorded here for ease of reference

Lemma 7.3. Suppose b is a non-zero continuous function. Then the solutions to
the equation

(7.48) θ′ = b sin θ

may be given as: either sin θ = 0 = θ′, or

cos θ =
1 − a2

1 + a2
, sin θ = ±

2a

1 + a2
,

where a(t) = exp
∫ t
b(s)ds. �

This Lemma ensures that given any function f , the torsion components τ0 and
τ3 may be made to vanish either simultaneously, with sin θ = 0 = θ′ or, when σ 6= 0,
separately, by choosing an appropriate solution θ to equation (7.48). Proposition 7.2
and a little book-keeping then proves

Proposition 7.4. Suppose φ is a warped G2 three-form over a 6 dimensional nearly
Kähler manifold M∗.

(1) If the associated metric has holonomy contained in G2 then φ is either
parallel or of strict type 1 + 3 if M ∗ is Calabi-Yau, or parallel, of type
4, 1 + 4, 3 + 4, or 1 + 3 + 4 if M∗ is strict nearly Kähler.

(2) If the metric associated to φ is Einstein with non-zero scalar curvature
then φ is of type 4 or 1+3+4 and g has negative scalar curvature if M ∗ is
Calabi-Yau. If M∗ has positive scalar curvature then the type 1 clearly for
φ clearly requires that g has positive scalar curvature. The classes 4, 1+4,
3 + 4 and 1 + 3 + 4 may be realized for any sign of the scalar curvature of
the metric associated to φ. The proper class 1 + 3 is not realized.
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7.4. Cohomogeneity one examples. A variation on this theme is obtained by
considering M∗ homogeneous M∗ = G/H with H ⊂ SU(3). To be concrete we
take G = SU(3), H = T 2. On M∗ there are invariant forms ωi ∈ Λ2, i = 1, 2, 3,
ψ+, ψ− ∈ Λ3 such that

ωi ∧ ψ
± = 0, ω2

i = 0, vol0 := ω1ω2ω3 = 1
4ψ

+ ∧ ψ−,

dωi = 1
2ψ

+, dψ− = −2
∑

i<j

ωiωj .

On M = I ×M∗ we set

ωi,t := f2
i ωi, ωt :=

∑

i

ωi,t,

ψ+
t := f1f2f3(cos θψ+ − sin θψ−),

ψ−
t := f1f2f3(sin θψ

+ + cos θψ−),

volt = 1
4ψ

+
t ∧ ψ−

t = 1
6ωt,

Ωt := f1f2f3
∑

i<j

ωiωj =
∑

i<j

fk

fifj
ωi,tωj,t.

Anytime indices i, j, k occur as above this should be understood as {i, j, k} =
{1, 2, 3}. An easy calculation gives

dωi,t = ln(f2
i )′dt ∧ ωi,t + 1

2
fi

fjfk
(cos θψ+

t + sin θψ−
t ),

dωt =
∑

i

ln(f2
i )′dt ∧ ωi,t + h(cos θψ+

t + sin θψ−
t ),

dψ+
t = −g′ψ+

t ∧ dt+ θ′ψ−
t ∧ dt+ 2 sin θΩt,

dψ−
t = −g′ψ−

t ∧ dt− θ′ψ+
t ∧ dt− 2 cos θΩt,

where g = ln(f1f2f3), h =
f2
1 +f2

2 +f2
3

2f1f2f3
. Now set

φ := ωt ∧ dt+ ψ+
t .

Then φ is compatible with the metric and volume

g = dt2 +
∑

i

f2
i gi, vol = volt ∧ dt,

and

∗φ = 1
2ω

2
t + ψ−

t ∧ dt.

Suppose that f1, f2, f3 are such that (fifj)
′ = fk (there is a one-parameter family

of such triples, see [17] for details). Then the metric g has holonomy contained in
G2. For such a triple one furthermore has g′ = h. Taking this into account we
calculate the torsion components of φ.

τ0 := 4
7 (θ′ + 2h sin θ),

τ1 := 1
3h(1 − cos θ),

τ2 := −
2(1− cos θ)

3f1f2f3

∑

i

(2f2
i − f2

j − f2
k )ωi,t,

τ3 := 3
7

(

θ′ − 1
3h sin θ

)

ψ+
t − 4

7

∑

i

(

θ′ −
5f2

i − 2(f2
j + f2

k )

2f1f2f3
sin θ

)

ωi,t ∧ dt.

First note that φ is parallel if and only if cos θ = 1. If cos θ 6≡ 1 then τ1 6≡ 0. Taking
cos θ = −1 gives a 2 + 4 structure, which is a type 4 structure when f1 = f2 = f3.
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If f1 = f2 = f3 =: f holds then τ2 ≡ 0 and

τ3 =
(

θ′ − 1
3h sin θ

) (

3
7ψ

+
t − 4

7ωt ∧ dt
)

.

In general this gives a type 1 + 3 + 4 structure, but using Lemma 7.3 again we may
make either τ0 or τ3 vanish to obtain 1 + 4 and 3 + 4 structures, too.

Now suppose f3 > f2 > f1 and f3 > f1. The generic type is 1 + 2 + 3 + 4, but
we may once again use Lemma 7.3 to eliminate τ0 to get class 2 + 3 + 4.

Proposition 7.5. There are warped product and cohomogeneity one metrics g with
Hol(g) ⊂ G2 and three-forms φ compatible with g of every admissible type apart
(possibly) from 1 + 2 + 3. �

A three-form of admissible type means not one of the proper types 1, 2, 3, 1 + 2,
and 2 + 3. Type 1 + 2 doesn’t exist as a proper class and every other proper
type in this list has either strictly positive or strictly negative scalar curvature, c.f
equation (4.25).

Remark 7.6. The following was related to us by Robert Bryant [7]: for a fixed metric
g, the exterior differential system corresponding to the equation p4

7(dφ) = 0 for a
compatible G2-three-form φ is involutive at points where the torsion τ 6≡ 0, with
last nonzero Cartan character s6 = 6, so that the general local solution depends on
6 functions of 6 variables.

This along with Proposition 7.5 has the corollary that

Theorem 7.7. For every admissible Fernandéz-Gray type, there is a G2 three-form
φ of this type, such that the associated metric g has holonomy Hol(g) ⊂ G2.

Remark 7.8. Note that the type 1 structures on the cohomogeneity one space
I × SU(3)/T 2 are warped products over the unique nearly Kähler structure g∗

on SU(3)/T 2, see [17]. Therefore the analysis carried out in section 7.3 applies
with conclusion as in Proposition 7.4.

7.5. Complete and compact examples.

Example 7.9. Suppose (M∗, ω, ψ+) is Calabi-Yau. Then for any smooth function
θ : R → R, the three-form φ defined as above with f constant is smooth. The G2

three-form is of strict type 1 + 3 if θ is non-constant and parallel otherwise. The
associated metric is the Riemannian product metric on R × M ∗ and hence has
holonomy contained in SU(3) ⊂ G2. Compact examples may be obtained by the
method of [3], Section 9.109.

For certain other choices of (M∗, g∗) and non-constant function f : I → R the
warped product metric on I ×M∗ also extends to a complete metric. This is so for

gR7 = dt2 + t2gS6 , I = R
+,

gS7 = dt2 + sin2(t)gS6 , I = (0, π),

gH7 =

{

dt2 + sinh2(t)gS6 , I = R+,

dt2 + e2tgR6 , I = R.

Here gN refers to the constant sectional curvature metric of N with |ρ| and ρ∗ equal
to 0 or 1.

Example 7.10. We consider the last case first. The structure onM ∗, as the examples
of 7.9, has σ = 0 and f strictly positive. The warped three-form φ is therefore
smooth for any smooth function θ : R → R. The generic type is 1 + 3 + 4 for non-
constant θ and 4 for constant theta. Type 1 + 3 three-forms require et = cos θ and
therefore are not complete.
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The remaining three cases are all cohomogeneity one metrics over the isotropy
irreducible space M∗ = S6 = G2/ SU(3) equipped with its standard, homogeneous,
nearly Kähler structure so that σ = 1. Structures with τ1 = 0 are: the flat G2

structure on R
7 f = t, θ = 0 and the unique nearly parallel (type 1) structure on

S7, f = sin(t), θ = t. These are, of course, complete and smooth.
Type 1 + 4 structures are given by the equation fdθ = sin θdt. Consequently,

the metric and three-form may conveniently be re-written on the familiar form

φ = (θ′)−3(sin2 θω ∧ dθ + sin3 θ(cos θψ+ − sin θψ−)),

g = (θ′)−2(dθ2 + sin2 θgS6).

It is then clear that the three-forms of type 1 + 4 arise as point-wise conformal
changes of the standard nearly parallel structure on the 7-sphere. Examination of
the solutions of Lemma 7.3 corresponding to b = f−1 shows that constants A and
B exist so that

θ′ = A cos θ +B, where











|B/A| > 1, for f = sin(t),

|B/A| < 1, for f = sinh(t),

|B/A| = 1, for f = t.

The requirement that |θ′| > 0 imposes restrictions in the two latter cases. It is
clear that metric and three-form are smooth where θ′ 6= 0. In the first case we see
that all type 1 + 4 warped G2 structures arise as global conformal changes of the
standard nearly parallel structure on S7, see [15, 5].

Example 7.11. The type 4 structures are also interesting. First consider three-forms
φ compatible with the standard metric on R

7. Since θ′ = 0 = sin θ, there are only
two possibilities: either φ is parallel (cos θ = 1) or τ1 = d ln(t2) (cos θ = −1). In
the latter case one notes that

t−6φ = s2ω ∧ ds+ s3ψ+ = ι∗φ,

t−4g = ds2 + s2gS6 = ι∗g,

where s := −t−1 and ι is the map ι : R7 \ {0} → R7 \ {0}, x 7→ −x/ |x|
2
.

The standard metric of the 7 sphere is compatible with the three-form

φ = sin2(t)ω ∧ dt+ sin3(t)ψ+.

We note that this three-form satisfies the necessary conditions of [17]. However,
the three-form has type 4 with torsion

τ1 =
cos(t) − 1

sin(t)
dt = − tan(t/2)dt = −d ln cos2(t/2).

This is clearly singular at one point. Setting r = 2 cos2(t/2), s = tan(t/2) then
ds = 1

2dt/ cos2(t/2) and we may write

φ =
8

(1 + s2)3
(s2ω ∧ ds+ s3ψ+), gS7 =

4

(1 + s2)2
(ds2 + s2gS6) = r2gR7 ,

This transformation realizes the same structure smoothly on R7. The metric rep-
resented this way is not complete.

For hyperbolic space the same procedure may be followed and one obtains

φ =
8

(1 − s2)3
(s2ω ∧ ds+ s3ψ+), g =

4

(1 − s2)2
(ds2 + s2gS6),

where s = tanh(t/2) ∈ (0, 1).
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7.5.1. Cohomogeneity one metrics over SU(3)/T 2. For the instance of the coho-
mogeneity one metrics based on M∗ = SU(3)/T 2, Sp(2)/ Sp(1) U(1) the analysis
carried out in the final section of [17] applies here, too. Whenever θ is an odd
function of t, f1 is odd with f ′

1(0) = 1 and f2 is even with f2(0) > 0 the metric
g and three-form φ extend smoothly to the non-compact manifolds isomorphic to
the bundles of anti-self-dual forms over CP (2) and S4, respectively. These then
carry smooth G2 structures compatible with the holonomy G2 structures which are
either parallel type or of strict type 2 + 4, 2 + 3 + 4, or 1 + 2 + 3 + 4.
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