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Abstract

In this paper we prove the Geyer-Jarden conjecture on the torsion part
of the Mordell-Weil group for a large class of abelian varieties defined over
finitely generated fields of arbitrary characteristic. The class consists of
all abelian varieties with big monodromy, i.e., such that the image of Ga-
lois representation on `-torsion points, for almost all primes `, contains
the full symplectic group. We prove that all abelian varieties over finitely
generated fields with the endomorphism ring Z and semistable reduction
of toric dimension one at a place of the base field have big monodromy.
In addition, we prove part (a) of the Geyer-Jarden conjecture for abelian
varieties over finitely generated transcedental extensions of Q with endo-
morphism ring Z and of dimension 2, 6 or odd.
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2000 MSC: 11E30, 11G10, 14K15.
Key words and phrases: Abelian variety, Galois representation, Haar measure.

1



Contents

Introduction 2

1 Notation and background material 5

2 Finiteness properties of division fields 8

3 Monodromy Computations 11

4 Properties of abelian varieties with big monodromy 18

5 Simplicity and End’s of fibres 21

6 Proof of Conjecture A, part b) 23

7 Proof of Conjecture A, part a) 25

8 Appendix A. Special sets of symplectic matrices 27

9 Appendix B. Proof of Theorem 3.4 33

Introduction

Let A be a polarized abelian variety defined over a finitely generated field K.
Denote by K̃ (respectively, Ksep) the algebraic (resp., separable) closure of K.
It is well known that the Mordell-Weil group A(K) is a finitely generated Z-
module. On the other hand A(K̃) is a divisible group with an infinite torsion
part A(K̃)tor and A(K̃) has infinite rank, unless K is algebraic over a finite field.
Hence, it is of fundamental interest to study the structure of the groups A(Ω)
for infinite algebraic extensions Ω/K smaller than K̃. For example, Ribet in
[25] and Zarhin in [36] considered the question of finiteness of A(Kab)tor, where
Kab is the maximal abelian extension of K.

We denote by GK := G(Ksep/K) the absolute Galois group of K. For a positive
integer e and for σ = (σ1, σ2, . . . , σe) in the group Ge

K = GK×GK× . . .×GK ,
we denote by Ksep(σ) the subfield in Ksep fixed by σ1, σ2, . . . , σe. There exists a
substantial literature on arithmetic properties of the fields Ksep(σ). In particu-
lar, the Mordell-Weil groups A(Ksep(σ)) have been already studied, e.g., Larsen
formulated a conjecture in [21] on the rank of A(Ksep(σ)) (cf. [1], [11] for results
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supporting the conjecture of Larsen).

In this paper we consider the torsion part of the groups A(Ksep(σ)). In order
to recall the conjecture which is mentioned in the title, we agree to say that a
property A(σ) holds for almost all σ ∈ Ge

K , if A(σ) holds for all σ ∈ Ge
K , except

for a set of measure zero with respect to the (unique) normalized Haar measure
on the compact group Ge

K . In [9] Geyer and Jarden proposed the following
conjecture on the torsion part of A(Ksep(σ)).

Conjecture A Let K be a finitely generated field. Let A be an abelian variety
defined over K.

a) For almost all σ ∈ GK there are infinitely many prime numbers ` such
that the group A(Ksep(σ))[`] of `−division points is nonzero.

b) Let e ≥ 2. For almost all σ ∈ Ge
K there are only finitely many prime num-

bers ` such that the group A(Ksep(σ))[`] of `−division points is nonzero.

It is known due to the work of Jacobson and Jarden [17] that for all e ≥ 1,
almost all σ ∈ Ge

K and all primes ` the group A(Ksep(σ))[`∞] is finite. This
was formerly part (c) of the conjecture. Moreover Conjecture A is known for
elliptic curves [9]. Part (b) holds true provided char(K) = 0 (see [17]). Geyer
and Jarden [10] recently proved the following result towards part (a): If K is
a number field, then there is a finite extension E/K such that part (a) holds
true for all σ inside a subset of GE of full measure. The field E can be taken
to be equal to K provided End(A) = Z and dim(A) = 2, 6 or odd and also in
some other special cases. As for today, for an abelian variety A of dimension
≥ 2 defined over a finitely generated field of positive characteristic parts (a)
and (b) of Conjecture A are open and part (a) is open over a finitely generated
transcendental extension of Q.

In this paper we prove Conjecture A for abelian varieties with big monodromy.
To formulate our first main result we need some notation. Let ` 6= char(K)
be a prime number. We denote by ρA[`] : GK −→ Aut(A[`]) the Galois repre-
sentation attached to the action of GK on the `-torsion points of A. We define
MK(A[`]) := ρA[`](GK) and call this group the mod-` monodromy group of
A/K. We fix a polarization and denote by e`:A[`]×A[`]→ µ` the correspond-
ing Weil pairing. Then MK(A[`]) is a subgroup of the group of symplectic
similitudes GSp(A[`], e`) of the Weil pairing. We will say that A/K has big
monodromy if there exists a constant `0 such thatMK(A[`]) contains the sym-
plectic group Sp(A[`], e`), for every prime number ` ≥ `0. Note that the property
of having big monodromy does not depend on the choice of the polarization.

The first main result of our paper is the following

Theorem B [cf. Thm. 6.1, Thm. 7.1] Let K be a finitely generated field and
A/K an abelian variety with big monodromy. Then the Conjecture A of Geyer
and Jarden holds true for A/K.
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Surprisingly enough, the most difficult to prove is the case (a) of the Conjecture
A for abelian varieties with big monodromy, when char(K) > 0. The method
of our proof relies in this case on the Borel-Cantelli Lemma of measure theory
and on a delicate counting argument in the group Sp2g(F`) (cf. Appendix A)
which was modeled after a construction of subsets S′(`) in Sl2(F`) in Section 3
of the classical paper [9] of Geyer and Jarden.

In the light of Theorem B we are interested in computing monodromy groups for
families of abelian varieties. Certainly, the most prominent result of this type is
the classical theorem of Serre (cf. Theorem 3.9 below): If A is an abelian variety
over a finitely generated field K of characteristic zero with End(A) = Z and
dim(A) = 2, 6 or odd, then A/K has big monodromy. In this paper, in addition
to varieties such as in the theorem of Serre, we consider monodromies for abelian
varieties over finitely generated fields which have been recently investigated by
Chris Hall [14], [15]. To simplify notation, we will say that an abelian variety
A over a finitely generated field K is of Hall type, if End(A) = Z and K has a
discrete valuation at which A has semistable reduction of toric dimension one.

In the special case, when K = F (t) is a rational function field over another
finitely generated field, it has been shown by Hall that certain hyperelliptic
Jacobians have big monodromy; namely the Jacobians JC of hyperelliptic curves
C/K with affine equation C : Y 2 = (X − t)f(X), where f ∈ F [X] is a monic
squarefree polynomial of even degree ≥ 4 (cf. [14, Theorem 5.1]). Furthermore,
Hall has proved recently [15] the following theorem which in our notation reads:
If K is a global field, then every abelian variety A/K of Hall type has big
monodromy. We strengthen these results as follows.

Theorem C [cf. Thm. 3.6] If K is a finitely generated field (of arbitrary
characteristic) and A/K is an abelian variety of Hall type, then A/K has big
monodromy.

Our proof of Theorem C follows Hall’s proof of [15] to some extent, e.g., we have
borrowed a group theory result from [15] (cf. Theorem 3.4). In addition to that
we apply results on finite generation of Galois groups of certain division fields
of abelian varieties, which are gathered in Section 3 of the paper. Furthermore,
at a technical point in the case char(K) = 0, we perform a tricky reduction
argument (described in detail in Section 4) at a “place” of K whose residue
field is a number field.

Combination of Theorem B, Theorem C and Serre’s theorem mentioned above
leads to the following

Theorem D [cf. Cor. 6.4, Cor. 7.2] Let A be an abelian variety over a finitely
generated field K. Assume that either condition i) or ii) is satisfied.

i) A is of Hall type.

ii) char(K) = 0, End(A) = Z and dim(A) = 2, 6 or odd.
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Then Conjecture A holds true for A/K.

As yet another application of our monodromy computations, we obtain the
following result on endomorphism rings and simplicity of fibres in certain families
of abelian varieties. If K is a finitely generated transcendental extension of
another field F and A/K is an abelian variety, then we call A weakly isotrivial
with respect to F , if there is an abelian variety B/F̃ and an K̃-isogeny BK̃ →
AK̃ .

Theorem E [cf. Thm. 5.2] Let F be a finitely generated field and K = F (t)
the function field of P1/F . Let A/K be an abelian variety. Let U ⊂ P1 be an
open subscheme such that A extends to an abelian scheme A/U . For u ∈ U(F )
denote by Au/F the corresponding special fiber of A. Assume that A is not
weakly isotrivial with respect to F and that either of the conditions i) or ii)
listed below is satisfied.

i) A is of Hall type.

ii) char(K) = 0, End(A) = Z and dim(A) = 2, 6 or odd.

Then the sets:
X1 := {u ∈ U(F ) | End(Au) 6= Z}

and
X2 := {u ∈ U(F ) | Au/F is not geometrically simple}

are finite.

Note that Ellenberg, Elsholtz, Hall and Kowalski proved Theorem E in the
special case when A is the Jacobian variety of the hyperelliptic curve given by
the affine equation Y 2 = (X − t)f(X), with f ∈ F [X] squarefree and monic
of even degree ≥ 4 (cf. [5, Theorem 8]). It is the case, where the monodromy
of A is known by [14, Theorem 5.1]. We obtain part (i) of Theorem E as a
consequence of our monodromy Theorem C, our Proposition 5.1 below and also
Propositions 4 and 7 of [5]. In order to prove (ii) we use Serre’s Theorem 3.9
instead of Theorem C.

We warmly thank Gerhard Frey, Dieter Geyer, Cornelius Greither and Moshe
Jarden for conversations and useful comments on the topic of this paper. The
mathematical content of the present work has been much influenced by seminal
results of J.-P. Serre contained in [27], [28], [29], [30] and by the inspiring paper
[15] of C.Hall. We acknowledge this with pleasure.

1 Notation and background material

In this section we fix notation and gather some background material on Galois
representations that is important for the rest of this paper.

5



Let X be a scheme. For x ∈ X we denote by k(x) the residue field at x. If X
is integral, then R(X) stands for the function field of X, that is, for the residue
field at the generic point of X. If X happens to be a scheme of finite type
over a base field F , then we often write F (x) instead of k(x) and F (X) instead
of R(X). We say that a scheme X is a Dedekind scheme, if it is noetherian,
connected and covered by spectra of Dedekind rings. In this case Oh

X,x denotes
the henselization of the local ring OX,x at a closed point x ∈ X.

If K is a field, then we denote by Ksep (resp. K̃) the separable (resp. alge-
braic) closure of K and by GK its absolute Galois group. If G is a profinite
(hence compact) group, then it has a unique normalized Haar measure µG. The
expression “assertion A(σ) holds for almost all σ ∈ G” means “assertion A(σ)
holds true for all σ outside a zero set with respect to µG”. A finitely generated
field is by definition a field which is finitely generated over its prime field. For
an abelian variety A/K we let EndK(A) be the ring of all K-endomorphisms of
A. We denote by End(A) := EndK̃(AK̃) the absolute endomorphism ring.

If Γ is an object in an abelian category and n ∈ Z, then nΓ : Γ→ Γ is the mor-
phism “multiplication by n” and Γ[n] is the kernel of nΓ. Recall that there is an
equivalence of categories between the category of finite étale group schemes over
K and the category of finite (discrete) GK-modules, where we attach Γ(Ksep) to
a finite étale group scheme Γ/K. For such a finite étale group scheme Γ/K we
sometimes write just Γ instead of Γ(Ksep), at least in situations where we are
sure that this does not cause any confusion. For non-étale Γ/K we distinguish
carefully between the scheme Γ and its geometric points. For example, if A/K
is an abelian variety and n an integer coprime to char(K), then we often write
A[n] rather than A(Ksep)[n]. Furthermore we put A[n∞] :=

⋃
i∈N A[ni].

If M is a GK-module (for example M = µn or M = A[n] where A/K is an
abelian variety), then we shall denote the corresponding representation of the
Galois group GK by

ρM : GK → Aut(M)

and define MK(M) := ρM (GK). We define K(M) := K
ker(ρM )
sep to be the fixed

field in Ksep of the kernel of ρM . Then K(M)/K is a Galois extension and
G(K(M)/K) ∼=MK(M).

If R is a commutative ring with 1 (usually R = F` or R = Z`) and M is a
finitely generated free R-module equipped with a non-degenerate alternating
bilinear pairing e : M ×M → R′ into a free R′-module of rank 1 (which is a
multiplicatively written R-module in our setting below), then we denote by

Sp(M, e) = {f ∈ AutR(M) | ∀x, y ∈M : e(f(x), f(y)) = e(x, y)}

the corresponding symplectic group and by

GSp(M, e) = {f ∈ AutR(M) | ∃ε ∈ R× : ∀x, y ∈M : e(f(x), f(y)) = εe(x, y)}

the corresponding group of symplectic similitudes.

Let n be an integer coprime to char(K) and ` be a prime different from char(K).
Let A/K be an abelian variety. We denote by A∨ the dual abelian variety and
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let en : A[n]×A∨[n]→ µn and e`∞ : T`A×T`A
∨ → Z`(1) be the corresponding

Weil pairings. If λ : A→ A∨ is a polarization, then we deduce Weil pairings eλ
n :

A[n]×A[n]→ µn and eλ
`∞ : T`A×T`A→ Z`(1) in the obvious way. If ` does not

divide deg(λ) and if n is coprime to deg(λ), then eλ
n and eλ

`∞ are non-degenerate,
alternating, GK-equivariant pairings. Hence we have representations

ρA[n] : GK → GSp(A[n], eλ
n),

ρT`A : GK → GSp(T`A, eλ
`∞)

with images MK(A[n]) ⊂ GSp(A[n], eλ
n) and MK(T`A) ⊂ GSp(T`A, eλ

`∞). We
shall say that an abelian variety (A, λ) over a field K has big monodromy, if there
is a constant `0 > max(char(K),deg(λ)) such thatMK(A[`]) ⊃ Sp(A[`], eλ

` ) for
every prime number ` ≥ `0.

Now let S be a Dedekind scheme with function field K = R(S) and A/K an
abelian variety. Denote by A → S the Néron model (cf. [2]) of A. For s ∈ S let
As := A ×S Spec(k(s)) be the corresponding fiber. Recall that we say that A
has good reduction at s provided As is an abelian variety. In general, we denote
by A◦

s the connected component of As. If T is a maximal torus in A◦
s, then

dim(T ) does not depend on the choice of T [13, IX.2.1] and we call dim(T ) the
toric dimension of the reduction As of A at s. Finally recall that one says that
A has semi-stable reduction at s, if A◦

s is an extension of an abelian variety by
a torus.

We shall also need the following connections between the reduction type of A and
properties of the Galois representations attached to A. Let s be a closed point of
S. The valuation v attached to s admits an extension to the separable closure
Ksep; we choose such an extension v and denote by D(v) the corresponding
decomposition group. This is the absolute Galois group of the quotient field
Ks = Q(Oh

S,s) of the henselization of the valuation ring OS,s of v. Hence
the results mentioned in [13, I.0.3] for the henselian case carry over to give
the following description of D(v): If I(v) is the kernel of the canonical map
D(v)→ Gk(s) defined by v, then D(v)/I(v) ∼= Gk(s). Let p be the characteristic
of the residue field k(s) (p is zero or a prime number). I(v) has a maximal pro-p
subgroup P (v) (P (v) = 0 if p = 0) and

I(v)/P (v) ∼= lim←−
n/∈pZ

µn(k(s)sep) ∼=
∏

` 6=p prime

Z`(1).

Hence the maximal pro-`-quotient I`(v) of I(v) is isomorphic to Z`(1), if ` 6= p
is a prime.

Theorem 1.1 (Grothendieck, [13, IX.3.5, IX.3.6]) Let ` 6= p be a prime
number.

a) The following two conditions are equivalent:

i) A has semistable reduction at s.
ii) The restriction ρT`A|I(v) factors through the maximal pro-` quotient

I`(v) of I(v) (in particular ρT`A(P (v)) = {Id}), and if g is a gener-
ator of I`(v), then (ρT`A(g)− Id)2 = 0.
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b) There is a finite separable extension K ′/K such that AK′ has semistable
reduction in all points of the normalization S′ of S in K ′.

Proposition 1.2 Let ` 6= p be a prime number. Assume that A has semi-stable
reduction at s.

a) The image ρA[`](P (v)) = {Id} and ρA[`](I(v)) is a cyclic `-group.

b) Let g be a generator of ρA[`](I(v)). Then (g − Id)2 = 0.

c) Assume that ` does not divide the order of the component group of As.
The toric dimension of A at s is equal to 2 dim(A) − dimF`

(Eig(g, 1)) if
Eig(g, 1) = ker(g − Id) is the eigenspace of g at 1.

Proof. Part a) and b) are immediate consequences of Theorem 1.1.

Assume from now on that ` does not divide the order of the component group
of As. This assumption implies A◦

s[`] ∼= As[`].

As we assumed A to be semi-stable at s, there is an exact sequence

0→ T → A◦
s → B → 0

where T is a torus and B is an abelian variety and dim(T )+dim(B) = dim(As) =
dim(A). Now dimF`

(T [`]) = dim(T ) and dimF`
(B[`]) = 2 dim(B) = 2 dim(A)−

2 dim(T ). Taking into account that we have an exact sequence

0→ T [`]→ A◦
s[`]→ B[`]→ 0

(note that T (k̃) ∼= (k̃×)dim(T ) is divisible by `), we find the relation dimF`
(As[`]) =

dimF`
(A◦

s[`]) = 2 dim(A) − dim(T ). This implies c), because As[`] = A[`]I(v)

([31, p. 495]) and obviously A[`]I(v) = Eig(g, 1) . �

In general, if V is a finite dimensional vector space over F`, and g ∈ EndF`
(V ),

then one defines drop(g) = dim(V )−dim(Eig(g, 1)). One calls g a transvection,
if it is unipotent of drop 1. We shall say that an abelian variety A over a field
K is of Hall type, provided End(A) = Z and there is a discrete valuation v on
K such that A has semistable reduction of toric dimension 1 at v (i.e. at the
maximal ideal of the discrete valuation ring of v). We have thus proved the
following

Proposition 1.3 If A is an abelian variety of Hall type over a finitely generated
field K, then there is a constant `0 such thatMK(A[`]) contains a transvection
for every prime number ` ≥ `0.

2 Finiteness properties of division fields

If A is an abelian variety over a field K (of arbitrary characteristic) and p =
char(K), then we denote by A6=p the group of points in A(Ksep) of order prime
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to p. Then
K(A6=p) =

∏
` 6=p prime

K(A[`∞]) =
⋃

n/∈pZ

K(A[n]).

If p = 0, then K(A6=p) = K(Ator). In this section we prove among other things:
If K is finitely generated of positive characteristic, then G(K(A6=p)/K) is a
finitely generated profinite group. We follow preprint [7] as far as Lemmas 2.1
and 2.2 are concerned, providing details of proofs for the reader’s convenience.

In this section, a function field of n variables over a field F will be a finitely
generated field extension E/F of transcendence degree n. As usual we call such
a function field E/F of n variables separable if it has a separating transcendency
base.

Lemma 2.1 Let F be a separably closed field and K/F a function field of one
variable. Assume that K/F is separable. Put p = char(F ). Let A/K be an
abelian variety. Then G(K(A6=p)/K) is a finitely generated profinite group.

Proof. There is a smooth projective curve C/F with function field K. By
Grothendieck’s Theorem 1.1 there is a finite separable extension K ′/K such
that AK′ has semistable reduction at all points of the normalization C ′ of C in
K ′. We may assume that K ′/K is Galois.

Let S′ ⊂ C ′ be the finite set of closed points where AK′ has bad reduction. Then
for every ` 6= p the extension K ′(A[`∞])/K ′ is tamely ramified at all points of
C ′ by Theorem 1.1 and unramified outside S′ by the criterion of Néron-Ogg-
Shafarevich [31, Thm. 1]. Hence K ′(A6=p) is contained in the maximal tamely
ramified extension K ′

S′,tr of K ′ which is unramified outside S′. The Galois
group G(K ′

S′,tr/K ′) is finitely generated by [12, Corollaire XIII.2.12]. Hence
G(K ′(A6=p)/K ′) is finitely generated as a quotient of G(K ′

S′,tr/K ′). Further-
more there is an exact sequence

1→ G(K ′(A6=p)/K ′)→ G(K(A6=p)/K)→ G(K ′/K)

and G(K ′/K) is finite. Hence G(K(A6=p)/K) is finitely generated as desired.�

Lemma 2.2 Let F be a field and K/F a function field of one variable. Assume
that K/F is separable. Let p = char(F ). Let A/K be an abelian variety. Let F ′

be the algebraic closure of F in K(A6=p). Then G(K(A6=p)/F ′K) is a finitely
generated profinite group.

Proof. Fsep is F ′-linearly disjoint from K(A6=p). Hence FsepK is F ′K-linearly
disjoint from K(A6=p). This implies

G(K(A6=p)/F ′K) ∼= G(FsepK(A6=p)/FsepK),

and the latter group is finitely generated by Lemma 2.1 above. �
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Lemma 2.3 Let (K, v) be a discrete valued field, A/K an abelian variety with
good reduction at v, n an integer coprime to the residue characteristic of v,
L = K(A[n]) and w an extension of v to L. Denote the residue field of v
(resp. w) by k(v) (resp. k(w)). Let Av/k(v) be the reduction of A at v. Then
k(w) = k(v)(Av[n]).

Proof. Let R be the valuation ring of v and S = Spec(R). Let A → S be an
abelian scheme with generic fibre A. Then A[n] is a finite étale group scheme
over S. Let T be the normalization of S in L. The restriction map r : A[n](L) ∼=
A[n](T ) → Av[n](k(w)) is injective [31] and |A[n](L)| = n2 dim(A). Hence r is
an isomorphism and we may identify A[n] with Av[n]. The fact that the whole
n-torsion of Av is defined over k(w) implies that k(v)(Av[n]) ⊂ k(w). We have
to prove the other inclusion: Let D(w) be the decomposition group of the prime
w over v, i.e. the stabilizer of w under the action of G(L/K). Then D(w) →
G(k(w)/k(v)) is an isomorphism by the criterion of Néron-Ogg-Shafarevich. As
D(w) → Aut(A[n]) is injective, it follows that G(k(w)/k(v)) → Aut(Av[n]) is
injective as well. This implies that k(v)(Av[n]) = k(w). �

Definition 2.4 We shall say in the sequel that a field K has property F , if
G(K ′(A6=p)/K ′) is a finitely generated profinite group for every finite separable
extension K ′/K and every abelian variety A/K ′.

Lemma 2.5 Let F be a field that has property F . Let p = char(F ). Let K/F
be a function field of one variable. Assume that K/F is separable. Then K has
property F .

Proof. We have to show that G(K ′(A6=p)/K ′) is finitely generated for every finite
separable extension K ′/K and every abelian variety A/K ′. But if K ′/K is a
finite separable extension, then K ′/F is a separable function field of one variable
again. Hence it is enough to prove that G(K(A6=p)/K) is finitely generated for
every abelian variety A/K.

Let A/K be an abelian variety. Let F0 be the algebraic closure of F in K. Then
K/F0 is a regular extension. Let C/F0 be a smooth curve with function field K
and such that A has good reduction at all points of C. There is a finite Galois
extension F1/F0 such that C(F1) 6= ∅. If we put K1 := F1K, then K1/F1 is
regular. Furthermore there is an exact sequence

1→ G(K1(A6=p)/K1)→ G(K(A6=p)/K)→ G(K1/K)

and G(K1/K) is finite. If we prove that G(K1(A6=p)/K1) is finitely generated,
then it follows that G(K(A6=p)/K) is finitely generated as well. Hence we may
assume that K1 = K, i.e. that K/F is regular and that C(F ) 6= ∅.

Choose a point c ∈ C(F ) and denote by Ac/F the (good) reduction of A at c.
As in Lemma 2.2 denote by F ′ the algebraic closure of F in K(A6=p).

Claim. F ′ ⊂ F (Ac,6=p).
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Let x ∈ F ′. Then x is algebraic over F and x ∈ K(A[n]) for some n which
is coprime to p. If Fn denotes the algebraic closure of F in K(A[n]), then
x ∈ Fn. Let w be the extension to K(A[n]) of the valuation attached to c. Then
k(w) = F (Ac[n]) by Lemma 2.3. Obviously Fn ⊂ k(w). Hence x ∈ F (Ac[n]) ⊂
F (Ac, 6=p). This finishes the proof of the Claim.

The profinite group G(F (Ac,6=p)/F ) is finitely generated, because F has prop-
erty F by assumption. Hence its quotient G(F ′/F ) is finitely generated as
well. Note that G(F ′K/K) = G(F ′/F ). On the other hand G(K(A6=p)/F ′K)
is finitely generated by Lemma 2.2. From the exact sequence

1→ G(K(A6=p)/F ′K)→ G(K(A6=p)/K)→ G(F ′K/K)→ 1

we see that G(K(A6=p)/K) is finitely generated as desired. �

Proposition 2.6 Let F be a perfect field which has property F . Then every
finitely generated extension K of F has property F .

Proof. We prove this by induction on trdeg(K/F ). If trdeg(K/F ) = 0 there is
nothing to prove. Assume trdeg(K/F ) = d ≥ 1. We may assume that every
finitely generated extension F ′ of F with trdeg(F ′/F ) < d has property F .

Choose a separating transcendency base (x1, · · · , xd) for K/F . Put F ′ :=
K(x1, · · · , xd−1). Then F ′ has property F by the induction hypothesis. Fur-
thermore K/F ′ is a function field of one variable and K/F ′ is separable. Hence
Lemma 2.5 implies that K has property F . �

Corollary 2.7 Let K be a finitely generated field of positive characteristic or
K be a function field over an algebraically closed field of arbitrary characteristic.
Then K has property F . In particular G(K(A6=p)/K) is finitely generated for
every abelian variety A/K.

Proof. A finite field F is perfect. It has property F , because its absolute Galois
group is procyclic. An algebraically closed field is perfect and has property F ,
because its absolute Galois group is the trivial group. Now in both cases K is
a function field over a perfect field which has property F . �

Remark 2.8 A finitely generated field K of characteristic zero does not have
property F . In fact, if A/K is principally polarized abelian variety, then by the
existence of the Weil pairing K(Ator) ⊃ K(µ∞), and plainly G(K(µ∞)/K) is
not finitely generated, when K is a finitely generated extension of Q.

3 Monodromy Computations

Let K be a field and A/K an abelian variety. We begin with the question
whether A[`] is a simple GK-module for sufficiently large `. In the cases we
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need to consider, this question has an affirmative answer due to the following
classical fact (cf. [6, p. 118, p. 204], [34], [35],[22]).

Theorem 3.1 (Faltings, Zarhin) Let K be a finitely generated field and A/K
an abelian variety. Then there is a constant `0 > char(K) such that the F`[GK ]-
module A[`] is semisimple and the canonical map EndK(A)⊗F` → EndF`

(A[`])
is injective with image EndF`[GK ](A[`]) for all primes ` ≥ `0.

Proposition 3.2 Let A be an abelian variety over a finitely generated field K.
Assume that EndK(A) = Z. Then there is a constant `0 such that A[`] is a
simple F`[GK ]-module for all primes ` ≥ `0.

Proof. By Theorem 3.1 there is a constant `0 such that A[`] is a semisimple
F`[GK ]-module with EndF`[GK ](A[`]) = F`Id for every prime ` ≥ `0. This is
only possible if A[`] is a simple F`[GK ]-module for all primes ` ≥ `0. �

We need some notation in order to explain a theorem of Raynaud that will be
of importance later. Let E/Fp be a finite field extension with |E| = pd and
F/Fp an algebraic extension. Denote by Emb(E, F̃ ) the set of all embeddings
E → F̃ . If i ∈ Emb(E, F̃ ) is one such embedding, then Emb(E, F̃ ) = {ipa

:
a ∈ {0, · · · , d − 1}}. Furthermore the restriction i|E× lies in Hom(E×, F̃×).
For every character χ ∈ Hom(E×, F×) there is a unique m ∈ {0, · · · , pd − 2}
such that χ = (i|E×)m. Expanding m p-adically, we see that there is a unique
function e : Emb(E, F̃ )→ {0, · · · , p− 1} such that

χ =
∏

j∈Emb(E,F̃ )

(j|E×)e(j),

and such that e(j) < p − 1 for some j ∈ Emb(E, F̃ ). We define amp(χ) :=
max(e(j) : j ∈ Emb(E, F̃ )) to be the amplitude of the character χ. Let ρ : E× →
AutFp

(V ) be a representation of E× on a finite dimensional Fp-vector space V . If
V is a simple Fp[E×]-module, then there is a finite field FV with |FV | = |V | and
a structure of 1-dimensional FV -vector space on V such that ρ factors through
a character χρ : E× → F×

V . We then define amp(V ) := amp(ρ) := amp(χρ).
In general V is a semisimple Fp[E×]-module by Maschke’s theorem, and we
can write V = V1 ⊕ · · · ⊕ Vt as a direct sum of simple Fp[E×]-modules and
define amp(V ) := amp(ρ) := max(amp(Vi) : i = 1, · · · , t) to be the amplitude
of the representation ρ. With this terminology in mind, we can state Raynaud’s
theorem in the following way.

Theorem 3.3 (Raynaud [24], [26, p. 277]) Let A be an abelian variety over
a number field K. Let v be a place of K with residue characteristic p. Let e be
the ramification index of v|Q. Let w be an extension of v to K(A[p]). Let I be the
inertia group of w|v and P the p-Sylow subgroup of I. Let C ⊂ I be a subgroup
that maps isomorphically onto I/P . Then there is a finite extension E/Fp and
a surjective homomorphism E× → C such that the resulting representation

ρ : E× → C → AutFp
(A[p])

has amplitude amp(ρ) ≤ e.

12



The technical heart of our monodromy computations is the following group
theoretical result, which can be extracted from the work of C. Hall [14], [15].

Theorem 3.4 Let ` > 2 be a prime, let (V, eV ) be a finite-dimensional sym-
plectic space over F` and M a subgroup of Γ := GSp(V, eV ). Assume that M
contains a transvection and that V is a simple F`[M ]-module. Denote by R the
subgroup of M generated by the transvections in M .

a) Then there is a non-zero symplectic subspace W ⊂ V , which is a simple
F`[R]-module, such that the following properties hold true:

i) Let H = StabM (W ). There is a orthogonal direct sum decomposition
V =

⊕
g∈M/H gW . In particular |M/H| ≤ dim(V ).

ii) R ∼=
∏

g∈M/H Sp(W ) and NΓ(R) ∼=
∏

g∈M/H GSp(W )oSym(M/H).

iii) R ⊂M ⊂ NΓ(R).

Denote by ϕ : NΓ(R)→ Sym(M/H) the projection.

b) Let e ∈ N. Let E/F` be a finite extension and ρ : E× →M ⊂ GSp(V, eV )
a homomorphism such that the corresponding representation of E× on V
has amplitude amp(ρ) ≤ e. If ` > dim(V )e + 1, then ϕ(ρ(E×)) = {1}.

Hall’s proof in [14], [15] adresses a slightly less general situation. We will present
a self-contained proof of Theorem 3.4 in Appendix B.

Remark 3.5 Assume that in the situation of Theorem 3.4 the module V is a
simple F`[ker(ϕ) ∩ M ]-module. Then V is in particular a simple F`[ker(ϕ)]-
module and ker(ϕ) =

∏
g∈M/H GSp(W ). This is only possible if M = H, V =

W and R = Sp(V, e) ⊂M .

We now state the main result of this section.

Theorem 3.6 Let K be a finitely generated field. Let (A, λ) be a polarized
abelian variety over K of Hall type. Then (A, λ) has big monodromy.

The case where K is a global field is due to Hall (cf. [15]) and we follow his
line of proof to some extent, but we need additional arguments in order to make
things work in the more general situation. The proof will occupy almost the
rest of this section.

There is a constant `0 > max(deg(λ), char(K)) such that the following holds
true for all primes ` ≥ `0:

1. The subgroup MK(A[`]) of GSp(A[`], eλ
` ) contains a transvection. De-

note by R` the subgroup of MK(A[`]) generated by the transvections in
MK(A[`]) (cf. Proposition 1.3).
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2. A[`] is a simple F`[GK ]-module (cf. Proposition 3.2).

Now Hall’s group theory result (cf. Theorem 3.4) gives - for every prime ` ≥ `0
- a non-zero symplectic subspace W` ⊂ A[`], which is simple as a F`[R`]-module
such that the properties i), ii) and iii) of Theorem 3.4 are satisfied. Let H` be
the stabilizer of W` under the action of MK(A[`]). Define M` := MK(A[`])
and Γ` := GSp(A[`], eλ

` ). Then∏
M`/H`

Sp(W`, e
λ
` ) ∼= R` ⊂M` ⊂ NΓ`

(R`) =
∏

M`/H`

Sp(W`, e
λ
` ) o Sym(M`/H`),

and we denote by ϕ` : NΓ`
(R`) → Sym(M`/H`) the projection. We have the

following property (cf. Remark 3.5):

If A[`] is a simple F`[ker(ϕ`)∩M`]-module for some prime ` ≥ `0, then M` = H`,
W` = A[`] and M` ⊃ Sp(A[`], eλ

` ) for this prime `.

We denote by N` the fixed field inside Ksep of the preimage ρ−1
A[`](M`∩ker(ϕ`)),

where ρA[`] : GK → Γ` is the mod-` representation attached to A. Then N`

is an intermediate field of K(A[`])/K which is Galois over K, and G(N`/K) is
isomorphic to the subgroup ϕ`(M`) of Sym(M`/H`). In particular [N` : K] ≤
(2 dim(A))! is bounded independently of `. If we denote by N :=

∏
`≥`0 prime N`

the corresponding composite field, then GN =
⋂

`≥`0 prime GN`
. Hence the

following property holds true.

If A[`] is simple as the F`[GN ]-module for some prime ` ≥ `0, then M` ⊃
Sp(A[`], eλ

` ) for this prime `. (∗)

Proof of Theorem 3.6 in the special case char(K) > 0. If char(K) > 0, then the
Galois group G(K(A6=p)/K) (p := char(K)) is finitely generated, because K
then has property F by Corollary 2.7. Furthermore N` is an intermediate field
of K(A6=p)/K which is Galois over K and with [N` : K] bounded independently
of `. Hence N/K must be finite. In particular N is finitely generated. A second
application of the result of Faltings and Zarhin (cf. Proposition 3.2) yields a
constant `1 ≥ `0 such that A[`] is a simple F`[GN ]-module for all primes ` ≥ `0.
Hence A has big monodromy by (∗). �

To finish the proof of Theorem 3.6 we assume for the rest of the proof that
char(K) = 0. We shall prove that N/K is finite also in that case, but the proof
of this fact is more complicated, because now K is not F-finite (cf. Remark
2.8). We briefly sketch the main steps in the proof, before we go into the
details: The first and hardest step is to show that the algebraic closure L of Q
in N is a finite extension of Q. In order to achieve this we will construct a finite
extension L′/Q such that some L′-rational “place” of KL′ splits up completely
into L′-rational “places” of N`L

′ for every sufficiently large prime `. We use
this to show that G(NL/KL) ∼= G(NLsep/KLsep) and the fact that the latter
group can be proved to be finite, because KEsep is F-finite (unlike K itself).
This suffices to prove that N/K is finite. Once we know this, we shall proceed
as in the positive characteristic case above.
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We now go into the details. Let F be the algebraic closure of Q in K. Then F
is a number field. Let S be a smooth affine F -variety with function field K such
that A extends to an abelian scheme A over S with generic fibre A (i.e. such
that A has good reduction along S). Let S` be the normalization of S in N`

and let S′` be the normalization of S` in K(A[`]). Then S′` → S` → S are finite
étale covers. (Note that char(F (s)) = 0 for every point s ∈ S.) In particular S′`
and S` are smooth F -schemes. (Compare the diagram below.)

Fix a geometric point P ∈ S(Fsep) and denote by AP := A×S Spec(F (P )) the
corresponding special fibre of A. Then AP is an abelian variety over the number
field F (P ). Fix for every ` ≥ `0 a geometric point Q` ∈ S`(Fsep) over P and a
geometric point Q′

` ∈ S′`(Fsep) over Q`. Then F (Q′
`)/F (Q`) and F (Q`)/F (P )

are finite extensions of number fields. Note that F (Q′
`) = F (P )(AP [`]) by

Lemma 2.3. Denote by O (resp. O`, resp. O′`) the integral closure of Z in F (P )
(resp. in F (Q`), resp. in F (Q′

`)). For every prime ` ≥ `0 we have the following
diagram on the level of schemes

Spec(K(A[`])) //

��

Spec(N`) //

��

Spec(K)

��
S′`

// S`
// S

Spec(F (P )(AP [`])) Spec(F (Q′
`)) //

��

OO

Spec(F (Q`)) //

��

OO

Spec(F (P ))

��

OO

Spec(O′`) // Spec(O`)
f` // Spec(O)

We now study the ramification of prime ideals m ∈ Spec(O) in the extension
F (Q`)/F (P ). Let Pbad be the (finite) set of primes p ∈ Spec(O) where AP /F (P )
has bad reduction.

Lemma 3.7 There is a constant `2 ≥ `0 with the following property: For every
prime number ` ≥ `2 the map f` : Spec(O`) → Spec(O) is étale at every point
m ∈ Spec(O) outside of Pbad.

Proof. Let `2 := max(`0, (2 dim(A))![F (P ) : Q] + 2).

Now let ` ≥ `2 be a prime number. Let m ∈ Spec(O) be an arbitrary prime
ideal with m /∈ Pbad. We have to show that m is unramified in F (Q`). Let
p = char(O/m) be the residue characteristic of m.

If p 6= `, then m is unramified even in F (Q′
`) = F (P )(AP [`]).

We can hence assume that p = ` . Let m` ∈ Spec(O`) be a point over m and
m′

` ∈ Spec(O′`) a point over m`. Let D(m′
`) (resp. D(m`)) be the decomposition
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group of m′
`/F (P ) (resp. of m`/F (P )) and I(m′

`) (resp. I(m`)) the correspond-
ing inertia group. Let P (m′

`) (resp. P (m`)) be the (unique) p-Sylow subgroup
of I(m′

`) (resp. I(m`)).

We have the following commutative diagram on the level of groups:

∏
M`/H`

GSp(W`) � � / / NΓ`
(M`) // // Sym(M`/H`)

M` ∩ ker(ϕ`)
� � /

?�

O

M`
// //?�

O

ϕ`(M`)
?�

O

G(K(A[`])/N`)
� � / G(K(A[`])/K) // // G(N`/K)

G(F (Q′
`)/F (Q`))

� � /
?�

O

G(F (Q′
`)/F (P )) // //
?�

O

G(F (Q`)/F (P ))
?�

O

D(m′
`) // //

?�

O

D(m`)
?�

O

I(m′
`) // //

?�

O

I(m`)
?�

O

P (m′
`) // //

?�

O

P (m`)
?�

O

We have to prove that the image of I(m′
`) in Sym(M`/H`) by the maps in

the diagram is {1}. Now p = ` > (2 dim(A))! due to our choice of `2 and
|Sym(M`/H`)| ≤ (2 dim(A))!, hence P (m′

`) maps to {1} in Sym(M`/H`). In par-
ticular, P (m`) = {1}. Consider the tame ramification group It = I(m′

`)/P (m′
`).

It is a cyclic group of order prime to p. Choose a subgroup C ⊂ I(m′
`) that

maps isomorphically onto It under the projection. It is enough to show that C
maps to {1} in Sym(M`/H`).

By Raynaud’s theorem (cf. Theorem 3.3) there is a finite extension E/Fp and
an epimorphism E× → C such that the resulting representation

E× → C → Aut(AP [`]) = Aut(A[`])

has amplitude ≤ e, where e is the ramification index of m over Q. Clearly
e ≤ [F (P ) : Q]. By part b) of Theorem 3.4, the image of E× in Sym(M`/H`) is
{1}. Hence the image of C in Sym(M`/H`) is {1} as desired. �

Lemma 3.8 Let L be the algebraic closure of F in N . Then L/F is a finite
extension.
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Proof. Let L′ :=
∏

`≥`0 prime F (Q`). For every prime ` ≥ `2 the Galois extension
of number fields F (Q`)/F (P ) is unramfied outside Pbad by Lemma 3.7. Fur-
thermore [F (Q`) : F (P )] ≤ (2 dim(A))! for every prime ` ≥ `2. The Theorem of
Hermite-Minkowski (cf. [19], p. 122) implies that

∏
`≥`2 prime F (Q`) is a finite

extension of F (P ). This in turn implies that L′/F is a finite extension. It is
thus enough to show that L ⊂ L′.

Recall that K = F (S) is the function field of the F -variety S and S` is the
normalization of S in the finite Galois extension N`/K. Denote by Ŝ the nor-
malization of S in N and by h` : Ŝ → S` the canonical projection. The canonical
morphism Ŝ → S is surjective, hence there is a point P̂ ∈ Ŝ(Fsep) over P . The
point h`(P̂ ) ∈ S`(Fsep) lies over P . Hence h`(P̂ ) is conjugate to Q` under the
action of G(N`/K). This implies that F (h`(P̂ )) = F (Q`). For every ` ≥ `0
there is a diagram

Spec(N) // Spec(N`) // Spec(K)

Ŝ
h` //

��

OO

S`
//

��

OO

S

��

OO

Spec(F (P̂ )) // Spec(F (Q`)) // Spec(F (P ))

where the morphisms S` → S are étale covers and N =
∏

`≥`0
N`. It follows

that F (P̂ ) =
∏

`≥`0
F (Q`) = L′. On the other hand L is the algebraic closure of

F in N , hence Ŝ is a scheme over L. This implies that L is a subfield of F (P̂ ).
Hence in fact L ⊂ L′ as desired. �

End of the proof of Theorem 3.6 in the case char(K) = 0. We have an iso-
morphism G(NLsep/KLsep) ∼= G(N/KL), because N/L and KL/L are regular
extensions. The field KLsep is F-finite by Corollary 2.7. Hence the profinite
group G(KLsep(Ator)/KLsep) is finitely generated. As NLsep ⊂ KLsep(Ator),
G(NLsep/KLsep) must be finitely generated as well. Furthermore NLsep =∏

`≥`0
N`Lsep where [N`Lsep : KLsep] is bounded independently from `. Hence

G(NLsep/KLsep) is finite and this implies that N/KL is a finite extension. On
the other hand it follows from Lemma 3.8 that KL/K is finite. Hence N/K is
a finite extension. Consequently N is finitely generated, because K is finitely
generated. Proposition 3.2 yields a constant `3 > `0 such that A[`] is a simple
F`(GN )-module for every prime ` ≥ `3. Hence A/K has big monodromy by (∗),
as desired. �

Let K be a finitely generated field of characteristic zero. Let (A, λ) be a polarized
abelian variety over K, with End(A) = Z and dim(A) = 2, 6 or odd. We finish
this section with a comment on this type of abelian varieties for which Serre
proved [27], [28] that A/K has big monodromy, provided K is a number field.
Serre sketched in [29] a specialization argument that allows to generalize this to
the case of an arbitrary finitely generated ground field K of characteristic zero.
We recall the specialization argument of Serre for the sake of completeness.
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Theorem 3.9 (Serre) Let K be a finitely generated field of characteristic zero
and (A, λ) a polarized abelian variety over K. Assume that End(A) = Z and
dim(A) = 2, 6 or odd. Then there is a constant `0 such that MK(A[`]) =
GSp(A[`], eλ

` ) for every prime ` ≥ `0.

Proof. We proceed by induction on trdeg(K/Q). The case trdeg(K/Q) = 0 is
classical, see [27], [28]. Suppose trdeg(K/Q) = d > 0. Then there is a finitely
generated extension F/Q of transcendence degree d − 1 and a smooth curve
C/F with function field F (C) = K. After removing finitely many points from
C, we may assume that A extends to an abelian scheme A → C. By [23, 1.7]
there is a closed point c ∈ C such that Ac := A ×C F (c) is an abelian variety
with End(Ac) = Z. We have |G(F (c)(Ac[`])/F (c))| ∼= |GSp(2 dim(A), F`)| for
all sufficiently large primes ` by induction. For every prime ` denote by v
the discrete valuation of K corresponding to c and by w` an extension of v to
K(A[`]). Then Lemma 2.3 implies

G(F (c)(Ac[`])/F (c)) ∼= G(F (w`)/F (v)) ∼= D(w`) ⊂ G(K(A[`])/K)

and the assertion follows from that. �

4 Properties of abelian varieties with big mon-
odromy

Let (A, λ) be a polarized abelian variety with big monodromy over a finitely
generated field K. Then Sp(A[`], eλ

` ) ⊂ MK(A[`]) for sufficiently large primes
`. In this section we use group theoretical methods of Serre in order to determine
MK(A[n]) completely (the result depends on the characteristic of K) for every
“sufficiently large” integer n. This will be important for our results on the
conjecture of Geyer and Jarden.

Now let K be an arbitrary field and A/K an abelian variety. Recall that for
every algebraic extension L/K we defined ML(A[n]) = ρA[n](GL) (n coprime
to char(K)) and ML(T`A) = ρT`A(GL) (` > char(K) a prime number). Fur-
thermore the representations induce isomorphisms G(L(A[n])/L) ∼=ML(A[n])
and G(L(A[`∞]/L) ∼= ML(T`A). Note that ML(T`A) → ML(A[`i]) is surjec-
tive (because G(L(A[`∞])/L) → G(L(A[`i])/L) is surjective) for every integer
i. ClearlyML(A[n]) is a subgroup ofMK(A[n]).

Remark 4.1 If L/K is a Galois extension, thenML(A[n]) is normal inMK(A[n])
and the quotient groupMK(A[n])/ML(A[n]) is isomorphic to G(L∩K(A[n])/K).

Proposition 4.2 Let K be a field and (A, λ) a polarized abelian variety over
K with big monodromy. Let L/K be an abelian Galois extension with L ⊃
µ∞. Then there is a constant `0 > max(char(K),deg(λ)) with the following
properties.
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a) ML(T`A) = Sp(T`A, eλ
`∞) for all primes ` ≥ `0.

b) Let c be the product of all prime numbers ≤ `0. Then ML(A[n]) =
Sp(A[n], eλ

n) for every integer n which is coprime to c.

Proof. Part a). There is a constant `0 > max(char(K),deg(λ), 5) such that
MK(A[`]) ⊃ Sp(A[`], eλ

` ) for all primes ` ≥ `0, because A has big monodromy.
Let ` ≥ `0 be a prime and define K` := K(µ`). Then basic properties of the Weil
pairing imply that G(K`(A[`])/K`) ∼=MK`

(A[`]) = Sp(A[`], eλ
` ). This group is

perfect, because ` ≥ 5 (cf. [32, Theorem 8.7]). As L/K` is an abelian Galois
extension,ML(A[`]) is a normal subgroup of the perfect groupMK`

(A[`]) and
the quotient MK`

(A[`])/ML(A[`]) is isomorphic to a subquotient of G(L/K)
(cf. Remark 4.1), hence abelian. This implies that

ML(A[`]) =MK`
(A[`]) = Sp(A[`], eλ

` ).

Denote by p : Sp(T`A, eλ
`∞) → Sp(A[`], eλ

` ) the canonical projection. Then
ML(T`A) is a closed subgroup of Sp(T`A, eλ

`∞) with

p(ML(T`A)) =ML(A[`]) = Sp(A[`], eλ
` ).

Hence ML(T`A) = Sp(T`A, eλ
`∞) by [20, Proposition 2.6].

Part b). Consider the map

ρ : GL →
∏
`≥`0

ML(T`A) =
∏
`≥`0

Sp(T`A, eλ
`∞)

induced by the representations ρT`A and denote by X := ρ(GL) its image. Then
X is a closed subgroup of

∏
`≥`0

Sp(T`A, eλ
`∞). If pr` denotes the `-th projection

of the product, then pr`(X) = Sp(T`A, eλ
`∞). Hence [30, Section 7, Lemme 2]

implies that X =
∏

`≥`0
Sp(T`A, eλ

`∞), i.e. that ρ is surjective.

Let c be the product of all prime numbers ≤ `0. Let n be an integer coprime
to c. Then n =

∏
`|n prime `v` for certain integers v` ≥ 1. The canonical map

r :ML(A[n])→
∏

`|n primeML(A[`v` ]) is injective. Consider the diagram

GL

��

ρ′ //
∏

`|nML(T`A)

��

∏
`|n Sp(T`A, eλ

`∞)

��
ML(A[n]) � � r /

∏
`|nML(A[`v` ]) � � /

∏
`|n Sp(A[`v` ], eλ

`v` ).

The vertical maps are surjective. The horizontal map ρ′ is surjective as well,
because ρ is surjective. This implies, that the lower horizontal map

ML(A[n])→
∏
`|n

Sp(A[`v` ], eλ
`v` )

is in fact bijective. It follows from the Chinese Remainder Theorem that the
canonical map ∏

`|n

Sp(A[`v` ], eλ
`v` )→ Sp(A[n], eλ

n)
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is bijective as well. Assertion b) follows from that. �

Corollary 4.3 Let K be a field and (A, λ) a polarized abelian variety over
K with big monodromy. Then there is a constant c coprime to deg(λ) and
to char(K), if char(K) is positive, with the following property: MK(A[n]) ⊃
Sp(A[n], eλ

n) for every integer n coprime to c.

Proof. Let L = Kab be the maximal abelian extension. Then there is a constant
c as above, such that ML(A[n]) = Sp(A[n], eλ

n) for every n coprime to c by
Proposition 4.2. Furthermore ML(A[n]) ⊂MK(A[n]) by the discussion before
Remark 4.1. �

Proposition 4.4 Let K be a field and (A, λ) a polarized abelian variety over
K with big monodromy. Let L/K be a finite extension. Then the following
properties hold.

a) There is a constant c (coprime to deg(λ) and to char(K), if char(K) is
positive) such that ML(A[n]) ⊃ Sp(A[n], eλ

n) for every integer n which is
coprime to c.

b) A is geometrically simple.

Proof. Part a). Let E0 be the maximal separable extension of K in L and E/K
a finite Galois extension containing E0. By our assumption and Proposition
4.2 there is a constant `0 > max(deg(λ), char(K), 5) such thatMK(µ∞)(A[`]) =
Sp(A[`], eλ

` ) for every prime ` ≥ `0. Furthermore ME(µ∞)(A[`]) is a normal
subgroup of MK(µ∞)(A[`]) (cf. Remark 4.1) of index ≤ [E : K]. Put `1 :=
max(`0, [E : K] + 1). Then

|ME(µ∞)(A[`])| ≥ 1
[E : K]

|Sp(A[`], eλ
` )| > 2

for all primes ` ≥ `1. On the other hand the only normal subgroups of Sp(A[`], eλ
` )

are {±1} and the trivial group (cf. [30, p. 53]). Hence

ME0(A[`]) ⊃ME(A[`]) ⊃ME(µ∞)(A[`]) = Sp(A[`], eλ
` )

for all primes ` ≥ `1. As L/E0 is purely inseparable, we find

ML(AL[`]) =ME0(A[`]) ⊃ Sp(A[`], eλ
` )

for all primes ` ≥ `1. Hence AL/L has big monodromy and Corollary 4.3 implies
a).

Part b). Let A1, A2/K̃ be abelian varieties and f : AK̃ → A1 × A2 an isogeny.
Then A1, A2 and f are defined over some finite extension L/K. Hence there is
an F`[GL]-module isomorphism A[`] ∼= A1[`]×A2[`] for every prime ` > deg(f).
By part a) ML(A[`]) ⊃ Sp(A[`]), eλ

` ) for all sufficiently large primes `. Hence
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A[`] is a simple F`[ML(A[`])]-module and in particular a simple F`(GL)-module
for all sufficiently large primes `. This is only possible if A1 = 0 or A2 = 0. �

Let K be a field and (A, λ) a polarized abelian variety over K with big mon-
odromy. There is a constant c (divisible by deg(λ) and by char(K), if char(K) 6=
0) such that

Sp(A[n], eλ
n) ⊂MK(A[n]) ⊂ GSp(A[n], eλ

n)

for all n ∈ N coprime to c (cf. Proposition 4.4). One can easily determine
MK(A[n]) completely, if K is finitely generated. Let Kn := K(A[n]). There is
a commutative diagram

0 // G(Kn/K(µn)) //

��

G(Kn/K) //

ρA[n]

��

G(K(µn)/K) //

ρµn

��

0

0 // Sp(A[n], eλ
n) // GSp(A[n], eλ

n) ε // (Z/n)× // 0

with exact rows and injective vertical maps, where ρµn
is the cyclotomic charac-

ter and ε is the multiplicator map. The left hand vertical map is an isomorphism
for every n ∈ N coprime to c. Hence

MK(A[n]) = {f ∈ GSp(A[n], eλ
n) | ε(f) ∈ im(ρµn

)}.

Assume from now on that K is finitely generated. Then the image of the cyclo-
tomic character involved above has a well known explicit description. Denote
by F the algebraic closure of the prime field of K in K and define q := q(K) :=
|F | ∈ N ∪ {∞}. Then, after possibly replacing c by a larger constant, we have

im(ρµn
) =

{
〈q〉 char(K) 6= 0,
F×` char(K) = 0.

for all n ∈ N coprime to c. Here 〈q〉 is the subgroup of (Z/n)× generated by the
residue class q of q modulo n, provided q is finite. If q is finite, then we define

GSp(q)(A[n], eλ
n) = {f ∈ GSp(A[n], eλ

n) | ε(f) ∈ 〈q〉}.

Finally we put GSp(∞)(A[n], eλ
n) = GSp(A[n], eλ

n). We have shown:

Proposition 4.5 Let K be a finitely generated field and (A, λ) a polarized
abelian variety over K with big monodromy. Let q = q(K). Then there is
a constant c (divisible by deg(λ) and by char(K), if char(K) 6= 0) such that
MK(A[n]) = GSp(q)(A[n], eλ

n) for all n ∈ N coprime to c.

5 Simplicity and End’s of fibres

In this section we apply our methods to prove a generalization of a result of
Ellenberg, Elsholz, Hall and Kowalski on endomorphism rings and simplicity of
fibres in certain families of abelian varieties (cf. [5, Theorem 8]).

21



Let F be a finitely generated field and K/F a finitely generated transcendental
field extension and A/K an abelian variety. We say that A/K is weakly isotrivial
with respect to F , if there is an abelian variety B/F̃ and a K̃-isogeny BK̃ → AK̃ .

Proposition 5.1 Let F be a finitely generated field, K/F a finitely generated
separable transcendental field extension and (A, λ) a polarized abelian variety
over K. Assume that A/K has big monodromy and that A/K is not weakly
isotrivial with respect to F . Define K ′ := FsepK. There is a constant c (divisible
by char(K), if char(K) > 0) such that MK′(A[n]) = Sp(A[n], eλ

n) for every
integer n which is coprime to c.

Proof. Let `0 ≥ max(deg(λ), char(K), 5) be a constant such that MK(A[`]) ⊃
Sp(A[`], eλ

` ) for every prime ` ≥ `0. Let ` ≥ `0 be a prime number. Then

MK′(A[`]) ⊂ Sp(A[`], eλ
` ) ⊂MK(A[`]),

andMK′(A[`]) a normal subgroup ofMK(A[`]) by Remark 4.1. It follows that
MK′(A[`]) is normal in Sp(A[`], eλ

` ).

The only proper normal subgroups in Sp(A[`], eλ
` ) are {1} and {±1} (cf. [30, p.

53]), because ` ≥ 5. Hence eitherMK′(A[`]) = Sp(A[`], eλ
` ) or |MK′(A[`])| ≤ 2.

Let Λ be the set of prime numbers ` ≥ `0 where |MK′(A[`])| ≤ 2. We claim
that Λ is finite.

For every ` ∈ Λ we have [K ′(A[`]) : K ′] ≤ 2. Furthermore G(K ′(A6=p)/K ′) is
profinitely generated, where p = char(K). To see this note that

G(K ′(A6=p)/K ′) = G(F̃K ′(A6=p)/F̃K ′)

because F̃ /Fsep is purely inseparable and use Corollary 2.7. Hence N :=∏
`∈Λ K ′(A[`]) is a finite extension of K ′. In particular N/Fsep is a finitely

generated regular extension. A/K must be geometrically simple by our as-
sumption that A/K has big monodromy (cf. Proposition 4.4). In particular
AN is simple. Hence assumption that A is not weakly isotrivial with respect to
F implies that the Chow trace TrN/Fsep(AN ) is zero. It follows by the Mordell-
Lang-Néron theorem (cf. [3, Theorem 2.1]) that A(N) is a finitely generated
Z-module. In particular the torsion group A(N)tor is finite. On the other hand,
A(N) contains a non-trivial `-torsion point for every ` ∈ Λ. It follows that Λ is
in fact finite.

Thus there is a constant `1 > `0 such that MK′(A[`]) = Sp(A[`], eλ
` ) for all

primes ` ≥ `1. Corollary 4.3 now implies the assertion. �

Theorem 5.2 Let F be a finitely generated field and K = F (t) the function
field of P1/F . Let A/K be a polarized abelian variety. Let U ⊂ P1 be an open
subscheme such that A extends to an abelian scheme A/U . For u ∈ U(F )
denote by Au/F the corresponding special fiber of A. Assume that A is not
weakly isotrivial with respect to F and that either condition i) or ii) is satisfied.

i) A is of Hall type.

22



ii) char(K) = 0, End(A) = Z and dim(A) = 2, 6 or odd.

Then the sets:
X1 := {u ∈ U(F ) | End(Au) 6= Z}

and
X2 := {u ∈ U(F ) | Au/F is not geometrically simple}

are finite.

Proof. By Theorem 3.6 and Theorem 3.9 the abelian variety A/K has big mon-
odromy. Define K ′ := FsepK. As A/K is not weakly isotrivial with respect to
F by assumption, Proposition 5.1 implies that there is a constant `0 > char(K)
such that MK′(A[`]) = Sp(A[`], eλ

` ) for all primes ` ≥ `0. Hence AK′/K ′ has
big monodromy. Now Propositions 4 and 7 of [5] imply the assertion. Note that
the notion of “big monodromy” in the paper [5] is slightly different from ours.�

6 Proof of Conjecture A, part b)

Let (A, λ) be a polarized abelian variety of dimension g over a field K. In this
section we will use the notation K` := K(A[`]) and G` := G(K`/K) for every
prime ` 6= char(K). Our main result in this section is the following theorem.

Theorem 6.1 If (A, λ) has big monodromy, then for all e ≥ 2 and almost all
σ ∈ Ge

K (in the sense of the Haar measure) there are only finitely many primes
` such that A(Ksep(σ))[`] 6= 0.

The following Lemma was communicated to us by Moshe Jarden. It seems to
go back to Oskar Villareal.

Lemma 6.2 Assume that A has big monodromy. Then there is a constant `0
such that [K(P ) : K]−1 ≤ [K` : K]−

1
2g for all primes ` ≥ `0 and all P ∈ A[`],

where K(P ) denotes the residue field of the point P.

Proof. By assumption on A, there is a constant `0 such that Sp(A[`], eλ
` ) ⊂

MK(A[`]) for all primes ` ≥ `0. Let ` ≥ `0 be a prime and P ∈ A[`]. Then the
F`-vector space generated inside A[`] by the orbit X := {f(P ) : f ∈MK(A[`])}
is the whole of A[`], because A[`] is a simple F`[Sp(A[`], eλ

` )]-module. Thus
we can choose an F`-basis (P1, · · · , P2g) of A[`] with P1 = P in such a way
that each Pi ∈ X. Then each Pi is conjugate to P under the action of GK

and [K(P ) : K] = [K(Pi) : K] for all i. The field K` is the composite field
K` = K(P1) · · ·K(P2g). It follows that

[K` : K] ≤ [K(P1) : K] · · · [K(P2g) : K] = [K(P ) : K]2g.

The desired inequality follows from that. �
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The following notation will be used in the sequel: For sequences (xn)n and
(yn)n of positive real numbers we shall write xn ∼ yn, provided the sequence
(xn

yn
) converges to a positive real number. If xn ∼ yn and

∑
xn < ∞, then∑

yn <∞.

The proof of Theorem 6.1 will make heavy use of the following classical fact.

Lemma 6.3 (Borel-Cantelli, [8, 18.3.5]) Let (A1, A2, · · · ) be a sequence of
measurable subsets of a profinite group G. Let

A :=
∞⋂

n=1

∞⋃
i=n

Ai = {x ∈ G : x belongs to infinitely many Ai}.

a) If
∑∞

i=1 µG(Ai) <∞, then µG(A) = 0.

b) If
∑∞

i=1 µG(Ai) = ∞ and (Ai)i∈N is a µG-independent sequence (i.e.
for every finite set I ⊂ N we have µG(

⋂
i∈I Ai) =

∏
i∈I µG(Ai)), then

µG(A) = 1.

Proof of Theorem 6.1. Assume that A/K has big monodromy and let `0 be a
constant as in the definition of the term “big monodromy”. We may assume
that `0 ≥ char(K). Let e ≥ 2 and define

X` := {σ ∈ Ge
K : A(Ksep(σ))[`] 6= 0}

for every prime `. Let µ be the normalized Haar measure on Ge
K . Theorem 6.1

follows from Claim 1 below, because Claim 1 together with the Borel-Cantelli
Lemma 6.3 implies that ⋂

n∈N

⋃
`≥n prime

X`

has measure zero.

Claim 1. The series
∑

` prime µ(X`) converges.

Let ` ≥ `0 be a prime number. Note that

X` =
⋃

P∈A[`]\{0}

{σ ∈ Ge
K | σi(P ) = P for all i} =

⋃
P∈A[`]\{0}

Ge
K(P ).

Let P(A[`]) = (A[`] \ {0})/F×` be the projective space of lines in the F`-vector
space A[`]. It is a projective space of dimension 2g − 1. For P ∈ A[`] \ {0} we
denote by P := F×` P the equivalence class of P in P(A[`]). For P ∈ P(A[`]) and
P1, P2 ∈ P there is an a ∈ F×` such that P1 = aP2 and P2 = a−1P1, and this
implies K(P1) = K(P2). It follows that we can write

X` =
⋃

P∈P(A[`])

Ge
K(P ).

24



Hence
µ(X`) ≤

∑
P∈P(A[`])

µ(Ge
K(P )) =

∑
P∈P(A[`])

[K(P ) : K]−e,

and Lemma 6.2 implies

µ(X`) ≤
∑

P∈P(A[`])

[K` : K]−e/2g =
`2g − 1
`− 1

[K` : K]−e/2g =
`2g − 1
`− 1

|G`|−e/2g.

But G` contains Sp2g(F`) and

s` := |Sp2g(F`)| = `g2
g∏

i=1

(`2i − 1)

(cf. [32]). It is thus enough to prove the following

Claim 2. The series
∑

`≥`0 prime
`2g−1
`−1 s

−e/2g
` converges.

But s` ∼ `g2+2+4+···+2g = `2g2+g and `2g−1
`−1 ∼ `2g−1, hence

`2g − 1
`− 1

s
−e/2g
` ∼ `2g−1`−e(g+ 1

2 ) = `(2−e)g−(1+ e
2 ) ≤ `−2,

because e ≥ 2. Claim 2 follows from that. �

Theorem 3.6, Theorem 3.9 and Theorem 6.1 imply the following

Corollary 6.4 Let K be a finitely generated field and A/K a polarized abelian
variety. Assume either that A is of Hall type, or that char(K) = 0, End(A) = Z
and dim(A) = 2, 6 or odd. Then part (b) of Conjecture A holds true.

7 Proof of Conjecture A, part a)

Theorem 7.1 Let (A, λ) be a polarized abelian variety over a finitely generated
field K. Assume that A/K has big monodromy. Then for almost all σ ∈ GK

there are infinitely many prime numbers ` such that A(Ksep(σ))[`] 6= 0.

Proof. Let p := char(K). If p = 0 the theorem follows by [10, Proposi-
tion 2.8] of Geyer and Jarden. We assume from now on that p > 0. Let
G = GK and g := dim(A). We fix once and for all for every prime number
` > p a symplectic basis of T`A. This defines an isometry of symplectic spaces
(A[n], eλ

n) ∼= ((Z/n)2g, ecan
n ), where ecan

n denotes the standard symplectic pairing
on (Z/n)2g, for every n ∈ N which is not divisible by p. We get an isomorphism
GSp(A[n], eλ

n) ∼= GSp2g(Z/n) for every such n, and we consider the representa-
tions

ρn : GK → GSp2g(Z/n)
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attached to A/K after these choices. If m is a divisor of n, then we denote by
rn,m : GSp2g(Z/n)→ GSp2g(Z/m) the corresponding canonical map, such that
rn,m ◦ ρn = ρm.

Let q := q(K) be the cardinality of the algebraic closure of the prime field of K
in K. As A has big monodromy, we find by Proposition 4.5 an integer c divisible
by p such that im(ρn) = GSp(q)

2g (Z/n) for every n coprime to c. Here we have

put GSp(∞)
2g = GSp2g.

For every prime number ` ≥ c we define

X` := {σ ∈ GK |A(Ksep(σ))[`] 6= 0}.

If we denote by

X ′
` := {A ∈ GSp(q)

2g (F`) |A has eigenvalue 1},

then X` = ρ−1
` (X ′

`) and

µG(X`) =
|X ′

`|
|GSp(q)

2g (F`)|
.

Theorem 8.6 in Appendix A implies that for every prime number ` there is a
subset S′(`) ⊂ X ′

` with the following properties:

i) The sum
∑

`≥c prime
|S′(`)|

|GSp
(q)
2g (F`)|

diverges.

ii) For every set `1, · · · , `r of pairwise different prime numbers, if we put
n = `1 · · · `r, then

|S′(n)|
|GSp(q)

2g (Z/n)|
=

r∏
i=1

|S′(`i)|
|GSp(q)

2g (F`i
)|

.

Here by definition

S′(n) = {A ∈ GSp(q)
2g (Z/n) | rn,`i(A) ∈ S′(`i) for all i ∈ {1, · · · , r}}.

If we put S(`) := ρ−1
` (S′(`)) for every prime number ` ≥ c, then S(`) ⊂ X`,

µ(S(`)) = |S′(`)|
|GSp

(q)
2g (F`)|

and the series
∑

`≥c prime µ(S(`)) diverges by i).

We claim that (S(`))`≥c prime is µ-independent. Let `1, · · · , `r ≥ c be pairwise
distinct prime numbers and put n = `1 · · · `r. Then

r⋂
i=1

S(`i) = ρ−1
n (S′(n))

and consequently ii) implies that

µ(
r⋂

i=1

S(`i)) =
r∏

i=1

µ(S(`i)).
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Now Lemma 6.3 implies that
⋂

n≥c

⋃
`≥n prime S(`) has measure 1, and this

implies the assertion. �

Theorem 3.6, Theorem 3.9 and Theorem 7.1 imply the following

Corollary 7.2 Let K be a finitely generated field and A/K a polarized abelian
variety. Assume either that A is of Hall type, or that char(K) = 0, End(A) = Z
and dim(A) = 2, 6 or odd. Then part (a) of Conjecture A holds true.

8 Appendix A. Special sets of symplectic matri-
ces

Let g ≥ 2, and let V be a vector space of dimension 2g over a prime finite field
F`, endowed with a symplectic form e : V × V → F`. Fix a symplectic basis
E = {e1, . . . , e2g} of V such that the symplectic form is given by the matrix

Jg =


J1

J1

. . .
J1

 where J1 =
(

0 1
−1 0

)
.

For each A ∈ GSp2g(F`) there is an element λ ∈ F×` such that e(Av,Aw) =
λe(v, w) for all v, w ∈ V . We will say that the value λ = ε(A) of the multiplicator
map ε is the multiplier of A, and we will denote by GSp2g(F`)[λ] the set of
matrices in GSp2g(F`) with multiplier λ.

Remark 8.1 Here we collect some notation. Let p be a prime, q a power of p
and n ∈ N.

• For n not divisible by p, we will denote by ordnq the order of q modulo n.

• Denote by GSp(q)
2g (Z/nZ) the set of matrices in GSp2g(Z/nZ) with multi-

plier equal to a power of q modulo n.

• Let α3, α4, . . . , α2g, β ∈ F`. Call uα = e2 +α3e3 + · · ·+α2ge2g. We denote
by Tuα

[β] the morphism v 7→ v + βe(v, uα)uα (which is a transvection if
β 6= 0).

We begin with two easy lemmas that will be essential for Definition 8.4.

Lemma 8.2 Let ` be a prime number. For each λ ∈ F×` , the matrices of
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GSp2g(F`)[λ] that fix the vector e1 are of the form

1 d b1 b2 . . .
0 λ 0 0 . . .
0 d1

...
... B

...
...

 (1)

with B = (bij)i,j=1,...,2g−2 ∈ GSp2g−2(F`)[λ], d, d1, . . . , d2g−2 ∈ F` and

bk =
1
λ

g−1∑
j=1

(d2j−1b2j,k − d2jb2j−1,k)

 for each k = 1, . . . , 2g − 2. (2)

Proof. Let A ∈ GSp2g(F`)[λ] be such that Ae1 = e1. Let us write the matrix of A
with respect to the symplectic basis {e1, e2, . . . , e2g−1, e2g}. Since e(e1, ek) = 0
for all k = 3, . . . , 2g, we obtain that e(e1, Aek) = 0. Therefore we can write the
matrix A as 

1 d b1 b2 . . .
0 d′ 0 0 . . .
0 d1

...
... B

...
...


where in the second row we get all entries zero save the (2, 2)-th. Moreover,
since e(e1, e2) = 1, we get that e(e1, Ae2) = e(Ae1, Ae2) = λe(e1, e2) = λ, that
is to say, d′ = λ.

Furthermore, we have that e(e2, ek) = 0 for all k = 3, . . . , 2g, hence e(Ae2, Aek) =
0. These conditions give rise to the equations (2). The rest of the conditions one
has to impose imply that B ∈ GSp2g−2(F`)[λ]. This proves that the conditions
in the lemma are necessary. On the other hand, one can check that the product

AtJgA = λJg,

so they are also sufficient. �

Lemma 8.3 The set of matrices in GSp2g(F`)[λ] that do not have the eigen-
value 1 has cardinality greater than β(`, g)|Sp2g−2(F`)|, where

β(`, g) = `2g−1(`2g − 1)
`− 2
`− 1

.

Proof. The set of matrices A ∈ GSp2g(F`)[λ] that fix the vector e1 consists of
matrices of the form (1), where B belongs to GSp2g−2(F`)[λ] and b1, . . . , b2g−2

are given by the formula (2). Therefore the cardinality of the set of such matrices
is exactly

`2g−1|GSp2g−2(F`)[λ]| = `2g−1|Sp2g−2(F`)|.
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On the other hand, the symplectic group acts transitively on the set of cyclic
subgroups of V (cf. [16, Thm. 9.9, Ch. 2]). Therefore if a matrix fixes any
nonzero vector, it can be conjugated to one of the above. Hence, to obtain an
upper bound for the number of matrices with eigenvalue 1 one has to multiply
the previous number by the number of cyclic groups of V , namely `2g−1

`−1 .

Therefore the set of matrices in GSp2g(F`)[λ] that have the eigenvalue 1 has
cardinality less than `2g−1 `2g−1

`−1 |Sp2g−2(F`)|. Hence the number of matrices in
GSp2g(F`)[λ] that do not have the eigenvalue 1 is greater than |Sp2g(F`)| −
`2g−1 `2g−1

`−1 |Sp2g−2(F`)|.

Now apply the well known identity (see for instance the proof of [16, Theorem
9.3. b)])

|Sp2g(F`)| = (`2g − 1)`2g−1|Sp2g−2(F`)|. (3)

We thus see that the set of matrices in GSp2g(F`)[λ] that do not have the
eigenvalue 1 has cardinality greater than β(`, g)|Sp2g−2(F`)|. �

Definition 8.4 Let p be a prime and q a power of p. For each λ ∈ F×` choose
once and for all a subset Bλ of matrices B ∈ GSp2g−2(F`)[λ] which do not have
the eigenvalue 1, with |Bλ| = β(`, g − 1)|Sp2g−4(F`)| (which can be done by
Lemma 8.3).

For each i ∈ {1, . . . , ord`(q)}, we define

Si(`)0 := {A of the shape (1) such that:

λ = qi

B ∈ Bλ

d1, . . . , d2g−2 ∈ F`

d ∈ F` \ {−(b1, . . . , b2g−2)(Id−B)−1
(
d1, . . . , d2g−2

)t},
Si(`) := {Tuα

[β]−1 ·A · Tuα
[β] : α3, . . . , α2g, β ∈ F`, A ∈ Si(`)0},

S(`) :=
ord`q⋃
i=1

Si(`).

Remark 8.5 Note that all matrices in S(`) fix an element of V .

The Appendix is devoted to prove the following result.

Theorem 8.6 Let p 6= ` be two primes, q a power of p. The set S(`) is non-
empty and the following properties hold:

(1) ∑
` 6=p prime

|S(`)|
|GSp(q)

2g (F`)|
=∞.
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(2) For each set of distinct primes `1, . . . , `r which are different from p, let
n = `1 · · · · · `r. Then

|S(n)|
|GSp(q)

2g (Z/nZ)|
=

r∏
j=1

|S(`j)|
|GSp(q)

2g (F`j
)|

where S(n) ⊂ GSp2g(Z/nZ) is the set of matrices that belong to S(`j)
modulo `j, for all j = 1, . . . , r.

First we will prove part (1) of Theorem 8.6. We will need some lemmas.

On the one hand, the cardinality of Si(`)0 is very easy to compute.

Lemma 8.7 It holds that

|Si(`)0| = `2g−2(`− 1)β(`, g − 1)|Sp2g−4(F`)|.

Moreover we can compute the cardinality of Si(`) in terms of |Si(`)0|.

Lemma 8.8 |Si(`)| = (`2g−2(`− 1) + 1)|Si(`)0|.

Proof. Let A ∈ Si(`)0. First of all we will see that the vectors fixed by A are
those in the cyclic subgroup generated by e1. Since the matrix A clearly fixes
the vectors in the cyclic subgroup generated by e1, it suffices to show that any
vector fixed by A must belong to this subgroup.

Consider the system of equations A(x1, . . . , x2g)t = (x1, . . . , x2g)t. Assume first
that we have a solution with x2 = 0. Then the last 2g − 2 equations boil down
to

B(x3, . . . , x2g)t = (x3, . . . , x2g)t.

But since B does not have the eigenvalue 1, this equations are not simultaneously
satisfied by a nonzero tuple, hence (x1, . . . , x2g)t belongs to the cyclic group
generated by e1.

Assume now that we have a solution (x1, . . . , xg)t with x2 6= 0. Since 1 is not
an eigenvalue of B, the matrix Id − B is invertible, and we can write the last
2g − 2 equations as

(x3/x2, . . . , x2g/x2)t = (Id−B)−1(d1, . . . , d2g−2)t.

On the other hand, the first equation reads

d = −(b1, . . . , b2g−2)(x3/x2, . . . , x2g/x2)t.

Hence
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d = −(b1, . . . , b2g−2)(Id−B)−1(d3, . . . , d2g)t.

But we have precisely asked that d does not satisfy such an equation, cf. Defi-
nition 8.4.

Now one can check that, if we have A, Ã ∈ Si(`)0 and elements α3, . . . , α2g,
β, α̃3, . . . , α̃2g, β̃ in F` such that Tuα

[β]−1 · A · Tuα
[β] = Tuα̃

[β̃]−1 · Ã · Tuα̃
[β̃],

then either β = β̃ = 0 and A = Ã or else αk = α̃k for k = 3, . . . , 2g, β = β̃ and
A = Ã. Namely, one notices that since Ã = Tuα̃

[β̃]Tuα
[β]−1 ·A · Tuα

[β]Tuα̃
[β̃]−1

fixes e1, then A fixes Tuα [β]Tuα̃
[β̃]−1e1. But A only fixes the elements of the

cyclic group generated by e1; hence, Tuα
[β]Tuα̃

[β̃]−1e1 must be in the cyclic
group generated by e1. Now computing Tuα

[β]Tuα̃
[β̃]−1e1 one can conclude

easily.

Therefore each element of Si(`)0 gives rise to a subset of Si(`) by conjugation
by the matrices Tuα [β], where α runs through the tuples (α3, . . . , α2g) ∈ F2g−2

`

and β ∈ F`, and Si(`) is the disjoint union of these subsets. Furthermore, each
of these sets has cardinality `2g−2(`− 1) + 1.

�

To prove the first part of Theorem 8.6, we only need one more lemma, which is
an easy consequence of the Chinese Remainder Theorem.

Lemma 8.9 Let n be a squarefree natural number such that p - n. The cardi-
nality of GSp(q)

2g (Z/nZ) equals ordn(q) ·
∏

`|n |Sp2g(F`)|.

Proof of Theorem 8.6(1)

Let ` 6= p be a prime. Applying Equation (3) twice to the cardinality of
GSp(q)

2g (F`) and Lemmas 8.8, 8.7 and 8.9, we obtain

|S(`)|
|GSp(q)

2g (F`)|
=

(`2g−2(`− 1) + 1)`2g−2(`− 1)β(`, g − 1)|Sp2g−4(F`)|
(`2g − 1)`2g−1(`2g−2 − 1)`2g−3|Sp2g−4(F`)|

∼ 1
`
,

and the sum
∑

` 6=p prime
1
` diverges. �

To prove the second part of Theorem 8.6 we need one auxiliary lemma.

For each squarefree n not divisible by p and each i = 1, . . . , ordn(q), define
Si(n) = {A ∈ S(n) : ε(A) = qi modulo n}.

Lemma 8.10 Let `1, . . . , `r be distinct primes which are different from p, and
consider n = `1 · · · · · `r. Let i ∈ {1, . . . , ordn(q)}. Then there is a bijection

Si(n) ' Si(`1)× · · · × Si(`r).
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Proof. Consider the canonical projection

π : Si(n)→ Si(`1)× · · · × Si(`r)
A 7→ (A mod `1, . . . , A mod `r).

This is clearly an injective map. Now we want to prove surjectivity. For each
j, take some matrix Bj ∈ Si(`j).

By the Chinese Remainder Theorem, there exists A ∈ GSp2g(Z/nZ) such that
A projects onto Bj for each j. Note that in particular A ∈ S(n). Since ε(A) is
congruent to ε(Bj) = qi modulo `j for all j, we get that ε(A) = qi modulo n.
Therefore A ∈ Si(n). �

Proof of Theorem 8.6(2)

On the one hand, since the cardinality of |Si(`)| does not depend on i, we obtain

∏
`|n

|S(`)|
|GSp(q)

2g (F`)|
=

∏
`|n

ord`(q)|S1(`)|
ord`(q)|Sp2g(F`)|

=
∏
`|n

|S1(`)|
|Sp2g(F`)|

.

On the other hand, taking into account again that |Si(`)| is independent of i,
Lemma 8.9 and also that, |Si(n)| =

∏
`|n |Si(`)| by the previous Lemma, we get

|S(n)|
|GSp(q)

2g (Z/nZ)|
=

∑ordn(q)
i=1 |Si(n)|

ordn(q)
∏

`|n |Sp2g(F`)|
=

∑ordn(q)
i=1

(∏
`|n |Si(`)|

)
ordn(q)

∏
`|n |Sp2g(F`)|

=

=

∑ordn(q)
i=1

(∏
`|n |S1(`)|

)
ordn(q)

∏
`|n |Sp2g(F`)|

=
ordn(q)

(∏
`|n |S1(`)|

)
ordn(q)

∏
`|n |Sp2g(F`)|

=

=
∏
`|n

|S1(`)|
|Sp2g(F`)|

.

Remark 8.11 In the definition of the set Si(`)0 (cf. Definition 8.4), we choose
a subset Bqi of matrices in GSp2g−2(F`)[qi] without the eigenvalue 1, which is
large enough to ensure that part (1) of Theorem 8.6 holds. For a concrete value
of g, one can choose such set more explicitly. For instance, when g = 2, instead
of Bqi one can consider the set

B′qi := {
(

b1,1 b1,2

b2,1 b2,2

)
: b1,1 ∈ F`, b2,2 ∈ F` \ {1− b1,1 + qi},

b1,2 ∈ F×` , b2,1 = b−1
1,2(b1,1b2,2 − qi)}

of `(`−1)2 matrices, which can also be used to prove the second part of Theorem
8.6 in the case of the group GSp4(F`).
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9 Appendix B. Proof of Theorem 3.4

The aim of this Appendix is to provide a selfcontained proof of Theorem 3.4,
which was first proven in the papers [14] and [15]. We have also taken advantage
of the exposition in [18].

Let ` > 2 be a prime number, let (V, e) be a finite-dimensional symplectic space
over F` and Γ = GSp(V, e). In what follows M will be a subgroup of Γ which
contains a transvection, such that V is a simple F`[M ]-module.

Remark 9.1 • For a set U ⊂ V , we will denote by 〈U〉 the vector space
generated by U in V .

• For a vector u ∈ V and a scalar λ ∈ F`, we denote by Tu[λ] ∈ Γ the
morphism v 7→ v + λe(v, u)u. For each transvection τ ∈ Γ there exist
u 6= 0, λ 6= 0 such that τ = Tu[λ], and u = ker(τ − Id). If this is the case
we will say that 〈u〉 is the direction of τ . Each nonzero vector in 〈u〉 shall
be called a direction vector of τ .

• Given a group G ⊂ Γ, we will denote by L(G) the set of vectors u ∈ V
such that there exists a transvection in G with direction vector u.

• We will say that a group G ⊂ Γ fixes a vector space W if {g(w) : g ∈
G, w ∈W} ⊂W .

Part iii) of Theorem 3.4 is quite simple and follows from the following observa-
tion.

Lemma 9.2 Let G ⊆ GSp(V ) be a subgroup and R the subgroup of G generated
by the transvections in G. Then for all g ∈ G, r ∈ R, grg−1 ∈ R.

Proof. Note that if T = Tv[λ] ∈ G is a transvection, then gTv[λ]g−1 = Tgv[λ]
is also a transvection, which belongs to G, therefore also to R. Now if we
have an element of R, say T1 ◦ · · · ◦Tk for certain transvections T1, . . . , Tk, then
g(T1◦· · ·◦Tk)g−1 = (gT1g

−1)◦· · ·◦(gTkg−1) is the composition of transvections
of G, therefore an element of R. �

Part i) of Theorem 3.4 is essentially Lemma 3.2 of [14]. Before proceeding to
prove it, note the following elementary facts.

Lemma 9.3 Let G be a group that acts irreducibly on V , and let W ⊂ V a
nonzero vector space. Then V =

∑
g∈G gW .

Proof. Let S be the set S = {g(w) : g ∈ G, w ∈ W}. Consider the vector space
〈S〉. This vector space is fixed by G, hence since G acts irreducibly on V it
must coincide with V . �
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Lemma 9.4 Let W be a vector subspace of V , and assume that it is fixed by a
transvection T = Tu[λ]. Then either u ∈W or u ∈W⊥.

Proof. Recall that, for all v ∈ V , T (v) = v + λe(v, u)u. If u 6∈W , the only way
for T to fix W is that e(w, u) = 0 for all w ∈W . �

Proof of Theorem 3.4, i)

Consider the action of R on V . The first step is to fix one simple nonzero R-
submodule W contained in V (This always exists because V is finite-dimensional
as an F`-vector space).

By Lemma 9.3, we know that V =
∑

g∈M gW . Moreover, for g1, g2 ∈ M it
holds that g1W = g2W if and only if g1H = g2H. Therefore we can write
V =

∑
g∈M/H gW , where H is the stabilizer of W in M . The proof of i) boils

down to prove that the sum is direct and orthogonal, that is, if g1H 6= g2H,
then g1W ∩ g2W = 0 and g1W ⊂ (g2W )⊥. Equivalently, we will prove that for
any g ∈M , if gW 6= W , then gW ∩W = 0 and gW ⊥W .

The first claim, namely gW 6= W implies gW ∩W = 0 is easy. The key point is
to note that for each g ∈M , gW is also fixed by R. Take r ∈ R, gw ∈ gW . Then
rgw = g(g−1rg)w ∈ gW since g−1rg ∈ R by Lemma 9.2 and hence fixes W .
Now it follows that W ∩ gW is fixed by R, and thus is an R-subrepresentation
of W . But W is an simple R-module, hence since W ∩ gW 6= W , it must follow
that gW ∩W = 0.

To prove that gW 6= W implies gW ⊥ W , we need to make first the following
very important observation.

Claim 9.5 The set L(M) ∩W generates W .

Proof of Claim 9.5. First let us see that L(M) ∩W is nontrivial. Since any
transvection in M fixes W by definition of W , it follows by Lemma 9.4 that either
its direction vector belongs to W , or else it is orthogonal to W , in which case the
transvection acts trivially on W . But it cannot happen that all transvections in
M act trivially on W . For, if a transvection T acts trivially on W , then for all
g ∈ M , gTg−1 acts trivially on gW . But since R = gRg−1 (because of Lemma
9.2), then if all R acts trivially on W , it also acts trivially on gW . Now recall
that V =

∑
g∈M gW . Then R would act trivially on V . But R contains at least

a transvection, and this does not act trivially on V . We have a contradiction.

Hence L(M)∩W is non zero. But now observe that this set is fixed by the action
of R, since the elements of M bring direction vectors into direction vectors.
Therefore the vector space 〈L(M) ∩W 〉 ⊂W is fixed by the action of R. Since
we are assuming W is an simple R-module, it follows that 〈L(M)∩W 〉 = W �

Now we are able to prove that if gW 6= W , then gW ⊂ W⊥. Because of the
previous claim, it suffices to show that, for any nonzero vector w ∈ W which
is the direction vector of a transvection in M , say T , w ∈ (gW )⊥. Now recall
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that, since T fixes gW , by Lemma 9.4 either w ∈ gW or w ∈ (gW )⊥. But
gW ∩W = 0, so w ∈ (gW )⊥. �

Before proving Part ii) of Theorem 3.4, we will introduce some notation.

Definition 9.6 Let g ∈M . We will denote by Rg the subgroup of R generated
by the transvections that act non-trivially on gW .

The following lemma is Lemma 7 of [15].

Lemma 9.7 Let g1, g2 ∈M with g1H 6= g2H. Then the commutator [Rg1 , Rg2 ]
is trivial.

Proof. For i = 1, 2, let Ti ∈ Rgi
be a transvection. We will see that they

commute. By Lemma 9.4 applied to giW , either Ti acts trivially on giW or
its direction vector, say ui, belongs to giW . By definition of Rgi we have the
second possibility. But because of Part i) of Theorem 3.4, for each g ∈M such
that giW 6= gW , giW ∩ gW = 0, hence ui 6∈ gW . Therefore again by Lemma
9.4 applied now to gW , it follows that Ti acts trivially on gW . Therefore T1

and T2 commute on each gW , since at least one of them acts trivially on it.
Since V =

⊕
g∈M/H gW , it follows that they commute on all V . �

Proof of Theorem 3.4, ii).

Let M/H = {g1H, . . . , gsH}, with g1 = Id. Define the map

P :
s∏

i=1

Rgi
→ R

(r1, r2, . . . , rs) 7→ r1 · r2 · · · · · rs.

Since by Lemma 9.7 elements from the different Rgi commute, this map is a
group homomorphism. Let us see that it is also an isomorphism.

Assume that r1 · r2 · · · · rs = Id, and that there is a certain rj which is not
the identity matrix. Then rj must act nontrivially on a certain vector v ∈ V .
Since the elements of Rgj

act trivially on the elements of giW for i 6= j and
V =

⊕s
i=1 giW , we can assume that v ∈ gjW . But then the remaining ri with

i 6= j act trivially on v and on rj(v). Therefore Id(v) = r1 ·· · ··rs(v) = rj(v) 6= v,
which is a contradiction. To prove surjectivity, it suffices to note that each
transvection T of M belongs to one of the Rgi , (hence each element of R can
be generated by elements of ∪iRgi). And this holds because, since T fixes all
the giW , the direction vector of T must either belong to giW or be orthogonal
to it because of Lemma 9.4, and since V = ⊕s

i=1giW it cannot be orthogonal to
all the giW . Therefore we get that R '

∏s
i=1 Rgi

.

Now we are going to apply the following result [33, Main Theorem]:
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Theorem 9.8 Suppose G ⊂ GL(n, k) is an irreducible group generated by transvec-
tions. Suppose also that k is a finite field of characteristic ` > 2, and that n > 2.
Then G is conjugate in GL(n, k) to one of the groups SL(n, k0), Sp(n, k0) or
SU(n, k0), where k0 is a subfield of k.

Note that, if n = 2, the result is also true and well known (cf. [4, Section 252]).

Now Rg1 is generated by transvections, and acts irreducibly on W (because R
acts irreducibly on W , and Rg1 is the group generated by all those transvections
in M that act nontrivially on W ). Therefore Rg1 is conjugated to Sp(W ). Since
all Rgi

are conjugated to Rg1 , the same holds for them. Therefore we have the
isomorphism R '

∏s
i=1 Sp(W ).

Finally, we can view H1 =
∏s

i=1 GSp(W ) '
∏s

i=1 GSp(giW ) as the subgroup
of Γ fixing each giW and, fixing a symplectic basis on each giW , we can view
H2 = Sym(M/H) as the subgroup of Γ that permutes the giW by bringing the
fixed symplectic basis of each giW into the fixed symplectic basis of another
gjW . The group generated by H1 and H2 inside Γ, which is the group of
elements of Γ that permute the giW , is the semidirect product H1 o H2.

Recall that NΓ(R) = {g ∈ Γ : gRg−1 = R}. Note that g ∈ NΓ(R) if and
only if for all transvections T ∈ M , gTg−1 ∈ R. Now, if T = Tv[λ], it holds
that gTg−1 = Tg(v)[λ], and this transvection belongs to R if and only if it is
a transvection of M , that is to say, if and only if g(v) ∈ L(M). Therefore
g ∈ NΓ(R) if and only if g(L(M)) = L(M). Now since R is isomorphic to∏s

i=1 Sp(giW ), L(M) is the disjoint union of the giW . And moreover, if W is
an R-module and g ∈ NΓ(R), then R fixes gW . Therefore, if W is an simple
R-module, then gW 6= W implies that gW ∩W = 0. Thus if g ∈ NΓ(R), then
g permutes the giW . In other words, NΓ(R) ⊂

∏s
i=1 GSp(W ) o Sym(M/H).

Reciprocally, each element of
∏s

i=1 GSp(W ) o Sym(G/H) carries elements of⋃
i giW in elements of

⋃
i giW , that is to say, carries L(M) into L(M), and

therefore belongs to NΓ(R). �

This completes the proof of Part a) of Theorem 3.4.

Proof of Part b) of Theorem 3.4. Recall that (V, e) is a symplectic space over
F` and M a subgroup of Γ := GSp(V, e). M contains a transvection and V is
a simple F`[M ]-module by assumption. Furthermore R is the subgroup of M
generated by the transvections in M , 0 6= W ⊂ V is a simple F`[R]-module
and H = StabM (W ). We already proved that there is a orthogonal direct
sum decomposition V =

⊕
g∈M/H gW . Furthermore R ∼=

∏
g∈M/H Sp(W ),

NΓ(R) ∼=
∏

g∈M/H GSp(W ) o Sym(M/H) and R ⊂ M ⊂ NΓ(R). Denote by
ϕ : NΓ(R)→ Sym(M/H) the projection.

Let E/F` be a finite extension and ρ : E× → M ⊂ GL(V ) a representation of
amplitude amp(ρ) ≤ e. Assume that ` > e dim(V ) + 1. We have to prove that
ϕ(ρ(E×)) = {1}.

Define S := ker(ϕ ◦ ρ) ⊂ E×. Then [E× : S] ≤ |M/H| ≤ dim(V ), and this
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implies e[E× : S] < `− 1. Furthermore

ρ(S) ⊂ ker(ϕ) ∼=
∏

g∈M/H

GSp(gW ).

Obviously ρ(S) commutes with the center

Z(ker(ρ)) ∼=
∏

g∈M/H

F×` IdgW

of ker(ρ). Now by [15, Lemma 3] ρ(E×) commutes with Z(ker(ρ)), because
e[E× : S] < ` − 1. The centralizer of Z(ker(ρ)) in NΓ(R) can be seen easily
that ker(ϕ) ∼=

∏
g∈M/H GSp(gW ). Hence ρ(E×) ⊂ ker(ϕ) and this implies

ϕ ◦ ρ(E×) = {1}. �
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