RANK TWO FILTERED (¢, N)-MODULES WITH GALOIS
DESCENT DATA AND COEFFICIENTS

GERASIMOS DOUSMANIS

ABSTRACT. Let K be any finite extension of Qp, F' any finite Galois extension
of K and E any finite, large enough, extension of Q) containing the maximal
unramified extension Fp of Qp inside F. We list the isomorphism classes of
weakly admissible filtered (¢, N, F/K, E)-modules of rank two over E®q, Fo.
For simplicity we restrict ourselves to the nonscalar F-semisimple case, but our
method works in full generality.

1. INTRODUCTION

Let K be any finite extension of Q,, p : G — GL,(Q,) a continuous n-dimensional
representation of Gx and F any finite Galois extension of K. p is called F-semistable
if it becomes semistable when restricted to Gr. The field of definition E of p is a
finite extension of Q, which may be extended to contain the maximal unramified
extension Fy of Q, inside F. Let £ > 1 be any integer. By a theorem essen-
tially due to Colmez and Fontaine (see [SAV05, §2]) the category of F-semistable
E-representations of G with Hodge-Tate weights in the range {0,1,....,.k — 1} is
equivalent to the category of weakly admissible filtered (p, N, F/K, E)-modules
D such that Fil°(F ®p, D) = F ®p, D and Fil*(F ®p, D) = 0. We classify
two-dimensional F-semistable E-representations of G by listing the isomorphism
classes of all weakly admissible filtered (¢, N, F/K, E)-modules of rank two over
E ®q, Fp. To avoid an excessive number of cases we restrict ourselves to the non
scalar F-semisimple case (see definition 2.3), although our method works in com-
plete generality. Special cases of the problem have been treated by Fontaine and
Mazur [FM95], Breuil and Mézard [BM02] who initiated the subject with arbitrary
coefficients, Savitt [SAV05] and most recently by Ghate and Mézard [GMO7]. For
the next few introductory sections we refer to the original sources [FO88]|, [FO94],
[CF00], [BM02], the expository articles of Berger [BE04] and Berger-Breuil [BB04],
the course notes of Breuil [BR01] and Colmez [CO07], and the excellent forthcoming
Springer book by Fontaine and Ouyang.

1.1. Fontaine’s rings. Let C, be the completion of Q, for the p-adic topology.
C, is algebraically closed and complete. Let E = lim C, = {(;E(O), 2O ) )
such that (D)7 = (" for all n > 0} and E* be the set of all z = (2@, 21, ..,
™ .)€ Ewithvg(z) := v,(z(®) > 0. E with addition and multiplication defined
by (z +y)™ = lim (2™ 4 ¢+m)P™ and (zy)™ = My for all n > 0 is

an algebraically closed field of characteristic p. vg is a valuation on E for which E
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is complete and has valuation ring E*. Let AT be the ring of Witt vectors with

E* coefficients and B = AT[3] = { >>Z pklag], zp € BT}, where [z] € AT is

the Teichmiiler lift of € ET. The ring B* is endowed with a ring epimorphism

0:BT — C,given by 0( > prlai]) = pkx,(co). By functorial properties of
k> —o00 k> — o0

Witt vectors the absolute Frobenius ¢ : E+ — E7T lifts to a ring epimorphism ¢ :

Bt — Btgiven by o( 3 pFla]) = X p FlaR). Let e = (6@);50 € E where

k>—o0 k>—o0
g0 =1 and ¢ is a prlmltlve pi-th root of 1 such that (D" = £ for all ¢. If
w=[e]-1and m = [gp]—l definew = 7 and ¢ = “"(”) = % The kernel of

the map 6 : B+ — C, is the principal 1dea1 generated by w. The ring IB%:{R is defined
to be the separated ker 6-adic completion of B*, B, = limB™* /(ker §)". Since ker ¢

n
is generated by w, each element of IB%(J{R can be written (in a multitude of ways) as
asum x = ioj Zpw" with z, € Bt. The series log([e]) = — f: % converges
n=0 n=1
to some element ¢ € IEB;{R with the property that gt = x(g)t for all g € Gg,, where
X : Gg, — Z; is the cyclotomic character. The map 6 extends to a map 6 :
IB%;'R — C, Whose kernel is generated by t. If z € B} 1g» there exists unique k > 0
such that @ € (ker6)"\(ker )**1. This defines a valuation on B}, with respect
to which IB%:R is a complete discrete valuation ring. BT ir has a natural continuous
Gg,-action. Define Byr = Bj,[+]. Bar is a field with a decreasing exhaustive and
separated filtration given by Fil’'B,r = tJIB%jR for all integers j. An unfortunate
feature of the topology of IB%  is that the Frobenius map ¢ : B+ — B* does not
extend to a continuous map <p B iR — IB%dR We define a ring B . which is a

cris
subring of IB 1 With elements sequences satisfying some growth condition, namely

B, ={ E n where a, € BT is a sequence converging to 0}.
n>0 n!

Let Boris = B;ls[l]. Beris is a subring of Byg, not a field, (e.g. w — p is not

invertible), such that for any finite extension K of Q,, BSX = Kj. It is endowed
with the induced Galois action and a continuous Frobenious endomorphism ¢ which
extends ¢ : BT — BT. Continuity of ¢ implies that ¢(t) = pt. There is an exact
sequence (known as the fundamental exact sequence)

0—Qp— B BdR/IB%;rR — 0,

cris

which means that (a) BYS. NB, = Q, and (b) BYZ! = Q, + B, (not direct sum).

cris cris
1.2. Potentially semistable representations. Let K be a finite extensions of

Qp and V be a Q,-linear representation of Gx. The fact that Bdcg = K is part
of a technical condition called regularity which implies that the K-vector space
Dar(V) = (Bar ®q, V)% has dimension < dimg, (V). The representation V is
called de Rham if equality holds. All representations coming from geometry are
de Rham. Dgr(V) is equipped with a natural decreasing exhaustive and separated
filtration given by Fili Dyr(V) = (t/B}, ®q, V)9~ for any integer j. An integer
j is called a Hodge-Tate weight of the de Rham representation V if Fil 7 Dgr(V) #
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Fil=9tDyr(V) and is counted with multiplicity dimg, (Fil =/ Dgr(V)/Fil 7T Dar(V)).
There are d = dimg, (V) Hodge-Tate weights for V, counting multiplicities.

Between B..;s and By sits (non canonically) a ring Bs; = B.,is[X], where X is
a polynomial variable over B.,;s. By is equipped with a Frobenius which extends
the Frobenius on B..;s and is such that ¢(X) = pX. There is also a Qp—linear
monodromy operator N = —% which satisfies Ny = poN. Let p € ET be any

0):

element with p p and let

R > 1— 15 n—1
loglg] = log, () — > L2
n=1
There exist Galois equivariant, B.,;s-linear, embeddings of B,; in Byz which maps X
to log[p], but they require a choice of log,(p). We always assume that log,(p) = 0.
Bg; is equipped with a Galois action which extends the Galois action on Bgys,
BgK = Ky and the map F ®p, Bg" — Bgg is injective. The chosen inclusion
of By in Byp defines (non canonically) a filtration on Dy (V) = (By ®q, V)%
which is preserved by the Galois action. By the construction of the ring B,
dimp, Ds (V) < dimg, (V). V is called semistable when equality holds. It is called
potentially semistable if it becomes semistable when restricted to G, for some
finite extension F' of K. Crystalline representations are semistable and semistable
representations are de Rham with the converse inclusions being false. Potentially
semistable representations are de Rham. The converse is also true, but harder to
prove, and is known as the p-adic monodromy theorem.

1.3. Preliminaries and notations. We retain the notation of the introduction
and we denote f the residual degree of F' over Q, and o the absolute Frobenius of
Fy. We fix an inclusion i : Fy < E and we let 7; =io07 for all j =0,1,..., f — 1.
We fix once and for all the f-tuple of embeddings (79, 71,...,7f—1). The map & :

E®q,Fo — ]I FE givenby{(x®q,y) = (17(x)y), with the embeddings ordered
T:Fo—FE
as above, is a ring isomorphism. The ring automorphism ¢ : [ E— ] F
T:Fp—FE T:Fp—FE
with ¢(zo,x1,...,25-1) = (21, ...,Tf_1,20) is the unique one making the following
diagram commute, where in the horizontal arrows ¢ = 1g ®q, o

E®q,Fo ¢  E®q,Fo

€l €l
E %) E
T:Flo_[(—>E - T:Flg_[‘—>E
We denote e; = (0, ...,1,...,0) the idempotent of [] E where the 1 occurs in
T:Fp—FE

the 7;-th component for any j € {0,1, ..., f — 1}.

1.4. Potentially semistable representations with coefficients. Let p: Gx —
GLE(V) be as continuous finite dimensional representation of G with K and E as
above. Dy (V) is an E ®q, Fo-module and V' is F-semistable if and only if D (V)
is free of rank dimg V. Throughout this section we assume that V' is F-semistable.

Dy (V) may be viewed as amodule over [[ FE via the ring isomorphism ¢ of sec-
T:Fo‘—>E

tion 1.3. We filter each component e; D, (V') by setting Filie; D (V) = e;Fil’ Dg(V)
for all j € Z. The Frobenius endomorphism of B; induces an automorphism ¢ on
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Dy (V') which is semilinear with respect to the automorphism ¢ of E ®q, Fo. The
monodromy operator N of Bg; induces an F®q, Fo-linear, nilpotent endomorphism
N on Dy (V) such that Ny = ppN. DE(V) = F® g, Dst (V) is equipped with the fil-
tration induced by the injection F®p, Dst(V) — Dar(V). It has the properties that
Fil’DE(V) =0 for j > 0 and Fil’ DE (V) = DE(V) for j < 0. It is also equipped
with an Fp-semilinear, E-linear action of G = Gal(F/K) which commutes with ¢
and NV and preserves the filtration. We remark that the E®q, Fo-modules e; Dg (V)
are not necessarily free (compare dimensions over F). They are equidimensional
over E with dimension dimg V' because the maps ¢ : ¢;Ds (V) — e;_1Dgs (V) are
E-linear isomorphisms for all 7.

1.5. Filtered modules with coefficients and descent data.

Definition 1.1. A filtered (p, N, F/K, E)-module of rank n is a free £ ®q, Fo-
module D of rank n equipped with

e an Fy-semilinear, F-linear automorphism ¢,

e an E ®q, Fo-linear nilpotent endomorphism N such that Ny = ppN,

e a decreasing filtration on Dp = F ®p, D such that Fil’D =0 for j > 0
and Fil’D = D for j < 0, and

e an Fy-semilinear, E-linear action of G = Gal(F/K) commuting with ¢ and
N and preserving the filtration.

A morphism of filtered (¢, N, F/K, E)-modules is an E ®q, Fo-linear map which
preserves the filtrations and commutes with ¢, N, and the Gal(F/K)-action.

Definition 1.2. A filtered (¢, N, F/K, E)-module is called weakly admissible if
it is weakly admissible as a filtered (¢, N, E)-module in the sense of [BM02, cor
3.1.2.1).

The Galois action plays no role in weak admissibility. We have the following fun-
damental theorem essentially due to Colmez and Fontaine (see [SAVO05, § 2]).

Theorem 1.3. Let k > 1 be any integer. The category of F-semistable E-representations
of Gk with Hodge-Tate weights in the range {0,1, ..., k—1} is equivalent to the cate-
gory of weakly admissible filtered (p, N, F/K, E)-modules D, such that Fil°(F®g,
D)= F ®p, D and Fil*(F ®f, D) = 0.

2. THE RANK TWO FILTERED (¢, N)-MODULES

Notation 1. Let Iy = {0,1,...,f — 1}. For each J C Iy we write f; = > e,. If

=
Ze [ FE, we denote Nm, (&) = fl:[l O (%) and Try (%) = fil ©'(&). For any
z e 7-11[710_[‘—>EE we denote x; the i-th col;soonent of @, Jz the su;zoort of & i.e. the
set {ZFGDL;(? z; # 0} and T~1 the vector > e,x;t (071 =0). For any matriz
A € Ms( FH EE) we write Nmy(A) = A:;éjl)...cpf_l(A), with ¢ acting on each
T Foe—

entry of A.
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2.1. Putting the Frobenius into shape. Let (D, ¢) be a ¢-module of rank two

over [][ E. We start by putting the matrix of the Frobenius endomorphism ¢
T:Fg‘—>E

in a convenient form. The following elementary lemma will be used frequently.

Lemma 2.1. (i) The operator Nmy,: [ E— [l FE is multiplicative. (i)
T:Fo‘—>E T:Fo‘—>E

Let @, € I E*. The equation in & - A=3- cp(/i') has nonzero solutions if
T:Fp—FE

-,

and only if Nmy(&) = Nmy(B). In this case all the solutions are

A — Qg Qoo Qoay...Qp o
A= A(1, B Begrs e BoBr B s ), for any A € E.

Proof. Obvious. O

Let 77 and € be ordered basis of D over [] F and let (n1,m2) = (e1,e2)A for
T:Fo—FE

some matrix A € GLa( [] FE). We write A = [1] and it is clear that [p]e =

T:Fo—F
Alplae(A)~. The main observation of this section is the following

Proposition 1. Let D be a rank two @-module over [ E. After enlarging E
T:Fo—FE

if necessary, there exists ordered base 11 of D with respect to which the matriz of ¢

takes one of the following forms:

(@) [els= < aé»l 50f ) for some a, 6 € E* with of # 67, or

y a1 0

(@) [plq = ( g a.f) for some o € E*| or

a1 0 y . ‘

(i13) [ply = . - | for some a € E* and some ¥ € ] E with
v a-l T:Fp—FE

Try(y) # G.
To prove proposition 1 we use the following

Lemma 2.2. Let D be a rank two p-module over [[ E. After enlarging E if
T:Fo—FE

necessary the following hold:

(i) If o7 is not an E*-scalar times the identity map, there exists ordered base 7 of

D over [] E such that [p]; = ( i g» ) , with the additional properties that
7:Fy—E n

(@) If Nmy,(8) # Nmy,(0), then if = 0 and (8) If Nmy() = Nmy(V), then &= 6

and T, = 1, where fg, = f%,—, is the (2,1) entry of the matric Nmy([¢]5).

(ii) If ©f is an E*-scalar times the identity map, there exists ordered base 7j of D

over [[ E such that [¢]; = diag((4,1,...,1),(A,1,...,1)) for some A € E*.
T:Fp—FE

Proof. (i) Since ¢/ isa [] E-linear isomorphism, there exists ordered base € of
T:K—FE

Dover [] E suchthat [pf]; = 4 04 with A;D; #0foralli € Iy, C; =0
TK—FE ¢ D

whenever A; # D; and C; € {0,1} whenever A; = D;. Let [¢]z be the matrix
of ¢ with respect to e. We repeatedly act by ¢ on (p(e1),p(e2)) = (e1,e2)[¢le
and get (¢ (e1), ¢’ (e2)) = (e1,ea) Nmy([¢le). Let P = [ple = Py x Pi X ... X
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Pf_l and Q = wa(P) = QO X Ql X ... X Qf—l- Since Q = P(p(Q)P_l, Qz =
PiQiJrlPi_l for all ¢ and {Ai+17Di+1} = {Ai,Di}. Since AlDl =d = deth,
{Aif1,dAZ N} = {Ai,dA; "} Let A = dAg", then for all i, 4; € {4,dA™'} and

(Ao, Ajy) (0, ..., 0) o . o
Nm,(P) = < (CornCy 1) (Doyos Dy_y) ) Vit A € (A dATT} and Dy =
dA;Y. Tf A% # d, then C = 0 and if A2 = d, then C; € {0,1} for all i. We have

RQR™'=

—

-1 -1
((-)»dA ey dATY) (6:4 A) ) where R = Rg x Ry x ... x Ry_; and

R;= (1) (1) or (1) (1) ) depending on whether A; = dA~! or A respectively.

If A2 #d, then RQR™! = diag((dA~%,...,dA™Y), (A, A, ..., A)). If A2 =d, then

(AL A) (1,.,1)
Nmy(P) = ( (0,..,0)  (4,..,4) )

(Since Po(Q)P~1 = @, if C; = 0 for some j, then Cj41 = 0 and ¢/ = A - id
contradiction. Hence C = T). Hence there exists base 7 of D over [[ E such

T:K—E
that [pf]; = < E E%’ o .d,)O) ) for some A € E* and such that C =0
if A2 # d and C

A’ ceey Z
= d. We compute the matrix of ¢ with respect to

A)
C)
if A
) Since Nmy([¢ly) = [¢']; and [glae (Nmy((ln) =

Nmy([ols)[els, a dlrect calculation proves the following:

(1) If A2 # d, then C =0, n—OandC—O

(2) If A2=d, then C =1, =0and &=4.
(ii) Follows immediately from the fact that the matrix of ¢/ is base-independent
and the following

Claim. Let P € GLy( [[ E) such that Nm,(P) = diag(A, A) with A =
T K—FE
(A, A, ..., A) for some A € E*. There exists matrix @Q* € GLa( [] FE) such that

T K—FE
Q*Pp(Q*)~" = diag((A, 1,..,1),(4,1,..,1)).
Proof. Write P = Py x P; x ... X Py_;. We easily see that there exist matrices

Qi € GL3(E) such that for Q@ = Qo x Q1 X ... X Qs_1, Qp(P)p(Q)™1 = Ty x

Ty X ... x Ty_y x Ty_y for some T, = ( f; g} ) for i = 0,1,..., f — 2 and Ty_; =

af_1 Br_ B B
(vf_l 51 ) € GLy(E). Then Nm(QPp(Q)™!) = QNm,(P)(Q) " =
Quiag(4, 4)(Q)~ = diag(4, A).

This implies that H a; = Aand ( H a;)Bf—1 = 0. Hence B7_1 = 0 and Qu(P)p(Q)'=

<o7
gl

g (]. 0pA~ 1 505114 1 ,(50(51...5f,2A71) and R = <

M)
l‘f\l =

7. Let [pl; =

S Oy

> with Nm, (&) = ng,(d) = A Let# = (1,04 L apa AL, ey QOO e f_2 AT,

_
T

(e}
< Oy

) Q. Then RPp(R)™1 =

(4, 17' v 0 for some I € I E It [ = (To, 'y, ..., Tp—q), the
Aa]-v"a]-) T K—FE
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-

" Szl
fact that Nmy,(RPp(R)™') = diag(A, A) implies that To + A > I'; = 0. Let

i=1
B (1,1,...,1) (0,0,...,0) . T T
S = ( (z0721, ---,Zf—l) (1’ 1 1) where zZo = ]. zZ1 = 1 Fl Pg Fffl,
Z9 = 1-— Fg—... Ff Ty eees Zf 2 = 1—Ff 2_Ff 1, 2f—1 = l—Ff 1 and

Q* = SR. The fact that I'o + A Z I'; = 0 and a simple computation yield that

Q*Pp(Q)~ = diag((4,1,.., 1), (A,l,-, 1)). 0
Proof of proposition 1. (i) Suppose [plz = diag(&,7) with ng,(é) # ng,(n) Let
o, € EX (enlarge E if necessary) such that Nm(€) = o/ - T and wa(ﬂ) =6/.1.
We need a matrix A € GLa( [[ E) such that A([p];)e(A)~! = diag(a-1,5-1)

T7:Fo—FE
with of # §7. Its existence follows immediately from lemma 2.1.
(1) Suppose [¢]e = diag((4,1,,,1),(4,1,...,1)). Take & € E* to be an f-th root
of A and proceed as in case (i).
(7i7) Let € be an ordered base of D such that [¢]s = diag((A4,1,...,1),(A4,1,...,1))
for some A € E*. Let where a be an f-th root of A contained in E. As in the

previous cases, [¢]; = < a,%l ao T ) for some ordered base 7.
.1 ] AT 0
i . = o . =
Since [p/]7 = < W Tr (7)) of -1 ) and [pf]e = ( T 4.7 ) , we have
Try() # 0. u

Definition 2.3. A p-module D is called F-semisimple , F-scalar or non F-semisimple

if and only if the [[ E-linear map ¢f has the corresponding property. One can
T:Fo—F

easily prove that D ;s F-semisimple if and only if there exists ordered base with re-

spect to which the matrix of ¢ is as in cases (%) or (¢4) of the proposition above, with

D being non F-scalar in case (i) and F-scalar in case (i¢). D is non F-semisimple

if and only if there exists ordered base with respect to which the matrix of ¢ is as

in case (7i7). We refer to such a base as a canonical base of (D, ¢).

From now on we assume that all the p-modules are F-semisimple and nonscalar.
Each p-module D comes equipped with some ordered base 77 with respect to which
the matrix of ¢ has the form [p]; = diag(a - 1,8 - T) with ad # 0 and of # 7. The
matrix of any operator on D will always be with respect to such a base.

2.2. The monodromy operator. The condition Ny = ppN is equivalent to

[Naleln = p [lae([N]5). Indeed, (o(m), ¢(n2)) = (1, n2)[¢ls. We act by N and
get (No(m),Ne(n2)) = (m1,n2)[N]zlels. Since No = ppN, the left hand side

of the last equation equals p(¢N(m), N (n2)). But (N(m), N(n2)) = (1, 172)[N57
and therefore (0N (m1), N (1n2)) = (m, n2)[¢l7¢([IV]7) whence the formula. A short
computation using lemma 2.1 and taking into account that N is nilpotent yields
the following;:

o If of # p*fsf then N = 0.
o If of = p/¢7/, then [N]; = <

A=t
oL ol

> , where N = N(1,¢, 3., ¢/,

¢ = % and N any element of E.
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o If §/ = pfaf, then [N]; = < g, %,[ ), where N = N(1,¢,¢2,...,ef 1),
€= z% and N any element of E.

Remark 2.4. For all rank two filtered (¢, N, F/K, E)-modules, N2 = 0.

2.3. The Galois action.

2.3.1. The Galois action on ] E. We use the isomorphism ¢ of section 1.3 to
T:Fg—FE

define an E-linear G-action on || FE by setting g&(x) = &(gx) for all g and z.
T7:Fo—FE

Let a € Fy be an element of Fy such that {a, o(a), ...,a/71(a)} is a normal base of
f=1 . )

Fy over Q, (with o the absolute Frobenius of Fp). Let ¢; = £( Y. X ® o%(a)) with
i=0

)\f € E. For each j € I the )\f satisfy the following system of equations:
Zak“ )\J—ékj forall k,7=0,1,...,f — 1.

For each ¢ € G = Gal(F/K) there exists unique integer n(g) € Ip such that

f=1 ) f-1 . )
gir, = "9 Since ¢; = (3 X ©0*(0), g¢; = % Mi(g)ex, where Mi(g) =
1=0 k=0

Z Mg thtn(9) - Since the A satisfy the system of equations above, Mj(g) =

5j kn(a) for all g (where for indices we use the convention that ¢ = j when-
ever i = jmod f). Therefore, ge; = e;_p(4) for all j and g which implies that
9a = (Qp(g), Un(g)+1; -+ On(g)+f—1) for all @ = (oo, a1, ...,y 1). Notice that ga =
©™9)(&) and (9@); = Qitn(g)- We shall denote 9@ instead of gd. Let n(G) = {n(g),
g € G}. We have n(G) = {0} if and only if Fy C K and n(G) = I if and only if
there exists element of G whose restriction to Fy is the absolute Frobenius of Fj.

It is obvious that Nm,(9@) = Nmy (&) foralld € ][] FE and g € G. For G
T:Fp—FE

to act on D we must have [g1g2]5 = [91]7(? [g2]5) for all g1, g2. We determine the

shape of the matrices [g]; utilizing the fact that the Galois action commutes with

the Frobenius and the monodromy.

2.3.2. Commutativity with the Frobenius. The Galois action commutes with the

Frobenius if and only if [¢]z¢([g9]7) = [9]7(%[¢]s) for all g € G. We write [g]; =

( 4(9) ?(g) ) for all g. Since o # 6/, lemma 2.1 implies that B(g) = I'(g) = 0.
fo) Ag) ) ) )

We need (a- 1) - p(A(g)) =9 (a- 1) - A(g) arid ( D) - p(Alg)) =¢ (5-1)- A(g)
which have solutions given by A(g) = A(g) - 1 and A(g) = A(g) - 1 for functions
AA: G — E, i=1,2 Since [g1g2]5 = [91]5 ( [ 2l5), since G acts trivially on
vectors of the form « - I, @ € E and given that A(1) = A(1) = 1, we deduce that
A and A are E*-valued characters of G containing Gal(F /K Fp) in their kernel.
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2.3.3. Commutativity with the monodromy. The Galois action commutes with the
monodromy if and only if [N]5(g]; = [g]5(9[N]5) for all g.
e When N = 0 this always holds.

e When of = p/§/, then [N]; = ( j% g ) with N = N(1,¢,¢2, ..., ¢f1),

¢ = % and N € FE arbitrary. Assuming that N # 0, a straightfor-
ward computation shows that the commutativity condition is equivalent
to A(g) = ("W A(g) for all g € G. B

e When of =p=f6/, then [N]; = ( g %7 ) with N = N(1,e,e2,....ef71),
€= p% and N € F arbitrary. Assuming that N # 0, the commutativity

condition is equivalent to A(g) = ™9 A(g) for all g € G.

2.3.4. Summary of the Galois action. (A) The potentially crystalline case: If (D, p)
is F-semisimple and nonscalar if and only if there exist characters y; : G — E*
with Gal(F/KFy) C kerx;, ¢ = 1,2 such that [g]; = diag(x1(9), x2(g)) for all
geaqG.
(B) The potentially semistable, noncrystalline case.
Let [¢]7 = diag(a - I, 6-1) with ad #0, of # 6 and of = p=/47.
e If 5/ = p/at, then [N]; = < g %[ ) with N = N(1,e,...,e/7 1), e = p%
and N € E*. There exists character y : G — E* with Gal(F/KFy) C
ker y, such that [g]; = diag(x(g) - I, €@ x(g) - 1) for all g € G.

0 0 . 7 — [e
<]\7 6)W1thN:N(17C7a<f 1),<:E

and N € E*. There exists character x : G — E* with Gal(F/KFy) C
ker x, such that [g], = diag(¢"9x(g) - 1, x(g) - 1) for all g € G.

o If o/ = p/§/, then [N];

2.4. The filtrations. In this section we describe the shape of the filtrations of

rank two filtered modules and compute those stable under the Galois action. The
notion of a labelled Hodge-Tate weight will be important.

2.4.1. Labelled Hodge-Tate weights. A filtered (¢, N, F/K, E)-module D over

E ®q, Fo may be viewed as a module over [[ E via the ring isomorphism § of
T:Fp—FE
section 1.3. The Frobenius endomorphism ¢ of D is semilinear with respect to the

ring automorphism ¢ of [[ FE defined in the same section . We filter each com-
T:Fo—F

ponent D; = e; D be setting Fil? D; = e; Fil’ D, where F'il’ D is the filtration of the
filtered module D. An integer j is called a labelled Hodge-Tate weight of D with
respect to the embedding 7; of Fy in K if and only if e;Fil 7D # e; Fil 71D, It
is counted with multiplicity dimg (e;Fil 7D /e;Fil=7*'D) . Since ¢ is an E-linear
isomorphism from D; to D;_; for all i, the components D; are equidimensional
over E. As a consequence there are n = rkpg,, r, (D) labelled Hodge-Tate weights
for each embedding, counting multiplicities. The labelled Hodge-Tate weights of
D are by definition the f-tuple of ”sets” (Wy,..., W;_1), where each such ”set”
W; contains n integers, the opposites of the jumps of the filtration of D;, with
repetitions allowed. The labelled Hodge-Tate weights will always be labelled with
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respect to the f-tuple of embeddings fixed in section 1.3. From now on we re-
strict attention to rank two filtered modules with labelled Hodge-Tate weights
({0, —ko}, {0, —k1},...., {0, —k¢_1}), with k; non negative integers. When the la-
belled Hodge-Tate weights are arbitrary we can always shift them into this range,
after twisting by some appropriate admissible rank one filtered ¢-module (see ap-
pendix).

Notation 2. Let ko, k1, ..., kf_1 be non negative integers which we call "weights”.
Assume that after ordering them and omitting possibly repeated weights we get
wy < wy < ... < wy_1, where wy is the smallest weight, wy the second small-
est weight,...,wy_1 is the largest weight and 1 <t < f. Let Iy = {0,1,..., f — 1},
L = {’L ely:k; > ’wo},...,It,1 = {’L ely:k; > wt,g} = {Z ely:k = U}tfl} and

-1 F-1
I; = @. Notice that Z U}l(| I; | — | Lty |) = Z k;.
=0 1=0

2.4.2. The shape of the filtrations. Let D be a filtered ¢-module with labelled

Hodge-Tate weights ({—ko,0}, {—Fk1,0},...,{—ks_1,0}). By the definition of a la-
belled Hodge-Tate weight we have

} e, Dif j <0,
e, Fil/(D) =< DVif 1 <j <k,
0if j > 1+ ks,

where D' = ([ E)e, (Fn1+7ine) for some & = (zf, %, ...,xlj}_l), 7= (yd, yt, ...,yj}_l)
T K—FE
€ JI E, with the additional condition that (x%,v;*) # (0,0) whenever k; > 0.
T K—FE

The condition (z¢,y!) # (0,0) is forced when k; > 0, and one may choose the

2! and y! arbitrarily when k; = 0. We may therefore assume that (z¢,y!) #

(0,0) for all ¢ € Iy. From now on we shall always make this assumption. Since
, f1 , , ,

Fil?(D) = @ e, Fil’(D), Fil?’D = D for j <0 and Fil’D =0 for j > 1+ w;_1.

=0

Let 1+ w,—1 < j < w, for some r € {0,1,...,t — 1}, (with w_; = 0). Then

FillD = @ D' 1f & = (a8, 2}, ...} 71), = (48, yi. ...y} 1) with (zi,57) # (0,0)
iel,

for all ¢ € Iy we get

D if j <0,
( I E)fr(@m+gn) if 1<j<wo,

. fr,(@m +ynz) if 14+we < j < wi,
FZZJ(D) = 7 K—FE
( II E)fr,_,(@n+yne) if 1+wio<j<wey,
T K—FE

0 if j>1+4 w1,

Remark 2.5. The filtration of D can be put into this shape with respect to any
ordered base of D, for appropriately chosen vectors Z and . We may replace ¢ by
fu; and modify Z accordingly without changing the filtration. From now on we
shall usually assume that § = Jj.
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2.4.3. The Galois stable filtrations. Let [g]z = diag(A(g), A(g)) with A(g) = A(g) -

Tand A(g) = A(g) - T as in section 2.3.2. The filtration of D with respect to 7 has
the form

D if j <o,
( II E)fr@m+ frme) if 1< <wo,
T:Fp—FE
. ( E)fr,(@m + fozn2) if 1+wo < j < wi,
FZZJ(D) = T:Fo—E

( II E)fr_ @+ fryme) f T+weo<j<we,
T:Fo—F

0 if j>14w 1
for some #,7 € [[ FE with (z;,3;) # (0,0) for all i € I. We need g(Fil’D) C
T7:Fo—FE

Fil’Dforallg € Gandj € Z.Letr € {0,1,...,t—1}. There must exist f € [[ E
T7:Fo—FE

such that A(g)(?f1,nz,) - (9F) = £+ fr.au, - & (1) and A(g)(9 fr.nz,) = £ fr.auy; (2).
Throughout the paper n(g) is as in section 2.3.1 for all g € G.

Notation 3. For any g € G and any J C Iy we denote 9J the set —n(g) + J =
{—n(g)+ 7, j € J} with all elements viewed mod f.

Lemma 2.6. For any J, J1,Jo C Iy and g € G the following hold: (i) fi, - f1, =

fnogs, (@) 2(fr) = fen, (@) (Ofn) - fr, = fanng, and (iv) 9(J1 N J2) =
(9J1) N (9J2).

Proof. (i), (i7) and (iii) are completely straightforward. For (iv) notice that
fonam) =2 (Fn - f5.) = CFn) O fn) = Fonner): U

Since A(g) # 0 for all g, A(g)(9 fr.n1,) - (9F) = t- fr.nJ, - @ implies that (I, N.Jz) N
Joz C I N Jz. By lemma 2.6, this is equivalent to (I, N Jz) C I, N Jz for all g, and
this is equivalent to (I, N Jz) = I, N Jz. Similarly, 9(I, N Jy) = I, N Jy for all g.
The components of £ on I, N .Jz are uniquely determined by (1), on I,. N Jy by (2),
and all the other components can be chosen arbitrarily. We may therefore solve for
¢ if and only if

9. Jg=1.NJzforall g€ G and r € {0,1,...,t — 1},

91,09 Jy=1I.NJgforallge G and r € {0,1,...,t — 1},

A(9)( fr.naz) - fiy - (OF) = Alg)( f1,00,) - T
By lemma 2.6 the last equation is equivalent to A(g)(YZ) - for,nes.ng; = A(9)T -
fa1,na7;n7, which is equivalent to A(g)(7%) - fi.ns, = A(9)T - fi.n7,- Hence the
filtration is fixed by the Galois action if and only if

9L N9 Jg=1.NJzforall g€ G and r € {0,1,...,t — 1},

91,09 Jy=1I.NJgforallge G and r € {0,1,...,t — 1},

A(9)9Z) - frenay; = A9)T - fr.na,-
The following are easy to verify (see also remarks 4.1 and 4.2 below):
(i) The first equation is equivalent to z; # 0 and k; > w,_1 if and only if 2; ) #
0 and kjqp(g) > wr—1 for all g € G, the second equation is equivalent to y; # 0 and
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ki > wy—1 if and only if yi1n(g) # 0 and kiyng) > wr—1 for all g € G and the
third equation is equivalent to A(g)Titn(g) = A(g)w; for all i € Jz N Jz. When
n(G) = {0}, the only condition is A(g) = A(g) when Jz N Jy # @.

(#i) When n(G) = Iy, there exist Galois-stable lines if and only if all the labelled

Hodge-Tate weights are equal. In this case the only Galois-stable [] FE-lines
T:Fo—FE
are the two axis and those spanned by vectors #n; + 12 (compare with [GMO7, prop
- > > A A A -
3.3)), where & = 2o X(g), where X(g) = (1,(53), (514)?, ... (54)7 1) for any
xo € EX, with g being any element of G such that g/, = Frobg,. Notice that the

vector X (g) is independent of the choice of g.

3. ADMISSIBILITY
3.1. Submodules fixed by the Frobenius and the monodromy.

Lemma 3.1. Let (D, p) be a rank two @-module over  [[ E and suppose the
T:Fp—FE

matriz of ¢ with respect to some base 7 = (ni,m2) of D has the form [p|; =

( (f g» ) . All the p-stable submodules of D are 0, D, Dy =( [ E)n2 or of
v T:Fp—FE

the form Dy = ( [[ E)(m +0ny) for somef e [] E.

T:Fp—F T:Fp—FE
Proof. Let M be a @-stable submodule of D. (A) If M N ( [[ E)ne # 0, let
T K—FE
Tno, € M with ¥ # 0. If Jp = {i € Iy : ; # 0} then > e;n2 € M and after
i€Jz

multiplying by e,, for some i € Jz we see that e,,n2 € M for some (in fact all)
i € Jz. We act by ¢ repeatedly and get that e;,n2 € M for all i € Iy, therefore
Ny € M. If Zny + e € M for some & # 0, then &, € M. Arguing as before and
using the fact that 7o € M weget n; € M and M = D. Hence M =( [ E)nor

T K—FE
M=D.(B)If Mn( J[ E)n2=0.Assume M # 0 and let Zn; + yn2 € M with
T:K—E
£ # 0, then (> er,)m + tinz € M for some ¢y and e,,n1 + Hanz € M for some
i€z

i € Jz and some 5. We apply ¢ repeatedly and use the fact that N is ©- stable to

get, that 5y +6n, € M for some . We'll show that M = ( H E)(n1 4 01). Every
K—FE

nonzero element of M has the form an; + ﬂng with @ # 0 Since an; +a- 0772 e M,
(a- g— ﬁ) ne € M and & - g —ﬁ Hence am—l—ﬁng =am+a- 9172 =a(n 1—}—9172) O

We determine the vectors § for which Dy = ( FH EE)(m + 0ns) is a @-stable
T Ho—
submodule of the F-semisimple, nonscalar ¢-module D. Dj is p-stable if and only

if there exists £ € [ E such that o(n + 0n2) = i(n1 + 6 12). We repeatedly
T:Fo—F

act on the latter equation by ¢ and get of (1) + 07 (n2) = Nmy,(#)(m + 0n2).
This gives Nmy(a - )1 + 0 Nmy(6 - D) = Nmy(E)ym + Nmy(f) - 0. Hence
Nmy(o - 1) = Nmy(t) and 0 = (af — 67) - 4. Since of # 67, 6 = 0. Therefore

the only nontrivial ¢-stable submodules of D are D; = ( [[ E)m and Dy =
T7:Fo—FE
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( Il E)n2. Combining the results of the previous paragraph with section 2.2 we
T:Fo‘—>E
get the following

Proposition 2. Let 7 be a canonical base of (D,p). If (D,p) is F-semisimple
and nonscalar, the submodules of D fized by the Frobenius and the monodromy
are: (1) 0, D, Dy = ( [ E)m and Dy = ( [] E)ne if (D,p) has trivial

T:Fg—FE T:Fp—FE
monodromy. (i) 0, D, Dy = ( [[ E)m, if (D,¢) has nontrivial monodromy
T:Fp—FE
0 N ‘ o
[N]; = < S S > and (ii3) 0, D, Dy = ( [[ E)ne, if (D,¢) has nontrivial
0 0 T:Fp—FE
0 0
N n — — —
monodromy [Nz < N G )

f-1
Proposition 3. t5 (D) = Zjowlﬂ L =Ly |) = ;3 ki.

Proof. Let I, = {i1 < i2 < .. < is}, s = s(r) > 1. The eT,i,(fm + yn2),
j=1,2,...,s clearly generate ( [] E)fr.(@m + yn2) over E. If Z Ajer, (Tm +

TK‘—?E
yn2) = 0 € D, with \; € E, then Z Ajer, T = 0 and Z Ajer, i = 0, therefore
j=1 j=1 !
> (0, Ajy!, .., 0) = 0 and z( Ay oo 0) = 0. Since iy < iz < ... < iy and
j=1
(xi,y) # (0,0) for all i € Io, /\ =0 for all j. O

Let Do = ( [] E)n2. By definition, Fil?(Dy) = Do N Fil/(D) for all j. Let
T:Fo—F

14+ ws_q1 < j < w, for some s = 1,....t — 1. We have fny = ¢ - fr,(@m + yn2)
if and only if £- - f;, = 0 and - - f;. = t. For all i € I, such that z; # 0,
& =0.If x; =0, then y; # 0 and £ - - fr, can be anything in flsﬂJ ( Il E)as

K—E
£ variesin  [[ E. Let Iy z = I, N JL, then Fil’(D2) = ( [] E)flmng for all
T K—FE T K—FE
1+ws 1 <j<wsand
Dy if j <0,
( H E)ffo,f,nQ If 1 S.] S wo,
. T:K—FE
Fil? (D3) = { oo
( II E)fr_,.m if 14w o <j<wp g,
T:K—FE
0 if j>1 4w,
In this case, ¢ (Dy) = i wil| Iz | — | Tiy1.z |) where I z = @.
Since | I z | — | Iit1.2 |— #{j € Iy: kj =w; and z; =0},
t—1
Sl s |~ Lz )= Y kand (D)= X ks
=0 {’LEIo: :EI:O} {iGIQ: :EI:O}
For D; = ( [[ E)n,an identical computation gives t£& (D) = Sk If

T:K—E {i€lp: y;=0}
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&=a-1,8 =081, then t%(D) = f - v,(ad). With the notation of section 3.1,

t5(D2) = vp(Nmy(0)) = f - vp(0) and t{(D1) = vp(Nmy () = f - vp(a).

4. THE WEAKLY ADMISSIBLE RANK TWO MODULES.

Let ko, k1,...,kf—1 be non negative integers. In this section we list all the non-
scalar, F-semisimple weakly admissible filtered (¢, N, F/K, E)-modules with
labelled Hodge-Tate weights ({0, —ko}, ..., {0, —kf_1}). Summarizing the results of
the previous sections, we have the following;:

4.1. The potentially crystalline case. There exists ordered base 7 of D over

[ E such that
T:Fo—FE

e The Frobenius endomorphism ¢ of D is given by [¢]; = diag(ce - 1,8 - 1)
with o, § € E, ad # 0 and of # §/.

e The Galois action is given by [g]; = diag(x1(g) - 1, x2(g) - 1), where y; :
G — E* are characters with Gal(F/KFy) C ker x;.

e The Galois-stable filtrations are

D it j <o,
( II E)fr@m+ frme) if 1< <wo,

T:Fo—

. ( I BE)fn@m+ fome) if 1+wo <j<wn,
FZZJ(D) = T:Fy—E

( II E)fr_ @+ fryme) f T+weo<j<we,
T:Fp—FE

0 if 7214w,
with Z, € [] FE and (x;,y;) # (0,0) for all 4 € Iy such that

T:Fp—FE
(1) (L)NEJz)=ILNJgloralge Gandre{0,1,..,t—1},
(i) (9I,)N (9Jy) = I, N Jyfor all g€ G and r € {0,1,...,t — 1},
(ii1) X1(9)Tiyn(g) = X2(g)x; for alli € Jz N Jy and g € G with n(g) as in
section 2 3.1.

Remark 4.1. When n(G) = {0} or equivalently Fy C K, the three conditions above
are equivalent to x1 = x2 if Jz N Jy # & and are empty if Jz N Jz = @.

Remark 4.2. When n(G) = Iy, equations (i) and (i7) for r = 0 imply that Jz, Jy €

{®7IO}'

(a) If Jz = @. Since (z;,y;) # (0,0) for all i, Jy = Iy. Since 91, = I, for all g

and 7, I, = @ for all » > 1 and all the labelled Hodge-Tate weights have to be

equal. In this case the third equation is empty and Fil’'D = ( [[ E)fr.n. if

T:Fp—FE

1+w, <j<w, forallr e {0,1,....t — 1}.

(B) If Jy = @. Then Jz = Iy, all the labelled Hodge-Tate weights have to be equal

and the third equation gives x; ) = X1 (9)x2(g)x; for alli € Iy and g € G.

Since Jz = Ip and Jy = @, Fil!D = ( [] E)fr,m if 1+w, <j < w, for all
T:Fo—FE

re{0,1,...t—1}.
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(v) If Jz = Jy = Ip. As above all the labelled Hodge-Tate weights have to be

equal. A simple computation shows that Fil’D = ( ] E)fr, (& + n2) for
T7:Fo—FE

all 14w, <j < w, and all 7 € {0,1,...,t — 1}, where Z = 20X (g), X(g9) =

(1, (’;;—Egi), (%)2, ey (’;;—Eg)f‘l) for any zo € E*, with g being any element of G

such that g, = Frobr,. Notice that the vector X (g) is independent of the choice
of g.

e The Frobenius-stable submodules are 0, D, Dy =( [] E)n2 and

T:Fp—F
Di=( Il E)m.
T:Fp—FE
e D is weakly admissible if and only if (i) v,(ad) = Z ki (i) vp(a) >
ZEIQ
% > k; and (i19) vp(9) > % > k;.
{i€lo: y;=0} {iclo: z:=0}

e Assuming that D is weakly admissible,

(1) D is irreducible if and only if both the inequalities above are strict.

(#¢) D is nonsplit-reducible if and only if exactly one of the inequalities

above is strict.

If vy (o) = % > k; and vp(J) > > ki, the only admissible
{i€ly: y;=0} {iclo: z;=0}

submodule is D;.

If v, (0) = % > k; and vp(a) > > ki, the only admissible
{’iGIg: :EI:O} {’LEIO Yi= 0}

submodule is Ds.

(¢43) D is split reducible if and only if {i € Iy : k; > 0} N Jz N Jy = @. The

admissible submodules are Dy and Dy and D = Dy @ D».

ol

<l

4.2. The potentially semistable, noncrystalline case. There exists ordered

base 7j of D over [] FE such that the Frobenius endomorphism ¢ of D is given
T:Fo—FE

by [¢]s = diag(a - 1,6 - 1) with ad # 0 and of # §/. We have the following cases:
(A) If of =pf6f. Let ¢ = %, then:

e The monodromy operator is given by [N]; = ( ]%_ 8’ >, where N =

N(1,¢,...,¢f71) with N any element of EX.

e The Galois action is given by [g]; = diag(C"9x(g) - T,x(g) - 1), where
X : G — E* is a character with Gal(F/KFy) C ker x.

e The Galois-stable filtrations are
D if 7 <0,

( I BE)fr@m+ fome) if 1< <wy,

T:Fo—FE

} ( II E)fn@m+ fogme) if 14 wo < j <,

FZZJ(D) = T:Fo—F

( H E)flt_1(f771 + fJgUQ) if 1 Fwi_o < .] < Wt—1,
T:Fo—F

0 if j>1+we.

with Z, € [] F and (x;,y;) # (0,0) for all ¢ € Iy such that
T7:Fo—FE
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(i) (L)NEJz)=ILNJzlorallge Gandre{0,1,..t—1},
(i) (9I,)N(9Jy) =1, NJyforall g e G and r € {0,1,...,t — 1},
(141) C"(g)miJrn(g) =ux; forallic JzyNJyand g € G.
e The submodules fixed by the Frobenius and the monodromy are 0, D and
Dy=( II E)me.

T7:Fo—FE
e D is weakly admissible if and only if
1
(i) vp(6) = =5 + 55 > ki and (i) > k>f+ Y k.
2f i€lp {i€lp: x;#0} {i€ly: z;=0}
e Assuming that D is weakly admissible, D is nonsplit-reducible if and only
if v,(0) = 4 > k;. Such a D is never split-reducible.

! {i€ly: z;=0}
(B) If 6/ =pfaf. Lete = 1%’ then:

[=TR=11
oLz

e The monodromy operator is given by [N]; = ( > , where N =

N(l,e,...,e71) with N any element of E*.

e The Galois action is given by [g]; = diag(x(9) - I,e"@y(g) - 1), where
X : G — E* is a character with Gal(F/KFy) C ker x.

e The Galois-stable filtrations are
D if j <o,

( II E)fr,(@n+ fome) if 1<5 < wo,

T:Fo—F

‘ ( I BE)fn@m+ fome) if 1+wo <j<wn,
FZZJ(D) = T:Fo—FE

( II E)fr_.@n+ fryme) f T+weo<j<we,
T:Fp—FE

0 if j>14 w1,
with Z, € ] F and (z;,y;) # (0,0) for all ¢ € Iy such that
T7:Fo—FE
(i) (UL)NEJz) =L NJglorallge Gandre{0,1,..,t—1},
(i) (91, )N (9Jy) =1L, NJyforall ge Gand re {0,1,....,t — 1},
(i11) Tiin(g) =" Da; for alli € Jz N Jyand g € G.
e The submodules fixed by the Frobenius and the monodromy are 0, D and
Di=( Il E)m.
T:Fp—FE
e D is weakly admissible if and only if
1
(i) vp(a) = =2 + — > k; and (ii) vy(a) > % > k.
2f i€lo {i€lp: y;=0}
e Assuming that D is weakly admissible, D is nonsplit-reducible if and only
if vp(a) = % > k;. In this case the only admissible submodule is
{i€lyp: y;=0}
Dy =( I E)m.Sucha D is never split-reducible.
T7:Fo—FE

Remark 4.3. For the special cases when n(G) = {0} or I, see remarks 4.1 and 4.2.

5. DETERMINING THE ISOMORPHISM CLASSES

Let (D1, @1, N1) and (Da, 2, Na) be isomorphic filtered (p, N, F/K, E)-modules.
It is clear that D; is nonscalar F-semisimple, if and only if D5 is and that D; has
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trivial monodromy if and only if Dy does. Let h : D1 — D5 be an isomorphism of
. =2
filtered (¢, N, F/K, E)-modules. For basis 77* of D; as in lemma 1 we let Q = [h]g1

andwewriteQ:(? E)

5.1. Commutativity of h with the Frobenius. Commutativity of A with the
Frobenius is equivalent to ([¢2]72)-¢(Q) = Q-([¢1]51). Let [ = ( ai(—): 1 5‘0 7 )
with «;d; # 0 and oz{ # 5f . The commutativity condition is equivalent to oy A =

ap(A), 1B = axp(B), ail = 52(,0( [) and 6, A = dy0(A). If of ¢ {ag,(sf} then
by lemma 2.1 we must have A = [' = 0 contradiction. Hence of € {af, 8]}, and
similarly (5f € {a2 , 5f}. Since O% # 5{ for 7 = 1,2 we have the following cases:

(i) If ] = of and 6/ = 6. Then by lemma 2.1, Q = ( E):l % ) where A =

A(lauhu%a "'a,u{_l)v & = A(IMU'ZMM%? "'hug_l)a u1 = a27 H2 = 5 L and with A Ae
E> arbitrary scalars.

(ii) If of = 6 and 6/ = af. Then by lemma 2.1, Q = (

a2

0? ) where B =

B(1,&,82,....¢0 ), T =T(1,6,8,...6 ), & = &, & = §* and with B,T € EX
arbitrary scalars.

5.2. Commutativity of h with the monodromy. The monodromy operators

commute with h if and only if [1)3 [N1]; = [Na]z2[h]7;. It is clear that the mon-

odromy of one of the filtered modules is trivial if and only if the monodromy of the
other is.

() Q= < 64 % ) and [Ni]; = ( g ng ),Where N = Nl(l,al,...,a{_l)

with N; any element of E* and ¢; = 1%1. We easily see that the monodromy of

D, has to be of the form [Na]z; = < g ]\ég ), where ﬁg = NQ(I,EQ,...,ag_l)

with Ng # 0 and €3 = 2. The condition [h} [Nl] 1= [Ny [R]] 7 i equivalent to

NQ A= N1 A Wthh is in turn equivalent to AN; = ANy and p1e1 = pgese. The
last equation always holds.

(i1) f Q = ( 64 % > and [Ny]; = < J\gfl g > , where Ny = Ny(1,¢y, ..., ¢ 1),
Ny # 0 and (3 = 2. We easily see that the monodromy of Dy has to be of the

po2

> , where N2 = Ng(l,Cg,...,Qéi ), Ny 75 0 and (o = &,

[N1] = [No]ip [h]nl is equivalent to Ny - A = Ny - A which is in
= AN;7 and p1( = palse. The last equation always holds.
and [Nl]ﬁl = 9 9 y where ]\71 = N1(17<1, ceey {_1),
Ni 0O
. We easily see that the monodromy of Ds has to be of the form

(iti) 1t Q = < %
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[Nolpe = ( 2 ) , where Ny = No(1, €9, ...,agfl) with Ny € EX and ey = 22

[R)2: (N1 = [Nagn
to BN1 FNQ an d{

G
(iv) If Q = ( Oﬁ ? > and [N1]; < (_), ]\_[,1 ),Where Ny = Nl(l,sl,...,sffl),

oL o
o2

5

]Z s equivalent to r. N2 B-N 1 which is in turn equivalent
= &2e9. The last equatlon always holds.

0 0
Ny # 0 and 1 = 51 . We easily see that the monodromy of Do has to be of the
0 0
form [Np]z2 = < S > , where Ny = NQ(l,CQ,...,C2 ), Ny # 0 and (o = pTQ'

Ng 0
The condition [h ], N1l = [No]m [h]gi is equivalent to BN, = T'N; which is in
turn equivalent to BNQ I'N; and & (2 = &2e1. The last equation always holds.

5.3. Commutativity of h with the Galois action. The Galois actions com-
_2 =2
mutes with /2 if and only if [A]7: (gl = [g]z2([R]}),). We have the following cases:

-

HUQ= ( ? % > as in case (i) of section 5.1. Let [g]; = diag(x1(g)-1, x2(g)-1)

and [g]y2 = diag(y1(g) - T,42(g) - I). We immediately see that the commutativity
condition is equivalent to x1(g) = /ﬂf(g)wl(g) and x2(g) = ,ug(g)wg(g) for all g.

y 0 B
IfQ = S
(1) If Q ( B

1) and [g],2 = diag(¥1(g) - 1,2(g) - I). We immediately see that the commutativity
condition is equivalent to x1(g) = §;Z(g)1/)2(g) and x2(g) = 5?(9)1/)1@) for all g.

) as in case (i¢) of section 5.1. Let [g];1 = = diag(x1(9)-1, x2(9)-

5.4. Preserving the filtrations. The isomorphism of filtered ¢-modules h should
preserve the filtrations: h(Fil’D,) = Fil’ Dy for all j. Suppose that for i = 1,2

D; it j <0, ‘
( II E)Y@Emi+ frm5) if 1 <35 <,
T:Fo—FE
. ( 1T E)fr(@mi+ foyms) if 14wy <j <wi,
Fil’(D;) = T:Fo—E
( II E)fr_,@mi+ [, 772) if 1+wi2 <j<wia,
TF()‘—>E
0 ifj>14w1

@ if all the labelled Hodge-Tate weights are zero,
We define I7 = Iy if all labelled Hodge-Tate weights are positive,
I, if there are positive and zero labelled Hodge-Tate weights

) IfQ= ( {} 0 ) as in case (i) of section 5.1. Since his ( [[ FE)-linear,
0 A T:Fo—FE
(

h(Fili(D)) = Fily(Dy) is equivalent to ([T E)frs (f,, @1 Amy+ fu,, - An) =
T:Fo—F
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( 11 E)fll* (fJa52 - Ty e + fis, e2). The latter is equivalent to
T:Fo—F )

freog. - A-Z =1 freau, freog.. = frns,. - A
1R R 1 111z 10z 717 )
{ A k3 (1) and X (2)

Jrzaag, = fring, -t

for some i, € J] E.We immediately see that (1) and (2) imply f 150z, 0y,
T:Fo—FE )

A-#y = frrnig,nay, <A To. Since A € FH EEX, (1) implies that I7NJz, C IFNJz,
T:Fop—

and (2) implies the inverse inclusion, hence IT NJgz, = I} NJz,. Similarly, since Ae
I[1 PEx IfnJg = IyNJg,. Conversely, arguing as in section 2.4.3, we see that
T:Fo—FE

if I¥NJz, = Ii N gy, IEN Tz = IENJg, and frens, nag, AT1 = frrnss,niy, A&
we can solve for ¢ and #; in both (1) and (2). Hence the existence of ¢ and £ in (1)
and (2) is equivalent to

N Je =0 Js,

ITnJg =17 N Jg,

oo S . ) S
and freng, nay AT = frragg,ngg, ATz in Pf~1(E).The equation frngzng, A

— N oo . . -1 . o

T1 = fLnuzniy ATz can be written (in P/ ~1(E)) as f1,n.n7; Ao F1 = fr,nseniy-
- N . = —1 ~ -1 :

Ag - o, with Ag = (1,1, €3, ...,E{ ), Ao = (1,692,635, ...,ag ). Conversely, if oz{ =

a;‘ and 5{ = 55 and the equations above are satisfied, then the [[  E-linear map
T:Fo—FE

—

h:(D1,¢1) — (Da,p2) defined by Q = [h}g? = < 840 &0 ) is an isomorphism of
0

filtered p-modules.

(ii) IfQ:(

oty

) , similarly we see that h(Fil’D,) = Fil’ Dy is equivalent to

o

I'ndg =17 ﬂJgQ
ITNJg =1 NJg,
and fr:ns;, nuy, - Bo = fIfﬁngﬁJEQ‘fO‘fl‘fQ in P/~ 1(E) with By = (1,&1,&%, .../ ),

Lo = (1,69,€2,...,671). Conversely, if af = 6}, 6/ = af and the equations above

are satisfied, then that the [][ FE-linear map h : (D1,01) — (Da,p2) defined by
T:Fp—FE

> is an isomorphism of filtered @-modules.
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6. THE ISOMORPHISM CLASSES
Let (D1, ¢1, F/K, Ny), (Da, @2, F/K, N3) be filtered p-modules. Let 7* be
a basis of D; i = 1,2 as in section 4. Let [p;]5 = diag(o - f, 0; - f), 9l =
diag(x1(g) - 1, x2(9) - 1), [glp2 = diag(11(g) - 1,402(g) - 1) for all g and

D; if j <0, ‘
( FH EE)(fmi + fozme) i 1< 5 <y,
T:Fo— , ,
, ( II E)Vfn@mi+ frms) if 1+wo <j <wi,
Fllj (Dl) = T:Fo—F

( H E)fft—l(finli + fJ,;,né) if 1+ Wt—2 S.] < Wt—1,
T:Fp—FE
0 if _] 2 1+ Wt—-1

fori=1,2.

6.1. The potentially crystalline case. If both the monodromies are trivial, then

(D1, p1, F/K) ~ (D3, @2, F/K) if and only if either
0 { of =af } { N Js =0 Js, } x1(9) = 191 (g)
ol =of IrnJg =1 N Jg, xa(9) = 1542 (g)

for all g € G and /Y flfﬁ‘]hﬂ‘]m - = & . flfﬂ‘]izm‘lﬂz - Zo in ]P)fil(E) with /T

a1 o1

= (17/L1,ILL%, "'nu{_l)? & = (17/1’27”%7 "'nug_l)? where H1 = as and H2 = 550 or
(1) {0§=5§} {<ﬁﬂla=1fﬂ%2} x1(9) = &'V42(9)
o =af I[N Jg =170 Jz, xa(9) = &'V (9)

for all g € G and .é . fIfﬂJilmng = f . flfﬂ‘]ﬂhm‘lgl - T1 - X in Pf_l(E)7 with
B=(16,& .6/ 7). T'=(1,6.6,..,¢ "), where & = 2 and & = 2

6.2. The potentially semistable, noncrystalline case. If both the monodromies
are nontrivial, then (D1, ¢1, F/K, N1) ~ (D3, w2, F/K, N») if and only if either

o { a§ :ajg } { N Jz =1{ Nz, } x1(9) :u’f(@))wl(g)
o) = 0 IiNJg =1 NJg x2(9) = pg P12(g)
for all g € G, where 1 = g—; and pg = g—; and

(a) If [Ni]; = ( 8, ng ) with N; # 0 be as in section 2.2. The filtered modules

are isomorphic if and only if in addition to the conditions in (I) the equation A
X - X e - . _ T -1
fhﬁJflﬂng'xl :A'fhﬂJilﬁng'mz holds 1n[P’f 1(E)7WhereA_ (17/}’17#%7"'7#{ )

X -1
and A = (1, pa, 3, ...,,ug ).

—

(B) If [Ny = ( ]\9/_ g )With N; # 0 be as in section 2.2. The filtered modules

K3
are isomorphic if and only if in addition to the conditions in (I) the equation
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A finsenay, 4= A- Fiin74 00y, + T2 holds in P/~1(E), with A and A are as in
case (I)(«), or

an { of =of } { I; N Jg, = I 0 g, } x1(9) = & “a(g)
0] = oy Iindg =1L 0Jg xz(9) = 5?(g)¢1(9)

for all g € G, where & = 5—12 and & = O‘—; and

«

() If [N1]; = < 0 g) and [Nz = ( 0 N ) with N; # 0 be are as in

Ny 0 0
section 2.2, the filtered modules are isomorphic if and only if in addition to the
conditions in (/1) the equation B- f]*m‘]a Ny, = =T. fr;00:, 005, + @1 - @2 holds in

]P)f 1( )a WhereB (1 glagla- * 1_ )andF—F(l,£2,§2,..., g 1)'

(B) If [N1];n = 0 M and [Na|;z = 9 0 with N; # 0 be as in section
0 O Ny 0

2.2, the filtered modules are isomorphic if and only if in addition to the conditions
in (II) the equation B - f]fﬂ]ilﬁjgl =TI. f]fﬁ]ilr‘]]gl - 1 - T holds in P/~1(E),
where the B and T are as in case (IT)(c).

Appendix

The potentially crystalline E*-valued characters of G
Let ko, k1, ..., ky—1 be integers, not necessarily non negative. Assume that E is large

enough to contain an element 7 such that 7/ = pZiEIO ¥i The admissible rank one

filtered (¢, F'/ K, E') modules with labelled Hodge-Tate weights (—ko, —k1, ..., —kf—1)

are of the form D = ( [[ FE)e with ¢(e) = u(m, T, ..., 7)e for some u € E* NZ)
T7:Fo—FE

and g(e) = (x(g) - I)e for some E*-valued character x of Gal(F/K) factoring

through Gal(FyK/K). They have filtrations given by

( IT PEe if j <wo,

T:Fo—FE

fn(C I Ele if 1+wo<j<w,

Fi'(D) =8 e

Jr..( Il E)e f 1 +wip <j<wa,
T:Fp—FE

0 if > 1+ we1.

Call such a filtered ¢ -module (D, x). Then (D,, x) and (D,, ) are isomorphic if
and only if (i) uf = vf and (ii) x(g) = ™9 (g) for all g € G, where ¢ = uv ™.

Proof. Exercise. U
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