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Abstract

Let (G,V ) be a multiplicity-free finite-dimensional representation of a con-
nected reductive complex Lie Group G, and G′ be its derived subgroup. De-
note by g the Lie algebra of G, and U(g) its universal enveloping algebra. As-
sume that there exists a polynomial f generating the algebra of G′-invariant
polynomials on V (C[V ]G

′
= C[f ]) and such that f 6∈ C[V ]G. Such represen-

tations are said to be of Capelli type if the algebra of G-invariant differential
operators is the image of the center of U(g) under the differential of the G-
action. They fall in to eight cases studied by R. Howe and T. Umeda [14]. We
prove that the category of regular holonomic DV -modules invariant under the
action of G′ is equivalent to the category of graded modules of finite type over
a suitable algebra A, except when (G,V ) = (GL(n,C), S2Cn). Indeed the
Levasseur’s conjecture [29, Conjecture 5.17, p. 508] fails in this case because
the orbits are not simply-connected.

Keywords: D-modules, holonomic D-modules, invariant differential opera-
tors, irreducible representations, prehomogenous vector spaces, multiplicity-
free spaces, Capelli identity, representations of Capelli type .

2000 Mathematics Subject Classification. Primary 32C38; Secondary
32S25, 32S60

1 Introduction

Let G be a complex connected reductive algebraic group, and G′ = [G,G] be its
derived subgroup. Denote by (G, ρ, V ) or (G, V ) a rational finite-dimensional linear
representation of G (ρ : G −→ GL(V,C)) and C[V ] the algebra of polynomials on V .
The action of G on V extends to C[V ]. We will denote by C[V ]G ⊂ C[V ] the subal-
gebra of G-invariant polynomials on V . We assume that (G, V ) is a multiplicity-free

1



space, that is, the associated representation of G on C[V ] decomposes without mul-
tiplicities. In other words, each irreducible representation of G occurs at most once
in C[V ] (see definition 2). For the classification and properties of multiplicity-free
spaces, we refer to the work by C. Benson and G. Ratcliff [1], F. Knops [27], A.
Leahy [28]. We assume furthermore that the multiplicity-free space (G, V ) has a
one-dimensional quotient, that is, there exists a polynomial f on V such that the
subalgebra C[V ]G

′
of G′-invariant polynomials on V is the algebra of polynomials in

f (C[V ]G
′

= C[f ]), and such that f 6∈ C[V ]G (see definition 3). Then, it is known
that: G acts on V with an open orbit, and in this case the representation (G, V ) is
called a prehomogeneous vector space (see M. Sato [46], [47] or T. Kimura [26, chap.
2]). Moreover, it is shown in [26, p. 39, proposition 2.22 ] that: for such a reductive
prehomogeneous vector space, there exists a constant coefficient differential operator
∆ and a polynomial

b(s) = c(s+ 1)(s+ λ1 + 1) · · · (s+ λd−1 + 1) ∈ Rd[s], c > 0,

called the Bernstein-Sato polynomial of f such that

∆f s+1 = b(s)f s. (1)

M. Kashiwara [20] has shown that the roots of this polynomial are rational, i.e.,
λj ∈ Q for 1 ≤ j ≤ n− 1.

As usual DV is the sheaf of rings of differential operators on V with holomor-
phic coefficients. Let us now point out that the action of G on C[V ] extends to
Γ(V,DV )pol the C-algebra of differential operators on V with polynomial coefficients
in C[V ]. This gives rise to a natural algebra: the Weyl algebra Γ (V,DV )G of poly-
nomial coefficients G-invariant differential operators on V .

If G is a Lie group, denote by g its Lie algebra and U(g) the associated universal
enveloping algebra. A representation as above (G, V ) is said to be of ”Capelli type”
if (G, V ) is an irreducible multiplicity-free representation (MF for short) such that:
the subalgebra of G-invariant global algebraic sections Γ (V,DV )G is the image of
Z (U (g)), the center of U(g), under the differential τ : g −→ Γ(V,DV )pol of the
G-action, i.e.,

τ (Z (U (g))) = Γ (V,DV )G (2)

(see definition 4). Note that these representations have been studied by R. Howe
and T. Umeda in [15],[48]: they fall into eight cases listed below:
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(G, V ) deg f b(s)

(1) (SO(n)× C∗, Cn) 2 (s+ 1)(s+ n
2
)

(2) (GL(n), S2Cn) n
∏n

i=1(s+ i+1
2

)

(3) (GL(n), Λ2Cn), n even n
2

∏n
i=1(s+ 2i− 1)

(4) (GL(n)× SL(n), Mn(C)) n
∏n

i=1(s+ i)

(5) (Sp(n)×GL(2), (C2n)
2
) 2 (s+ 1)(s+ 2n)

(6) (SO(7)× C∗, spin = C8) 2 (s+ 2)(s+ 4)

(7) (G2 × C∗, C7) 2 (s+ 1)(s+ 7
2
)

(8) (GL(4)× Sp(2),M4(C)) 4 (s+ 1)(s+ 2)(s+ 3)(s+ 4)

If (G, V ) is of Capelli type, in particular if (G, V ) is MF, then V. G. Kac [18] as-
serts that G has finitely many orbits (Vk)k∈K . We denote by Λ :=

⋃
k∈K

T ∗VkV ⊂ T ∗V

the Lagrangian subvariety which is the union of the closure of conormal bundles to
the G-orbits (see [41]).
Recall that a coherent DV -module M is said to be holonomic if its characteristic
variety char (M) is Lagrangian. Equivalently, the characteristic variety is of dimen-
sion equal to dimV . The holonomic DV -moduleM is called regular if there exists a
global good filtration FM on M such that the annihilator of grFM (i.e., the ideal
annC[T ∗V ]grFM) is a radical ideal in grFDV (see [21, definition 5.2] or [25, Corollary
5.1.11]).
Denote by Modrh

Λ (DV ) the full category whose objects are holomorphic regular holo-
nomic DV -modules M, whose characteristic variety char (M) is contained in Λ,
equivalently those which admit global good filtrations stable under the induced ac-
tion of the Lie algebra g of G onM (see Remark 13) . The general problem consists
in the description of the category Modrh

Λ (DV ).

The expected shape to the general solution of the family of problems is as follows.
Let us first recall that G′ is the derived subgroup of G. We denote by

Ā := Γ (V,DV )G
′
⊂ Γ(V,DV )pol
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the C-algebra formed by G′-invariant global algebraic sections of DV , i.e., the al-
gebra of polynomial coefficients G′-invariant differential operators. This algebra is
well understood (see [15], [29]), in particular it contains θ the Euler vector field
on V . Note that R. Howe and T. Umeda [15] have proved that when (G, V ) is of
Capelli type, the algebra Ā is a polynomial algebra on a canonically defined set
of generators. These generators are precisely the Capelli operators. T. Levasseur
[29, Theorem 4.11, p. 491], H. Rubenthaler [43, p. 1346, proposition 3.1, 1)] or
[44, p. 24, theorem 5.3.3] and Z. Yan [49, theorem 1.9] gave a general description
of this algebra. We should also mention the contribution by M. Muro, in the real
case (G, V ) = (GL(n,R), S2(Rn)) in [34, Proposition 2.1, p. 356]. Finally, when
(G, V ) = (GL(n,C)×SL(n,C),Mn(C)), (GL(2m,C), Λ2C2m), the author obtained
a concrete description with explicit relations in [36, Proposition 6, p. 120 ], [37,
Proposition 5, p. 637-638 ].

If J := annC[V ]G
′

= annC[f ] ⊂ Ā denotes the two sided ideal annihilator of G′-
invariant polynomials on V , we consider A the quotient algebra Ā/J̄ , going modulo
a suitable ideal J̄ of Ā described in section 4: J̄ is the preimage in A of the ideal in
A/J defined by specific relations (32), (33), (34), (35) of Proposition 11. Following
the work by Benson - Ratcliff [1], Howe - Umeda [15], Knopp [27] and Levasseur
[29], we will deduce that the quotient algebra A is generated by the following three
operators and relations (see Corollary 12): θ the Euler vector field on V , f the
multiplication by the polymonial f(x) of degree d, and the differential operator

∆ := f

(
∂

∂x

)
as above satisfying the Bernstein-Sato equations:

∆f = c(
θ

d
+1)(

θ

d
+λ1+1) · · · (θ

d
+λd−1+1), f∆ = c

θ

d
(
θ

d
+λ1) · · · (θ

d
+λd−1), c > 0

(3)
and the relations

[θ, f ] = df , [θ,∆] = −d∆. (4)

Let Modgr(A) be the category whose objects are finitely generated left A-modules
T such that for each s ∈ T , the C-vector space spanned by the set {θns / n ≥ 1} is
finite dimensional. In other words, this category consists of all graded leftA-modules
T of finite type for θ the Euler vector field on V .

The functor Ψ : Modrh
Λ (DV ) −→ Modgr(A), defined by taking Ψ(M) to be the

set of all g-invariant θ-homogeneous global sections of M, with quasi-inverse Φ :
Modgr(A) −→ Modrh

Λ (DV ) defined by Φ(T ) := DV ⊗AT , give the equivalence of cat-
egories for the Capelli type representations with a one-dimensional quotient, except
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for the action of GL(n,C) on symmetric matrices S2Cn:

Theorem 21: Let (G, V ) be a representation of Capelli type with a one-dimensional
quotient, except when (G, V ) = (GL(n,C), S2Cn). Then the categories Modrh

Λ (DV )
and Modgr(A) are equivalent.

We have proved this theorem in the following cases (see [35], [36], [37], [38], [39]):

• (G = Sp(n)×GL(2), (C2n)
2
)

• (G = GL(n), V = Λ2Cn), n even

• (G = GL(n)× SL(n), V = Mn(C))

• (G = SO(n)× C∗, V = Cn)

.

Remark 1 Actually, T. Levasseur conjectured [29, Conjecture 5.17, p. 508] this
equivalence of categories for all the eight cases where (G, V ) is of Capelli type with
a one-dimensional quotient, unfortunately this conjecture fails in the case (G, V ) =
(GL(n,C), S2Cn). Indeed, the proof of this above result is equivalent to the fact
that any object in Modrh

Λ (DV ) is generated by its G′-invariant global sections (see
Theorem 16). This argument fails in the case of the action of GL(n,C) on symmetric
matrices S2Cn because here the orbits are not simply connected and there are no G′-
invariant sections, as illustrated by the following counterexample:

Counterexample. Consider n = 2, in this case the symmetric matrices coincides
with adjoint representation of G′ = SL(2,C). There is a simple G′-equivariant D-
module on the nilpotent cone on which the center of SL(2,C) is acting through the
sign. This D-module does not admit any non zero G′-invariant section as a quasi-
coherent sheaf, and therefore is not generated by G′-invariant sections.

It turns out that the equivalence between the categories Modrh
Λ (DV ) and Modgr(A)

leads to a description of the ”analytic” regular holonomic DV -modules in Modrh
Λ (DV )

in terms of ”algebraic homogeneous” DV -modules.

By the way, we should note that the problem of classifying holomorphic reg-
ular holonomic D-modules or equivalently perverse sheaves on a complex mani-
fold (thanks to the Riemann-Hilbert correspondence) has been treated by several
authors. The first such result (around 1980) was Deligne’s quiver description of
perverse sheaves on an affine line with only possible singularity at the origin [6],

5



which under the Riemann-Hilbert correspondence is the case where G = C× acts
on V = C by scalar multiplication. Deligne’s description uses a characterization of
constructible sheaves given in [7], [8]. We should also mention the contribution of
L. Boutet de Monvel [2], who gave a description of holomorphic regular holonomic
D-modules in one variable by using pairs of finite dimensional C-vector spaces and
certain linear maps. A. Galligo, M. Granger and P. Maisonobe [9] obtained using the
Riemann-Hilbert correspondence, a classification of regular holonomic DCn-modules
with singularities along the hypersurface x1 · · ·xn = 0 by 2n-tuples of C-vector
spaces with a set of linear maps. L. Narváez-Macarro [40] treated the case y2 = xp

using the method of Beilinson and Verdier and generalized this study to the case
of reducible plane curves. R. MacPherson and K. Vilonen [30] treated the case
with singularities along the curve yn = xm. T. Braden and M. Grinberg [4] studied
perverse sheaves on complex n×n-matrices, symmetric matrices and 2n× 2n-skew-
symmetric matrices, each stratified by the rank. They gave an explicit description
of the category of such perverse sheaves as the category of the representations of a
quiver. In [36], [37] the author classified regular holonomic D-modules associated
to the same stratification using D-modules theoretical methods etc. This paper is
organized as follows:

In Section 2, we recall notions on the so called representations of Capelli type. In
section 3, we review some useful results: in particular the one’s saying that: any
coherent DV -module equipped with a good filtration, invariant under the action of
the Euler vector field θ, is generated by finitely many global sections of finite type
for θ. Section 4 deals with the concrete description of A the algebra of G′-invariant
differential operators following Benson - Ratcliff [1], Howe - Umeda [15], Knopp [27],
and Levasseur results [29, Theorem 4.11, p. 491]. In section 5, we establish the main
result, namely Theorem 21. This is done by means of the central Theorem 16 saying
that: any objectM in the category Modrh

Λ (DV ) is generated by finitely many goblal
G′-invariant sections. This result leads to the equivalence of categories between the
category Modrh

Λ (DV ) and the category Modgr(A): the image by this equivalence of a
regular holonomic DV -module being its set of θ-homogeneous global sections, which
are invariant under the action of G′.
We refer the reader to [3], [13], [21], [22], [23], [24] for notions on D-modules theory.

2 Review on representations of Capelli type with

one dimensional quotient

Let G be a connected reductive complex algebraic group. We denote by G′ its
derived subgroup.

6



Let ρ : G −→ GL (V ) be a finite dimensional representation of G, again denoted
by (G, V ). Recall that a polynomial f ∈ C [V ] is called a relative invariant of
(G, V ) if there exists a rational character χ ∈ X (G) such that g · f = χ(g)f for all
g ∈ G. One says (see [26, Chap. 2]) that the representation (G, V ) is a (reductive)
prehomogeneous vector space if G has an open dense orbit Ω in V . In that case,
we denote the complement of the open dense orbit by S := V \Ω: it is called the
singular set of (G, V ). Then, it is known (see [26, p. 26, theorem 2.9]) that, the one-
codimensional irreducible components of S are of the form {fi = 0} , 1 ≤ i ≤ r, for
some relative invariants fi. The fi are algebraically independent, and are called the
basic or fundamental relative invariants of (G, V ). Note that, any relative invariant
can be (up to non zero constant) written as

∏r
i=1 fi. When the singular set S is an

hypersurface, the prehomogeneous vector space (G, V ) is said to be regular (see [26,
p. 43, theorem 2.28]).

2.1 Multiplicity-free representations

Let us denote by g the Lie algebra of the connected reductive Lie group G, and by t
the Lie algebra of a maximal torus of G. Denote by B the set of dominant weights
lattices of (g, t). For a fix finite-dimensional representation (G, V ) of the reductive
group G, we recall that the action of G on V extends to the algebra of polynomials
on V . Then, the rational G-module C[V ] decomposes as

C[V ] '
⊕
β∈B

E(β)m(β), (5)

where E(β) is an irreducible g-module with highest weight β ∈ B and m(β) ∈
N ∪ {∞}. We recall that the finite-dimensional linear representation (G, V ) is said
to be multiplicity-free (MF for short) if its associated representation of G on C[V ]
decomposes without multiplicities. This means that each irreducible representation
E(β) of G occurs at most once in C[V ]. More precisely, we recall the following
definition [29, definition 4.1., p. 484]:

Definition 2 The representation (G, V ) is called multiplicity-free if in (5): m(β) ≤
1 for all β. In this case

C[V ] =
⊕
β∈B

V (β)m(β), m(β) = 0, 1,

where V (β) is isomorphic to E(β).

Note that, a classification of MF representations can be found in [1],[18], [28], and a
complete list of irreducible MF representations is given in [15, table p. 612] or [29,
appendix, p. 508].
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2.1.1 Multiplicity-free spaces with one-dimensional quotient

As above, G′ is the derived subgroup of the complex Lie group G. We recall the
following definition:

Definition 3 (see Levasseur [29] ) A mutiplicity-free-space (G, V ) is said to have a
one-dimensional quotient if there exists a non constant polynomial f0 ∈ C[V ] such
that f0 6∈ C[V ]G, and such that C[V ]G

′
= C[f0].

2.2 Representations of ”Capelli type”

We continue with (G, V ) the finite dimensional representation of the connected
reductive Lie group G . We have denoted by g = Lie (G) the Lie algebra of G. We
consider τ the differential of the G-action defined as follows:

τ : g −→ Γ(V,D)pol, (6)

where Γ(V,D)pol is the algebra of global algebraic sections of DV , i.e., the algebra
of polynomial coefficients differential operators. For any element ξ in g, the image
τ(ξ) is a linear derivation on C [V ] given by

τ(ξ)(φ)(v) =
d

dt |t=0

(
etξ · φ

)
(v) =

d

dt |t=0
φ
(
e−tξ · v

)
, (7)

for all φ ∈ C[V ], v ∈ V . This image is homogeneous of degree zero in the sense that
[θ, τ(ξ)] = 0. Denote by U (g) the universal enveloping algebra of the Lie algebra g.
The map τ yields a homomorphism denoted again by τ , and defined by

τ : U (g) −→ Γ(V,DV )pol. (8)

Recall that the group G acts naturally on Γ(V,DV )pol: ∀ g ∈ G, ∀ φ ∈ C[V ], ∀ P ∈
Γ (V,DV )pol,

(g · P ) (φ) = g · P
(
g−1 · φ

)
. (9)

The differential of this action is given by P 7→ [τ(ξ), P ] for ξ ∈ g, P ∈ Γ(V,DV )pol.
Therefore, a subspace I ⊂ Γ(V,DV )pol is stable under G (resp. G′) if and only if
[τ(g), I] ⊂ I (resp. [τ(g′), I] ⊂ I). Then, we know from [29] that the subalgebra of
polynomial coefficients G-invariant differential operators

Γ(V,DV )G =
{
P ∈ Γ(V,DV )pol : [τ(g), P ] = 0

}
(10)

is contained in the one’s of G′-invariant differential operators

Ā := Γ(V,DV )G
′
=
{
P ∈ Γ(V,DV )pol : [τ(g), P ] = 0

}
. (11)
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In particular, if Z (U(g)) = U (g)G is the center of U (g) then

τ (Z (U(g))) ⊂ Γ (V,DV )G . (12)

Now, we give the following definition (see [29, Definition 5.1.]):

Definition 4 We say that the representation (G, V ) is of Capelli type if:

• (G, V ) is irreducible and MF;

• τ (Z (U(g))) = Γ (V,DV )G.

Remark 5 In the list of irreducible MF representations (G, V ) given by Howe and
Umeda (see [15, table p. 612] or [29, appendix p. 508]), there are exactly eight of
them which are of Capelli type with one-dimensional quotient (see Appendix A).

3 Coherent D-modules generated by their θ-ho-

mogeneous global sections

We shall denote by DV the sheaf of rings of differential operators on V with holo-

morphic coefficients. If x denotes a typical element of V , and ∂ :=
∂

∂x
its dual in

DV , let θ := Trace(x∂) be the Euler vector field on V .

Definition 6 LetM be a DV -module. A section u inM is said to be homogeneous
if dimC C [θ]u < ∞, i.e. the C-vector space spanned by the set {θnu / n ≥ 1} is
finite dimensional. The section u is said to be homogeneous of degree λ ∈ C, if there
exists j ∈ N such that (θ − λ)ju = 0.

Let us recall the following result which will be used later (see [38, Theorem 1.3.] ):

Theorem 7 LetM be a coherent DV -module, equipped with a good filtration (Mk)k∈Z
stable under the action of θ. Then,

i) M is generated over DV by finitely many homogeneous global sections, i.e.,

M = DV {s1, · · · , sk ∈ Γ (V,M) , dimC C [θ] sj <∞, 0 ≤ j ≤ k} ,

ii) For any k ∈ N, λ ∈ C, the vector space Γ (V,Mk)
⋂[ ⋃

p∈N
ker (θ − λ)p

]
of homo-

geneous global sections in Mk, of degree λ, is finite dimensional.

Remark 8 We will describe a holomorphic classification of regular holonomic DV -
modules in Modrh

Λ (DV ), but Theorem 7 permits to reduce these objects to ”algebraic
homogeneous” DV -modules.
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4 Algebras of invariant differential operators on

a class of mutiplicity-free spaces

As in the introduction, (G, V ) is a finite-dimensional representation of a connected
reductive Lie group G and G′ := [G,G] is the derived subgroup of G. Recall that
the action of the group G extends to various algebras, namely C[V ] = S(V ∗) the al-
gebra of polynomial functions on V , Γ(V,DV )pol the algebra of differential operators
with polynomial coefficients in C[V ], and C[V ∗] = S(V ) identified with differential
operators with constant coefficients. We thus obtain algebras of invariants: C[V ]G,
S(V )G, and Γ (V,DV )G.
If (G, V ) is a prehomogeneous vector space, let f0, · · · , fm be its fundamental rela-
tive invariants and let χj ∈ X (G), 0 ≤ j ≤ m, be their weight. There exist relative
invariants f ∗j (∂) ∈ S(V ) with weight χ−1

j , 0 ≤ j ≤ m (see [29, Section 3.1]). We set
∆j := f ∗j (∂) for j = 0, · · · ,m.

It is known that the algebra C[V ]G
′

of G′-invariant polynomials is a polynomial ring

C[V ]G
′
= C[f0, · · · , fm], (13)

and that
S(V )G

′
= C[∆0, · · · ,∆m] (14)

(see [29, Lemma 4.2, (d) and formula (4.3) p. 487]).
Consider the following multiplication map

m : C[V ]⊗ S(V ) −→ Γ(V,DV )pol

φ⊗ f 7−→ φf(∂).

(15)

One knows from Howe - Umeda [15] that through this map the (C[V ], G)-module
Γ (V,DV )pol identifies with C[V ]⊗ S(V ):

Γ (V,DV )pol ' C[V ]⊗ S(V ) (16)

where the group G acts on Γ (V,DV )pol as follows: ∀ φ ∈ C[V ], ∀ P ∈ Γ (V,DV )pol

(g · P ) (φ) = g · P
(
g−1 · φ

)
. (17)

First, we are interesting in the description of the algebras of G-invariant differential
operators on a multiplicity-free space following the work by Benson - Ratcliff [1],
Howe - Umeda [15], Knopp [27] and Levasseur [29]. Actually, the isomorphism m is
G-invariant, hence the algebra of G-invariant differential operators decomposes as a
direct sum of one-dimensional irreducible G-modules CEγ:
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Γ(V,DV )G =
⊕
γ∈Γ

CEγ (18)

where Γ is the set of dominant weights lattices of the pair (g, t) of the Lie algebras
of G and of a maximal torus of G respectively.

Let

Eγ (x, ∂x) :=
1

dimCEγ
m (Eγ) ∈ Γ(V,DV )G (19)

be the operator corresponding to Eγ. The operators Eγ (x, ∂x) are called the nor-
malized Capelli operators. Put

Ej := Eλj (x, ∂x) 0 ≤ j ≤ r. (20)

We know from [15, Proposition 7.1] that the given of a multiplicity-free represen-
tation is equivalent to the given of a commutative algebra of G-invariant differential
operators:

(G : V ) multplicity-free ⇐⇒ Γ(V,DV )G commutative. (21)

In that case the algebra Γ(V,DV )G is generated by the normalized Capelli operators
Ej for 0 ≤ j ≤ r (see [15, Theorem 9.1] or [1, Corollary 7.4.4]):

Theorem 9 (Howe - Umeda). For a fix multiplicity-free representation (G, V ), the
algebra

Γ(V,DV )G = C [E0, · · · , Er]

is a commutative polynomial ring.

From now on, we focus our attention in the subalgebras of G (resp. G′)-
invariant global algebraic sections of DV on multiplicity-free representations with
a one-dimensional quotient.

4.1 Invariant differential operators on multiplicity-free spaces
with one dimensional quotient

Recall that G′ denotes the derived subgroup of G. Recall also that a multplicity-free
representation (G, V ) is said to be with one-dimensional quotient if there exists a
polynomial function f ∈ C[V ] such that

C[V ]G
′
= C[f ] and f 6∈ C[V ]G. (22)
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In fact, the polynomial function f is a relative invariant of degree d of weight χ ∈
X (G), and there exists an associated relative invariant differential operator f ∗ :=
f(∂) ∈ C[V ∗] of degree d with weight χ−1. More precisely, set ∆ := f ∗(∂).
We know from Sato - Bernstein - Kashiwara (see [26, Proposition 2.22] and [20])
that there exists a polynomial b(s) ∈ R[s] of degree d called the Bernstein - Sato
polynomial such that:

i) b(s) = c
∏d−1

j=0(s+ λj + 1), c > 0;

ii) ∆(f s+1) = b(s)f s;

iii) λj+1 ∈ Q∗+, 0 ≤ j ≤ d− 1, λ0 = 0.

(23)

Set
f := f0 and ∆ := ∆0 = f ∗(∂). (24)

Following T. Levasseur [29, Section 4.2], recall that if (G, V ) is a multiplicity-free
representation of one-dimensional quotient then we have

C[V ]G
′
= C[f ], S(V )G

′
= C[V ∗]G

′
= C[∆] and E0 = f∆. (25)

Now, consider A := Γ (V,DV )G
′
the algebra of G′-invariant (polynomial coefficients)

differential operators on V :

A ⊃ Γ (V,DV )G and J :=
{
P ∈ Γ (V,DV )G / Pfm = 0 for all m ∈ N

}
⊂ A
(26)

is the annihilator of the G′-invariant polynomial functions on V .
Recall that θ denotes the Euler vector field on V , θ ∈ Γ (V,DV )G. T. Levasseur [29,
Lemma 4.10] proved that: for any G-invariant differential operator P ∈ Γ (V,DV )G

, there exists an associated Bernstein-Sato polynomial bP (s) ∈ C[s] such that the
operator P − bP (θ) belongs to J . In particular, one can find a polynomial bEj

(s)
associated with each Capelli operator Ej, 0 ≤ j ≤ r, such that if we consider Ωj to
be

Ωj := Ej − bEj
(θ) ∈ J for j = 0, · · · , r, (27)

then we obtain the following results [29, Theorem 4.11, (i), (v)]:

Theorem 10 If (G, V ) is a fix multplicity-free representation with one-dimensional
quotient, then

A = C 〈f,∆, θ,Ω1, · · · ,Ωr〉 , (28)
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J = Σr
j=1AΩj. (29)

Note that, the operators f and ∆ do not commute nor do not commute with the
operators Ω1, · · · ,Ωr.
By the way, using these results, T. Levasseur [29, Theorem 4.15] gives a duality
(of Howe type) correspondence between (multplicity-free) representations (with a
one-dimensional quotient) of G and lowest weight modules over the Lie algebra
generated by f and ∆ (which is infinite dimensional when the degree of f is ≥ 3).
Actually, this duality recovers and extends results obtained by H. Rubenthaler when
the representation (G, V ) is of ”commutative parabolic type” (see [42, Proposition
4.2] and also [10, Corollary 4.5.17]).
We should note that when (G, V ) is irreducible, then

Ωr = 0, the two sided ideal J = Σr−1
j=0AΩj = Σr−1

j=0ΩjA, and (30)

A = C 〈f,∆, θ,Ω1, · · · ,Ωr−1〉 . (31)

In the case (GL(n,R), S2(Rn)) of the real general linear group action on real sym-
metric matrices, M. Muro proved this formula in [34, Proposition 2.1, p. 356]. When
(G, V ) = (GL(n,C) × SL(n,C),Mn(C)), (GL(2m,C), Λ2C2m), (GL(n,C), S2Cn),
this non commutative algebra is obtained with explicit relations in [37, Proposition
5, p. 637-638 ], [36, Proposition 6, p. 120 ]. Actually, the result (31) general-
izes the one’s of H. Rubenthanler (see [43, Proposition 3.1] or [44, Theorem 5.3.3.])
obtained when (G, V ) is an irreducible regular prehomogeneous representation of
commutative parabolic type. We have the following proposition.

Proposition 11 Let (G, V ) be an irreducible multiplicity-free representation with a
one-dimensional quotient. The following relations hold in the quotient algebra A/J :

[θ, f ] = df , (32)

[θ,∆] = −d∆, (33)

f∆ = c
θ

d
(
θ

d
+ λ1) · · · (θ

d
+ λd−1), c > 0 (34)

∆f = c(
θ

d
+ 1)(

θ

d
+ λ1 + 1) · · · (θ

d
+ λd−1 + 1), (35)

fj∆j = cj
θ

d
(
θ

d
+ λ1) · · · (θ

d
+ λd−j−1), cj > 0, 0 ≤ j ≤ r (36)

where λk ∈ Q for k = 0, · · · , d− 1
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Proof. We should note that by [29, Remark 4.12, (2)], we have the homogeneity
of degree d (resp. −d) of the polynomial f (resp. ∆), that is, the formula (32), (33).
Recall that Ωj := Ej − bEj

(θ) ∈ J , for j = 0, · · · , r, so we clearly have

Ej = bEj
(θ) in A/J . (37)

Recall also that from [29, p. 490], we have E0 = f∆ and bE0(s) = b(s − 1) where
b(s) = c(s+ 1)(s+ λ1 + 1) · · · (s+ λd−1 + 1) is the b-function of f . Then, using this
last in (37), we get (34)

f∆ = c
θ

d
(
θ

d
+ λ1) · · · (θ

d
+ λd−1) in A/J .

Next, since ∆f s+1 = b(s)f s, that is, (∆f)f s = b(s)f s we get the formula (35):

∆f = b(θ) mod J .

More generally, we may take Ej = fj∆j and using (37) we get

fj∆j = bEj
(θ) in A/J

with bEj
(s) = bj(s − 1) = cjs(s + λ1) · · · (s + λd−j−1), cj > 0, 0 ≤ j ≤ r, that is,

the formula (36).

Let K be the ideal of A/J defined by the relations (32), (33), (34), (35) of
Proposition 11. Then the preimage of K under the quotient map A −→ A/J is an
ideal of A containing properly J . Let us denote by J the preimage in A of the
ideal K. Denote by A the quotient algebra of A by J :

A := A/J . (38)

We have the following corollary which is a particular case of T. Levasseur’s result
in [29, Theorem 3.9, p. 483] or H. Rubenthaler [43, Theorem 2.8, p. 1345], [44,
Theorem 7.3.2, p. 37]:

Corollary 12 The quotient algebra A is generated by f, θ,∆ satisfying the relations
(32), (33), (34), (35):

[θ, f ] = df ,

[θ,∆] = −d,∆

f∆ = c
θ

d
(
θ

d
+ λ1) · · · (θ

d
+ λd−1),

∆f = c(
θ

d
+ 1)(

θ

d
+ λ1 + 1) · · · (θ

d
+ λd−1 + 1).
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5 DV -modules on representations of ”Capelli type”

with one-dimensional quotient generated by their

invariant global sections

In this section, we continue with the representation (G, V ) of the connected (reduc-
tive) Lie group G as in Section 4, and G′ its derived subgroup. It is well known, in
this case, that G acts on V with finitely many orbits (Vk)k∈K (see [18]). Let Λ ⊂ T ∗V
be the Lagrangian subvariety which is the union of the closure of conormal bundles
T ∗VkV , where Vk are the orbits of G (see Panyushev [41]). We recall that the action
of G on V defines a morphism (see (6), (7)) τ : g −→ ΘV , ξ 7→ τ(ξ) from the Lie
algebra g of G to the subalgebra ΘV of DV consisting of vector fields on V , i.e., the
tangent sheaf on V . So the Lagrangian variety Λ is defined by the common zeros of
the principal symbols of vector fields corresponding to infinitesimal generators of G.
Recall that aDV -module is said to be holonomic if it is coherent and its characteristic
variety is Lagrangian. Equivalently the characteristic variety is of dimension equal
to dimV . A holonomic DV -moduleM is regular if there exists a global good filtra-
tion FM on M such that the annihilator of grFM (i.e., the ideal annC[T ∗V ]grFM)
is a radical ideal in grFDV (see [21, definition 5.2] or [25, Corollary 5.1.11]). As in
the introduction, we denote by Modrh

Λ (DV ) the full category consisting of all holo-
morphic regular holonomic DV -modules whose characteristic variety Λ is contained
in the union of the closure of conormal bundles to the G-orbits (see Panyushev [41]).
Let M be a holomorphic regular holonomic DV -module in Modrh

Λ (DV ). We know
from Brylinski and Kashiwara [5, p. 389, (1.2.4)] that M has a good filtration
(Mj)j∈Z satisfying the following condition:
For a differential operator P of degree m (P ∈ Γ(U,DV (m)), where U is an open
subset of V ), if its principal symbol σm(P ) vanishes on the characteristic variety
char(M), then we have

PMj ⊂Mj+m−1 for any j ∈ Z. (39)

In particular, if ξ is a vector field (corresponding to an infinitesimal generator of
G) which describes the characteristic variety Λ, its principal symbol vanishes on
Λ ⊃ char(M) (so vanishes on char(M)). Then the relation (39) implies that

ξMj ⊂Mj+1−1, that is (40)

ξMj ⊂Mj for any j ∈ Z. (41)

Then we have the following

Remark 13 The objects of the category Modrh
Λ (DV ) are holomorphic regular holo-

nomic DV -modules equipped with global good filtrations which are preserved by the
action of the Lie algebra g of G.
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We recall the folloing definition:

Definition 14 Let G be an algebraic group acting on a smooth variety V , and
α : G× V −→ V the group action morphism (α (g, v) = g · v (g ∈ G, v ∈ V )). One
says that the group G acts on a well filtered DV -module M if it preserves the good
filtration on M, and there exists an isomorphism of DG×V -modules u : α+(M)

∼−→
pr+
V (M) satisfying the associativity condition coming from the group multiplication

of G (prV : G× V −→ V, (g, v) 7−→ v is the projection onto V ).

We specialize further to the case where (G, V ) is of Capelli type, i.e., (G, V )
is an irreducible multiplicity-free-space such that Γ (V,DV )G is equal to the image
of the center of U(g) under the differential τ : g −→ Γ (V,DV )pol of the G-action
(see definition 4). More precisely, assume that (G, V ) is a representation of Capelli
type with a one-dimensional quotient, i.e., there exists a non constant polynomial
f such that f 6∈ C[V ]G, and such that C[V ]G

′
= C[f ] (see definition 3). Let G1 be

the simply connected cover of the derived subgroup G′. T. Levasseur [29, Lemma
5.15] proved that the category of (G1 × C)-equivariant DV -modules, where C is
the centre of G, is equivalent to the category Modrh

Λ (DV ) of holomorphic regular
holonomic DV -modules studied here. Therefore, we deduced the following remark:

Remark 15 The action of G on V extends to an action of the universal covering
G1 on DV -modulesM in Modrh

Λ (DV ). Specially the derived subgroup G′ acts onM.

This section consists in the proof of the main general argument of the paper. We
show that anyDV -moduleM in the category Modrh

Λ (DV ) is generated by its invariant
global sections under the action of G′, except when (G, V ) = (GL(n,C), S2Cn).

Theorem 16 A DV -moduleM in Modrh
Λ (DV ) is generated by its G′-invariant global

sections, except for (G, V ) = (GL(n,C), S2Cn).

Firstly, we give some basic results which will be used in the proof of this central
theorem.

5.1 Extension of sections and G-invariance

For the proof of Theorem 16, we shall use an algebraic point of view. Since the con-
cerning DV -modules are regular holonomic, it is equivalent to consider the algebraic
case or the analytic one. We need the following two lemmas in the proof:

Lemma 17 ([46, Lemma 1, p. 247, n◦55])
Let V be an affine variety, f a regular function on V , and Ω the set of points x ∈ V
such that f(x) 6= 0. Let F be a coherent algebraic sheaf on V , and s ∈ Γ (Ω,F) a
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section of F on Ω. Then, for any large enough N ∈ N, there exists a section s′ of
F on the whole V (s′ ∈ Γ (V,F)), such that s′ = sfN on Ω, i.e.,

s′|Ω = sfN . (42)

Lemma 18 Consider G′ the complex algebraic group acting on the affine algebraic
variety V , f a G′-invariant regular function on V

(
f ∈ C[V ]G

′)
, Ω the complement

in V of the hypersurface defined by f = 0, and F a G′-equivariant coherent alge-

braic sheaf on V . Then, any G′-invariant section sfp of F on Ω
(
s ∈ Γ (Ω,F)G

′
)

extends to a G′-invariant global section m
(
m ∈ Γ (V,F)G

′
)

.

Proof. Recall that V is an affine algebraic variety, i.e. V = SpecA, where A := C[V ]
is an affine algebra over C and Ω = SpecA[ 1

f
] with A[ 1

f
] = C[V ][ 1

f
] = C[Ω].

Since F is a coherent algebraic sheaf on V , then F is a finitely generated A-module.
We consider the restriction of F on Ω:

F [Ω] := F
⊗
A

A[
1

f
]. (43)

The previous lemma says that any section s of F on Ω (s ∈ Γ (Ω,F)) extends to a
global section m (m ∈ Γ (V,F)) such that

m|Ω = sfp for p� 0. (44)

So, from (43) and (44), the section s can be written as

s =
m

f r
for r � 0. (45)

Recall that the group G′ acts on A and on F . Then, for any g ∈ G′ acting on s, we
have

g.s = g.

(
m

f r

)
=
g.m

g.f r
. (46)

Since s is a G′-invariant section (g.s = s) and f is a G′-invariant regular function
(f = g.f), then the previous equality becomes:

s =
g.m

f r
. (47)

Using (45) we get
m

f r
=
g.m

f r
⇐⇒ m− g.m

f r
= 0. (48)
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This means that there exists a large integer N � 0 such that

(m− g.m)fN = 0 ⇐⇒ mfN = (g.m)fN . (49)

Since f is G′-invariant (fN = g.fN), this last becomes

mfN = (g.m)(g.fN), (50)

that is,
mfN = g.(mfN). (51)

Thus mfN is a G′-invariant global section extending s
(
mfN ∈ Γ (V,F)G

′
)

5.2 Proof of theorem 16

Recall that the irreducible multiplicity free representation (G, V ) has a Zariski open
dense orbit Ω, and a relative invariant f , i.e., there exists a character χ ∈ X (G)
such that g · f = χ(g)f for g ∈ G) which is a G′-invariant homogeneous polynomial
of degree d such that C[V ]G

′
= C[f ]. In this case, we know from V. G. Kac [18] that

G has finitely many orbits, namely d+ 1 orbits. We denote by Vk the closure of the
G-orbits Vk for 0 ≤ k ≤ d with V0 = {0}. Let us consider again f as the mapping
f : V −→ C, x 7→ f(x), and V d−1 the hypersurface defined by f = 0, then we have
Ω := V \V d−1 the complement in V of V d−1.

LetM be a holomorphic regular holonomicDV -module in the category Modrh
Λ (DV ).

One sets

MG′ := DV {m1, · · · ,mp ∈ Γ(V,M)G
′

such that dimCC[θ]mj <∞ for 1 ≤ j ≤ p}

the submodule of M generated, over DV , by finitely many homogeneous global
sections, which are invariant under the action of G′.

First, we claim that on the open dense orbit Ω, we have the equalityM =MG′ .
Indeed, let j : Ω −→ V be the open embedding. The restriction MΩ := j+ (M)

is a G′-equivariant DΩ-module. Notice that, if we denote again by f the mapping
f : V −→ A1 , this identifies Ω/G with Gm = A1\{0}. The generic stabilizers H in
G′ of points in Ω are connected (see Appendix C, Remark), so the G′-equivariant
DΩ-module MΩ is the pullback by f of a DΩ/G-module N on Ω/G:

MΩ = f+ (N ) with N a DΩ/G-module. (52)

Thus on Ω, the G′-invariant sections of MΩ, i.e., Γ (Ω,MΩ)G
′

(which are exactly
the inverse images by f of Γ (Gm,N ) the sections on Gm of N ) generate Γ (Ω,MΩ)
as a Γ (Ω,OΩ)-module:

Γ (Ω,MΩ)G
′
= f−1 (Γ (Gm,N )) , (53)
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and

Γ (Ω,MΩ) = Γ (Ω,OΩ)
{

Γ (Ω,MΩ)G
′
}

= Γ (Ω,OΩ)
{
f−1 (Γ (Gm,N ))

}
. (54)

Now, for every section m ∈ Γ (Ω,MΩ), one can find a sufficiently large integer
N � 0 such that the section obtained by multiplication by fN , that is,

mfN ∈ Γ (Ω,MΩ) (55)

extends to a global section of M (see Lemma 17), i.e., the section mfN lifts to a
global section

m̃fN ∈ Γ (V,M) . (56)

If m is a G′-invariant section on Ω (m ∈ Γ (Ω,MΩ)G
′
), so is mfN , i.e.,

mfN ∈ Γ (Ω,MΩ)G
′
. (57)

Then, according to the Lemma 18, we can choose this lifting section m̃fN to be
G′-invariant:

m̃fN ∈ Γ (V,M)G
′
. (58)

Thus, by (54) (and since the mapping f is invertible on Ω), the image of Γ (V,M)G
′

in Γ (Ω,MΩ)G
′

generates Γ (Ω,MΩ)G
′

as a Γ (Ω,OΩ)-module.
Since Ω is an affine space, we see that the restriction of MG′ to Ω equals MΩ:

j+
(
MG′

)
=MΩ. (59)

Hence on Ω, the quotient module M/MG′ is zero, namely

M/MG′ = 0 on Ω, (60)

and its support lies in the hypersurface V d−1:

Supp
(
M/MG′

)
⊂ Vd−1. (61)

Now, since we already know thatM is a G′-equivariant DV -module (see Remark
15), then MG′ is also G′-equivariant, hence such is the quotient module M/MG′ .
Moreover, since the hypersurface V d−1 has a finite number of G′- orbits which are
all simply connected (see [11], [16], [45]), then M/MG′ is supported by the closure
of the G′-orbits, i.e.,

Supp
(
M/MG′

)
⊂ Vk for 0 ≤ k ≤ d− 2. (62)

In particular, the quotient module M/MG′ is supported by V0 (the Dirac module
with support at the origin), then M =MG′ .
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6 Equivalence of categories

In this section, we establish the main result of this paper: Theorem 21.
Recall that A = C 〈f,∆, θ,Ω1, · · · ,Ωr−1〉 is the algebra of G′-invariant differential
operators. Since the Euler vector field θ belongs to A, we can decompose the algebra
A under the adjoint action of θ:

A =
⊕
k∈N

A [k] , A [k] = {P ∈ A : [θ, P ] = kP} (63)

and we can check that

∀ k, l ∈ N, A [k] · A [l] ⊂ A [k + l] . (64)

so A is a graded algebra.
Recall also that J ⊂ A is the annihilator of C[f ]. We have denoted J the preimage
in A of the ideal in A/J defined by the relations (32), (33), (34), (35) of Proposition
11:

[θ, f ] = df ,

[θ,∆] = −d,∆

f∆ = c
θ

d
(
θ

d
+ λ1) · · · (θ

d
+ λd−1),

∆f = c(
θ

d
+ 1)(

θ

d
+ λ1 + 1) · · · ( θ

n
+ λd−1 + 1).

We put A the quotient of A by J : A := A/J (see Corollary 12).
Now, since J is an ideal of A it decomposes also under the adjoint action of θ:

J =
⊕
k∈N

J [k] , J [k] = J ∩ A [k] . (65)

Note that J is an homogeneous ideal of the graded algebra A, thus the quotient
algebra A = A/J is naturally graded by

A [k] :=
(
A/J

)
[k] = A [k] /J [k] . (66)

As in the introduction, we denote by Modgr(A) the category whose objects are
finitely generated left A-modules T such that for each s ∈ T , the C-vector space
spanned by the set {θns / n ≥ 1} is finite dimensional. Equivalently the category
consisting of graded A-modules T of finite type such that dimC C [θ]u <∞ for any
u in T . In other words, T is a direct sum of finite dimensional C-vector spaces:

T =
⊕
α∈C

Tα, Tα :=
⋃
p∈N

ker (θ − α)p (with dimC Tα <∞) (67)

20



equipped with the endomorphisms f , θ, ∆ of degree d, 0, −g, respectively and
satisfying the relations (32), (33), (34), (35) of Proposition 11 with (θ − α) being a
nilpotent operator on each Tα.

Recall that Modrh
Λ (DV ) stands for the category consisting of holomorphic regular

holonomic DV -modules whose characteristic variety is contained in Λ the union of
conormal bundles to the orbits for the action of G on the complex vector space V .

LetM be an object in the category Modrh
Λ (DV ), denote by Ψ (M) the submodule

of Γ (V,M) consisting of G′-invariant homogeneous global sections u in M such
that dimC C [θ]u <∞:

Ψ (M) :=
{
u ∈ Γ (V,M)G

′
, dimC C [θ]u <∞

}
. (68)

We are going to show that Ψ (M) is an object in Modgr(A).

Let (σ1, · · · , σp) ∈ Γ (V,M)G
′

be a finite family of homogeneous invariant global
sections generating the DV -module Ψ (M) (see Theorem 16):

Ψ (M) := DV 〈σ1, · · · , σp〉 . (69)

We are going to see that the family (σ1, · · · , σp) generates also Ψ (M) as an A-
module: indeed, an invariant section σ ∈ Ψ (M) can be written as

σ =

p∑
j=1

qj (X,D)σj where qj ∈ DV . (70)

Let Gc be the compact maximal subgroup of G′ and denote by q̃j :=
∫
Gc
g · qjdg the

average of qj over Gc. Then, the average q̃j belongs to the algebra A (i.e., q̃j ∈ A).
Now, denote by fj the class of q̃j modulo J :

fj := q̃j mod J that is fj ∈ A. (71)

Therefore, we also have

σ =

p∑
j=1

q̃jσj =

p∑
j=1

fjσj with fj ∈ A. (72)

This last means that
Ψ (M) := A〈σ1, · · · , σp〉 , (73)

and Ψ (M) is an A-module. Moreover, according to Theorem 7 ii), we have

Ψ (M) =
⊕
α∈C

Ψ (M)α (74)
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where

Ψ (M)α := [Ψ (M)]
⋂[⋃

p∈N

ker(θ − α)p

]
(with dimC Ψ (M)α <∞) (75)

is the finite dimensional C-vector space of homogeneous global sections of degree
α ∈ C in Ψ (M). Finally, we can check that

A [k] Ψ (M)α ⊂ Ψ (M)α+k for all k ∈ N, α ∈ C. (76)

So, Ψ (M) is a graded A-module of finite type for the Euler vector field θ thanks to
(73)-(76). This means that Ψ (M) is an object in Modgr(A).

Conversely, let T be an object in the category Modgr(A), one associates to it the
DV -module

Φ (T ) :=M0

⊗
A

T (77)

where M0 := DV /J . Then Φ (T ) is an object in the category Modrh
Σ (DV ).

Thus, we have defined two functors

Ψ : Modrh
Λ (DV ) −→ Modgr(A), Φ : Modgr(A) −→ Modrh

Λ (DV ). (78)

We need the two following lemmas:

Lemma 19 The canonical morphism

T −→ Ψ(Φ (T )), t 7−→ 1⊗ t (79)

is an isomorphism, and defines an isomorphism of functors IdModgr(A) −→ Ψ ◦ Φ.

Proof. We have setM0 := DV /J . Denote by ε (the class of 1D modulo J ) the
canonical generator ofM0 . Recall that Gc is the compact maximal subgroup of G′.
Let h ∈ DV , denote by h̃ ∈ A its average on Gc and by ϕ the class of h̃ modulo J
, that is, ϕ ∈ A.
Since ε is G′-invariant, we get h̃ε = h̃ε = εϕ . Moreover, we have h̃ϕ = 0 if and
only if h̃ ∈ J , in other words ϕ = 0 . Therefore, the average operator (over Gc)

DV −→ A, h 7−→ h̃ induces a surjective morphism of A-modules v : M0 −→ A .
More generally, for any A-module T in the category Modgr(A) the morphism v⊗1T
is surjective

vT :M0

⊗
A

T −→ A
⊗
A

T = T (80)
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which is the left inverse of the morphism

uT : T −→M0

⊗
A

T , t 7−→ ε⊗ t, (81)

that is, (v ⊗ 1T ) ◦ (ε⊗ 1T ) = v (ε) = 1T . This means that the morphism uT is
injective. Next, the image of uT is exactly the set of invariant sections ofM0

⊗
A
T =

Φ (T ), that is, Ψ(Φ(T )) : indeed if σ =
p∑
i=1

hi⊗ ti is an invariant section inM0

⊗
A
T

, we may replace each hi by its average h̃i ∈ A , then we get

σ =

p∑
i=1

h̃i ⊗ ti = ε⊗
p∑
i=1

h̃iti ∈ ε⊗ T , (82)

that is,
p∑
i=1

h̃iti ∈ T . Therefore, the morphism uT is an isomorphism from T to

Ψ (Φ (T )) and defines an isomorphism of functors.

Next, we note the following:

Lemma 20 The canonical morphism

w : Φ (Ψ (M)) −→M (83)

is an isomorphism and defines an isomorphism of functors Φ ◦Ψ −→ IdModrh
Σ (DV ).

Proof. As in the theorem 16, the DV -moduleM is generated by a finite family
of invariant sections (σi)i=1,··· ,p ∈ Ψ (M) so that the morphism w is surjective. Now,
consider Q the kernel of the morphism w : Φ (Ψ (M)) −→M . It is also generated
over DV by its invariant sections , that is, by Ψ (Q). Then we get

Ψ (Q) ⊂ Ψ [Φ (Ψ (M))] = Ψ (M) (84)

where we used Ψ◦Φ = IdModgr(A) (see the preceding Lemma 19). Since the morphism
Ψ (M) −→ M is injective (Ψ (M) ⊂ Γ (V, M)), we obtain Ψ (Q) = 0. Therefore
Q = 0 (because Ψ (Q) generates Q).

This section ends by Theorem 21 established by means of the preceding lemmas.

Theorem 21 Let (G, V ) be a representation of Capelli type with a one-dimensional
quotient, except when (G, V ) = (GL(n,C, S2Cn)). Then the functors Φ and Ψ
induce equivalence of categories

Modrh
Λ (DV )

∼−→ Modgr(A). (85)
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Appendix

Appendix A: Representations of Capelli type with one-dimensional quotient

(G, V ) deg f b(s)

(1) (SO(n)× C∗, Cn) 2 (s+ 1)(s+ n
2
)

(2) (GL(n), S2Cn) n
∏n

i=1(s+ i+1
2

)

(3) (GL(n), Λ2Cn), n even n
2

∏n
i=1(s+ 2i− 1)

(4) (GL(n)× SL(n), Mn(C)) n
∏n

i=1(s+ i)

(5) (Sp(n)×GL(2), (C2n)
2
) 2 (s+ 1)(s+ 2n)

(6) (SO(7)× C∗, spin = C8) 2 (s+ 2)(s+ 4)

(7) (G2 × C∗, C7) 2 (s+ 1)(s+ 7
2
)

(8) (GL(4)× Sp(2),M4(C)) 4 (s+ 1)(s+ 2)(s+ 3)(s+ 4)
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Appendix B: Generic isotropy subgroups GX0 for representations of Capelli type

(G, V ) GX0 := isotropy subgroup at generic point X0 ∈ V \f−1(0)

(1) (SO(n)× C∗, Cn) SO(1)× SO(n− 1)

(2) (GL(n), S2Cn) O(n)

(3) (GL(n), Λ2Cn), n even Sp(n
2
)

(4) (GL(n)× SL(n), Mn(C)) Sp(1)× Sp(n− 1)

(5) (Sp(n)×GL(2), (C2n)
2
) SL(n)

(6) (SO(7)× C∗, spin = C8) SO(1)× SO(6)

(7) (G2 × C∗, C7)

(8) (GL(4)× Sp(2),M4(C))

(see A. Sasada [45, (1), (2), (3), (13), (15) p. 79-83] or Sato-Kimura [47, (1), (2),
(3), (13), (15), p. 144-145])
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Appendix C: Generic isotropy subgroups H for derived subgroups G′ of the group G

(G′, V ) H = isotropy subgroup at a generic point X0 ∈ V \f−1(0)

(1) (SO(n), Cn) SO(1)× SO(n− 1)

(2) (SL(n), S2Cn) SO(n)

(3) (SL(n), Λ2Cn), n even Sp(n
2
)

(4) (SL(n)× SL(n), Mn(C)) Sp(1)× Sp(n− 1)

(5) (Sp(n)× SL(2), (C2n)
2
) SL(n)

(6) (SO(7), spin = C8) SO(1)× SO(6)

(7) (G2, C7)

(8) (SL(4)× Sp(2),M4(C))

Remark. The generic isotropy1 subgroups H of (G′, V ) are connected.
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