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CURVES
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Abstract. We show the existence of an anti-pluricanonical curve on every
smooth projective rational surface X which has an infinite group G of auto-
morphisms of either null entropy or of type Z×Z, provided that the pair (X, G)
is minimal. This was conjectured by Curtis T. McMullen (2005) and further
traced back to Marat Gizatullin and Brian Harbourne (1987). We also prove
the strongest (perhaps) form of the famous Tits alternative theorem.

1. Introduction

In this paper, we are interested in the automorphisms groups of smooth
projective complex surfaces. Especially, we are interested in the following
question of Gizatullin-Harbourne-McMullen (see [16] page 409 and [23] §12),
where Aut∗(X) := Im(Aut(X) → Aut(Pic(X))):

Question 1.1. Let X be a smooth projective rational surface. If Aut∗(X)
is infinite, is there then a birational morphism ϕ of X to a surface Y having
an anti-pluricanonical curve and an infinite subgroup G ⊂ Aut∗(Y ) such
that G lifts via ϕ to X?

A member in an anti-pluricanonical system | − nKX | (n ≥ 1) is called an
anti n-canonical curve (or divisor) or simply an anti-pluricanonical curve; a
member in | −KX | is an anti 1-canonical curve, or an anti-canonical curve.

The result below answers Question 1.1 in the case of null entropy.

Theorem 1.2. Let X be a smooth projective rational surface and G ≤
Aut(X) an infinite subgroup of null entropy (see 2.5). Then we have:

(1) There is a G-equivariant smooth blowdown X → Y such that K 2
Y ≥ 0

and hence Y has an anti-pluricanonical curve.
(2) Suppose further that Im(G → Aut(Pic(X))) is also an infinite group.

Then the Y in (1) can be so chosen that −KY is nef of self intersec-
tion zero and Y has an anti 1-canonical curve.

For groups which are not necessarily of null entropy, we have the following
result which is especially applicable (with the same kind of H) when G/H ≥
Z × Z. See Theorems 5.3 - 5.5 for more general results.

Theorem 1.3. Let X be a smooth projective surface and G ≤ Aut(X) a
subgroup. Assume that there is a sequence of groups

H E A E G
satisfying the following three conditions:

(1) Im(H → Aut(NS(X))) is finite;
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(2) A/H is infinite and abelian; and
(3) |G/A| = ∞.

Then G contains a subgroup S of null entropy and infinite order.
In particular, when X is rational, there is an S-equivariant smooth blowdown
X → Y such that Y has an anti-pluricanonical curve.

Remark 1.4. (1) Conditions like the ones in Theorems 1.2 and 1.3 are proba-
bly necessary in order to have an affirmative answer to Question 1.1. See [2,
Theorem 3.2] for a pair (X, g) with g of positive entropy and κ(−KX) = −∞.

(2) The blowdown process X → Y to the minimal pair (Y, S) in Theorems
1.2 and 1.3 is necessary, as observed by Harbourne [16].

However, the minimality assumption of the pair in Theorem 1.7 is not
essential, though it makes the statement simpler.

To tackle Question 1.1 of Gizatullin-Harbourne-McMullen, we begin by
determining the dynamical structure of surface automorphism groups. We
first take a close look at McMullen’s smooth rational surface Sv. It turns
out that the dynamics of Aut(Sv) is very simple:

Theorem 1.5. Suppose that v is a leading eigenvector for a Coxeter element
w in the Weyl group Wn (n ≥ 10).

Then for the McMullen surfaces Sv of [23, §7] (the surfaces Sn in [23,
Theorem 1.1] are among them), we have (semi-direct product) :

Aut(Sv) = 〈hm〉 n T

with hm of positive entropy and T / Aut(Sv) a finite subgroup.

Our result below is (perhaps) the strongest form of the famous Tits [28]
alternative theorem, for surface automorphisms groups of positive entropy.
Let σ : Aut(X) → Aut(NSQ(X)) be the natural homomorphism.

Note that the T itself in (2) below is also finite when X is a rational or K3
surface (see Proposition 2.11; Sterk [27] Lemma 2.1, and Torelli theorem).

Theorem 1.6. Let X be a smooth projective surface and G ≤ Aut(X) a
subgroup of positive entropy. Then G satisfies either:

(1) G contains the non-abelian free group Z ∗ Z; or
(2) There is a B E G such that |G/B| ≤ 2 and B = 〈hm〉 n T

(semi-direct product) with hm positive entropy and σ(T ) finite.

See Oguiso [25] Theorem 2.1 or 1.3 for groups of null entropy and Ogu-
iso [24] Theorem 1.1 for K3 groups (and more generally for hyperkähler
manifolds), where the cyclic-ness of B/T in our result here is replaced by
abelian-ness. The Case(1) in the theorem above does occur (see Mazur [21],
Cantat [6], Cantat - Favre [7] Example 3.2, and Oguiso [25] Theorem 1.6).

In Theorem 1.7 below we determine the relation between the anti- pluri-
canonical curve and the set Stab(g) of g-periodic curves.

Theorem 1.7. Let X be a smooth projective rational surface with an auto-
morphism g of positive entropy. Assume the following two conditions:

(1) The pair (X, 〈g〉) is minimal; and
(2) Either the set Stab(g) of g-periodic curves contains a curve of arith-

metic genus ≥ 1, or X has an anti-pluricanonical curve.
Then we have:
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(1) There is a unique nonzero effective Q-divisor ∆ with Supp(∆) ⊆
Stab(g) such that KX + ∆ ≡ 0 (numerical equivalence).

(2) Stab(g) is a union of Supp(∆) and possibly a few (−2)-curves away
from Supp(∆).

(3) Every anti-pluricanonical curve is a multiple of ∆.
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2. Conventions and Preliminary results

2.1. Conventions are as in [17], [19] and [20].
Let V be a normal projective variety. For an R-Cartier divisor D on V ,

Null(D) := {C |C is an irreducible curve with C.D = 0} is the set of curves
annihilated by D. Set D⊥ := {E ∈ NSQ(V ) |E.D = 0}.

For an automorphism g ∈ Aut(V ), a curve C is g-periodic if gs(C) = C
for some s > 0. Denote by Stab(g) := {C ⊂ V |C is an irreducible curve
with gs(C) = C for some s > 0} the set of all g-periodic curves. For a
divisor M and subgroup G ≤ Aut(V ), StabG(M) = {x ∈ G |x∗M ≡ αxM
in NSC(V ) for some αx ∈ C} is the ’stabilizer’ subgroup. For a group G,
Z(G) := {g ∈ G |xg = gx for all x ∈ G} is the centre of G. If H is a
subgroup (resp. normal subgroup) of G, we denote H ≤ G (resp. H E G).

A (−n)-curve C on a surface is a curve with C ∼= P1 and C2 = −n. A
connected divisor on a surface is a rational tree, if it is of simple normal
crossing, has the dual graph a tree and consists of smooth rational curves.

Definition 2.2. Let X be a smooth projective surface and G ≤ Aut(X)
a subgroup. The pair (X,G) is not minimal (resp. is minimal) if the
equivalent conditions below are satisfied (resp. if neither of the conditions
below is satisfied):

(1) There is a non-empty finite set Σ of disjoint (−1)-curves on X such
that Σ is G-stable, i.e., G acts on Σ as permutations.

(2) There is a G-equivariant non-isomorphic smooth blowdown X → Y
onto a surface Y endowed with a faithful G action.

We use the format in KMM [19] Theorem 7-3-1 for Fujita’s result in [14]:

Lemma 2.3. Let X be a smooth projective surface and D a pseudo effective
R-divisor. Then there is a unique effective R-divisor N satisfying:

(1) Either N = 0, or the irreducible components Ni of N give rise to a
negative definite intersection matrix (Ni.Nj)1≤i,j≤s;

(2) P := D − N is nef; and
(3) P.N = 0 (equivalently (using (2)), P.Ni = 0 for all i).

Finally N ard P are Q-Cartier divisors if so is D.
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For D in the lemma above, we write D = P +N and call it the Zariski de-
composition for pseudo effective divisor D. The uniqueness above also shows:
if D ≡ D′ with D = P + N and D′ = P ′ + N ′ their Zariski decompositions,
then N = N ′ (equal) and P ≡ P ′.

For the result below, we may refer to BHPV [1], Ch IV, Cor. 7.2 and the
Cauchy-Schwartz inequality; see Kawaguchi [18] Lemma 1.2.

Lemma 2.4. Let X be a smooth projective surface. Let M and D be R-
divisors on X neither of which is numerically trivial. Suppose that M is
nef, D is pseudo-effective and M.D = 0. The we have:

(1) D2 ≤ 0; and
(2) D2 = 0 holds if and only if M 2 = 0 and D ≡ aM for some a > 0.

Definition 2.5. Topological entropy. Let M be a compact Kähler mani-
fold. Let λ(g) be the spectral radius of the action g∗ on the cohomology ring
H∗(M, C), i.e., the maximum of moduli of its eigenvalues. The topological
entropy of g is defined as e(g) = log λ(g). See [15], [29] [13], also [12].

It is known that e(g) ≥ 0, and e(g) = 0 if and only if every eigenvalue of
the action g∗ above has modulus 1. Also e(g) > 0 if and only if at least one
eigenvalue of the restriction g∗|H1,1(M) has modulus different from 1; see
Dinh and Sibony [11].

An element g is of null (resp. positive) entropy if e(g) = 0 (resp. e(g) >
0). A subgroup G ≤ Aut(M) is of null entropy (resp. positive entropy) if
e(g) = 0 for all g ∈ G (resp. e(g) > 0 for at least one g ∈ G).

When M̄ is a normal projective surface and g ∈ G ≤ Aut(M̄), we say
g (resp. G) is of null or positive entropy if so is g (resp. G) regarded
as an element (resp. a subgroup) of Aut(M). Here M → M̄ is Hironaka’s
equivariant resolution and induces the natural inclusion Aut(M̄ ) ⊆ Aut(M).

2.6. Assumption. From now on till Proposition 2.11 (but except Lemma
2.8), we assume that X is a smooth projective surface with an (infinite)
automorphism g such that g∗|H1,1(X) has an eigenvalue λ with |λ| > 1.
Namely, assume that g is of positive entropy. In Lemma 2.7 below, it turns
out that such λ with modulus > 1 is unique, and we can write λ = λ(g).

When X is only a normal projective surface with X̃ → X the minimal
resolution, we let λ(g) = λ(gX̃); here g ∈ Aut(X) induces gX̃ ∈ Aut(X̃).

We remark that this λ is an algebraic number and is either a Pistol number
or a Salem number according to the degree of λ over Q (degree 2 or bigger).
See Salem [26] and McMullen [23] §2.

For the proof of the result below and the current formulation of it, see
Cantat [5] Theorem 2.1.5, Dinh and Sibony [11] Theorem 2.1 and McMullen
[22] Theorem 3.2 and Corolalry 3.3, or Kawaguchi [18] Theorem 2.1.

Lemma 2.7. Let X, g be as in 2.6. Then λ = λ(g) > 1; λ and λ−1 are con-
jugate over Q. Further, setting h = h1,1(X), the following are all eigenvalues
of g∗|H1,1(X) (with each |αj | = 1; in particular, λ(g−1) = λ(g)):

λ, λ−1, α1, α2, . . . , αh−2.

For the proof of the result below, see Cantat [4] Theorem 2, Diller and
Favre [9] Theorem 5.1, or Kawaguchi [18] Proposition 2.5 and Lemma 3.8.
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Lemma 2.8. Let X be a normal projective surface and g an automorphism
with positive entropy log(λ). Then we have:

(1) There exist nef R-Cartier divisors L+ = L(g)+ and L− = L(g)−

(unique upto to positive scalars), which are not numerically trivial,
such that the following are true (especially, L(g±)+ = L(g∓)−):

g∗L+ ≡ λL+, g∗L− ≡ λ−1L−.

(2) Let σ : X̃ → X be the minimal resolution so that g ∈ Aut(X) induces

gX̃ ∈ Aut(X̃). Then L(gX̃)± equals σ∗L(g)± up to positive scalars.

Indeed, by the proof in Kawaguchi, Lemma 2.4 and reducing to X̃ (see
also Cantat [4] Theorem 2 and Diller and Favre [9] Theorem 5.1), we can
start with any ample (or even big R-) Cartier divisor B on X and take L+

and L− as follows:

L+ = lim
n→+∞

(g∗)n(B)

λn
, L− = lim

n→+∞

(g∗)−n(B)

λn
.

By the description above, we have the following (see Kawaguchi [18]
Proposition 2.5; use also the Hodge index theorem for (3) - (4)):

Lemma 2.9. Let X, g be as in 2.6. The following are true.

(1) (L+)2 = 0 = (L−)2.
(2) L := L+ + L− is nef and big (i.e., L2 > 0).
(3) Suppose that D is an R-divisor on X such that (gs)∗D ≡ D for some

s > 0. Then L+.D = 0 = L−.D, so either D2 < 0 or D ≡ 0.
(4) L+.KX = 0 = L−.KX ; so either K2

X < 0 or KX ≡ 0.

Here is the relation between Stab(g) and Null(L±):

Lemma 2.10. Let X, g be as in 2.6. The following are true.

(1) Stab(g) = Null(L+) ∩ Null(L−) = Null(L), where L = L+ + L−.
(2) Null(L) is either empty, or a finite set with negative intersection

matrix. In particular, |Null(L)| < ρ(X), the Picard number.
(3) If Null(M) is a finite set for M = L+ or M = L− (this is always

true by Theorem 6.2), then Null(M) = Stab(g).
(4) The pair (X, 〈g〉) is minimal if and only if Stab(g) does not contain

any (−1)-curve.

Proof. (2) is the consequence of the Hodge index theorem and that L2 > 0.
The nefness of L± implies the second equality in (1). Clearly, g stabilizes
each of the sets Null(L+), Null(L−) and Null(L). So (1) and (3) follow
(see (2) and Lemma 2.9; see Kawaguchi [18] Proposition 3.1). The set Σ
(possibly empty) consisting of all (−1)-curves in Stab(g), is g-stable. So (4)
is just the definition in 2.2. �

We prove several frequently-used properties of g of positive entropy. The
assertion (4) below follows from the proof of Kawaguchi [18] Claim 3.8.1.
Denote by Pg(x) the characteristic polynomial of g∗|NSQ(X), and fg(x) the
minimal (irreducible) polynomial of λ(g) over Q.

Proposition 2.11. Let X, g, λ, L± be as in 2.6. The following are true.
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(1) For r ≥ 1 one has Pgr (x) = fgr(x)qgr(x) where qgr(x) is a product
of cyclotomic polynomials while fgr(x) has no root of 1. One has
qgs(x) = (x − 1)e for some positive integers s = s(g) and e = e(g).
Also deg(qgr(x)) = e for all r ≥ 1.

(2) Further, we have the decomposition into two g-stable Q-spaces

NSQ(X) = Vg ⊕ Vgs=1

such that (gr)∗|Vg (r ≥ 1) has fgr(x) as its characteristic polynomial
and also minimal polynomial, the inclusion (*) : Vg ⊗Q R ⊃ R[L+]⊕
R[L−], e = rankQ Vgs=1, and

Vgs=1 = {v ∈ NSQ(X) | gs(v) = v} = (L+)⊥ ∩ (L−)⊥ ∩ NSQ(X).

(3) If X is rational then Ker(Aut(X) → Aut(Pic(X))) is finite.
(4) We may take L± to be in (Pic(X)) ⊗Z Z[λ].
(5) λ is not a rational number.
(6) None of positive multiples of L± is Q-Cartier.

Proof. (1) The first part follows from Lemma 2.7 and Kronecker’s theorem;
see McMullen [22] Corollary 3.3. For the second, let s be the lcm of orders
of the roots in qg(x).

(2) By (1), we have NSQ(X) = V ′
r ⊕ V ′′

r (each summand being g-stable)
so that fgr(x) and qgr(x) are respectively the characteristic polynomials
of (gr)∗|V ′

r and (gr)∗|V ′′
r . Further, we have V ′

i = V ′
j (denoted as Vg) and

V ′′
i = V ′′

j (denoted as Vgs=1) for all i, j ≥ 1, since the only g-stable vector

subspaces of V ′
r are {0} and itself by the irreducibility of fgr(x).

Since the classes [L±] are eigenvectors w.r.t. eigenvalues λ± of g∗, we
have the inclusion (*) in (2).

For the second equality in the second display of (2), in view of Lemma
2.9, we have only to show the assertion that (gr)∗|W = id for some r ≥ 1,
where W := (L+)⊥ ∩ (L−)⊥ ∩ NS(X). By the Hodge index theorem, W
(modulo its finite torsion) is a negative definite integral lattice. So Aut(W )
is finite and the assertion is true. Thus the second equality is proved.

Now the first equality (even when s is replaced by sn with n ≥ 1) fol-
lows from the second, the choice of s and the application of Lemma 2.9 (3)
inductively on the size of the Jordan canonical form of g∗|V ′′

r ⊗Q C.
(3) Suppose the contrary that this Kernel is infinite. Then X has finitely

many ’exceptional curves’ by Harbourne [16] Proposition 1.3 and its termi-
nology at the last paragraph of page 409. Since g acts on the finite set of
these curves, for some common m ≥ 1, each irreducible component of these
exceptional curves is stabilized by gm. Let X → Y be the 〈gm〉-equivariant
smooth blowdown to a relatively minimal model. Then K 2

Y ≥ 8, while
K2

Y < 0 by Lemma 2.9 for gm being of positive entropy on Y . It is absurd.
(5) If λ ∈ Q, then λ ∈ Z because it is algebraic over Q, so x − λ is

its minimal polynomial over Q, contradicting the fact that λ and λ−1 are
conjugate over Q in Lemma 2.7.

(6) If L+ is Q-Cartier say, then by intersecting g∗L+ ≡ λL+ with a Cartier
ample divisor H, we see that λ = (H.g∗L+)/(H.L+) is a rational number.
This contradicts (5). The proposition is proved. �

Here is another consequence of the uniqueness result of Lemma 2.8.
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Lemma 2.12. Let X be a smooth projective surface, M a nef R-divisor
which is not numerically trivial, and g ∈ Aut(X) such that g∗M ≡ αM for
some α ∈ C. Then we have:

(1) Either α = 1, or α > 1, or 0 < α < 1.
(2) If α = 1, then g is of null entropy.
(3) If α± > 1, then g is of positive entropy with λ(g) = α± and M is

equal to L(g)± (up to a positive scalar).

Proof. Intersecting the equality g∗M ≡ αM with an ample divisor H, we
get α = (H.g∗M)/(H.M) > 0. Then the lemma follows from Lemmas 2.7 -
2.9 and that M 2 ≥ 0 for M being nef. �

The result below shows that when dealing with automorphisms of positive
entropy we may quotient away a finite group.

Let σ : Aut(X) → Aut(NS(X)) be the natural homomorphism. For

g ∈ G ≤ Aut(X), set g̃ = σ(g) and G̃ = σ(G).

Lemma 2.13. Let X be a smooth projective surface and H ≤ Aut(X) a

subgroup such that σ(H) = H̃ is a finite subgroup of Aut(NS(X)). Suppose

that σ(g) = g̃ ∈ NAut(NS(X))(H̃) (i.e., g̃H̃g̃−1 = H̃). Then we have:

(1) If g is of positive entropy, then for both M = L(g)+ and M = L(g)−

we have h∗M ≡ M for all h ∈ H.
(2) Suppose that H is already finite. Let π : X → X̄ = X/H be the

quotient map. Then g is of positive entropy if and only if so is ḡ =
gH ∈ Ḡ = G/H ≤ Aut(X̄). If this is the case, we have λ(g) = λ(ḡ)
and can take L(g)± = π∗L(ḡ)±.

Proof. (1) Consider the case M = L(g)+ (the other case is similar), so
g∗M ≡ λM with λ = λ(g) > 1. Set M ′ =

∑
x∈H̃ x∗(M) (identifying M with

its class in NS(X) ⊗Z R). Then we have (where h ∈ H):

g∗(M ′) =
∑

x∈H̃

(g̃−1xg̃)∗g̃∗M ≡ λ
∑

y∈H̃

y∗M = λM ′,

h∗(M ′) =
∑

x∈H̃

(xh̃)∗M =
∑

y∈H̃

y∗M = M ′.

Clearly, M ′ is nef and is not numerically trivial, so the uniqueness Lemma
2.8 implies that M ≡ αM ′ for some α > 0. Thus (1) follows.

(2) Suppose that ḡ is of positive entropy. So ḡ∗L(ḡ)+ ≡ λL(ḡ)+ with
λ = λ(ḡ) > 1. Set L(g)+ = π∗L(ḡ)+ which is nef and is not numerically
trivial. Then g∗L(g)+ ≡ λL(g)+ because π ◦ g = ḡ ◦ π. Thus g is of positive
entropy log λ(g) = log λ.

Conversely, suppose that g is of positive entropy log λ = log λ(g). We
shall use the fact below about the H-invariant sublattice

((Pic(X))H ⊗Z R = π∗(Pic(X̄)) ⊗Z R.

By the proof of (1), L(g)+ (re-chosen like M ′ above) belongs to the LHS
above, so it is also in the RHS. Thus L(g)+ = π∗L̄ for some R-Cartier divisor
L̄. Since π ◦ g = ḡ ◦ π, we have π∗(λL̄) ≡ π∗(ḡ∗L̄). Hence ḡ∗L̄ ≡ λL̄ by the
injectivity of π∗ : (Pic(X̄))⊗ZR → (Pic(X))⊗ZR. So ḡ is of positive entropy.
Thus (2) and the lemma are proved, since the case L(g)− is similar. �
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3. Groups stabilizing nef classes; proof of Theorem 1.5

In this section, we will determine the dynamical structure of the stabilizer
subgroup StabG(M) when M is nef and is not numerically trivial.

We will also determine the dynamical group structure of the full auto-
morphism group Aut(Sv) for McMullen’s surfaces Sv in [23] §7.

The following result is very important in proving our main theorems.

Theorem 3.1. Let X be a smooth projective surface and G ≤ Aut(X) a
subgroup. Let M be a nef R-divisor which is not numerically trivial. Suppose
that G = StabG(M) and G is of positive entropy. Then we have:

(1) One has G = 〈hm〉 n T (semi-direct product) with hm of positive
entropy (and M = L(hm)+) and Im(T → Aut(NS(X))) finite.

(2) For g ∈ G, one has g ∈ T if and only if g is of null entropy; if and
only if g∗M ≡ M holds.

(3) Set h := hm. Then T |Vh = id. Here NSQ(X) = Vh ⊕ Vhs(h)=1 is as
in 2.11.

Proof. By the assumption, G contains an automorphism g of positive en-
tropy log λ(g) > 0. By Lemma 2.12 and switching g with g−1 if necessary,
we may assume that M = L(g)+ and g∗M ≡ λ(g)M . Also, in the definition
of StabG(M), either αx = 1 and x is of null entropy, or α±

x > 1 and x is of
positive entropy λ(x) = α±

x .
Consider the map ϕ : G → R which takes x to log αx if x∗M ≡ αxM .

Clearly, ϕ is a homomorphism onto an abelian subgroup of the (torsion-free)
additive group R.

We assert that Im(ϕ) does not contain a subgroup of the type Z × Z.
Suppose the contrary that 〈log(αg1)〉 × 〈log(αg2)〉

∼= Z × Z is a subgroup
of Im(ϕ). Here gi ∈ G with g∗i M ≡ αgi

M . Thus 1, log(αg2)/ log(αg1) are
linearly independent over Q. Now by the classical Kronecker’s Theorem (or
Dirichlet’s Theorem), for any ε > 0, there are integers mi such that:

|m2
log(αg2)

log(αg1)
− m1| < ε.

After relabelling, we may assume that:

0 < m1 log(αg1) − m2 log(αg2) < ε1 := εmax{| log(αg1)|, | log(αg2)|}.

Thus for h = gm1
1 /gm2

2 ∈ G, we have h∗M ≡ αhM where αh := αm1
g1

/αm2
g2

satisfies 1 < αh < eε1 . So h is of positive entropy with λ(h) = αh. On
the other hand, in [23] Theorem 1.2, McMullen has proved that λ(f) ≥
λ(Lehmer) ≈ 1.17628081 for every surface automorphism f of positive en-
tropy. We get a contradiction if we let ε (and hence ε1) tend to zero. This
proves the assertion.

Since ϕ factors through G ⊆ Aut(X) → Aut(NS(X)) while the latter is
countable, we can write Im(ϕ) = ∪n≥1Ḡn where each Ḡn ≤ R is finitely
generated (and abelian). By the assertion above and noting that ϕ(g) =
log λ(g) > 0 for some g ∈ G (and the fundamental theorem for f.g. abelian
groups) we may assume that Ḡn = 〈log λ(gn)〉 for some gn ∈ G of positive
entropy log λ(gn). Now Ḡn ≤ Ḡn+1 implies, by induction, that λ(gn) =

(λ(g1))
1/sn for some positive integer sn. Applying McMullen’s result above

again, we have (λ(g1))
1/sn = λ(gn) ≥ λ(Lehmer) > 1.1 for all n ≥ 1. Thus



AUTOMORPHISMS GROUPS 9

there is a constant N such that sN = sN+1 = . . . , whence Im(ϕ) = ḠN =
〈log λ(hm)〉, where we set hm := gN and may assume that M = L(hm)+.

Set T := Ker(ϕ). Then T is of null entropy; so the assertion (2) follows
(see also Lemma 2.12). Since hm is of positive entropy, 〈hm〉 ∩ T = (1) and
hence G = 〈hm〉 n T . This proves (1) (except the finiteness of T |NS(X)).

(3) Write h := hm for simplicity. We use the notation in Proposition
2.11. Note that f(x) := fh(x) is the minimal polynomial of λ = λ(h) over Q
(hence f(x) has only simple zeros by the Galois theory) and also the minimal
polynomial of h∗|Vh, whence Vh ⊗Z K(f) is spanned by the eigenvectors vβ

w.r.t. eigenvalues β for h∗|Vh ⊗Z K(f). Here K(f) is the splitting field
(⊂ C) of f(x) over Q.

So we have only to show the assertion that t∗vβ ≡ vβ for all such eigen-
vector vβ (so that nt∗vβ and nvβ are algebraically equivalent for some n > 0
and hence t∗vβ equals vβ in NSQ(X)). There is a γ = γh in the Galois group
Gal(f) = Gal(K(f)/Q) of f(x) such that γ−1(β) equals the spectral radius
λ (see Lemma 2.7). Set L± = L(h)± ∈ (Pic(X)) ⊗Z Z[λ] (see Proposition
2.11), so that h∗L± ≡ λ±L±. For g ∈ Aut(X), extend g∗|Pic(X) C-linearly
to g∗|(Pic(X)) ⊗Z C. For a C-divisor D =

∑
ciDi with Di ∈ Pic(X) and

ci ∈ K(f), define γ∗(D) =
∑

γ(ci)Di. Then γ ◦ g = g ◦ γ. Now:

h∗γ∗(L+) = γ∗h∗(L+) ≡ γ∗(λL+) = βγ∗(L+).

So vβ := γ∗(L+) (its class, to be precise) is an eigenvector w.r.t. β for
h∗|NS(X) ⊗Z K(f). For t ∈ T , we have t∗vβ = t∗γ∗(L+) = γ∗t∗(L+) ≡
γ∗(L+) = vβ. The assertion and hence (3) are proved.

Finally, to show T |NS(X) is finite it is enough to show that T |NSQ(X) is
finite, since NS(X) has a finite torsion. By (3) and the proof of Proposition
2.11, we then have only to show T stabilizes W := (L+)⊥ ∩ (L−)⊥ ∩NS(X)
(noting that W ⊗Z Q = Vhs(h)=1 and O(W ) is finite). This is clear because
t∗L± ≡ L± for t ∈ T by (3) and Proposition 2.11 (2). We are done. �

By the proof above, 〈hm〉nT stabilizes (up to scalars) L(hm)−. Reversing
the process or noting that L(hm)− = L(h−1

m )+, one obtains:

Corollary 3.2. Let X be a smooth projective surface and g an automor-
phism of positive entropy. Then StabAut(X)(L(g)+) = StabAut(X)(L(g)−).

We now elaborate further about the stabilizer subgroup StabG(M).

Proposition 3.3. Assume that G = StabG(M) and G is of positive entropy
as in 3.1. Assume further that G E F ≤ Aut(X). Then we have:

(1) One has |F : StabF (M)| ≤ 2, so StabF (M) is normal in F . Write
StabF (M) = 〈hF 〉 n TF with M = L(hF )+, as in 3.1.

(2) Suppose that |F : StabF (M)| = 2 and let τ ∈ F \ StabF (M). Then

F = {τ ihj
F t | i = 0, 1; j ∈ Z; t ∈ TF }. Also g ∈ F is of positive

entropy if and only if g = hj
F t for some j 6= 0 and t ∈ TF .

Proof. (1) We use Theorem 3.1 (and its notation) : G = 〈hm〉 n T . Write
h = hm for simplicity. Take f ∈ F . Then fhf−1 = hrt for some r = r(h) ∈ Z

and t ∈ T . Applying the equality to M = L(h)+, we get (fhf−1)∗M ≡ λrM
(with λ = λ(h) > 1) and h∗(f∗M) ≡ λr(f∗M). By the uniqueness Lemma
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2.8, either r = 1 and f ∗M equals L(h)+, up to a positive scalar (so f ∈
StabF (M)), or r = −1 and f ∗M equals L(h)−, up to a positive scalar.

Suppose there are fi ∈ F such that fihf−1
i = hriti as above, but with

r1 = r2 = −1. Then (f2f1)h(f2f1)
−1 = f2(h

−1t1)f
−1
2 = (h−1t1)

−1t′1 =

ht′′t′ =: ht′′′. Here t′1 = f2t1f
−1
2 and t′′′ are all in T . Hence, by the argument

above, f1f2 (and especially f 2
i ) are all in StabF (M). Thus (1) follows.

Indeed, we may assume that hm = h`
F for some ` ≥ 1, and L(hF )± = L(h)±.

(2) The first part is from (1). Set L± := L(hF )±. We have τTF τ−1 = TF

since TF is the set of all null entropy elements in StabF (M). Since hF is
of positive entropy, by the proof of (1), we have τhF τ−1 = h−1

F t for some
t ∈ TF and may assume that τ ∗L+ = L− and (τ∗L− =) (τ2)∗L+ ≡ αL+ for
some α > 0. We also have (τ 2)∗L− ≡ τ∗(αL+) = αL−. By Lemma 2.12 and
the uniqueness Lemma 2.8, we have α = 1, and hence τ 2 (and also τ) are of

null entropy. Thus τ 2 = t′ ∈ TF . Now for tF ∈ TF , we see that (τhj
F tF )2 =

(τhj
F tF τ−1)t′hj

F tF = (h−1
F t)jt′′hj

F tF ∈ TF (here t′′ = (τtF τ−1)t′ ∈ TF ),

whence τhj
F tF is of null entropy. (2) follows. The proposition is proved. �

Let σ : Aut(X) → Aut(NS(X)) be the natural homomorphism. We have:

Proposition 3.4. Let X be a smooth projective surface and G ≤ Aut(X) a
subgroup of positive entropy. Suppose that there is an H/G such that G/H is
abelian and σ(H) is a finite subgroup of Aut(NS(X)). Then G = StabG(P )
for every P = L(g)± with g ∈ G being positive entropy.

Proof. By Lemma 2.13, we have h∗P ≡ P for every h ∈ H. By the assump-
tion, for every g1 ∈ G we have g1g = hgg1 for some h ∈ H. Applying this
equality to P = L(g)+, we get g∗(g∗1P ) ≡ λ(g∗1P ) with λ = λ(g) > 1. By
the uniqueness Lemma 2.8, g∗1P equals L(g)+ (up to a positive scalar). So
g1 ∈ StabG(P ). Thus G = StabG(P ). The case P = L(g)− is similar. The
proposition is proved. �

In [23] §7, McMullen constructed rational surfaces Sv for all v ∈ (C1,n)∗

there. The latter set contains all leading eigenvectors v w.r.t. an eigenvalue
β, for a Coxeter element w in the Weyl group Wn (n ≥ 10) of the Minkowski
parabolic lattice of rank n + 1 (so Sv has Picard number n + 1). Here v is
a leading eigenvector for w if β is conjugate over Q to the largest (in terms
of modulus) eigenvalue λ(w) of w. One has λ(w) > 1 (see [23] before 2.5).

3.5. Proof of Theorem 1.5
Set S := Sv. Let σ : Aut(S) → Aut(Pic(S)) be the natural homomor-

phism. Since S is rational, we do the identification: NS(X) = Pic(S) = Z1,n

and (Pic(S)) ⊗Z C = C1,n, as in [23]. Set kn = [KS ] ∈ Pic(S). By [23]
Corollary 7.2, we have

Aut(S) ∼= W v
n = {w′ ∈ Wn | [v] ∈ C1,n/Ckn is an eigenvector for w′}.

Since every h ∈ Aut(S) stabilizes KS and K⊥
S , and v ∈ K⊥

S , we have
σ(Aut(S)) ⊆ StabAut(Pic(S))(v). So for every h ∈ Aut(S), we have h∗(v) =
βhv for some βh ∈ C. Fix any g ∈ Aut(S) (of positive entropy) realizing
the Coxeter element w. Set β = βg. Let f(x) = fg(x) be the minimal
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polynomial of βg over Q. Let K(fg), or K(fg, fh) be the splitting field
(⊂ C) of fg(x), or fg(x) and fh(x) over Q. There is a τ = τg in the
Galois group Gal(f) = Gal(K(f)/Q) of f(x) such that τ(β) equals the
spectral radius λ = λ(g) = λ(w) (see Lemma 2.7). Clearly, we may take
v ∈ (Pic(S)) ⊗Z K(f). Set L± = L(g)± ∈ (Pic(S)) ⊗Z Z[λ] (see Proposition
2.11), so that g∗L± ≡ λ±L±.

We claim that Aut(S) = StabAut(S)(M) for both M = L±, which will in
turn imply the theorem by Theorem 3.1 and Proposition 2.11.

Take h ∈ Aut(S). Extend h∗|Pic(S) C-linearly to h∗|(Pic(S)) ⊗Z C.
Denote by the same τ its extension to an automorphism of the splitting field
K(fg, fh) (by the isomorphism extension theorem). For a C-divisor D =∑

ciDi with Di ∈ Pic(S) and ci ∈ K(fg, fh), define τ ∗(D) =
∑

τ(ci)Di.
Then τ ◦ h = h ◦ τ . We have:

λτ∗(v) = τ∗(βv) = τ ∗(g∗(v)) = g∗(τ∗(v)).

By Lemma 2.7, τ ∗(v) equals the class of δL+ for some δ ∈ K(f) (by the
choice of v and L+). Replacing v, we may assume that τ ∗(v) equals the
class of L+. Now the claim for M = L+ (and hence the theorem) follows
from the calculation below (noting that the case M = L− is similar):

h∗L+ = τ∗h∗(τ−1)∗L+ ≡ τ∗h∗(v) = τ∗(βhv) = τ(βh)τ∗(v) ≡ τ(βh)L+.

This proves the theorem.

4. Automorphisms of null entropy

In this section, we consider groups of automorphisms of null entropy. The
following is the main result of the section.

Let σ : Aut(X) → Aut(Pic(X)) be the natural homomorophism.

Theorem 4.1. Let X be a smooth projective surface with irregularity q(X) =
0 and let G ≤ Aut(X) be a subgroup of null entropy such that σ(G) is an
infinte subgroup of Aut(Pic(X)). Suppose that the pair (X,G) is minimal.
Then we have:

(1) There is a nef Q-divisor M (which might be zero) with M 2 = 0, such
that either KX ≡ M or KX ≡ −M . In particular, K2

X = 0.
(2) If X is rational, then −KX is nef and X has an anti 1-canonical

curve.

4.2. We need some preparation before starting the proof. For a smooth
projective surface X, let N1(X) be the R-vector space (of rank ρ(X), the
Picard number) of 1-cycles modulo numerical equivalence; let NE(X) be
the closure in N1(X) of the cone NE(X) ⊂ N1(X) of effective 1-cycles
(modulo numerical equivalence); see Kollar and Mori [20], Definitions 1.16
and 1.17. In our surface case, an R-divisor D is pseudo-effective if and only
if D ∈ NE(X).

Let X be a smooth projective surface. Set L = NS(X)/tor, the Neron-
Severi lattice modulo its (finite) torsion. Suppose that G ≤ Aut(X) is of
null entropy. Then the image G := Im(G → Aut(L)) is of null entropy in
the sense of Oguiso [25], §2. Conversely, if G is of null entropy in the sense
of Oguiso, then G is of null entropy in the usual sense of Definition 2.5, by
virtue of Lemma 2.8.
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We now assume that q(X) = 0. Then L = Pic(X)/tor and Pic(X) ∼=
L⊕ (finite torsion subgroup). Clearly, σ(G) ≤ Aut(Pic(X)) is infinite if and
only if Ḡ ≤ Aut(L) is infinite.

For divisors D1, D2 we say D1 = D2 in L if their classes in L are identical,
i.e., if D1 ≡ D2 (noting that q(X) = 0 is assumed).

The following result is proved in Oguiso [25] Lemma 2.8. We slightly
change the formulation, where g(v) etc. should be understood as g(v) with
g the image of g via the surjective homomorphism G → G.

Lemma 4.3. The following are true.

(1) There is a unique ray 0 6= R>0v ∈ NE(X) such that v2 = 0 and
g(v) = v in L for all g ∈ G. We can choose v to be in L.

(2) Suppose that B is a subgroup of O(L) and ` ∈ L such that `2 > 0
and b(`) = ` for all b ∈ B. Then B is finite.

We continue the proof of Theorem 4.1. Clearly, (2) is a consequence of
(1) and the Riemann-Roch theorem. We now prove (1).

Let V be in Pic(X) whose class in L is v. We assert that KX .V = 0.
Suppose the contrary that KX .V 6= 0. Then there is a positive integer t
such that D = KX + tV satisfies D2 > 0. Clearly, g(D) = D in L for all
g ∈ G. Then G is finite by Lemma 4.3, contradicting the assumption on G.
So the assertion is true.

Next we assert that V is nef. Let V = P+N be the Zariski-decomposition.
Since g(v) = v in L (and hence g(V ) ≡ V ) for every g ∈ G and by the
uniqueness in Lemma 2.3, we have g(N) = N and g(P ) ≡ P (so g(nP ) = nP
in L for some positive integer n with nP integral) for every g ∈ G. If P 2 > 0,
then we get a contradiction as above. So P 2 = 0. Now 0 = v2 = (P +N)2 =
N2 implies that N = 0 and V = P is nef. The assertion is proved.

Serre duality says h2(X,KX + V ) = h0(X,−V ) = 0 because V.H > 0 for
an ample divisor H on X. Since q(X) = 0, one has χ(OX) = 1 − q(X) +
pg(X) > 0. Now the Riemann-Roch theorem implies that h0(X,KX +V ) ≥
χ(OX) > 0. If KX + V ≡ 0, then −nKX ∼ nV for some integer n > 0
because q(X) = 0. We are done.

Suppose KX + V is not numerically trivial. Let KX + V = P ′ + N ′ be
the Zariski decomposition. Since g(KX + V ) ≡ KX + V for all g ∈ G, we
have, as above, g(P ′) = P ′ in L, (P ′)2 = 0 and g(N ′) = N ′, whence G
permutes components of N ′. By the uniqueness of v, we have P ′ ≡ aV for
some a ≥ 0. So KX + (1 − a)V ≡ N ′.

If N ′ = 0, then −n′KX ∼ n′(1 − a)V for some integer n′ > 0 and we are
done. Suppose that N ′ 6= 0. Then (N ′)2 < 0 and hence for some component
N1 of N ′, we have 0 > N1.N

′ = N1.(P
′ +N ′) = N1.(KX +V ) ≥ N1.KX . So

N1 is a (−1)-curve in N ′. Let Σ be the set of (−1)-curves Nj in N ′. Then
Ni ∩ Nj = ∅ (i 6= j) by the negativity of N ′. Since G(N ′) = N ′, we have
G(Σ) = Σ, contradicting the minimality of (X,G). The theorem is proved.

5. Dynamics of groups; Proofs of some of Theorems 1.2 - 1.6

In this section we give dynamical structures for certain groups of surface
automorphisms. We also prove Theorems 1.2, 1.3 and 1.6.

5.1. Proof of Theorem 1.2.
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Clearly, there is a G-equivariant smooth blowdown such that the pair
(Y,G) is minimal. G ≤ Aut(Y ) is also of null entropy. So we may assume
that (X,G) is already minimal. Indeed, Im(G → Aut(Pic(X))) is infinite if
and only if so is Im(G → Aut(Pic(Y ))) since G acts on the (finite) set of
curves in the exceptional divisor E of X → Y and Pic(X) is the direct sum
of the pull back of Pic(Y ) and the lattice generated by the curves in E. Set
G = Im(G → Aut(Pic(X))). Consider the natural exact sequence:

1 → J → G → G → 1.
Assume that Ḡ is finite. Then J is infinite because so is G. By Harbourne

[16] Proposition 1.3, X has only finitely many ’exceptional curves’ (see [16]
page 409, last paragraph for its definition) and our J stabilizes each irre-
ducible component of these exceptional curves. Inductively we can prove
that there is a J -equivariant smooth blowdown X → Y onto a relatively
minimal rational surface Y (with K2

Y = 8, 9). Now the assertion (1) follows
from the Riemann-Roch theorem.

Assume Ḡ is infinite. Then Theorem 1.2 follows from Theorem 4.1.

Let σ : Aut(X) → Aut(NS(X)) be the natural homomorphism.

Proposition 5.2. Let X be a smooth projective surface and G ≤ Aut(X) a
subgroup of positive entropy. Suppose that there is a sequence

H / A E G
such that σ(H) (resp. σ(A)) is a finite (resp. infinte) subgroup of Aut(NS(X)),
and A/H is abelian.

Then there is a B ≤ G fitting the sequence below and satisfying the four
conditions below

H / A E B E G.
(1) |G/B| ≤ 2.
(2) B = 〈hm〉 n T , with hm positive entropy and σ(T ) a finite group.
(3) A = 〈ha

m〉 n T1, with a ≥ 1 and T1 E T .
(4) H E T1 and A/H = 〈h̄a

m〉 × (T/H), with T/H abelian.

Proof. We claim that A is of positive entropy. Suppose the contrary that A
is of null entropy. By Lemma 4.3 and the proof of Theorem 4.1 (q(X) = 0
was used only in the calculation of the Riemann Roch theorem), there is a
nef Cartier divisor V such that V 2 = 0 and a∗V ≡ V for all a ∈ A. Now
for g ∈ G and a ∈ A, write gag−1 = a′ ∈ A. Then (gag−1)∗V = (a′)∗V ≡ V
and a∗(g∗V ) ≡ g∗V for all a ∈ A. The uniqueness of the ray R>0[V ] in
Lemma 4.3, implies g∗V ≡ αgV for some αg > 0. By the assumption on
G, some g ∈ G is of positive entropy, whence L(g)± = V , a Cartier divisor
(Lemma 2.12). This contradicts Proposition 2.11. Thus the claim is true.

By Proposition 3.4, we have A = StabA(P ) for every P = L(g)± with
g ∈ A being positive entropy. Set B := StabG(P ). By Proposition 3.3, we
have |G : B| ≤ 2 (hence B E G). Applying Theorem 3.1 to B and A, we
get (2) and (3). For (4), we have H ≤ T1 because σ(H) is finite and hence
H is of null entropy. The proposition is proved. �

As a consequence of Proposition 5.2, we have the result below:

Theorem 5.3. Let X be a smooth projective surface and G ≤ Aut(X)
a subgroup of positive entropy. Suppose that there is an H / G such that
G/H = Z × Z and Im(H → Aut(NS(X))) is finite. Then we have:
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(1) G = 〈hm〉 n T and H E T .
(2) Im(T → Aut(NS(X))) is finite.
(3) G/H = 〈ḡ1〉 × 〈ḡ2〉, with g1 = hm of positive entropy, and g2 ∈ T of

null entropy and infinte order.
For groups which are not necessarily of null entropy, we have Theorems 5.4

and 5.5 below, which are more general than Theorem 1.3 in the Introduction.
A group F is almost infinite cyclic if F ∼= Z n F1 (semi-direct product)

with F1 finite (and normal in F ).

Theorem 5.4. Let X be a smooth projective surface and G ≤ Aut(X) an
infinite subgroup. Assume the following two conditions:

(1) There is an H E G such that G/H is soluble and the group Im(H →
Aut(NS(X))) is finite; and

(2) No index ≤ 2 subgroup of G is almost infinite cyclic.

Then G contains a subgroup S of null entropy and infinite order.
In particular, when X is rational, there is an S-equivariant smooth blowdown
X → Y such that Y has an anti-pluricanonical curve.

Proof. We may assume that G is of positive entropy (see Theorem 1.2).
Consider the derived series of G:

G = G(0) D G(1) D G(2) D . . .

with G(n) = [G(n−1), G(n−1)] the commutator subgroup of G(n−1). By the

assumption, we have G(n) ≤ H for some n ≥ 0, whence σ : Aut(X) →
Aut(NS(X)) maps G(n) to a finite group. Note that σ(G) is infinte because
G is of positive entropy by the additional assumption. Thus there is a
sequence below for some r ≥ 0:

G(r+1) / G(r)
E G

where σ(G(r+1)) is finite, σ(G(r)) is infinite, and G(r)/G(r+1) is abelian.

Applying Proposition 5.2 to H = G(r+1) and A = G(r), we have B =
StabG(P ) = 〈hm〉 n T and |G/B| ≤ 2, as described there. If T is infinite,
then let it be S and we are done. If T is finite, then the index ≤ 2 subgroup
B of G is almost infinite cyclic, contradicting the assumption of the theorem.
This proves Theorem 5.4. �

For a group P , we consider the upper central series:
(1) = Z0(P ) E Z1(P ) E Z2(P ) E · · ·

with Zn(P )/Zn−1(P ) equal to the centre Z(P/Zn−1(P )).

Theorem 5.5. Let X be a smooth projective surface and G ≤ Aut(X) an
infinite subgroup. Assume the following two conditions:

(1) There is an H / G such that the group ∪∞
n=1Zn(G/H) is infinite and

the group Im(H → Aut(NS(X))) is finite; and
(2) No index ≤ 2 subgroup of G is almost infinite cyclic.

Then G contains a subgroup S of null entropy and infinite order.
In particular, when X is rational, there is an S-equivariant smooth blowdown
X → Y such that Y has an anti-pluricanonical curve.

Proof. We may assume that G is of positive entropy (see Theorem 1.2).
Consider the upper central series of Ḡ := G/H:

(1) = Z0(Ḡ) E Z1(Ḡ) E Z2(Ḡ) E . . .
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with Zn(Ḡ)/Zn−1(Ḡ) = Z(Ḡ/Zn−1(Ḡ)), the centre of Ḡ/Zn−1(Ḡ). Write
Zn(Ḡ) = Zn/H for some Zn E G with Z0 = H. By the assumption,
(∪n≥1Zn)/H = ∪n≥1Zn(Ḡ) is infinite. So ∪n≥1Zn is infinite. If σ : Aut(X) →
Aut(NS(X)) maps every Zn (n ≥ 0) to a finite group, then the group ∪n≥1Zn
has null entropy and let it be S, so we are done.

Therefore, we assume that there is a sequence below for some r ≥ 1:
Zr−1 / Zr E G

where σ(Zr−1) is finite, σ(Zr) is infinite, and Zr/Zr−1
∼= Zr(Ḡ)/Zr−1(Ḡ) =

Z(Ḡ/Zr−1(Ḡ)) is abelian. The rest of the proof is identical to that of The-
orem 5.4. This completes the proof of Theorem 5.5. �

5.6. Proof of Theorem 1.3.
This theorem will follow from Theorem 5.4 or 5.5, but we give a direct

proof, so that we can see the dynamical structure of G. If G is of null entropy,
we let it be S and the theorem is true. Assume that G is of positive entropy.
We apply Proposition 5.2 and use the notation there. Since |G : A| = ∞, we
have |B : A| = ∞, so |T : T1| = ∞. Thus T is infinite and of null entropy;
let it be S and Theorem 1.3 is proved.

5.7. Proof of Theorem 1.6.
Set H := G ∩ Ker(σ). By the original Tits alternative theorem in [28]

Theorem 1, applied to G/H ≤ GL(ρ, C) with ρ = ρ(X), either G/H ≥ Z ∗
Z = 〈ḡ1〉∗〈ḡ2〉, the non-abelian free group of rank 2 (so G ≥ Z∗Z = 〈g1〉∗〈g2〉
and G satisfies the assertion (1) of the theorem) , or G/H is virtually soluble:
there is a G1/H ≤ G/H such that |G : G1| is finite and G1/H is soluble.

Let {giG1} be the (finite) set of all left cosets of G1 in G. Define G2 :=
∩giG1g

−1
i (≥ H). Clearly, G2 is normal in G. Also |G/G2| is finite because

all |G : giG1g
−1
i | are finite. This can be proved inductively by the injectivity

of the following map between the sets of cosets: {g(J1 ∩ J2) | g ∈ G} →
{gJ1 | g ∈ G} × {gJ2 | g ∈ G}, x(J1 ∩ J2) 7→ (xJ1, xJ2); here Jr ≤ G.

Since G1/H is soluble so is its subgroup G2/H. Since G is of positive
entropy, so is G2 by the finiteness of |G/G2|. By the proof of Theorem 5.4
applied to G2 and H, there is a B2 = StabG2(P ) = 〈h2〉 n T2 such that
|G2/B2| ≤ 2.

Set B = StabG(P ). If B2 is normal in G, then the theorem (with the B
just defined) follows from Proposition 3.3 and Theorem 3.1.

Suppose B2 is not normal in G. Then |G2/B2| = 2 and let τ ∈ G2 \ B2.
We apply Proposition 3.3 to B2 E F := G2 ≤ Aut(X) and use its proof.
For any g ∈ G, gh2g

−1 is in G2 and of positive entropy, whence it equals
hr

2t for some r ∈ {±1} and t ∈ T2. Also, if r = 1, then g ∈ B; if r = −1 then

(τg)h2(τg)−1 = τ(h−1
2 t)τ−1 = h2t1(τtτ−1) =: h2t2 with t1 and t2 in T2, so

that τg ∈ B; also τ 2 ∈ T2 ≤ B2 ≤ B. Thus G/B = 〈τ̄ 〉 ∼= Z/(2). Theorem
1.6 is proved (see Theorem 3.1).

6. Positive entropy; proof of Theorem 1.7

In this section, we consider surface automorphisms g of positive entropy.
We prove Theorem 6.1 below, which will imply Theorem 1.7 in the

Introduction. We also show that the two sets Null(L(g)±) are identical (and
finite) and equal to Stab(g); see Lemma 2.10.
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Theorem 6.1. Let X be a smooth projective rational surface with an auto-
morphism g of positive entropy. Assume the following two conditions:

(1) The pair (X, 〈g〉) is minimal; and
(2) Either the set Stab(g) of g-periodic curves contains a curve of arith-

metic genus ≥ 1, or X has an anti-pluricanonical curve.
Then we have:

(1) There is a unique nonzero effective Q-divisor ∆ with Supp(∆) ⊆
Stab(g) such that KX + ∆ ≡ 0. If d is the smallest positive integer
such that d∆ is a Cartier integral divisor, then d(KX + ∆) ∼ 0.
Further, the gcd of coefficients of d∆ is equal to 1.

(2) Stab(g) is a union of Supp(∆) and possibly a few (−2)-curves away
from Supp(∆).

(3) One has κ(X,−KX ) = 0, so every anti-pluricanonical curve is of the
form s(d∆) for some positive integer s.

(4) Suppose that d ≥ 2. Then Stab(g) is a disjoint union of rational
trees; we have C2 ≤ −2 for all C ∈ Stab(g) and C2

1 ≤ −3 for at least
one C1 ∈ Stab(g).

We first prove the finiteness of the sets Null(L±); the finiteness of Null(L+)
∩ Null(L−) is known and easy; see section 2 for the notation.

Theorem 6.2. Let X be a smooth projective surface with an automorphism
g of positive entropy. Set L± = L(g)±.

Then for each of M = L+ and M = L− the set Null(M) is either empty
or a finite set. In particular, Null(L+) = Null(L−) = Stab(g).

Proof. Clearly, there is a 〈g〉-equivariant smooth blowdown γ : X → Y
(with Eγ the exceptional divisor) such that (Y, 〈g〉) is minimal. Also, Eγ ⊆
Stab(g). So L±.E1 = 0 for every E1 ≤ Eσ by Lemma 2.10. Thus L± = γ∗L±

Y

for some nef divisor L±
Y on Y . The calculation (with λ = λ(g))

γ∗(λL±
Y ) = λL± ≡ g∗L± = g∗γ∗L±

Y = γ∗(g∗L±
Y )

implies g∗L±
Y = λ±

Y because γ∗ : (Pic(Y ))⊗Z R → (Pic(Y ))⊗Z R is injective.
So g is also of positive entropy on Y . By the projection formula, we have:

Null(L±) = γ−1(Null(L±
Y )) ∪ Supp(Eγ).

Thus we may assume that (X, 〈g〉) is already minimal.
Assume the contrary that Null(M) contains infinitely many curves Ci.

Since the Picard number ρ(X) is finite, there are positive integers r, s, ai,
bj such that:

D :=
r∑

i=1

aiCi ≡
s∑

j=r+1

bjCj .

This display shows that D is nef and is not numerically trivial by the exis-
tence of an ample divisor H on X. Also M.D = 0. So D ≡ aM for some
a > 0 (Lemma 2.4). The Cartier-ness of D contradicts Proposition 2.11. �

We study Stab(g) according to the arithmetic genera of its members.

Lemma 6.3. Let X be a smooth projective surface with an automorphism
g of positive entropy. Let C be a g-periodic curve. Then we have:

(1) The arithmetic genus pa(C) ≤ 1.
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(2) If pa(C) = 1 then X is rational.
(3) Suppose that (X, 〈g〉) is minimal and pa(C) = 1. Then C is an

anti 1-canonical curve. Stab(g) is a union of C and possibly a few
(−2)-curves away from C.

Proof. By the assumption, we may fix some s > 0 such that gs(C) = C. If
X is irrational, then C is a smooth rational curve; see e.g. Kawaguchi [18]
Proposition 3.1. In particular, (2) is true.

We may assume that X is rational. We follow Diller, Jackson and Sommese
[10], Theorem 3.6. Considering the cohomology exact sequence associated
to the exact sequence below:

0 → OX(KX) → OX(KX + C) → OC(KC) → 0,

we get pa(C) ≤ h0(X,KX + C) because h1(X,KX ) = q(X) = 0. If |KX +
C| = ∅ or KX + C ∼ 0, (1) and (3) are true (see below).

Suppose that 0 < D ∈ |KX + C|. Then L.D = L.KX + L.C = 0 by
Lemma 2.9 and hence the intersection matrix of irreducible components of
D is negative definite by the Hodge index theorem or Lemma 2.10. Thus
1 = h0(X,D) ≥ pa(C) and also gs(D) = D as sets, since (gs)∗D ∼ D . This
proves the assertion (1).

For (3), suppose pa(C) = 1, (X, 〈g〉) is minimal and the above D > 0.
Note that C is not a component of D, for otherwise KX ∼ D−C ≥ 0, absurd
(by (2)). Now D2 < 0 and hence 0 > D.D1 = (KX + C).D1 ≥ KX .D1

for some component D1 of D. Thus D1 is a (−1)-curve. Note that this
D1 ∈ Stab(g) because gs(D) = D. This contradicts the minimality of
(X, 〈g〉) by Lemma 2.10. Therefore, KX + C ∼ 0.

To prove the last part of (3), let C1 (6= C) be in Stab(g). Then C2
1 < 0

by Lemma 2.10 and 0 = C1.(KX + C) ≥ C1.KX . Thus C1 is a (−2)-curve
by the minimality of (X, 〈g〉). This proves the lemma. �

Lemma 6.4. Let X be a smooth projective surface with an automorphism
g of positive entropy. Suppose that Stab(g) is non-empty and consists of
smooth rational curves. Then we have:

(1) Every curve C in Stab(g) is a smooth rational curve with C 2 = −n
for some n ≥ 1.

(2) Suppose that (X, 〈g〉) is minimal. Then in (1) we have n ≥ 2 and
KX .C = n − 2 ≥ 0. There is a unique effective Q-divisor ∆ with
Supp(∆) ⊆ Stab(g) such that (KX + ∆).Ci = 0 for every Ci in
Stab(g). The set Stab(g) is a union of Supp(∆) and possibly a few
(−2)-curves away from Supp(∆).

Proof. (1) and the first part of (2) follow from Lemma 2.10 while the second
of (2) is from solving linear equations and Zariski’s lemma (Kollar and Mori
[20] Lemma 3.41). Take C in Stab(g) \ Supp(∆). Then C a (−n)-curve for
some n ≥ 2, and we have 0 = C.(KX + ∆) ≥ C.KX = n− 2 ≥ 0; so the last
of (2) follows. The lemma is proved. �

6.5. Proof of Theorem 6.1.
If Stab(g) contains a curve C with pa(C) ≥ 1, then the theorem follows

from Lemma 6.3.
So we may assume that X has an anti-pluricanonical curve and Stab(g)

(if not empty) consists of smooth rational curves Ci (with C2
i ≤ −2 by
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Lemma 6.4). So −d′KX ∼ D′ for some d′ ≥ 1 and effective (integral)
Cartier divisor D′ (6= 0, for X being rational). By Lemmas 2.9 - 2.10, we
have D′.L(g)± = −d′KX .L(g)± = 0 and hence Supp(D′) ⊆ Stab(g). Since
KX +(D′/d′) ∼Q 0 and hence (KX +(D′/d′)).Ci = 0 for every Ci ∈ Stab(g),
we have ∆ = D′/d′ by the uniqueness in Lemma 6.4. Also (2) follows.

Write ∆ = D/d with positive integer d and effective Cartier integral
divisor D such that the gcd (called r) of coefficients of D is coprime to d.
We claim that r = 1. Indeed, take a (−1)-curve E (noting that K 2

X < 0 by
Lemma 2.9). We have 1 = −KX .E = (D.E)/d. Clearly, r |D.E. So r | d.
Thus r = 1.

Note that dKX + D = d(KX + ∆) ≡ 0. So n(dKX + D) ∼ 0 for some
positive integer n, since q(X) = 0. Thus dKX +D ∼ 0 because X is rational
and hence Pic(X) is torsion free.

Since Supp(∆) ⊆ Stab(g) is negative definite, we have κ(X,−KX ) = 0.
This proves (1). Now (3) follows.

For (4), we assert that C2
i0

≤ −3 for at least one i0. Otherwise, all Ci

are (−2)-curves and hence KX .∆ = 0. This implies 0 = ∆.(KX + ∆) = ∆2,
whence ∆ = 0 by the negativity of Supp(∆) ⊆ Stab(g). So KX ≡ 0, absurd
(for X being rational). The assertion is proved.

Suppose that a reduced connected component D of Stab(g) is either of
non-simple-normal-crossing or contains a loop. Then (KX + D).D ≥ 0 (i.e.,
pa(D) ≥ 1); see e.g. CCZ [8] Lemma 2.2. By the Riemann-Roch theorem,
one has KX + D ∼ G ≥ 0. Cancelling the common components of D and
G, one has KX + D′ ∼ G′. If G′ = 0 then one has a contradiction to that
d ≥ 2. Thus G′ 6= 0. By Lemma 2.9 - 2.10, one has L.G′ = L.(KX +D′) = 0
and that Supp(G′) ⊆ Stab(g) is negative definite. Hence (G′)2 < 0. So
0 > G1.G

′ = G1.(KX+D′) ≥ G1.KX for some component G1 of G′. Thus G1

is a (−1)-curve in Null(L), contradicting the minimality of (X, 〈g〉) (Lemma
2.10). So (4) is true. Theorem 6.1 is proved.

As an effective upper bound for the d in Theorem 6.1, we have:

Remark 6.6. Let X be a smooth projective rational surface with an auto-
morphism g of positive entropy. Assume the following three conditions:

(1) The pair (X, 〈g〉) is minimal;
(2) Either the set Stab(g) of g-periodic curves contains a curve of arith-

metic genus ≥ 1, or X has an anti-pluricanonical curve; and
(3) Either Stab(g) is contractible to quotient singularities, or Stab(g) is

not a disjoint union of rational trees.
Then X has an anti s-canonical curve for some 1 ≤ s ≤ 21.

Indeed, As in Theorem 6.1, d(KX + ∆) ∼ 0. We may assume that d ≥ 2.
Let X → X̄ be the contraction of ∆ to quotient singularities. Then X̄ is a
rational log Enriques surface of index d in the sense of [30] Definitions 1.1
and 1.4. Then by [30] and [3], we have d ≤ 21.

Question 6.7. Does there exist an upper bound of s as in Remark 6.6
without assuming the condition (3)?
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