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MILNOR INVARIANTS AND TWISTED WHITNEY
TOWERS

JAMES CONANT, ROB SCHNEIDERMAN, AND PETER TEICHNER

Abstract. This paper describes the relation between the first
non-vanishing Milnor invariants of a link in the 3–sphere and the
intersection invariant of a twisted Whitney tower in the 4–ball
bounded by the link. In combination with results from three closely
related papers [5, 6, 7], we conclude that for n ≡ 0, 1, 3 mod 4, the
group Wn of links bounding order n twisted Whitney towers mod-
ulo order n + 1 twisted Whitney tower concordance is free abelian
with rank equal to the number of length n + 2 Milnor invariants.
We also show that the groups W4k+2 contain at most 2-torsion and
give an upper bound on the number of generators of these groups.
These upper bounds are sharp if and only if our higher-order Arf
invariants Arfk are Z2-linearly independent. Constructing bound-
ary links realizing the image of Arfk for all k leads to two new
geometric characterizations of links with vanishing length ≤ 2n
Milnor invariants.

1. Introduction

In [5] we defined the twisted Whitney tower filtration on the set L =
L(m) of framed links in the 3–sphere with m components:

(W ) · · · ⊆W3 ⊆W2 ⊆W1 ⊆W0 = L

Here Wn = Wn(m) is the set of framed links with m components that
bound a twisted Whitney tower of order n in the 4–ball. The equivalence
relation on Wn of twisted Whitney tower concordance of order n + 1
led us to the ‘associated graded’ Wn = Wn(m), and we showed that
these are finitely generated abelian groups for all n, under a band sum
operation #.

As a consequence, we showed that Wn is the set of links L ∈ Wn

modulo the relation that [L1] = [L2] ∈ Wn if and only if L1#− L2 lies
in Wn+1, for some choice of band sum #. Here −L is the mirror image
of L with reversed framing.

Key words and phrases. Milnor invariants, Whitney towers, twisted Whitney
tower, Whitney disk, link concordance, higher-order Arf invariants, trees, k-slice.
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2 J. CONANT, R. SCHNEIDERMAN, AND P. TEICHNER

The “twist” symbol in our notation stands for the fact that some
of the Whitney disks in a twisted Whitney tower are allowed to be non-
trivially twisted, rather than framed (which corresponds to 0-twisting).

In this paper, we will show how Milnor invariants [21, 22] give rise
to invariants defined on the associated graded groups Wn :

Theorem 1. The Milnor invariants of length ≤ n+ 1 vanish for links
L ∈Wn , and the length n+ 2 Milnor invariants of L can be computed
from the intersection tree τn (W) of any twisted Whitney tower W of
order n bounded by the link L.

The second statement will be made precise in Theorem 5. For ex-
ample, W0 = W0 (m) ∼= Zk where k = m(m + 1)/2 is the number
of possible linking numbers and framings (on the diagonal) of a link
with m components. Recall that linking numbers (Milnor invariants
of length 2) are just intersection numbers of disks bounding the com-
ponents of the link (Whitney towers of order 0), showing the relation
to our filtration and intersection invariants at the lowest order. Theo-
rem 5 shows how to compute higher-order Milnor invariants in terms
of higher-order intersections of Whitney disks.

Quite surprisingly, results from [5, 6, 7] together with Theorem 5 im-
ply that for n ≡ 0, 1, 3 mod 4 the Milnor invariants completely classify
the groups Wn , see Theorem 7 for a precise statement. The classi-
fication of W4k−2 requires in addition what we call higher-order Arf
invariants Arfk, see Definition 10. We show in Lemma 9 that Arf1

contains the same information as the classical Arf invariants of the link
components.

Theorem 2. For all n ∈ N, the groups Wn are classified by Milnor
invariants µn and, in addition, higher-order Arf invariants Arfk for
n = 4k − 2.

While we do show in [7] that these higher-order Arf invariants are
the only remaining obstructions after the Milnor invariants, it is pos-
sible that Arfk are trivial for k > 1. In Proposition 8 we give up-
per bounds for the range of Arfk in terms of known 2-torsion groups
and we conjecture that these upper bounds are optimal in Conjec-
ture 11. The construction of boundary links realizing the range of Arfk
(Lemma 12) yields two new geometric characterizations of links with
vanishing length ≤ 2n Milnor invariants, as described in Theorem 16
and Theorem 17 below.

The results in this paper on the twisted Whitney tower filtration also
have implications for the framed grope and Whitney tower filtrations
Gn = Wn introduced in [5]. In particular, combining the results of this
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paper with our resolution of a combinatorial conjecture of J. Levine
in [6], leads to a complete classification in [7] of the associated graded
groups Gn = Wn, again in terms of Milnor invariants and higher-order
Arf invariants, together with higher-order Sato-Levine invariants. It
turns out that the higher-order Arf and Sato-Levine invariants rep-
resent the obstructions to framing (“untwisting”) a twisted Whitney
tower. Also in [7] we describe how the target group T2n for the (even
order) twisted Whitney tower intersection theory can be viewed as a
universal quadratic refinement of the target group T2n for the (even
order) framed intersection theory. Aside from being a satisfying alge-
braic construction of the groups T2n, this general development is also
essential in the classification of the graded groups associated to the
framed filtrations.

This entire program is surveyed in [4]. The relevant papers are or-
ganized as follows: The geometric definitions and arguments are given
in [5], the current paper connects the geometry with the Milnor in-
variants, [6] proves the combinatorial Levine Conjecture using discrete
Morse theory, and the algebraic framework for computing the geomet-
ric filtrations is assembled in [7]. Related applications to the settings
of string links and 3-dimensional homology cylinders are described in
[8].

The rest of this introduction develops enough material to give the
precise statements of Theorems 1 and 2, and present the geometric
applications in Theorem 16 and Theorem 17.

1.1. Quick review of Milnor’s invariants. If L ⊂ S3 is an m-
component link such that all its longitudes lie in the (n+ 1)-th term of
the lower central series of the link group π1(S

3 \L)n+1, then the choice
of meridians induces an isomorphism

π1(S
3 \ L)n+1

π1(S3 \ L)n+2

∼=
Fn+1

Fn+2

where F = F (m) is the free group on {x1, x2, . . . , xm}.
Let L = L(m) denote the free Lie algebra (over the ground ring Z)

on generators {X1, X2, . . . , Xm}. It is N-graded, L = ⊕nLn, where the
degree n part Ln is the additive abelian group of length n brackets,
modulo Jacobi identities and self-annihilation relations [X,X] = 0.

The multiplicative abelian group Fn+1

Fn+2
of length n + 1 commutators is

isomorphic to Ln+1, with xi mapping to Xi and group commutators to
Lie brackets.

In this setting, denote by µin(L) the image of the i-th longitude in
Ln+1 under the above isomorphisms and define the first non-vanishing
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Milnor invariant µn(L) of order n by

µn(L) :=
∑
i

Xi ⊗ µin(L) ∈ L1 ⊗ Ln+1

Note that µn(L) is the total Milnor invariant and corresponds to all
Milnor invariants of length n + 2. For example, µ0(L) contains the
same information as all linking numbers of L.

It turns out that µn(L) actually lies in the kernel Dn = Dn(m) of
the bracket map L1 ⊗ Ln+1 → Ln+2 by “cyclic symmetry” [12]. We
observe that Ln and Dn are free abelian groups of known ranks: The
rank rn = rn(m) of Ln(m) is given by rn = 1

n

∑
d|n mob(d)mn/d, with

mob(·) denoting the Möbius function [19]; and the rank of Dn(m) is
equal to mrn+1 − rn+2, first identified as the number of independent
(integer) µ-invariants of length n+ 2 in [23].

1.2. Intersection trees for twisted Whitney towers. Recall from
[5], or Definition 24 below, that an order n (framed) Whitney tower
W in the 4–ball has an intersection invariant τn(W) which lies in the
group Tn = Tn(m). Here m is the number of components of the link on
the boundary of W . For the convenience of the reader, we recall these
important groups briefly.

Definition 3. In this paper, a tree will always refer to an oriented
unitrivalent tree, where the orientation of a tree is given by cyclic ori-
entations at all trivalent vertices. The order of a tree is the number of
trivalent vertices. Univalent vertices will usually be labeled from the
set {1, 2, 3, . . . ,m} corresponding to the link components, and we con-
sider trees up to isomorphisms preserving these labelings. We define
T = T (m) to be the free abelian group on such trees, modulo the an-
tisymmetry (AS) and Jacobi (IHX) relations shown in Figure 1. Since
the AS and IHX relations are homogeneous with respect to order, T
inherits a grading T = ⊕nTn, where Tn = Tn(m) is the free abelian
group on order n trees, modulo AS and IHX relations.

For twisted Whitney towers of order n, there is also an intersection
invariant τn which takes values in the following groups. They take
into account the twisting obstruction (relative Euler number) for those
Whitney disks in the tower that are not framed, compare Definition 27.

Definition 4. The group T2k−1 is the quotient of T2k−1 by the boundary-
twist relations :

i −−< J
J = 0
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IHX:

AS:

Figure 1. Local pictures of the antisymmetry (AS) and
Jacobi (IHX) relations in T . Here all trivalent orienta-
tions are induced from a fixed orientation of the plane,
and univalent vertices possibly extend to subtrees which
are fixed in each equation.

For any rooted tree J we define the corresponding -tree, denoted by
J , by labeling the root univalent vertex with the twist-symbol “ ”:

J := −−J

The group T2k is the free abelian group on order 2k trees as above and
order k -trees, modulo the following relations:

(i) AS and IHX relations on order 2k trees
(ii) symmetry relations: (−J) = J
(iii) twisted IHX relations: I = H +X − 〈H,X〉
(iv) interior twist relations: 2 · J = 〈J, J〉

Here the inner product 〈H,X〉 of two rooted trees is defined by gluing
the roots together, hence obtaining an unrooted tree of order 2k.

The geometric origin of these relations will be explained in Sec-
tion 2.8.

1.3. The summation maps ηn. The connection between µn(L) and
τn (W) is via a homomorphism ηn : Tn → Dn, which is best explained
when we regard rooted trees of order n as elements in Ln+1 in the usual
way: For v a univalent vertex of an order n tree t as in Definition 24,
denote by Bv(t) ∈ Ln+1 the Lie bracket of generators X1, X2, . . . , Xm

determined by the formal bracketing of indices which is gotten by con-
sidering v to be a root of t.

Denoting the label of a univalent vertex v by `(v) ∈ {1, 2, . . . ,m},
the map ηn : Tn → L1 ⊗ Ln+1 is defined on generators by

ηn(t) :=
∑
v∈t

X`(v) ⊗Bv(t) and ηn(J ) := ηn(〈J, J〉)/2
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The first sum is over all univalent vertices v of t, and the second ex-
pression lies in L1⊗Ln+1 because the coefficients of ηn(〈J, J〉) are even.
Here J is a rooted tree of order k for n = 2k. For example,

η1(1−−< 3
2 ) = X1 ⊗ −−< 3

2 + X2 ⊗ 1−−< 3 + X3 ⊗ 1−−< 2

= X1 ⊗ [X2, X3] +X2 ⊗ [X3, X1] +X3 ⊗ [X1, X2]

And similarly

η2( −−< 2
1 ) = η2(

1
2 >−−< 2

1) /2
= X1⊗ 2>−−< 2

1 +X2⊗ 1>−−< 2
1

= X1 ⊗ [X2, [X1, X2]] +X2 ⊗ [[X1, X2], X1]

We can now make Theorem 1 precise as follows:

Theorem 5. If L bounds a twisted Whitney tower W of order n, then
the total Milnor invariants µk(L) vanish for k < n and

µn(L) = ηn ◦ τn (W) ∈ Dn

It is important to point out that the theorem implies that the right
hand side of the equation indeed only depends on the link L and not
on the twisted Whitney tower W it bounds.

In [27] the above result was shown for framed Whitney towers, using
a translation into claspers and the Habbeger-Masbaum identification
of the Milnor invariants with the tree part of the Kontsevich invari-
ant [13]. This roundabout argument is now replaced by a very direct
geometric one, namely using the notion of grope duality from [16]. It
explains clearly the relationship between higher-order intersection trees
and iterated commutators, as expressed algebraically by the map η, and
also works for twisted Whitney towers. The proof will shed light on
the geometry behind Habbeger and Masbaum’s computation in [13].
In particular, the coefficients of 1/2 on certain symmetric trees in the
image lattice correspond to the effect of “reflecting” commutators in
the longitudes which is provided by twisted Whitney disks in a twisted
Whitney tower.

1.4. Computing the associated graded groups. In [5] we con-
structed realization epimorphisms

Rn : Tn � Wn

which send g ∈ Tn to the equivalence class of links bounding an order
n twisted Whitney towerW with τn (W) = g. Roughly speaking, these
maps are defined by Bing doubling ‘along trees’ and taking internal
band sums if indices repeat. More precisely, for unrooted trees we
start with the Hopf link (whose intersection tree is 1 −− 2) and do
iterated (untwisted) Bing doubling according to the branching of the
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tree until we obtain the correct tree but with non-repeating indices
labeling the univalent vertices. For example, the Borromean rings with
tree 1−−< 3

2 arises from the Hopf link by a single Bing doubling. Finally,
we take internal band sums according to which indices repeat. For
example, one internal band sum may take the Borromean rings to the
Whitehead link which is thus R1 (1−−< 2

2).
For -trees, the starting point is the 1-framed unknot as R0 ( −−1).

The first Bing double has to be a twisted one, giving the Whitehead
link as R2 ( −−< 1

2). Notice that this means that the Whitehead link
bounds two different Whitney towers, one framed of order 1 and one
twisted of order 2. The rest of the Bing doublings are again untwisted
because they are done away from the -labeled univalent vertex, and
the internal bands sums are as above.

The maps Rn bound the size of the abelian groups Wn from above,
and the following corollary of Theorem 5 shows that Milnor invariants
give a lower bound. Here we are using the surjectivity of η from [17],
as adapted to our setting.

Corollary 6. There is a commutative diagram of epimorphisms

Tn
Rn

// //

ηn !! !!CC
CC

CC
CC

Wn

µn

����

Dn

This result shows how the groups Wn , defined in a 4-dimensional
manner, are caught in between two combinatorially defined groups Tn
and Dn. The latter groups are defined in terms of trees, so in a sense
they are 1-dimensional; and in fact the generators are “spines” of the
Whitney towers, in the sense that all singularities are contained in
thickenings of embeddings of the trees. Using this dimensional reduc-
tion, the following algebraic result from [7] completes our calculation
in three out of four cases:

Theorem 7 ([7]). The maps ηn : Tn → Dn are isomorphisms for
n ≡ 0, 1, 3 mod 4. As a consequence, both the total Milnor invariants
µn : Wn → Dn and the realization maps Rn : Tn → Wn are isomor-
phisms for these orders.

Theorem 7 is a consequence of our proof [6] of the Levine Conjecture
[18], which says that related maps η′n : Tn → D′n are isomorphisms. In
[7] we explain the relationship between η and η′, and prove Theorem 7
as well as Proposition 8 below.
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The last quarter of the cases is more complicated as can already be
seen for n = 2: In the case m = 1 of knots, Lemma 9 below shows
that the Arf invariant induces an isomorphism W2 (1) ∼= Z2, whereas
all Milnor invariants vanish for knots.

Unlike for n ≡ 0, 1, 3 mod 4, where Ker(ηn) = 0, there are some
obvious elements in Ker(η4k−2), namely those of the form −−< J

J for
an order k − 1 rooted tree J . These are 2-torsion by the antisymme-
try relation in T4k−2 and hence must map to zero in the (torsion-free)
group D4k−2. In [7] we also deduce the following result from the Levine
conjecture:

Proposition 8 ([7]). The map sending 1⊗ [J ] to −−< J
J ∈ T4k−2 for

rooted trees J of order k − 1 defines an isomorphism:

Z2 ⊗ Lk ∼= Ker(η4k−2)

It follows that Z2 ⊗ Lk is also an upper bound on the kernels of the
epimorphisms R4k−2 : T4k−2 � W4k−2 and µ4k−2 : W4k−2 � D4k−2,
and the calculation of W4k−2 is completed by invariants defined on
the kernel of µ4k−2 which we believe are new concordance invariants
generalizing the classical Arf invariant, as we describe next.

1.5. Higher-order Arf invariants. Let us first discuss the situation
for order n = 2. Observe that −−< 1

1 is not zero in T2 (1) but that
1
1 >−−−< 1

1 = 0 by the IHX relation; so T2 (1) is generated by −−< 1
1,

which is 2-torsion by antisymmetry, and τ2 (W) counts (modulo 2)
the framing obstructions on the Whitney disks in an order 2 twisted
Whitney tower W .

Lemma 9. Any knot K bounds a twisted Whitney tower W of or-
der 2 and the classical Arf invariant of K can be identified with the
intersection invariant

τ2 (W) ∈ T2 (1) ∼= Z2

More generally, the classical Arf invariants of the components of an
m-component link give an isomorphism

Arf : Ker(µ2 : W2 � D2)
∼=→ (Z2 ⊗ L1) ∼= (Z2)

m

This lemma, which is proved in Section 5, verifies our conjecture
Wn

∼= Tn from Conjecture 11 below for n = 2, with Ker(η2) ∼=
Ker(µ2) ∼= (Z2)

m.
We will now propose a similarly satisfying picture for all orders of

the form n = 4k−2 that takes both the Milnor and Arf invariants into
account.
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Let K4k−2 denote the kernel of µ4k−2. It follows from Corollary 6 and
Proposition 8 above that mapping 1 ⊗ [J ] to R4k−2( −−< J

J ) induces
a surjection αk : Z2 ⊗ Lk � K4k−2, for all k ≥ 1. Denote by αk the
induced isomorphism on (Z2 ⊗ Lk)/Kerαk .

Definition 10. The higher-order Arf invariants are defined by

Arfk := (αk )−1 : K4k−2 → (Z2 ⊗ Lk)/Kerαk

From Theorem 7, Proposition 8 and Definition 10 we see that the
groups Wn are computed by the Milnor and higher-order Arf invariants,
as claimed in Theorem 2 above.

We conjecture that αk is an isomorphism, which would mean that
the Arfk are very interesting new concordance invariants:

Conjecture 11. Arfk : K4k−2 → Z2 ⊗ Lk is an isomorphism for all k.

Conjecture 11 would imply that

W4k−2
∼= (Z2 ⊗ Lk)⊕ D4k−2

∼= T4k−2

This is true for k = 1, as shown above, with Arf1 = Arf the classical
Arf invariant. It remains an open problem whether Arfk is non-trivial
for any k > 1.

We have the following specialization of the Bing doubling construc-
tion discussed above Corollary 6 which applies to symmetric -trees of
the form −−< J

J . It starts with the fact that any knot with non-trivial
Arf invariant represents R2 ( −−< 1

1), then observes that the application
of (untwisted) Bing doublings symmetrically extends both branches of
the tree.

This idea will play a key role in deriving the geometric interpretations
of Milnor invariants given in Theorem 16 and Theorem 17 below.

Lemma 12. Let K be a knot with non-trivial Arf-invariant, and J a
rooted tree of order k − 1. By performing iterated Bing doublings and
interior band sums on K, a boundary link KJ arises as the boundary
of a twisted Whitney tower W of order 4k − 2 with

τ4k−2(W) = −−< J
J

It is thus already interesting to ask whether our proposed Arf invari-
ants Arfk can be defined on the cobordism group of boundary links.
The links KJ of Lemma 12 are known not to be slice [1], providing ev-
idence supporting our conjecture that Arfk is indeed a non-trivial link
concordance invariant which represents an obstruction to bounding an
order 4k − 1 twisted Whitney tower. The following result emphasizes
the relevance of the first open case k = 2.
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Proposition 13. If Arf2 vanishes on any link in K6 , then Arfk is
trivial for all k ≥ 2.

1.6. Geometrically k-slice links. A link L ⊂ S3 is k-slice if L
bounds an embedded orientable surface Σ ⊂ B4 such that π0(L) →
π0(Σ) is a bijection and there is a push-off homomorphism π1(Σ) →
π1(B

4 \Σ) whose image lies in the kth term of the lower central series
π1(B

4 \ Σ)k. By carefully studying the third homology of F/Fk, Igusa
and Orr [14] proved the following “k-slice conjecture”:

Theorem 14 ([14]). A link L is k-slice if and only if µi(L) = 0 for all
i ≤ 2k − 2 (equivalently, all Milnor invariants of length ≤ 2k vanish).

For any topological space Y , a k-fold commutator in π1(Y ) has a nice
topological model in terms of a continuous map G→ Y , where G is a
grope of class k. Such 2-complexes G (with specified “boundary” circle)
are recursively defined as follows. A grope of class 1 is a circle. A grope
of class 2 is an orientable surface Σ with one boundary component. A
grope of class k is formed by attaching to every dual pair of curves in a
symplectic basis for Σ a pair of gropes whose classes add to k. A curve
γ : S1 → Y represents a k-fold commutator in π1(Y ) if and only if it
extends to a continuous map of a grope of class k.

Thus we obtain a very natural notion of geometrically k-slice links:
These are links for which there is a symplectic basis of curves on Σ ⊂ B4

that bound disjointly embedded framed gropes of class k in B4 \ Σ.
The following result uses the translation between gropes and Whitney
towers in [24], and will be proven in Section 8.

Proposition 15. L is geometrically k-slice if and only if L ∈W2k−1.

So the higher-order Arf invariants Arfk detect the difference between
k-sliceness and geometric k-sliceness. Combining Proposition 15 to-
gether with Corollary 6, Proposition 8 and Lemma 12 we get:

Theorem 16. A link L has vanishing Milnor invariants of all orders
≤ 2k − 2 if and only if it is geometrically k-slice after a finite number
of connected sums with boundary links.

It turns out that the operation of taking connect sums with boundary
links is equivalent to a certain approximation of being geometrically k-
slice, as described by the following theorem. The basic observation here
is that any curve on a surface in S3 bounds an immersed disk in B4,
leading to the surfaces of type Σ′′i below, associated to the boundary
links in Theorem 16. We note that the “only if” part of the following
theorem uses a mild generalization of Theorem 5, described in Propo-
sition 34.
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Theorem 17. A link has vanishing Milnor invariants of all orders ≤
2k− 2 if and only if its components bound disjointly embedded surfaces
Σi in the 4–ball, with each surface a connected sum of two surfaces Σ′i
and Σ′′i such that

(i) a symplectic basis of curves on Σ′i bound disjointly embedded
framed gropes Gi,j of class k in the complement of Σ := ∪iΣi,
and

(ii) a symplectic basis of curves on Σ′′i bound immersed disks in the
complement of Σ ∪G, where G is the union of all Gi,j.

This result is proven in Section 8; it is a considerable strengthening
of the Igusa-Orr k-slice theorem, and it is quite surprising that one
can clean up their immersed gropes in this way without running into
additional obstructions.

Acknowledgments: This paper was partially written while the
first two authors were visiting the third author at the Max-Planck-
Institut für Mathematik in Bonn. They all thank MPIM for its stim-
ulating research environment and generous support. The first author
was also supported by NSF grant DMS-0604351, and the last author
was also supported by NSF grants DMS-0806052 and DMS-0757312.
The second author was partially supported by PSC-CUNY research
grant PSCREG-41-386.

2. Whitney towers

We sketch here the relevant theory of Whitney towers as developed in
[3, 5, 24, 27], concentrating on the setting of (twisted) Whitney towers
on immersed disks in B4 bounded by links in S3.

We work in the smooth oriented category (with orientations usu-
ally suppressed from notation), even though all our results hold in the
locally flat topological category by the basic results on topological im-
mersions in Freedman–Quinn [11]. In particular, the techniques of this
paper do not distinguish smooth from locally flat surfaces (see Section 2
of [5]).

2.1. Trees. To describe Whitney towers it is convenient to use the
bijective correspondence between formal non-associative bracketings of
elements from the index set {1, 2, 3, . . . ,m} and rooted unitrivalent
trees, equipped with orientations at the trivalent vertices, with each
univalent vertex labeled by an element from the index set, except for
the root univalent vertex which is left unlabeled. Here an orientation
of a trivalent vertex is a cyclic ordering of the three adjacent edges.

Definition 18. Let I and J be two rooted trees.
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(i) The rooted product (I, J) is the rooted tree gotten by iden-
tifying the root vertices of I and J to a single vertex v and
sprouting a new rooted edge at v. This operation corresponds
to the formal bracket, with the orientation of (I, J) inherited
from those of I and J as well as the order in which they are
glued.

(ii) The inner product 〈I, J〉 is the unrooted tree gotten by iden-
tifying the roots of I and J to a single non-vertex point. Note
that 〈I, J〉 inherits an orientation from I and J , and that all
the univalent vertices of 〈I, J〉 are labeled.

(iii) The order of a tree, rooted or unrooted, is defined to be the
number of trivalent vertices.

The notation of this paper will not distinguish between a bracketing
and its corresponding rooted tree (as opposed to the notation I and
t(I) used in [24, 27]). In [24, 27] the inner product is written as a
dot-product, and the rooted product is denoted by ∗.

Rooted trees will be denoted by capital letters, and un-rooted trees
will be denoted by lowercase letters.

2.2. Order zero Whitney towers and higher-order intersec-
tions. Fixing an orientation for the pair (B4, ∂B4), a framed link in
S3 = ∂B4 has oriented components, each equipped with a nowhere-
vanishing normal section. A collection D1, . . . , Dm # B4 of properly
immersed disks bounded by a framed link L = L1, . . . , Lm ⊂ S3 is a
Whitney tower of order zero. Here the orientation of each Li is induced
by that of Di, and the non-vanishing normal section over Li extends
over Di.

To each order zero disk Di is associated the order zero rooted tree
consisting of an edge with one vertex labeled by i, and to each trans-
verse intersection p ∈ Di∩Dj is associated the order zero tree tp := 〈i, j〉
consisting of an edge with vertices labelled by i and j. Note that for
singleton brackets (rooted edges) we drop the bracket from notation,
writing i for (i).

The order 1 rooted Y-tree (i, j), with a single trivalent vertex and two
univalent labels i and j, is associated to any Whitney disk W(i,j) pairing
intersections between Di and Dj. This rooted tree can be thought of
as an embedded subset of B4, with its trivalent vertex and rooted edge
sitting in W(i,j), and its two other edges descending into Di and Dj as
sheet-changing paths. (The cyclic orientation at the trivalent vertex of
the bracket (i, j) corresponds to an orientation of W(i,j) via a convention
described below in 2.6.)
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Recursively, the rooted tree (I, J) is associated to any Whitney disk
W(I,J) pairing intersections between WI and WJ (see left-hand side of
Figure 2); with the understanding that if, say, I is just a singleton i,
then WI denotes the order zero disk Di. Note that a W(I,J) can be
created by a finger move pushing WJ through WI .

To any transverse intersection p ∈ W(I,J) ∩WK between W(I,J) and
any WK is associated the un-rooted tree tp := 〈(I, J), K〉 (see right-
hand side of Figure 2).

K p
( I , J )W

W

W
I

J

W

W

W
I

J

Figure 2. On the left, (part of) the rooted tree (I, J)
associated to a Whitney disk W(I,J). On the right, (part
of) the unrooted tree tp = 〈(I, J), K〉 associated to an
intersection p ∈ W(I,J) ∩WK . Note that p corresponds
to where the roots of (I, J) and K are identified to a
(non-vertex) point in 〈(I, J), K〉.

Definition 19. The order of a Whitney disk WI is defined to be the
order of the rooted tree I, and the order of a transverse intersection p
is defined to be the order of the tree tp.

2.3. Order n Whitney towers.

Definition 20. A collection W of properly immersed disks in B4 to-
gether with higher-order Whitney disks is an order n Whitney tower if
W contains no unpaired intersections of order less than n.

The Whitney disks inW are allowed to have immersed interiors, but
must have disjointly embedded boundaries, and be framed (as discussed
next).

2.4. Twisted Whitney disks. The normal disk-bundle of a Whitney
disk W in B4 is isomorphic to D2 × D2, and comes equipped with a
canonical nowhere-vanishing Whitney section over the boundary given
by pushing ∂W tangentially along one sheet and normally along the
other (see Figure 3 and e.g. [11]). Pulling back the orientation of B4
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with the requirement that the normal disks have +1 intersection with
W means the Whitney section determines a well-defined (independent
of the orientation of W ) relative Euler number ω(W ) ∈ Z which repre-
sents the obstruction to extending the Whitney section to a nowhere-
vanishing section over W . Following traditional terminology, when
ω(W ) vanishes W is said to be framed. (Since D2 × D2 has a unique
trivialization up to homotopy, this terminology is only mildly abusive.)
We say that W is k-twisted if ω(W ) = k, or just twisted if the value of
ω(W ) is not specified. So “0-twisted” is a synonym for “framed.”

I

I

J

J

W

Figure 3. The Whitney section over the boundary of
a framed Whitney disk is indicated by the dotted loop
shown on the left for a clean Whitney disk W in a 3-
dimensional slice of 4–space. On the right is shown an
embedding into 3–space of the normal disk-bundle over
∂W , indicating how the Whitney section determines a
well-defined nowhere vanishing section which lies in the
I-sheet and avoids the J-sheet.

2.5. Twisted Whitney towers. In the definition of an order n Whit-
ney tower given just above (following [3, 24, 25, 27]) all Whitney disks
are required to be framed. It turns out that the natural generalization
to twisted Whitney towers involves allowing twisted Whitney disks only
of at least “half the order” as follows:

Definition 21. An order 0 twisted Whitney tower is just a collection
of connected properly immersed disks in B4; that is, just an order 0
Whitney tower but without the requirement of inducing any framing
on the boundary.

For n ≥ 1:
A twisted Whitney tower of order (2n−1) is just a (framed) Whitney

tower of order (2n− 1) as in Definition 20 above.
A twisted Whitney tower of order 2n is a Whitney tower having all

intersections of order less than 2n paired by Whitney disks, with all
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Whitney disks of order less than n required to be framed, but Whitney
disks of order at least n allowed to be twisted.

Remark 22. Note that, for any n, an order n (framed) Whitney tower
is also an order n twisted Whitney tower. We may sometimes refer to
a Whitney tower as a framed Whitney tower to emphasize the dis-
tinction, and will always use the adjective “twisted” in the setting of
Definition 21.

Remark 23. The convention of allowing only order ≥ n twisted Whit-
ney disks in order 2n twisted Whitney towers will be explained in
section 4 where it will be seen that twisted Whitney disks “reflect”
commutators contributed to the link longitudes, which has the effect
of doubling the commutator length as described by the η map.

In any event, an order 2n twisted Whitney tower can always be
modified so that all its Whitney disks of order > n are framed, so the
twisted Whitney disks of order equal to n are the relevant ones.

2.6. Whitney tower orientations. Since we work with oriented links,
orientations on the order zero disks in a Whitney tower W are fixed
by a convention which induces the orientations on their boundary link
components. After choosing and fixing orientations on all the Whitney
disks in W , the associated trees are embedded in W so that the vertex
orientations are induced from the Whitney disk orientations, with the
descending edges of each trivalent vertex enclosing the negative inter-
section point of the corresponding Whitney disk, as in Figure 2. (In
fact, if a tree t has more than one trivalent vertex which corresponds
to the same Whitney disk, then t will only be immersed inW , but this
immersion can be taken to be a local embedding around each trivalent
vertex of t as in Figure 2.)

This “negative corner” convention, which agrees with [5] but dif-
fers from the positive corner convention in [3, 27], will turn out to
be compatible with commutator conventions (and is purely cosmetic,
eliminating what would be a global minus sign in Theorem 5).

With these conventions, different choices of orientations on Whitney
disks in W correspond to AS anti-symmetry relations (as explained in
[27]).

2.7. Intersection invariants for Whitney towers. The abelian group
Tn is the free abelian group on (labeled vertex-oriented) order n trees,
modulo the AS antisymmetry and IHX Jacobi relations shown in Fig-
ure 1 in the introduction.
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Definition 24. The order n intersection invariant τn(W) of an order
n Whitney tower W is defined to be

τn(W) :=
∑

εp · tp ∈ Tn
where the sum is over all order n intersections p, with εp = ±1 the
usual sign of a transverse intersection point.

The vanishing of τn(W) ∈ Tn implies that, after a homotopy, the or-
der 0 disks bound an order n+1 Whitney tower. Here we are interested
in the analogous intersection theory for twisted Whitney towers.

2.8. Intersection invariants for twisted Whitney towers. The
intersection invariants τn for Whitney towers are extended to twisted
Whitney towers as follows:

Definition 25. Odd order twisted groups: The abelian group
T2n−1 is the quotient of T2n−1 by the boundary-twist relations :

〈(i, J), J〉 = i −−< J
J = 0

Here J ranges over all order n− 1 rooted trees.
The boundary-twist relations correspond geometrically to the fact

that performing a boundary twist (Figure 16) on an order n Whitney
diskW(i,J) creates an order 2n−1 intersection point p ∈ W(i,J)∩WJ with
associated tree tp = 〈(i, J), J〉 (which is 2-torsion by the AS relations)
and changes ω(W(i,J))) by ±1. Since order n twisted Whitney disks
are allowed in an order 2n Whitney tower such trees do not represent
obstructions to “raising the order” of an order 2n− 1 twisted tower.

-trees: For any rooted tree J we define the corresponding -tree,
denoted by J , by labeling the root univalent vertex with the symbol
“ ”:

J := −−J
Here the -symbol represents a twisted Whitney disk (not “infinity”).

Even order twisted groups: The abelian group T2n is the free
abelian group on order 2n trees (oriented) and order n -trees (un-
oriented), modulo the following relations:

(i) AS and IHX relations on order 2n trees
(ii) symmetry relations: (−J) = J
(iii) twisted IHX relations: I = H +X − 〈H,X〉
(iv) interior twist relations: 2 · J = 〈J, J〉

Here the AS and IHX relations are as usual, but they only apply to non-
trees. The second symmetry relations corresponds to the fact that

the relative Euler number ω(W ) is independent of the orientation of the
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Whitney disk W . The twisted-IHX relations correspond to the effect
of performing a Whitney move in the presence of a twisted Whitney
disk, as described in the twisted-IHX lemma of [5]. The interior-twist
relations corresponds to the fact that creating a ±1 self-intersection in
a WJ changes the twisting by ∓2.

Remark 26. In [7] we describe how T2n can be considered to be the uni-
versal quadratic refinement of the T2n-valued inner product on rooted
trees.

Recall from Definition 21 (and Remark 23) that twisted Whitney
disks only occur in even order twisted Whitney towers, and only those
of half-order are relevant to the obstruction theory.

Definition 27. The order n intersection invariant τn (W) of an order
n twisted Whitney tower W is defined to be

τn (W) :=
∑

εp · tp +
∑

ω(WJ) · J ∈ Tn
where the first sum is over all order n intersections p and the second
sum is over all order n/2 Whitney disks WJ with twisting ω(WJ).

The vanishing of τn (W) ∈ Tn implies that, after a homotopy, the
order 0 disks bound an order n+ 1 twisted Whitney tower [5].

Remark 28 ([5]). The order 0 case is somewhat special but still con-
sistent with the positive order cases. The group T0 is generated by the
order zero trees i−−− j and −−− j, and only the last family of ‘interior
twist’ relations 〈j, j〉 = j −−− j = 2 · −−− j from Definition 25 are
relevant. Interpreting Definition 27 for τ0 (W), where W is an order 0
twisted Whitney tower (a collection of properly immersed disks), the
transverse intersections between disks Di and Dj give the signed trees
ε · i −−− j in the first sum, and each coefficient ω(Dj) of −−− j is
taken to be the relative Euler number of the normal bundle of Dj with
respect to the given framing of ∂Dj (which in a twisted Whitney tower
is not necessarily zero).

Remark 29. It follows from Theorem 5 and Theorem 7 that for n ≡
0, 1, 3 mod 4, the intersection invariant τn(L) := τn (W) ∈ Tn only
depends on the concordance class of the link L and not on the choice
of order n twisted Whitney tower W .

2.9. Split twisted Whitney towers. A twisted Whitney tower is
split if all Whitney disks are embedded, and the set of singularities
in the interior of any framed Whitney disk consists of either a single
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transverse intersection point, or a single boundary arc of a higher-order
Whitney disk, or is empty; and if each non-trivially twisted Whitney
disk has no singularities in its interior, and has twisting equal to ±1.
This can always be arranged, as observed in [5], by performing (twisted)
finger moves along Whitney disks guided by arcs connecting the Whit-
ney disk boundary arcs.

Splitting simplifies the combinatorics of Whitney tower construc-
tions and will be assumed, often without mention, in subsequent sec-
tions. Splitting an order n (twisted) Whitney towerW does not change
τn (W) ∈ Tn (see [5]).

2.10. Intersection forests for split twisted Whitney towers. Re-
call from [5] that the disjoint union of signed trees and -trees asso-
ciated to the unpaired intersections and ±1-twisted Whitney disks in
a split twisted Whitney tower W is denoted by t(W), and called the
intersection forest of W . Here each tree tp associated to an unpaired
intersection p is equipped with the sign of p, and each -tree J asso-
ciated to a clean ±1-twisted Whitney disk is given the corresponding
sign ±1.

In any split W , the intersection forest can be thought of as an em-
bedded subset t(W) ⊂ W which embodies both the geometric and
algebraic data associated to W : If we think of the trees as subsets of
W , then all singularities ofW are contained in a neighborhood of t(W);
and if we think of the trees as generators, then t(W) is an ‘abelian word’
representing τn (W).

In anyW of order n, it is always possible to eliminate all intersections
of order strictly greater than n, for instance by performing finger moves
(“pushing down”) to create canceling pairs of order n intersections.

Remark 30. In the older papers [3, 24, 27] we referred to t(W) as
the “geometric intersection tree” (and to the group element τn(W) as
the order n intersection “tree”, rather than “invariant”), but the term
“forest” better describes the disjoint union of (signed) trees t(W).

3. twisted Whitney towers and gropes

For use in subsequent sections, this section recalls the correspondence
between (split) Whitney towers and (dyadic) capped gropes [3, 24] in
the 4–ball, and extends this relationship to the twisted setting. The
main goal is to describe how this correspondence preserves the associ-
ated disjoint unions of signed trees. In particular, Lemma 31 will be
used in Section 4 to prove Theorem 5.
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3.1. Dyadic gropes and their associated trees. This subsection
reviews and fixes some basic grope terminology. We take a slightly
different (but compatible) approach to defining gropes from that given
in 1.6 of the introduction. It will suffice to work with “dyadic” gropes,
i.e. gropes whose higher stages are all genus one; these correspond to
split Whitney towers (and gropes in 4–manifolds can always be modi-
fied to be dyadic by Krushkal’s ‘grope splitting’ operation [15]).

A dyadic grope G is constructed by the following method:

(i) Start with a compact oriented connected surface of any genus,
called the bottom stage of G, and choose a symplectic basis of
circles on this bottom stage surface.

(ii) Attach punctured tori to any number of the basis circles and
choose hyperbolic pairs of circles on each attached torus.

(iii) Iterate the second step a finite number of times.

The attached tori are the higher stages of G, and at each iteration in
the construction tori can be attached to circles in any stage. The basis
circles in all stages of G that do not have a torus attached to them are
called the tips of G.

Attaching 2–disks along all the tips of G yields a capped (dyadic)
grope, denoted Gc, and the uncapped grope G is called the body of Gc.

Cutting the bottom stage of G into genus one pieces decomposes
G (and Gc) into branches, and our notion of dyadic grope (following
[3, 24]) is more precisely called a “grope with dyadic branches” in [15].

The disjoint union t(Gc) of unitrivalent trees associated to a capped
grope Gc is defined as follows. Assume first that the bottom stage
of Gc is a genus one surface with boundary. Then define t(Gc) to be
the unitrivalent tree which is ‘dual’ to the 2–complex Gc: Specifically,
t(Gc) sits as an embedded subset of Gc in the following way. Choose a
vertex in the interior of each surface stage and each cap of Gc. Then
each edge of t(Gc) is a sheet-changing path between vertices in adjacent
stages or caps (here “adjacent” means “intersecting in a circle”). One
univalent vertex of t(Gc) sits in the bottom stage of Gc, each of the
other univalent vertices is a point in the interior of a cap of Gc, and
each higher stage of Gc contains a single trivalent vertex of t(Gc). See
e.g. Figure 13 below.

In the case where the bottom stage of Gc has genus > 1, then t(Gc)
is defined by cutting the bottom stage into genus one pieces and taking
the disjoint union of the unitrivalent trees just described. Thus, each
branch of Gc contains a single (connected) tree in t(Gc). If the bottom
stage is genus zero, then t(Gc) is the empty tree.
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Note that each tree in t(Gc) has exactly one univalent vertex which
sits in the bottom stage ofGc; these vertices can naturally be considered
as roots, and it is customary to associate rooted trees to gropes. Here
we prefer to ignore this ‘extra’ information, since we will be identifying
t(Gc) with the unrooted trees associated to Whitney towers.

The class of a capped grope Gc is the one more than the minimum
of the orders of the (connected) trees in t(Gc). The body G of Gc

inherits the same union of trees, t(G) := t(Gc), and the same notion
of class (which is consistent with the inductive definition given in the
introduction). If a grope consists of a surface of genus zero, we regard
it as a grope of class n, for all n.

We will assume throughout the paper that all surface stages in our
gropes contribute to the class of the grope, i.e. we ignore the higher
surface stages that can be deleted without changing the class.

Convention: For the rest of this paper gropes may be assumed to
be dyadic, even if not explicitly stated.

3.2. Trees for capped gropes in B4. The boundary ∂G of a grope G
is the boundary of its bottom stage. An embedding (G, ∂G) ↪→ (B4, S3)
is framed if a disjoint parallel push-off of the bottom stage of G extends
to a disjoint parallel push-off of G.

For a link L ⊂ S3, the statement “L bounds a capped grope Gc”
means that the link components Li bound disjointly embedded framed
gropes Gi in B4, such that the tips of the Gi bound framed caps whose
interiors are disjointly embedded, with each cap having a single trans-
verse interior intersection with the bottom stage of some Gj. Here a cap
is framed if the parallel push-off of its boundary in the grope extends
to a disjoint parallel copy of the entire cap. The union of the gropes
is denoted G := ∪iGi, and Gc := ∪iGc

i is the union of G together with
all the caps.

All previous grope notions carry over to this setting, even though
the bottom stages of G are not connected; e.g. we refer to the grope G
as the body of the capped grope Gc. In particular, the disjoint union
of trees t(Gc) := qi t(Gc

i) can now be considered as a subset of B4.
This provides labels from {1, 2, . . . ,m} for all univalent vertices: The
bottom-stage vertex of each tree in t(Gc

i) inherits the label i; and if a
cap intersects the bottom stage of Gj, then the vertex corresponding
to that cap inherits the label j (e.g. Figure 13 below). Orientations
on all higher stages of G induce orientations of the trivalent vertices
in t(Gc), and orientations on all caps determines signs for each cap-
bottom stage intersection. To each tree in t(Gc) is associated a sign ±
which is the product of the signs of its caps. We assume the convention
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1

2

p

3
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W
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1

(1,2)

((1,2),3)

Figure 4. Pushing into B4 from left to right, a Bing-
doubled Hopf link L ⊂ S3 bounds an order 2 Whitney
tower W : The order 1 disk D1 consists of a collar on L1

together with the indicated embedded disk on the right.
The other three order 1 disks in W consist of collars on
the other link components which extend further into B4

and are capped off by disjointly embedded disks. The
Whitney disk W(1,2) pairs D1 ∩ D2, and W((1,2),3) pairs
W(1,2) ∩ D3, with p = W((1,2),3) ∩ D4 the only unpaired
intersection point in W .

that the orientations of the bottom stages of G correspond to the link
orientation. Thus, when Gc is oriented, t(Gc) is a disjoint union of
signed oriented labeled trees which we call the intersection forest, in
line with the terminology for Whitney towers.

3.3. Twisted capped gropes in B4. A twisted capped grope Gc in
B4 is the same as a capped grope defined just above, except that at
most one cap in each branch of Gc is allowed to be arbitrarily twisted
as long as its interior is embedded and disjoint from all other caps and
stages of Gc. Here a cap c is k-twisted, for k ∈ Z, if the parallel push-
off of its boundary in the grope determines a section of the normal
bundle of c ⊂ B4 with relative Euler number k. (So a 0-twisted cap
is framed.) The disjoint union of signed oriented labeled trees t(Gc) is
extended to twisted capped gropes by labeling each univalent vertex
that corresponds to a non-trivially k-twisted cap with the twist symbol

, and taking the twisting k as a coefficient.
Recall from 3.1 above that for a capped grope Gc, if n is the minimum

of the orders of the trees in t(Gc), then the class of Gc is n+ 1.
Motivated by the correspondence with twisted Whitney towers de-

scribed below, we define the class of a twisted capped grope Gc to be
n+ 1 if n is the minimum of the orders of the non- trees in t(Gc), and
n/2 is the minimum of the orders of the -trees in t(Gc).
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1 1

2
2

3 3

4 4

Figure 5. Both sides of this figure correspond to the
slice of B4 shown in the right-hand side of Figure 4. The
tree tp = 〈((1, 2), 3), 4〉 is shown as a subset of the order
2 Whitney towerW on the left. Replacing this left-hand
side by the right-hand side illustrates the tree-preserving
construction of a class 3 capped grope Gc bounded by
L. In this case, the component Gc

1 bounded by L1 is the
class 3 capped grope shown (partly translucent) on the
right (together with a collar on L1) which is gotten by
surgering D1 and W(1,2). The three other components of
G are just the disks D2, D3 and D4 of W , each of which
has a single intersection with a cap of Gc

1.

3.4. From twisted Whitney towers to twisted capped gropes.
The similarity between the trees associated to (twisted) Whitney tow-
ers and (twisted) capped gropes is no coincidence, and in [24] a “tree-
preserving” procedure for converting an order n (framed) Whitney
towerW into a class n+1 capped grope (and vice versa) is described in
detail. This construction will be extended to the twisted setting in the
proof of Lemma 31 below. The rough idea is that the “subtower” of
Whitney disks containing a tree in a split Whitney tower can be surg-
ered to a dyadic branch of a capped grope containing the same tree,
with the capped grope orientation inherited from that of the Whitney
tower. Orientation and sign conventions will be presented during the
course of the proof.

Lemma 31. If L bounds an order n split twisted Whitney tower W,
then L bounds a class n+ 1 twisted capped grope Gc such that:

(i) t(W) is isomorphic to t(Gc).
(ii) Each framed cap has intersection +1 with a bottom stage of G,

except that one framed cap in each dyadic branch of Gc with
signed tree εp · tp has intersection εp with a bottom stage.
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Proof. A detailed inductive proof of the framed unoriented case is given
in [24]. We will adapt the proof from [24] to the current twisted set-
ting, sketching the construction while introducing orientation and sign
conventions. The basic idea of the procedure is to tube (0-surger) along
one boundary-arc of each Whitney disk; but in order to maximize the
class of the resulting grope, Whitney moves may need to be performed
(when trees are not simple, meaning right- or left-normed).

A simple example of the construction (in the framed case) is illus-
trated in Figures 4 and 5, which show how an order 2 Whitney tower
bounded by the Bing-double of the Hopf link can be converted to a
class 3 capped grope.

For each tp ∈ t(W), the construction works upward from a chosen
Whitney disk having a boundary arc on an order 0 disk Di, which cor-
responds to the choice of an i-labeled univalent vertex of tp, creating
caps out of Whitney disks, then turning these caps into surface stages
whose caps are created from higher-order Whitney disks, and so on.
The resulting dyadic branch of Gc will inherit the tree tp as an embed-
ded subset. Similarly, for each -tree ±J ∈ t(W) the construction
will yield a dyadic branch containing J with the -vertex sitting in a
±1-twisted cap.

Figure 6 illustrates a surgery step and the corresponding modifica-
tion of the embedded tree near a trivalent vertex corresponding to a
Whitney disk W(I,J) in W . The sheet cI is a (temporary) cap which
has already been created, or is just an order zero disk Di with I = i
in the first step of creating a dyadic branch of Gc. Any interior inter-
sections of W(I,J) are not shown. After the surgery which turns the cI
into a surface stage SI , the Whitney disk W(I,J) minus part of a collar
becomes one cap c(I,J), and a normal disk to the J-sheet becomes a
dual cap cJ . The SI stage inherits the orientation of cI , and the cap
c(I,J) inherits the orientation of W(I,J). As pictured in the figure, the
effect of the surgery on the tree sends the trivalent vertex in W(I,J)

to the trivalent vertex in the SI sheet, with the induced orientation:
This can always be arranged by re-choosing (if needed) the way the
tree edge passes between W(I,J) and cI ; this choice of which side of
W(I,J) the edge passes into cI does not change (the isomorphism class
of) the oriented tree. The cap cJ is a parallel copy of what used to
be a neighborhood in cI around the negative intersection point paired
by W(I,J), but with the opposite orientation, so that cJ has a single
positive intersection with the J-sheet.

Here the I-subtree sits in the part of the grope branch which has
already been constructed, while the J-subtree as well as any K-subtree
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Figure 6. A surgery step in the resolution of an order
n twisted Whitney tower to a class n+ 1 twisted capped
grope. Any interior intersections in W(I,J) and c(I,J) are
not shown.

Figure 7. The framing obstruction determined by the
Whitney section over the boundary of a Whitney disk is
passed on to the framing obstruction on the cap resulting
from surgery.

corresponding to intersections with c(I,J) sit in sub-towers of W which
have yet to be converted to grope stages.

If W(I,J) had a single interior intersection with an order zero disk
Dk, then so does the cap c(I,J); and we relabel this cap as ck. If in this
case J = j is also order zero, then there is no further modification to
cj and ck, which remain as normal disk-caps to the bottom stages of
the gropes Gj and Gk when the construction is complete.

If W(I,J) was a clean ±1-twisted Whitney disk, then c(I,J) is a clean
±1-twisted cap of Gc. In this case the cap will be denoted c(I,J).

Note that surgering Whitney disks to caps preserves twistings: See
Figure 7.

If J = j is order zero and W(I,j) was a clean ±1-twisted Whitney disk
yielding c(I,j), then there is no further modification to the corresponding
caps.
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Figure 8. A Whitney move preserves the sign and ori-
entation at a trivalent vertex.

If the cap c(I,J) contains an arc of a Whitney disk boundary, then
the just-described surgery step for cI applies to c(I,J). Otherwise, the
grope construction requires a Whitney move as described next.

If the cap c(I,J) intersects some WK transversely in the single point
p, with sign(p) = εp, and K = (K1, K2) of positive order, then the
grope construction proceeds by doing a Whitney move guided by WK

on either the K1-sheet or the K2-sheet: The effect of this WK-Whitney
move is to replace p by a Whitney-disk boundary-arc in c(I,J) so that
the surgery step can be applied. Here p could be the original unpaired
intersection in tp, or an intersection created during the construction,
and Figure 8 illustrates how the oriented tree and the sign of the un-
paired intersection are preserved in the case εp = +1; the case εp = −1
can be checked in the same way.

Similarly, if J = (J1, J2) has positive order, then the grope construc-
tion proceeds by doing a WJ -Whitney move to replace the positive
intersection point between cJ and WJ by a boundary arc of a Whitney
disk, so that the surgery step can be applied to cJ . That this preserves
the oriented tree and the +1 sign of the un-paired intersection also
follows from (a re-labeling of) Figure 8.

For each tree in t(W) this procedure terminates when each framed
cap has a single intersection with a bottom stage, creating a dyadic
branch of the capped grope Gc; and applying the procedure to all
trees in t(W) yields Gc, containing its intersection forest tree t(Gc),
with all vertex orientations induced by the orientation of Gc. Since
condition (ii) of the lemma is satisfied, it follows that t(Gc) and t(W)
are isomorphic, since the coefficients of the trees are also preserved. �
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4. Proof of Theorem 5

Recall the content of Theorem 5: For L bounding an order n twisted
Whitney tower W , the first non-vanishing total Milnor invariant of L
can be computed from W as

µn(L) = ηn(τn (W))

where µn(L) :=
∑

iXi ⊗ µin(L) ∈ L1 ⊗ Ln+1 collects the length n + 1
iterated commutators determined by the link longitudes considered as
Lie brackets µin(L) in the free Z-Lie algebra, and the map ηn converts
unrooted trees into rooted trees (Lie brackets) by summing over all
choices of roots (the definition of ηn is recalled below).

To prove Theorem 5 we will first convert the order n twisted Whitney
tower W bounded by L to an order n+ 1 twisted capped grope Gc, as
in Lemma 31. It will follow from an extension of grope duality [16] to
the setting of twisted capped gropes, together with Dwyer’s theorem
[9], that we can compute the link longitudes in π1(B

4 \Gc) instead of
π1(S

3\L). Via the capped grope duality construction the commutators
determined by the longitudes will be seen to correspond exactly to the
image of τn (W) under the map η. To preview the computation of the
longitudes (in the framed case) the reader can examine Figures 4 and
5 which show the Whitney tower-to-capped grope conversion for L the
Bing double of the Hopf link. It should be clear from the right hand side
of Figure 5 that the longitude for component L1 is a triple commutator
[x2, [x3, x4]] of meridians to the other components, as exhibited by the
class 3 capped grope Gc

1 bounded by L1 and containing the order 2
tree. It will turn out that as a consequence of grope duality the other
longitudes also bound class 3 gropes which correspond to choosing roots
on the same order 2 tree (although these gropes are not so visible in
the Figure).

For the reader’s convenience we recall the definition of the map ηn :
Tn → Dn from the introduction:

For v a univalent vertex of an order n (un-rooted non- ) tree t,
denote by Bv(t) ∈ Ln+1 the Lie bracket of generators X1, X2, . . . , Xm

determined by the formal bracketing from {1, 2, . . . ,m} which is gotten
by considering v to be a root of t.

Denoting the label of a univalent vertex v by `(v) ∈ {1, 2, . . . ,m},
the map ηn : Tn → L1 ⊗ Ln+1 is defined on generators by

ηn(t) :=
∑
v∈t

X`(v) ⊗Bv(t) and ηn(J ) :=
1

2
ηn(〈J, J〉)



MILNOR INVARIANTS AND TWISTED WHITNEY TOWERS 27

where the first sum is over all univalent vertices v of t, and the second
expression is indeed in L1 ⊗ Ln+1 since the coefficient of ηn(〈J, J〉) is
even. See [7] for proof of the following lemma:

Lemma 32 ([7]). The homomorphism ηn : Tn → Dn is a well-defined
surjection. �

Lemma 33. If L ⊂ S3 bounds a class (n + 1) twisted capped grope
Gc ⊂ B4, then the inclusion S3 \L ↪→ B4 \Gc induces an isomorphism

π1(S
3 \ L)

π1(S3 \ L)n+2

∼=
π1(B

4 \Gc)

π1(B4 \Gc)n+2

.

The proof of Lemma 33 is given below in subsection 4.2.

4.1. Proof of Theorem 5. By Lemma 33 we can compute the iterated
commutators determined by the link longitudes in π1(B

4 \Gc) modulo
π1(B

4 \ Gc)n+2. The computation will show that the longitudes lie in
π1(B

4 \Gc)n+1, which implies that µk(L) vanishes for all k < n.
Terminology note: In this subsection (and the subsequent one)

we will use the word meridian to refer to fundamental group elements
represented by normal circles to deleted surfaces in 4–space; and on
occasion such circles will themselves be referred to as “meridians”.

Via the isomorphisms of Lemma 33 and subsection 1.1 we make the
identifications

π1(B
4 \Gc)n+1

π1(B4 \Gc)n+2

∼=
π1(S

3 \ L)n+1

π1(S3 \ L)n+2

∼=
Fn+1

Fn+2

where the generators {x1, x2, . . . , xm} are meridians to the bottom
stages of Gc, with xi chosen to have linking number +1 with the bottom
stage of the grope component Gi which is bounded by Li.

Orientations of surface sheets and their boundary circles are related
by the usual “outward vector first” convention.

We use the commutator notation [g, h] := ghg−1h−1, and exponential
notation gh := hgh−1 for group elements g and h.

Since an element in Fn+1

Fn+2
determined by an (n+1)-fold commutator of

elements of F
Fn+2

only depends on the conjugacy classes of the elements,

we can and will suppress basings of meridians from computations. This
follows easily from the commutator relation [xy, z] = [y, z]x[x, z] which

holds in any group. The following relations in Fn+1

Fn+2
will be useful:

For any length n+ 1 commutator [xI , xJ ], and ε = ±1:

(1) [xI , x
ε
J ] = [xεI , xJ ] = [x−εJ , xI ] = [xεJ , xI ]

−1 = [xεJ , x
−1
I ]

Computing the longitudes. The longitudes γi are represented by
0-parallel push-offs of the link components. As illustrated in Figure 9,
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Li

Figure 9. A parallel push-off of Li is isotopic to a prod-
uct of loops which are boundary circles of parallel push-
offs of dyadic branches of Gi, or meridional circles to
framed caps of Gc. So the corresponding factors γir of
the ith longitude γi =

∏
r γir are in one-to-one corre-

spondence with the i-labeled vertices of the trees in t(Gc).

each longitude factors as γi =
∏

r γir , with each γir represented by
either a parallel push-off of the boundary of a dyadic branch of Gi, or
a meridian to a framed cap in Gc. (The ordering of the factors of γi is

irrelevant since Fn+1

Fn+2
is abelian.)

For each i, the factors γir are in one to one correspondence with the
set of i-labeled vertices vir on all the trees in t(Gc) (since each i-labeled
univalent vertex on a tree corresponds either to an intersection between
a framed cap and the bottom stage of Gi, or to the i-labeled vertex
sitting in the bottom stage of a dyadic branch of Gi). To finish the
proof of Theorem 5 it suffices to check that each γir is equal to the
iterated commutator βvir

(t)ε ∈ Fn+1

Fn+2
gotten by putting a root at vir on

the tree ε · t ∈ t(Gc) containing vir for non- trees, or βvir
(〈J, J〉)ε for

vir in an -tree ε · J . The isomorphism Fn+1

Fn+2

∼= Ln+1 in the definition

(1.1) of µn(L) maps βvir
(t)ε to the Lie bracket ε · Bvir

(t) ∈ Ln+1 as
in the definition of the map ηn. Similarly for -trees J , βvir

(〈J, J〉)ε
maps to the correct Lie bracket ε ·Bvir

(〈J, J〉) ∈ Ln+1 if n is even. Then
µin(L) is the sum of these Lie brackets over all the vir .

4.1.1. The order 0 case. We leave it to the reader to check (using Re-
mark 28) that for any order 0 twisted Whitney tower W (collection of
immersed disks) bounded by L, the coefficient in η0(τ0 (W)) of Xi⊗Xj

is equal to the linking number of Li and Lj for i 6= j, and is equal to
the framing (self-linking) of Lj for i = j.



MILNOR INVARIANTS AND TWISTED WHITNEY TOWERS 29

ε

Figure 10. Near the trivalent vertex of the signed Y-
tree εp ·tp = εp ·〈(i, j), k〉 in a dyadic class 2 capped grope
component (capped surface) bounded by Li.

4.1.2. The order 1 case. As a warm-up and base case for the general
proof we check that η1 takes τ1 (W) to µ1(L) (the “triple linking num-
bers” of L) for any order 1 twisted Whitney tower W bounded by
L. In this case the grope construction yields a class 2 twisted capped
grope Gc bounded by L, with intersection forest t(Gc) a disjoint union
of signed order 1 Y-trees representing τ1 (W). The body G is just a
collection of disjointly embedded surfaces, and there are no twisted
caps (since odd-order twisted Whitney towers do not contain twisted
Whitney disks).

First consider the case where t(Gc) = εp · tp = εp · 〈(i, j), k〉 is a single
Y-tree, with i, j and k are distinct, and G consists of a single genus
one Gi bounded by Li (Figure 10), together with disjointly embedded
disks bounded by the other link components.

We want to check that:

µ1(L) = η1(εp·〈(i, j), k〉) = εp·Xi⊗−−< k
j + εp·Xj⊗ i−−< k + εp·Xk⊗ i−−< j

A parallel push-off of Li bounds a parallel push-off of Gi in B4 \
Gc and the longitude γi can be computed from Figure 10 (using the
relations (1) above):

γi = [x−1
j , x

−εp
k ] = [xj, xk]

εp

This is the correct commutator βvi
(tp)

εp ∈ F2

F3
corresponding to choosing

a root for tp at the i-labeled vertex vi. This confirms the first term in
the right-hand-side of the expression for µ1(L):

Xi ⊗ εp ·Bvi
(tp) = Xi ⊗ εp · [Xj, Xk] = Xi ⊗ µi1(L)

A parallel push-off of Lk bounds a parallel push-off of the embedded
disk Gk in B4 \ G, with Gk intersecting Gc in the single point p ∈ ck



30 J. CONANT, R. SCHNEIDERMAN, AND P. TEICHNER

ε

ε

−ε

Figure 11. A meridian to the cap ck in Figure 10
bounds a genus one surface which is a punctured normal
torus to the surface stage containing the cap boundary.
This normal torus consists of circle fibers in the nor-
mal circle bundle over a dual circle to the cap boundary
in the surface stage. This dual circle is parallel to the
boundary of the dual cap (which in Figure 10 represents
the meridian xj). Since the (closed) normal torus has a
single intersection with the cap it is also called a “dual
torus” for the cap.

with sign εp. Thus, the longitude γk is equal to x
εp
ck ∈ F

Fn+2
, the positive

meridian to the cap ck raised to the power εp. This meridian can
be expressed in terms of the generators using the “dual torus” to ck
illustrated in Figure 11, giving:

γk = xεpck = x
εp
i x
−εpxj

i = x
εp
i xjx

−εp
i x−1

j = [x
εp
i , xj] = [xi, xj]

εp

which is the correct commutator βvk
(tp)

εp when the root of tp is at the
k-labeled vertex vk. (One way to check this expression for x

εp
ck directly

from Figure 10 is to push the k sheet down off ck into the i sheet by
a finger move (the vertical tube in Figure 11) to get a cancelling pair

of intersection points which correspond to the factors x
εp
i and x

−εpxj

i .)
This confirms the third term in the right-hand-side of the expression
for µ1(L):

Xk ⊗ εp ·Bvk
(tp) = Xk ⊗ εp · [Xi, Xj] = Xk ⊗ µk1(L)

One can check similarly using a dual torus that the contribution
to γj coming from the intersection point in the cap cj is equal to
βvj

(tp)
εp = [xk, xi]

εp , confirming the second term in the right-hand-side
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γ

γ

γ

Figure 12. Near a trivalent vertex in a dyadic branch of Gc.

of the expression for µ1(L):

Xj ⊗ εp ·Bvj
(tp) = Xj ⊗ εp · [Xk, Xi] = Xj ⊗ µj1(L)

Since all other link components bound disjointly embedded disks,
this confirms Theorem 5 in this case where t(W) = t(Gc) = εp · tp =
εp · 〈(i, j), k〉 with i, j and k distinct. If i, j and k are not distinct,
then tp = 0 ∈ T1 by the boundary-twist relations 〈(i, j), j〉 = 0 (and
the just-described computation will show that tp contributes trivially
to µ1(L), since [xj, xj] = 0 and [xj, xi]+[xi, xj] = 0). The general order
1 case follows by summing the above computation over all factors of
each longitude.

4.1.3. The general framed case. Now consider the general order n case
with the assumption that W contains no twisted Whitney disks, so
that Gc is a class n + 1 capped grope with no twisted caps. That the
longitude factors are equal to the iterated commutators corresponding
to putting roots at the univalent vertices of t(Gc) for n > 1 will follow
by applying the computations for n = 1 to recursively express the rela-
tions between meridians and push-offs of boundaries of surface stages
of Gc at an arbitrary trivalent vertex of t(Gc):

Figure 12 shows three surface stages in a branch of Gc around a
trivalent vertex which decomposes the (un-rooted) tree associated to
the branch into three (rooted) subtrees I, J , and K (whose roots are
identified at the trivalent vertex), with the I-subtree reaching down to
the bottom stage of the branch, and where we assume for the moment
that J and K are of positive order (so the J- and K-sheets are not
caps). Push-offs of the boundaries of the stages represent fundamental
group elements γI , γJ , and γK ; and we denote by xI , xJ , and xK
meridians to these stages.
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I

J

c

i1

i

3i

2

j
2j

1

γ

γ

k k

Figure 13. An example of Figure 12 with I =
(i1, (i2, i3)) of order 2, J = (j1, j2) of order 1, and K = k
of order zero.

The same computations as in the n = 1 case now give the three
relations:

γI = [γJ , γK ], xJ = [γK , xI ], and xK = [xI , γJ ]

If either of J or K is order zero, say K = k, then the corresponding
cap ck intersects the bottom stage Gk, and so the cap boundary (labeled
γK in Figure 12) will be a meridian xk to Gk, and the cap meridian xK
will be denoted xck ; and the relations become:

γI = [γJ , xk], xJ = [xk, xI ], and xck = [xI , γJ ]

It follows inductively that, when J and K are of positive order,
each of γI , xJ , and xK are equal to the iterated commutators in the
generators corresponding to I, J and K:

γI = [J,K], xJ = [K, I], and xK = [I, J ].

And if K = k is order zero, then we have

γI = [J, xk], xJ = [xk, I], and xck = [I, J ]

with similar relations for order zero J = j.
Theorem 5 is confirmed in this case by taking any of I, J , and K to

be order zero which shows that the corresponding factor contributed
to the longitude is the commutator gotten by putting a root at that
univalent vertex on the tree in t(Gc).
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J

J J

γ

γ

γJc

1
J1

2 2

Figure 14. Near a twisted cap in a dyadic branch of Gc.

For instance, referring to the example of Figure 13 in the case n = 4,
the contribution to the longitude γk coming from the pictured intersec-
tion between Gk and the cap ck is represented by the cap meridian:

xck = [xI , γJ ] = [[xi1 , [xi2 , xi3 ]], [xj1 , xj2 ]]

which is the iterated commutator βvk
(〈(I, J), k〉) determined by putting

a root at the k-labeled vertex vk of the tree 〈(I, J), k〉.

4.1.4. The general twisted case. Now consider the general order n case
where Gc may contain twisted caps (for even n) corresponding to ±1-
twisted Whitney disks (of order n/2) in W . It is enough to consider a
single dyadic branch of Gc containing a ±1-twisted cap cJ and check
that the corresponding -tree J contributes ηn(J ) = 1

2
ηn(〈J, J〉) to

µn(L).
The key observation in this case is that because the cap cJ is ±1-

twisted, the element γ represented by a parallel copy of the (ori-
ented) boundary of the cap is the (±)-meridian x±1

J to the cap. For
J = (J1, J2), referring to Figure 14 and using the same dual torus
as for a framed cap (Figure 11) this element can be expressed as the
commutator:

γ = x±1
(J1,J2) = [xJ1 , γJ2 ]

±1

where if J2 = j2 is order zero, then γJ2 is replaced by the meridian xj2
to Gj2 (as in the notation for the previous untwisted case).

So the analogous computations as in Figure 12 applied to the twisted
setting of Figure 14 give the relations:

γJ1 = [γJ2 , [xJ1 , γJ2 ]]
±1 and xJ2 = [[xJ1 , γJ2 ], xJ1 ]

±1
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1

2

J

J

j1

j3

j2

j5

j4

γ

γ

Jc

γ

Figure 15. An example of Figure 14 with J1 =
(j1, (j2, j3)) of order 2, and J2 = (j4, j5) of order 1.

and inductively as in the untwisted case:

γJ1 = [J2, [J1, J2]]
±1 and xJ2 = [[J1, J2], J1]

±1

with J1 and J2 here denoting the corresponding iterated commutators
in the meridional generators.

To see that the contribution to γir corresponding to any ir-labeled
vertex vir of J is the iterated commutator βvir

(〈J, J〉), observe that
if vir is in J2 then the contribution will be an iterated commutator
containing xJ2 , and if vir is in J1 then the contribution will be the
iterated commutator containing γJ1 . Thus, the effect of the twisted
cap is to “reflect” the iterated commutator determined by J at the -
labeled root. For instance, in the example of Figure 15 for the case n =
8, the contribution to the longitude γj1 corresponding to the boundary
of the dyadic branch is:

[[xj2 , xj3 ], γJ1 ] = [[xj2 , xj3 ], [γJ2 , γ ]]
= [[xj2 , xj3 ], [[xj4 , xj5 ], xcJ ]]
= [[xj2 , xj3 ], [[xj4 , xj5 ], [xJ1 , γJ2 ]]]
= [[xj2 , xj3 ], [[xj4 , xj5 ], [[xj1 , [xj2 , xj3 ]], [xj4 , xj5 ]]]]
= βvj1

(〈J, J〉)

for J = (J1, J2) = ((j1, (j2, j3)), (j4, j5)) and assuming the twisting of
cJ is +1.

Since each univalent vertex of J contributes one term to µn(L), the
total contribution of the branch is equal to ηn(J ) = 1

2
ηn(〈J, J〉).

This completes the proof of Theorem 5, modulo the proof of Lemma 33
which follows.
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4.2. Proof of Lemma 33. Observe that H1(S
3 \L) is Alexander dual

to H1(L) and is hence generated by meridians. Similarly, H1(B
4 \Gc)

is generated by meridians to the bottom stages of the grope. It follows
that the inclusion induces an isomorphism on H1, since meridians of
the link go to meridians of the bottom stages.

By Alexander duality, the generators of H2(B
4 \ Gc) which don’t

come from the boundary are the Clifford tori (or “linking tori”, see
e.g. 1.1, 2.1 of [11]) around the intersections between the caps and the
bottom stages of Gc. Each such Clifford torus contains a pair of dual
circles, one a meridian xk to the kth bottom stage of G and the other
a meridian xck to the cap ck. Referring to Figure 10 and Figure 11
with i and j replaced by I and J respectively), the cap meridian xck
bounds a genus one surface Tck containing a pair of dual circles, one a
meridian xI to the top I-stage of Gc containing ∂ck, and the other a
parallel push-off of the boundary of the J-stage representing γJ which
is dual to ck (if ck is dual to another cap cj, then γJ is just a meridian
xj to the jth bottom stage of Gc).

Consider first the case where the dyadic branch of Gc containing ck
does not contain a twisted cap, and let t = 〈k, (I, J)〉 ∈ t(Gc) be the
corresponding order n tree. Applying the grope duality construction of
section 4 in [16] to Tck yields a class n+ 1 grope in B4 \G having Tck
as a bottom stage and associated tree 〈k, (I, J)〉 (with k-labeled root
corresponding to Tck). Since this class n + 1 grope consists of normal
tori and parallel push-offs of higher stages of G it actually lies in the
complement of the caps of Gc (which only intersect the bottom stages of
G). The union of this class n+1 grope with the Clifford torus is a class
n + 2 closed grope with associated order n + 1 rooted tree (k, (I, J))
(with the root corresponding to the Clifford torus), completing the
proof in the case where Gc has no twisted caps.

Now consider the case where the dyadic branch of Gc containing
ck does contain a twisted cap cJ , with associated -tree J . Recall
the observation of subsubsection 4.1.4 above that a normal push-off
of the cap boundary ∂cJ representing γ ∈ π1(B

4 \ Gc) is a meridian
xJ to cJ . In this case, the grope duality construction of the previous
paragraph which builds a grope on Tck will at some step look for a sub-
grope bounded by a normal push-off of ∂cJ . Just as the computations
in subsection 4.1 show that xJ represents the iterated commutator in
π1(B

4 \ Gc) corresponding to the rooted tree J , the punctured dual
torus to cJ bounded by xJ extends to a grope in B4 \Gc with tree J .
Thus the torus Tck extends to (a map of) a grope in B4 \Gc whose as-
sociated tree is gotten by putting a root at the corresponding k-labeled
univalent vertex of (either one of the sub-trees) J in 〈J, J〉. It follows
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that the Clifford torus near the cap ck extends to a grope whose cor-
responding tree is gotten by inserting a (rooted) edge into the edge of
〈J, J〉 adjacent to the k-labeled univalent vertex. Since the order of
〈J, J〉 is n, it follows that the class of the grope containing the Clifford
torus as a bottom stage is n+ 2.

5. Proof of Lemma 9

Starting with the first statement: Any knot K ⊂ S3 bounds an
immersed disk D # B4, and by performing cusp homotopies as needed
it can be arranged that all self-intersections ofD come in canceling pairs
admitting order 1 Whitney disks. These Whitney disks can be made
to have disjointly embedded boundaries by a regular homotopy applied
to Whitney disk collars (Figure 3 in [26]). It is known that the sum
modulo 2 of the number of intersections between D and the Whitney
disk interiors together with the framing obstructions on all the Whitney
disks is equal to Arf(K) (see [10, 11, 20] and sketch just below). By
performing boundary-twists as in Figure 16 (each of which changes a
framing obstruction by ±1), it can be arranged that all intersections
between D and the Whitney disk interiors come in canceling pairs.
This means that Arf(K) is now equal to the sum of the twistings on
all the order 1 Whitney disks, and that all order 1 intersections can
be paired by order 2 Whitney disks. These order 2 Whitney disks
can be arranged to be framed by boundary-twisting into the order
1 Whitney disks (which only creates intersections of order 3), so K
bounds an order 2 twisted Whitney tower W with Arf(K) = τ2 (W)
which counts the (1, 1) in T2 (1) ∼= Z2. On the other hand, given an
arbitrary order 2 twisted Whitney tower W bounded by K, one has
Arf(K) = τ2 (W) ∈ T2 (1) ∼= Z2 determined again as the sum modulo
2 of twistings on all order 1 Whitney disks (with the fact that the order
2 Whitney disks are framed irrelevant to the computation).

We sketch here a proof that Arf(K) is equal to the sum modulo 2 of
the order 1 intersections plus framing obstructions in any weak order
1 Whitney tower W ⊂ B4 bounded by K ⊂ S3. Here “weak” means
that the Whitney disks are not necessarily framed. (We are assuming
that the Whitney disk boundaries are disjointly embedded, although we
could instead also count Whitney disks boundary singularities.) Any
K bounds a Seifert surface F ⊂ S3; and Arf(K) equals the sum of
the products of twistings on dual pairs of 1-handles of F . Restricting
to the case where F is genus 1, denote by γ and γ′ core circles of the
pair of dual 1-handles of F , with respective twistings a and a′, so that
Arf(K) is the product aa′ modulo 2. Let Dγ be any immersed disk
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bounded by γ into B4, so that the interior of Dγ is disjoint from F .
After performing |a| boundary-twists on Dγ, each of which creates a
single intersection between Dγ and F , it can be arranged that Dγ is
framed with respect to F , so that surgering F along Dγ creates only
canceling pairs of self-intersections in the resulting disk D bounded
by K. Each self-intersection in Dγ before the surgery contributes two
canceling pairs of self-intersections of D, since the surgery adds both
Dγ and a parallel copy of Dγ to create D. On the other hand, the |a|
intersections between Dγ and F before the surgery give rise to exactly
|a| canceling pairs of self-intersections of D, so the total number of
canceling pairs of self-intersections ofD is equal to amodulo 2. Observe
that all of these canceling pairs admit Whitney disks constructed from
parallel copies of any immersed disk bounded by γ′ with interior in
B4. The framing obstruction on each of these Whitney disks is equal
to the twisting a′ along γ′, and the only order 1 intersections between
the Whitney disk interiors and D come in canceling pairs, since they
correspond to intersections with Dγ and its parallel copy. Thus the
sum of framing obstructions and order 1 intersections is equal to the
product aa′ modulo 2. The higher genus case is similar. That this
construction is independent of the choice of weak Whitney tower follows
from the fact that the analogous homotopy invariant for 2–spheres in 4–
manifolds vanishes on any immersed 2–sphere in the 4–sphere (e.g. [26],
or [11] 10.8A and 10.8B).

Considering now the second statement of Lemma 9 regarding links,
it follows from Corollary 6 and Proposition 8 that if L is any link in
Ker(µ2) < W2 andW is any order 2 twisted Whitney tower bounded by
L, then τ2 (W) is contained in the subgroup of τ2 spanned by the sym-
metric twisted trees (i, i) , and this subgroup is isomorphic to (Z2)

m.
By the first statement of Lemma 9, Arf(L) is given by τ2 (W).

So to finish the proof of Lemma 9 it suffices to show that for any
L ∈ Ker(µ2) < W2 : L = 0 ∈ W2 if and only if τ2 (W) = 0. But if
L = 0 ∈ W2 , then by definition L bounds an order 3 twisted Whitney
tower, so τ2 (W) = 0. And if τ2 (W) = 0, then by [5] L bounds an
order 3 twisted Whitney tower, hence L = 0 ∈ W2 .

6. Proof of Lemma 12

In the proof of the surjectivity of R : Tn � Wn given in [5] links are
constructed realizing all -trees by starting with twisted Bing doubles
of the unknot and taking untwisted iterated Bing doubles, possibly
plus interior band sums. In particular, the -tree (i, i) is realized
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Figure 16. Boundary-twisting a Whitney disk W
changes ω(W ) by ±1 and creates an intersection point
with one of the sheets paired by W . The horizontal arcs
trace out part of the sheet, the dark non-horizontal arcs
trace out the newly twisted part of a collar of W , and
the grey arcs indicate part of the Whitney section over
W . The bottom-most intersection in the middle picture
corresponds to the ±1-twisting created by the move.

Figure 17. On the left, the (untwisted) Bing double
of the figure-eight knot. On the right, disjoint Seifert
surfaces for the two components of an untwisted Bing
doubled knot can be constructed from four copies of a
Seifert surface bounded by the original knot.

by banding together the two components of a ±1-twisted Bing dou-
ble of unknot, which by Lemma 9 above has non-trivial classical Arf
invariant. All the symmetric -trees (J, J) are realized as untwisted
iterated Bing doubles, possibly plus interior band sums, of such a knot
K. To see this, recall from the general construction in [5] that Bing
doubling the ith component Li of a link changes the corresponding tree
by creating pairs of new univalent edges emanating from each i-labeled
vertex, as illustrated in Figure 18; and observe that any rooted tree J
can be created by starting with the order 0 rooted tree i and apply-
ing this process together with taking interior band sums (first create a
distinctly labeled tree of the desired ‘shape’ by doubling, then correct
the labels by interior band-summing). As illustrated in Figure 17, un-
twisted Bing doubles of boundary links are boundary links. If interior



MILNOR INVARIANTS AND TWISTED WHITNEY TOWERS 39

Li

Di

Li

Li

1 Di1

i1 i2

Di22

W( ),

Figure 18. Pushing into B4 from left to right: Above,
a collar of Li in Di. Below, Di yields a Whitney
disk W(i1,i2) for the intersections between Di1 and Di2

bounded by Li1 and Li2 , the untwisted Bing-double of
Li. Di1 and Di2 are traced out by null-homotopies of Li1
and Li2 ; and the curved vertical arcs are part of W(i1,i2).

band sums are also needed, it is always possible to choose the interiors
of the arcs guiding the bands to be in the complement of the disjoint
Seifert surfaces so that the result KJ is still a boundary link.

7. An unlikely proposition

As stated in Conjecture 11, we believe that Arfk is non-trivial for all
k; however interest in the first unknown “test case” k = 2 is heightened
by Proposition 13 from the introduction which states that if Arf2 = 0
then Arfk is trivial for all k ≥ 2.

Proof of Proposition 13. It suffices to show that if the untwisted Bing
double Bing(K) = K((1,2),(1,2)) bounds an order 7 twisted Whitney
tower for some K with non-trivial classical Arf invariant, then each
link KJ of Lemma 12 with J of order k − 1 bounds an order 4k − 1
twisted Whitney tower, for k > 2.

Note that the assumption that Bing(K) bounds an order 7 twisted
Whitney tower implies that Bing(K) in fact bounds an order 10 twisted
Whitney tower W by Theorem 7, since boundary links have vanish-
ing Milnor invariants in all orders. Now applying the Bing doubling
and banding construction of the proof of Lemma 12 to get KJ ′

from
Bing(K), where J ′ is any order 2 tree gotten from the order 1 tree
J = (1, 2), yields KJ ′

bounding an order 11 twisted Whitney tower
gotten from W by converting an order 0 disk of W into an order 1
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Whitney disk (Figure 18). Inductively, if KJ , with J of order k − 1,
bounds an order 4k − 1 twisted Whitney tower, then KJ also bounds
an order 4k + 2 twisted Whitney tower by Theorem 7, and since Bing
doubling a component of KJ raises the order by at least 1 it follows
that KJ ′

bounds an order 4(k+ 1)− 1 twisted Whitney tower, for any
J ′ gotten from J by attaching at least one pair of new edges to a uni-
valent vertex of J . As was observed in the proof of Lemma 12, all trees
can be gotten by this process of adding new pairs of edges to univalent
vertices of lower-order trees. �

8. Milnor invariants and geometric k-sliceness

This section gives proofs of Theorem 16 and Theorem 17 from the
introduction. Theorem 16 follows from combining Corollary 6, Propo-
sition 8 and Lemma 12, which have already been proved, with Propo-
sition 15, which is proved below. The proof of Theorem 17 will use
Theorem 16 together with a generalization of Theorem 5, see Proposi-
tion 34 below.

8.1. Proof of Proposition 15. Recall that W2k−1 = W2k−1, so we
may assume that L bounds a framed Whitney towerW of order 2k−1.
By applications of the Whitney-move IHX construction (Section 7 of
[24]) it can be arranged that all trees in the intersection forest t(W)
are simple, meaning that every trivalent vertex is adjacent to at least
one univalent edge. Since all these simple trees are of order (at least)
2k − 1 we can choose a preferred univalent vertex on each tree which
is (at least) k − 1 trivalent vertices away from both ends of its tree.
Now converting the order 2k − 1 Whitney tower W to a class 2k em-
bedded grope G via (the framed part of) the above construction in the
proof of Lemma 31 (as described in detail in [24]), with the preferred
univalent vertices corresponding to the bottom stages of the connected
components of G, yields dyadic branches having bottom stages with
dual curves bounding gropes of class (at least) k.

Note that the construction of [24] used here, as in the proof of
Lemma 31, yields a capped grope Gc which is contained in any small
neighborhood of W . In this argument we only need the body G.

On the other hand, being geometrically k-slice is the same as bound-
ing a particular kind of embedded class 2k grope G ⊂ B4. Since B4 is
simply connected, caps can be found, and can be framed by twisting
as necessary. All intersections in the caps can be pushed down into
the bottom grope stages using finger moves, yielding a capped grope
Gc, which can be converted to an order 2k − 1 Whitney tower via the
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inverse operation to that used in the proof of Lemma 31 above (see
[24]).

8.2. Proof of Theorem 17. Given L with vanishing Milnor invari-
ants of all orders ≤ 2k − 2, by Theorem 16 there exist finitely many
boundary links as in Lemma 12 such that taking band sums of L with
all these boundary links yields a geometrically k-slice link L′ ⊂ S3.
Consider each of these boundary links to be contained in a 3–ball, and
embed these 3–balls disjointly in a single 3–sphere, so the union of the
boundary links forms a single boundary link denoted U . Decompose
the 3–sphere S3 = B3

L ∪S2
0
B3
U containing L′ into two 3-balls exhibiting

the band sum of L′ = L#U , with L ⊂ B3
L, and U ⊂ B3

U . Each band
in the sum intersects the separating 2–sphere S2

0 in a single transverse
arc. Since L′ is geometrically k-slice, L′ bounds Σ′ ⊂ B4 which satisfies
the conditions in the first item of Theorem 17.

Now consider S3 = B3
L∪S2

0
B3
U as the equator of S4, with the interior

of Σ′ ⊂ B4 contained in the ‘southern hemisphere’ B4 ⊂ S4. The com-
ponents of the boundary link U bound disjoint Seifert surfaces which
are contained in B3

U , and symplectic bases of these Seifert surfaces
bound immersed disks into the ‘northern hemisphere’ 4–ball in S4. We
may assume that the interiors of these immersed disks are contained
in a ‘northern quadrant’ of S4, which is a 4–ball B4

+ bounded by a
3–sphere consisting of B3

+∪S2
0
B3
U , where B3

+ is a 3–ball bounded by S2
0

whose interior cuts the northern hemisphere into two 4–balls. Gluing
B4

+ to the southern hemisphere B4 along B3
U , with the boundaries of

the Seifert surfaces glued along U , has the effect of eliminating U from
the band sum with L (U gets replaced by the unlink). This leaves L in
the 3–sphere B3

+ ∪S2
0
B3

+ which bounds the ‘other’ northern quadrant

of S4, and the union Σ′′ of the Seifert surfaces together with Σ′ form
the surfaces Σ as desired.

Conversely, suppose the link components Li bound disjointly em-
bedded surfaces Σi ⊂ B4 as in the statement. The class k gropes Gi,j

attached to dual circles in Σ′i can be thought of as grope branches of
class 2k by subdividing each Σ′i into genus one pieces. Caps can be cho-
sen for all tips of these branches, and by “pushing down” intersections
(using finger moves) it can be arranged that the caps only intersect the
bottom stages Σ′i. This means that the caps are disjointly embedded,
and disjoint from the immersed disks bounded by the symplectic bases
in Σ′′. Now applying the capped-grope-to-Whitney tower construction
of [24] to these capped branches yields an order 2k− 1 Whitney tower
W on immersed surfaces Si each bounded by Li such that all Whit-
ney disks and singularities of W are contained in a neighborhood of
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the capped branches, and with Σ′′i ⊂ Si for each i. In particular, a
symplectic basis on each Si bounds immersed disks whose interiors are
contained in the complement of W .

The proof is completed by the following proposition, which mildly
generalizes Theorem 5 and in particular implies that L as above has
vanishing Milnor invariants of all orders ≤ 2k − 2.

Proposition 34. Theorem 5 holds for an order n twisted Whitney
towerW on order 0 immersed surfaces Si bounded by L such that a basis
of curves on each Si bounds immersed disks in the complement of W:
The Milnor invariants µk(L) vanish for k < n, and µn(L) = ηn◦τn (W).

Proof. We work through each step of the proof of Theorem 5 given in
Section 4, checking that the assertions still hold when the order 0 disks
are replaced by the surfaces Si:

The twisted Whitney towerW is resolved to a twisted capped grope
Gc just as in the proof of Lemma 31 except that the bases of curves
from the Si are left uncapped. Note that Gc does not really have class
n+1 because no higher grope stages are attached to these basis curves;
however, we will see that the proof still goes through since these curves
bound immersed disks in B4 \Gc.

To see that Lemma 33 still holds, the only new point that needs to be
checked in the proof given in subsection 4.2 is that the new generators
of H2(B

4 \ Gc) which are Alexander dual to the basis curves on the
Si are represented by maps of gropes of class at least n + 2. These
new generators are in fact represented by maps of 2–spheres (which are
gropes of arbitrary high class): A torus consisting of the union of circle
fibers in the normal circle bundle over a basis curve contains a dual
pair of circles, one of which is a meridian to Si (and bounds a normal
disk to the basis curve, exhibiting Alexander duality), while the other
circle (which is parallel to the basis curve) bounds by assumption an
immersed disk in the complement of Gc. Therefore, each such torus
can be surgered to an immersed 2–sphere in B4 \Gc.

It only remains to check that the computation of the link longitudes
in subsection 4.1 still corresponds to the composition ηn(τn (W)). But
this is clear since all the basis curves from the Si represent trivial
elements in π1(B

4 \Gc). �
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