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60. Foreword.

In [59] I have shown how the method of the paper [66] may be used for a short
proof of the following
Theorem. The Z— module with generators

([ log4 B g(z)) _(1) _(0)
fl (C(z))7f2 (3((3) 7f1 0 7f1 1
has these four generators as free generators, it is not a Liouville module and mea-
sure of nondiscreteness of this Z- module is not bigger than

7 = (In(p2))/(In(p1)) (= 106, 00...),

where
Py = (5 + 3212 4 (1281/2 — 8)1/2 1 (20482 4 32)1/2) exp(—3), p5 = p1 exp(6).

In this paper I shall prove the following Theorem, cf. [45].
Theorem 1. The above v can be reduced to v = 22,42693.
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B.Z.Moroz, 1.I. Piatetski-Shapiro,
A.G.Aleksandrov, P.Bundshuh and S.G.Gindikin for help and support.
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§1. My auxiliary functions.

In this section, I use the general functions of C.S.Mejer, which are defined as
follows ([19], ch. 5). We denote below by § the Riemann surface of Log (z) and
identify it with the direct product of the multiplicative group R* = {r € R| r > 0}
with the operation x, not to be written down explicitly as usual, and the additive
group R, so that zy29 = (1172, ¢1 + ¢2) for any two z; = (r1, ¢1) and z5 = (12, P2)
on this Riemann surface. Let 6y(z) = rexp(i¢) for any z = (r,¢) € R% x R. It is
clear that g is a surjective homomorphism of R} x R on the multiplicative group
of C. For each z = (r,¢) € §, we denote r by |z|, ¢ by Arg(z) and the complex
number number r +i¢ by Log (z). Clearly, Log (z122) = Log (z1) + Log (22) for any
two points z; and 25 in §. Clearly, the surface § is a metric space relatively to
the distance p(z1, 22) = |Log(z1) — Log(z2)|. Clearly, 0y(z) = exp(Log (z)) for any
point z € §. Clearly,

00(21) — Bo(22)| = | exp(Log (21)) — exp(Log (22))| =
| exp(Log (22)|| exp(Log (21) — Log (22)) — 1] <

|22/ exp(| Log (21) — Log (22)]) — 1| = |22[(exp(p(21, 22)) — 1).

Consequently, |6y(z1) — 0o(22)| < (exp(p(z1,22)) — 1) min(|21], |22]). Therefore the
map 6y is continuous. Let 01(z) = (r,¢ — m) for any z = (r,¢) € §. Clearly, the
map z — 61(z) is a bijection of § onto §, and 6y((61)™(z)) = (—1)™0(z) for each
point z = (r,¢) € § and m € Z. Let D be a domain in §. For a complex-valued
function f(z) on D, let f(z) = f"(r,¢). It is well known that the function f(z) is
holomorphic in D if the complex-valued function f”(r,¢) of two real variables r
and ¢ has continuous partial derivatives in D and, for every point z = (r,¢) € D,
the Cauchy-Riemann conditions

r((((0/0r) f7)(r, ¢)) = —i(((0/0¢) f")(r, §)) =
(0F)(2) == 60(2)(((9/92) f)(2))

are satisfied; these conditions determine a differentiations § and 9/9z on the ring of
all the holomorphic in D functions. In particular, the function Log (z) is holomor-
phic on § and ((8/0z) Log)(z) = 0o(271), (6 Log )(z) = 1. Let 3 = 0(2) € C\{0},
where z € §; we can consider 3 as independent variable also. Clearly, 3 = 0y(2) is
holomorphic function on § and

(500)(2) = bo(2) = (3 ((a%) 3))

Moreover, if R(3) € C(3), Do r is the set composed by all the points 3 € C, where
R is well defined and D = (6p) (Do g), then R(6y(z)) is holomorphic on D and

arote = (5 (5 ) 7)) 6ot

3=00(2)
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therefore we denote the operator 5(% also by ¢ below. Let

(m,n) a, ... G :i
M am (zm7‘” %) o [ 9(s)ds,
L
where z € §,
_ _ ,(m;n) ai, ap _
9=9(s) = 9(z5) = g, (zm’ %)SM—
exp(s Log (2)) 'H1F(bj —5) H1F(1 —aj + s)
j= j=
P )
[T TA-b;+s) I T'(a;—s)
j=14+m j=n+1

an empty product is, by definition, equal to 1, 0 < m < ¢, 0 < n < p; the

parameters a; € C, j=1,...,p,and by € C, k=1, ..., g, are chosen such that,
if P.(g) is the set of all the poles of I'(by — s) with k =1, ..., m, and P;(g) is the
set of all the poles of I'(1 — a; + s) with j = 1, ..., n, then P(g9) N P.(g9) = @.

There are 3 possibilities to choose the curve L.

(A) First, the curve L = Ly may be chosen to pass from —ioo to +ico in such
a way that the set P,.(g) lies to the right of it and the set P;(g) lies to the left of
it. The integral (1) is convergent in either of the following two cases:

(A1) |arg(2)] < (m +n — p/2 — q/2):

(A2) |arg(z)| < (m+mn—p/2—q/2)m and (p — q)/2 + Re (A*(g)) < —1, where

CLj.

p
=1

A*(g) = Z by, —
k=1

J

(B) Second, the curve L = L; may be chosen to pass from +ico to +ioco, in such
a way that the set P.(g) lies to the right of it and the set P;(g) lies to the left of
it. The integral (1) is convergent in each of the following three cases:

(B1) p <g;

(B2)1<p<gand|z] <1;

(B3)1<p<gq,lz| <1and Re(A*(g)) < —1.

(C) Third, the curve L = Ly may be chosen to pass from —oco to —oo, in such
a way that the set P,.(g) lies to the right of it and the set P;(g) lies to the left of
it. The integral (1) is convergent in each of the following 3 cases:

(C1) g < p;

(C2)1<qg<pand|z| > 1;

(C3)1<q<p,lz] >1and Re(A*(g)) < —1.
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If both conditions (A) and (B) are satisfied, then each of these conditions leads
to the same result. If both conditions (A) and (C) are satisfied, then each of these
conditions leads to the same result.

Let G be the integral (1) with L = Ly, where k = 1,2, and let Sy be the set
of all the unremovable singularities of g encircled by L. If one of conditions (B)
holds for & =1 or one of conditions (C) holds for & = 2, then

(2) G = (-1)* > Res(g;5)

seSk

Remark 1.1. In each of the three cases (A), (B) and (C) the curve of integration
L is chosen in such a way that the set P,.(g) lies to the right of it and the set P;(g)
lies to the left of it.

The proof of the all these assertions may be found in [52].

I shall work with the sets Q" = {2z € F:|2| > 1, Q¥ = {2 € §:|2| > 1}, and also
with QN = {2 € §:|2| < 1}, Q") = {2z € §:|2| < 1}.

Clearly, Log (0%(z)) = Log (z) — ki, if z € § and k € Z.

Let A € N, 1 <A, 6 =1/A1 =1,2,d; = A+ (=1, v = dy/ds. To
introduce the first of my auxiliary function fi(z,v), I use the set Q") T shall
prove that fi(z,v) € Q[fy(z)] for each v € N; therefore using the principle of
analytic continuation we may regard it as being defined in §, and, consequently, in
the set Q. Let

1,2 —dvv, —dyv, 1+dsv, 1+dov
A =G (o g R R ) <

Y

(1/(2ri) / o8 (s)ds,
Ly
where v € N,
2 (s) = exp(s Log (61(2))T(—s)T'(1 + 5) ' x
(C(1+ div + )/ (T(1 = v + 5)T(1 + dav — 5))) 7,

and the curve L; passes from 400 to +o0 encircling N—1 in the negative direction,
but no point in —N. Here p=q¢ =4, m =1, n =2,

(4) p=q=4, a1 =ay=—div,a3 =a4 =1+ dav, by =
b2:0,b3:b4:V,A*:_2V_2

and, since we take |z| < 1, convergence conditions (B2) and (B3) hold. To compute
the function f1(z,v), we use formula (2) and the well-known formula

I
(5) [(s) =T(s+1) Hs—H—
k=1
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with [ € N. The set of unremovable singular points of the function gflvlf)(s), which
are encircled by the curve L, consists of the points s = v, ..., dyv, all these points
are poles of the first order, and, for k =0, ..., vA, the following equality holds:

—Res (g4137s v+ k) = (80(2))" (v + B)D (A + k)2 () (VA = k)) 2 =

= (60(2))"** ((dav)l/ (w2} (kA ) (AN ’f)

The function fi(z,v) is equal to a finite sum

Av 9 9
©) A= <<d1v>!/(Av>!)290(z>”Z(e()(z))‘”’(VkA ) (AH k) -

div
k=0 1

Therefore, as it has been already remarked, using the principle of analytic contin-
uation we may regard it as being defined in § D Q”.
Now, let me introduce my other auxiliary functions defined for z € Q. Let

(7) folzv) = (—(~1)"/(2mi)) / 922 (s)ds =

Lo

1w (3,2) —dvv, —dyv, 1+dsv, 1+ dov
=06 (| T T T R

where z € Q", v € N,

3,2 3,2
97 = g3 (s) = exp(s Log (61(2)) %

(T(=8))*T(v — ) T(1 —v +8) " 'T(1 + div + 5)*T'(1 + dov — 5) 2

and the curve Ly passes from —oo to —oo, encircling —N in the positive direction but
no point in N—1. Here m = 2, n = 2, and (4) holds; since now |z| > 1, convergence
conditions (C2) and (C3) are satisfied. To compute the function f3(z,v), we use
formula (2). The set of all the unremovable singular points of the function gff) (s),
encircled by the curve Lo, consists of the points s = —1 — dyv — k with k € N — 1;
each of these points is a pole of the first order. Therefore making use of (2) one
obtains

Res (9471 =1 — duwv — k) = (=0p(2)) =" Fx
(div + E)D2((Av + k)2 (=D)2 RN 72 (1 + 2Av + E)) 72 =

Av—v 2
1 (1+Av—v+k-j)
(_1)1+u(00(2))—(1+d1u+k) j=1

Av
[TA+Av+k+7)
3=0
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Av—v
oo I[I A+Av—v+k—))
(8) falz,v) =Dz vtk FlAV
k=0 [TA+Av+k+j)
7=0

Let ae N—1,b € N+a,
and

bl : b
(9)  R(a;bst) = b—a) ( H (t— K)) H ——, Ro(t;v) = R(v; Avs t).

r=a-+1 =0 t TR

Let t =1+ Av + k with £ € N — 1; in view of (8), it follows that

(10) Pl ) (o)) = S Roftw)e b,
t=Av+1
Since Ro(t;v) =0fort =v+1, ..., Av, we have
(11) Pz ) (A (di)))? = Y Ro(t;w)?2 4.
t=v—+1
Let
1
(12) fazs) = 51 [ ol (5)ds =
Lo

(4,2) —div, —div, 1+dsv, 1+ dov
G4’4 & 0 0 v v ’

where z € Q", v € N,

4,2 4,2
gii’ = 95i” () =

exp(s(Log (2))T'(=5)*T'(v — 8)°T(1 + dyv + 5)* (1 + dov — s) 2.

Here m = 4, n = 2, and (4) holds; convergence conditions (C2) and (C3) are
satisfied, since now |z| > 1. The set of all the unremovable singular points of the

function g( . )(s), encircled by Lo, consists of s = —1 — djv — k with k € N — 1;
each of these s is a pole of the second order. Therefore

Res ( fl ), —div—1—k) = lim (5/68)((s+d1y+1+k)2 (4, 2))’

s——div—1—k

where k € N — 1.
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Let s = —dyv—1—k+wu and
Hi(u) = g (~div —1—k+u) =
exp((—=div —1 — k4 u)Log (2)) T(div + 1+ k — u)?x
D(Av+1+k—u)’T(—k +u)’ T2+ 2Av + k —u)"? =
(m/ si1r1(7ru))2 exp((—=div — 1 —k+u)Log (2)) T(div 4+ 14k — u)?x
DAV +14+k—u)?TA+k—u)?T2+2Av+k —u) % =
(m/ sin(mu))* H* (u),
where
H*(u) = exp((—dv — 1 — k4+u)Log (2)) T(div + 1 + k — u)?x
DAV +14+k—u)’T(1+k—u)’T2+2Av +k —u)"? =
exp((v — T) Log (2)) T(T — v)*x
D(T)’I(T — Av) ’T(1+ Av+T)72 =
exp((v — T') Log (2)) Ro (T3 v)*((Av)!/ (div)) 7

and T = Av + 1 + k — u. Since (ru/(sin(mu))? is an even function, it follows that

(A)!/(div))? Res (9557 —1 — dav — k) =

(exp((v — T') Log (2))(Ro(T’; ) Log z — (8/9T)(Ro(T; v)*))

T=14+Av+k

(Bo(2)" "t Ro(T;v)? Log z — 60(2)"~4(0/0T)(Ro(T; v)?)

Y

T=1+Av+k

where t = 1 + Av + k. Thus, in view of (10),
f3(z,v) = fao(z,v) Log z — ((Av)!/(dyv)!) Z 00(2) 1T (8/0t)(Ro(t; v)?);
t=Av+1

since Ro(t;v)? has zeros of the second order in the points t = v+ 1, ..., Ay, it
follows that

fa(z,v) = fa(z,v) Log z — ((Av)!/(d1v)!) Z 0o(2) "7 (8/0t)(Ro(t; v)?).

t=14+v
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Let

(13) fa(z,v) = —((Av)!/(d1v)!) Z 00(2) 1TV (0/0t) Ro(t; v)?;
t=14+v

then

(14) f3(z,v) = fa(z,v) Log z + fa(z,v).

Let

(15) £ (zv) = (WA (wd)) fi(z,0),  §=1,2,3.

Expanding function Ry(¢;v)? into partial fractions, we obtain

vA vA
V=D on (k)T B+ k)T
k=0 k=0

with
. vA\? (VA + k>
(16) al/,k_(k) (VA—I/)7
(17) By = lim 0/0t(Ro(t;v)?(t + k)?) =
Av+k Av—k
200, <— Z K~ Z R Zm_l) ,
r=v+k+1
where kK =0, ..., Av. Let
Av
(18) o (wiv) =w Yok,
k=0
Av
(19) B (wiv) = (w)" ) By,
k=0
vA v+k
(20) p(w;v) = (w)"* " ag (172 4 )t

k=0

~+

=1
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vA v+k
(21) b(w;v) = (w) T (g (2672 + Bt 72),
k=0 t=1
+00
(22) Ln(w) =Y w't™™,
t=1

Since Res j—o0 (Ro(t;v)?;t) = 0, it follows that 3*(1;v) = 0 and
(23) B (w;v) = (1 —w) " (w; v)

with **(w;v) € Qw] for v € N. It follows from (6), (11), (13), and (16) — (23)
that f;(,) = a* (6o(2); ),

“+o0
(24) f3(zv) = (00(2))" D (6o(2)) " Rolt;v)* =
t=1+v
+o0 vA
= (00(2))" Y (Bo(2)~" Y ajult + k) 7>+
t=1+4v k=0
+o0 vA

k=0 t=14+v+k
a(00(2); ) L2((00(2)) 1)+
B7(00(2); v)L(—1og(1 = 1/(00(2)))) — ¢ (6o(2)); v) =
o (0o(2); ) L2((00(2)) 1)+
B (00(2); ¥)(1 = bo(2)) (= log(1 — 1/(60(2)))) — ¢ ((6o(2)); v),

+ o0
0

(25) filzv)=(2)" ) _ (6o(2)) o Ritiv)? =

t=1+v
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+o0 vA
(00(2)" > (60(2))™" Y205, (t+ k)~
t=1+v k=0
+oo Av
(00(2))" D (Bo(2)™" Y Brp(t+k) > =
VAt:l—i—ll k:-poo
(00(2)) Z2a§’k(90(z))k Z (00(2)) "3 +
k=0 t=1+v+k
vA +o0
(60(2)" Y Bir(Bo(2)F Y (Bo(2)) 72 =
k=0 t=14v+k

207 ((00(2)); ) L3 ((00(2) ) + 87 ((B0(2)); v) La((00(2)) ™) — 9" ((00(2));v) =
20 ((00(2)); V) Ls((B0(2)) ")+
B ((00(2)); v)(1 = (B0 (2)) L2((00(2)) 1) — ¥" ((Bo(2)); v)-

§2. General properties of Mejer’s functions
and its application to my auxiliary functions.

Let the operator \/p.;, with k=1, ..., ¢ (respectively /4, with j =1,...,p)
when acting on the function g replaces parameter by by by +1 (respectively replaces
parametr a; by a; + 1), and let 0 denotes the operator 6y(2)0/0z. It is clear that

(26) Pr(Vb;kg) - Pr(g)

for k=1, ..., ¢, and

(27) P((Vai5) " '9) € Pig)
for j =1, ..., p. In view (26) and (27),
(28) VoG = (1/(278)) [ (Voskg)(s)ds,

S—

where K =1,...,q, and

(29) (Va;j)_lG 1/ 27” / Vaj g dS,
L

where j = 1,... ,p, assuming that one of the conditions (A), (B), (C) of the absolute

convergence of the integral (28) (respectively (29)) is satisfied; here L is taken to
be the same as in (1).
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Lemma 2.1 Let g = g(s) = g(z,s) be the integrand in (1). Let 1(k) = —1 for
anyk=1,... ,m, and let e1(k) = 1 for any k = m+1, ..., q. Let further e5(j) =1
for j =1, ...,n, and let e2(j) = —1, for j =n+1, ..., p. In the case, when one
of the conditions (A), (B), (C) of the absolute convergence of the integral in the
equality (28) (respectively (29)) holds, the corresponding condition (A), (B), (C)
holds also for the integral (1). If one of the conditions (B1), (B2), (C1), (C2) is
fulfilled for the integral (1), then the corresponding condition is fulfilled for each of
the integrals (28), (29). Moreover, e1(k) Vb G = (6 — by)G where k =1, ..., q,
andes(j)(Vaj) TG = (6 +1—a;)G were j =1, ..., p.

Proof may be found in [53], section 1, Lemma 2.1.1. A

Corollary. If one of conditions, (B1), (B2), (C1), (C2) is satisfied, then the
function G given by the integral (1) is holomorphic in the corresponding domain
and, for each d € N, the equalities

k=0

(Vo) 'G = (e1 (k)" (1:[(5 — by — H)) G,

where k =1,...,q, and

k=0

d—1
(Va;j)_dG = (52(j>)d (H((S — ay +1+ "i)> G7

where j =1, ..., p, hold true.

Proof may be found in [53], section 1, Corollary to the Lemma 2.1.1. B

Let <7 denotes the operator replacing each of by, with k =1,...,q, by by +1 and
each of aj, with j =1,... ,p, by aj+1. For each A C C and each c € C, we denote
the set {c+a:a € A} by A+ c. Clearly,

(30) P.(9) # Pr(vg) = Pr(9) +1 C P(9),
as in (26). But
(31) Pi(g) C Pi(g9) + 1= P(vg) # Pi(g),

as in (27).The first inequality in (30) holds because the set P.(g) includes some
(possibly not unique) B with the smallest real part; then 8 ¢ P.(g) + 1. The last
inequality in (31) holds because the set Pi(g)+1 includes some (possibly not unique)
number o with the biggest real part; then o ¢ Py(g). Nevertheless, we have the
equalities (Pi(g) + 1) N (Pr(g9) + 1) = Pi(9) ( P-(g9) = 0. Therefore for the same L,
as in (1), we let

(32) (VG)(2) = (1/(2mi)) / (V9)(2, s)ds,

L+1
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assuming that one of the conditions (A), (B), (C) of the absolute convergence of
the integral (32) is satisfied.

Lemma 2.2 If one of the conditions (B1), (B2), (C1), (C2) is fulfilled for the
integral (1), then the corresponding condition of the absolute convergence of the
integral (32) holds also, and (\7G)(z) = 0(2)G(z).

Proof may be found in [53], section 1, Lemma 2.1.2. W

Remark 2.1. In view of (37), P/(g) + 1 lies to the left of the contour of
integration L and one of the conditions (B1), (B2), (C1), (C2) is satisfied, then

(VO)(2) = (1/(2r1)) /
L

This remark is important since the location of the curve L must be taken into
account. We shall make use of this remark when we apply both Lemma 2.1 and
Lemma 2.2 simultaneously.

Lemma 2.3 If the conditions mentioned in Remark 2.1 are satisfied, then

(~1)™ P (z) [ [ [J6+1-ap) | G (z)z((H(é—bk)> G) ().

j=1 k=1

Proof may be found in [53], section 1, Lemma 2.1.3. A

Lemma 2.4. Let H stand for either C or §, let D be a domain in H, and let a
function f(z) is holomorphic in D. Let n,(z) = az, where {a,z} C H, and a # 0
in the case H = C. Then

(0(f 0 na))(2) = ((6f) 0 71a)(2)

for z € a=1D and the function 6(f on,) (and therefore (5f) ong) is holomorphic
in the domain a=1D.

Proof may be found in [53], section 1, Lemma 2.1.4. A

Corollary 1. Let Q be a domain in H, and let a € C\O0, if H = C. If the
function f(z) is holomorphic in the domain 1,2 = {az: z € Q}, then

0(f ona))(2) = ((6f) 0 1a)(2)

and the function 6(f ony) (and therefore (3 f) on,) is holomorphic in Q.

Proof. The assertion follows from Lemma 2.4 with D = n,. B

Corollary 2. Let  be a domain in §. If the function f(z) is holomorphic in
the domain 01(Q2) = {01(2): z € Q}, then

(0(f 0 61))(2) = ((6f) 0 b1)(2)
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and the function 6(f o 01) (and therefore (0f) o 01) is holomorphic in .

Proof. The assertion follows from Corollary 1 on taking a = (1, —7). R

Let as before G = G(z) denotes the integral (1). It has been proved in [52], that
the function G(z) is holomorphic in 2 = §, if one of the conditions (B1) or (C1)
is satisfied, that it is holomorphic in the domains Q = Q"V) if condition (B2) is
satisfied, and that it is holomorphic in the domains Q = QV if condition (C2) is
satisfied. In each of these cases, 1,(2) = Q,if a € SOy ={a € F:|a|] = 1.}

Lemma 2.5. Let one of the conditions (B1), (C1), (B2), (C2) holds, and let
d € N. Then

d—1
(Vo) (G 0 01) = (e1(K))* (H(5 — bi, — H)) (G obh),
where k =1, ..., q,
d—1
(Vaig) "4 (G o b1) = (e2(5))" (H(5 —a;+1+ Fv‘)) (Gob1),

where 5 =1, ..., p, and (7(G 0 01))(z) = 00(01(2))(G 0 01)(z). If the conditions of
Remark 2.1. are satisfied, then

(=)™ o (2) ((H(5 +1- aj)) (Go 91)) (2) =

J=1

<<H<6 - bk>> <Go01>> (2)-
k=1

Proof. may be found in [53], section 1, Lemma 2.1.5 and its Corollary. B
Corollary. Let d € N, and one of the conditions (B1), (C1), (B2) and (C2) is
satisfied. Then

d—1
(Vo) (G 0 61) = (e1 (k)" (H(5 — by, — /4)) (G ob),

k=0

where k =1, ..., q,

d—1
(Vi) "G 0 61) = (e2(5))° (H(5 —ajt1+ fi)) (Gob1),

k=0

where j =1, ..., p, and

(V(G061))(2) = =00(2)(G 0 01)(2).
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Moreover, if the conditions of Remark 2.1 are satisfied, then

(=)™ PTGy (2) ((H(5 +1- aj)) (Go (91)“)> (2) =

j=1

<<H<6 - b@) (Go (eo“)) (2),
k=1
where p € N — 1.

Proof. For the proof it suffices to let a = (1, —7). B
I wish to apply the Lemmata 2.1 - 2.5 and their Corollaries to my auxil-

liary functions. In view of (4), (7) and (12), Pl(gffz n)) +1C -N+1-—-dv

and P, (gffz n)) C N—1 for (m,n) = (1,2), (3,2), (4,2); consequently, the condition
of Remark 2.1 is satisfied. Therefore it follows from the Corollary to Lemma 2.5
that

(33) (D)™ 00 (2) (0 + 1+ diw)*(0 — dav)? i) (2,v) =

(6%(6 = v)* fi) (2, v)

for 2 € Q) (m,n, u) = (1,2,1),ifk = 1, for 2 € QV, (m,n, p) = (3,2,1), ifk = 2,
and for z € QY (m,n, n) = (4,2,0), 1fk'—3

Let
(m n) u —dvv, —div, 1+dsv, 1+ dov
(0 I S RN
with z € QUY) | (m,n,p) = (1 2,1)if k =1, with 2 € QY, (m,n,u) = (3,2,1)
if k=2, and with z € QV, (m,n, n) = (4,2,0) if £ = 3, and let
2 4
(H Vs k) [[@a)™ ) [ [[(Va)® | G
Jj=1 j=3

According to the Corollary of the Lemma 2.1,

4 ds—1

(35) (H(vw) ) Gy = (—1)**" (H (6 — (v +1)da + @2) G
=3 k=0

and

(36) <H v k) (f[ Vaii) dl) G =

Jj=1
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di—1
(=1)m/2)(§ — v)? ( [JO+1+diwv+ @2) G,

k=0

where, as before, m = 1,3, 4. In view of (4) — (12), (34) — (36),

da
(37) ((H(5—dgu—m)2> fk> (z,v+1) =

k=1

dq
<(5 —v)? (H(5 +div+ /1)2) fk> (z,v),

k=1

where k& = 1,2,3. The equalities (33) and (37) for & = 1 hold in Q*V); how-
ever, since f1(z,v) is a polinomial, it follows that these relations hold in § D QV,
according to the principle of analytical continuation.

Let f(z;v) stand for one of the functions fi(z;v), & = 1,2,3. Then it follows
from (33) and (37) that

(38) (6 +1+dv)%(6 — dov)? f)(z,v) = (6%(6 — v)2f)(z,v)
and
do
(39) ((H(a—dgy—/&) f) (z,v+1) =
dy
(((5 —)? [+ div+ @2)) f) (z,v).
Let
(40) D™0y(2), v, w) = 0(2)(w + 1 + div)?*(w — dav)*—

w?(w —v)?, § = 00(2)(0/02),

where w is an independent variable. Then relation (38) may by rewritten as follows:
(41) D" (8(2), v, 8)f = 0.

In view of (15), the functions f = f(z,v) with j = 1,2, 3, satisfy equation (41).
It follows from (15) that

(42) fi(z,v) = ((dui)l/ (Av))? f (z,v),
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where j =1, 2, 3. Let us substitute (42) in (39); this gives

da
(v +1)d)! /(v + DA <<H(5 — dyy — n)2> f;) (zv+1) =

k=1

dy
(di)!/(A))2(6 — 1)? ((H (6+ dyv + @2) f;> (2.v),

k=1

where j =1, 2, 3. It follows from the last equation that

A—1 dso
(43) (H (A -1+ n)2> ((H(é — dov — ,@)2> f;) (z,v+1) =

r=1 k=1

A d1
(H (Av + k) ) (((5—y)2 H(5+d1y+,@)2> f;) (z,v),

k=1

where j = 1,2, 3. Let v~! be an independent variable taking its values in C
including 0; let 7 = 0, 1,

D (6o(2), vt w) = v Dby (2),v + i, vw) =

bxo(eo(z), v hw® 4+ .+ bx3(90(2), v Hw? + (00(2) — 1w

(44) Pr=Pv 1w =

A A—1+4217 )
w—1)% 21<H —i+k:1/_1)2> [T (w+ (1) (disi + k1)) =

k=1

pi,O(V_ )’LU 4+ ... +pi72A+2i(y—1)w2A+21 € Z[V_l,QU],
and set P (w) = P;(0,w). Then

D (00(2), v~ w) € QU0 (2), v~ 1], D (0(2), 0, w) = D (Bo(2), 0, w).
It follows from (41) and (42) that
(45) Di(0o(2),v v ) fi(z,v +i) =0
forveN, z2e€ QY k=1, 2, 3; furthermore, it follows from (43) that

(46) (Py (v vl o) fi) (2w + 1) = (Py (v, v 6) i) (=, v)
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forv eN,ze QV, k=1,2 3 Let k =1,2,3, and X(z,v) denotes the column
consisting of the elements ((v=18)7 ! fF)(z,v), where j = 1, ..., 4. Let i = 0,1,
and let B;(0p(z),v™1) = (ax;) be a 4 X 4-matrix defined as follows:

as; = b/; 1(00(2),v™")/(1 = 0o(2))

forj=1,...,4,
a1z = a3 = azq = 1,

and each of the other entries ay; is equal to 0.
Following the well known procedure of representation of a differential equation
in matrix form, we deduce from (45) that

(47) (v 1) Xp(z,v +14) = Bi(6p(2), v ) Xp(z,v +19)
fori = 0,1,k = 1,2,3,v € N, and 2z € QY. In view of (44), the operator v~14
commutes with the operator P;(v~!,v71§) for i = 0, 1. Therefore it follows from
the relation (46) that
(48) Pr(v Y v 1) X (z, v+ 1) = Pr (v h v 1) Xp(2,v)
fori=1,2,k=1,2,3, veN, and z € QV.

Let Mat,,(K), where n € N, denotes the set of all the n x n-matrices with entries
in the subset K of a given ring. Let
(19) P w) = By (v w), Qv w) = P (v w).
Relation (48) may be rewritten as follows:
(50) Q (v v ) Xp(z, v+ 1) = P*(v 1 v 10) Xi(z,v).
Let further
(51) D~ (0o(z),w) = D§(0o(2),0,w) = DY (00(2),0,w) =

0o (2)(w + d1)*(w — dg)? — w?(w — 1)?,

(52) P~ (w) = P*(0,w) = A*2(w — 1)%(w + dy )%,
(53) Q™ (w) = Q*(0,w) = (d1)*" (w — d2)*®,
and

(54) B™(00(2)) = Bo(6o(2),0) = B1(0o(2),0).
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Regarded as a polinomial of w, the polynomial

DY (60(2), w) = (1/(60(2) — 1)) D™ (6o (2) =) b (Bo(2)w

k=1

coincides with the characteristic polynomial of the matrix B~ (6y(z)), so that
—1

HO(Z) —1

It follows that (B~ (00(2)) — d2E)~1 € Mat4(Q[fy(2)]); moreover, the last column
of this matrix consists of the elements of the ideal (6y(z)] —1)Q[0v(z)]] in Q[Oy(2)].
Let

(55)  det(B™(0o(2)) — d2E) = DY (6o(2), d2) = (A(A +1))%

K = (60(2)] = 1) Q[0o(2)] N Q[(B0(2) — 1)7 1],
Ky, = (6o(2) =1)7™Q[fo(2), v 1N Q[(Bo(2) — 1)~ w71,
where m € N — 1. Clearly, Ko = Q, K = Q[v~!] and

B;i(00(2),v™") — B~ (00(2)) € v~ ' Maty(K?)

fori=0,1.
Lemma 2.6. Leti=0,1 and m € N. Let

HPoy € Maty(Km—1), Hf

7 2,

m_1 € Maty(K}, 1), Hipm—1=Hp, | +v "H}

7 i,m—1
bim € C,cim € C.
Then for i = 0,1 there exists H}, (6o(z),v~") € Mats(K},) such that

(V_l(S + bi,m + Ci,mV_l)Hi,m—le(Za v+ Z) =

(Hgm—l(BN(eo(z)) + bz,mE> + V_lHZm(GO(z), ]/_1)>)(k(z7 v+ 2)7

where k =1,2,3, veN, z € QY.

Proof. may be found in [53], section 2, Lemma 2.4.1. B

Corollary. Letm € N, i =0,1,s =1,..., m, b;s € Q and ¢; s € C. Then
For each i = 0,1 there exist H;,, € Maty(KZ,)), which depend, of course, from the
numbers b; 1, ..., bim, Ci1, ..., Cim, such that

m

(H(V_15 + bimy1—s + V_lci,m+1—s))Xk<Z7 v+i)=

s=1

_1H* + H BN zm+1—sE))Xk(Z7y+i)’
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where E is unit matrix of fourth order and k = 1,2, 3.
Proof. may be found in [53], section 2, Corollary to the Lemma 2.4.1.1
Lemma 2.7. Let i = 0,1, 2; = Mats(K55_ 5;)-
Then there exists a matriz U;(0y(2),v=1) € 20; such that

(56) (Uo(0o(2),v") — P~ (B~ (00(2))) € v~ ' 2o,

(57) Ur(6o(2),v™1) = Q™ (B™(2)) € v~ 20,

(58) P*(7 1 k7)) Xk (2, k) = Ug(2, k1 Xp(2, ),

and

(59) Q (kL k) X2,k 4+ 1) = Ui (8p(2), i H Xp(2, 5 + 1)

fork=1,2,3, k € N.

Proof may be found in [53], section 2, Lemma 2.4.2. R

Remark 2.2. Of course, the assertions of the Lemmata 2.6 and 2.7 are almost
obvious because v~1§ maps the ring Q[(3 — 1)~%, v~}

(respectively Q[3, v~ 1]-module (3 — 1)"™Q[3, v 1))

into its ideal v1Q[(3 — 1)t v}

(respectively Q[3, v 1]-module v1(3 — 1)"™"1Q[3,»~!]) and

v G-1)"" QG D -1 TMQG, vy x v - 1) 70, v,
where 3 = 0p(2).

In view of the relation (55) and the argument preceding Lemma 2.6, it follows
from the relation (53), that

det(Q™(B™(2)) = ((=1/(0o(2) = D)(A(A +1))*)*® (d1)*™,

that Q~((B~(3))~!) € Mat4(Q[3]), that each of the elements of the last column of
that matrix lies in the ideal (3 — 1)QJ[3] of the ring Q]3], and that

(60) A™(3) = (Q™(B™(3))) P~ (B~ (3)) € Mat4(Q[3,1/(3 — 1)),
where 3 = 6y(z). Let
(61) A(bo(z),v") = (Ui(00(2), v~ 1)) "' Uo(z,v71).

Clearly, A(0o(2),v™ 1) € Mat4(Q(3,v71)), where 3 = 0(2).
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Let k be a field and k be its algebraic closure, R(x) € k(z), where

z1
T = ,
Tn
and 1, ..., x, are independed variables. Then R(z) is said to be well defined in

a point a € k" if R(z) = P(x)/Q(z) with {P(x), Q(x)} C k[z], Q(a) # 0. Let
further No(e) = {v=! € C: [v7!| < e}, where ¢ > 0. If F is a compact in §, we
denote by $(F, ¢) the set of all the functions f(6y(2),v~ 1) € Q(Ay(2), v~ !) induced
by all the elements f(3,v7 1)) € Q3,77 1)), well defined in the point (0y(z), 1)
for any (z,v71) € F x My(e), and let H(F) be the set of all the

(fobo)(z) = f(Bo(2)) € QOo(2)),

induced by all the f(3) € Q(3), well defined in the point 0y(z) for any z € F.

Lemma 2.8. Let F be a compact in \{z € F:z = (1,2nk) ,k € Z}. There
exists an g9 = eo(F) € (0,1) such that A(0y(2),v™1) € Mat 4(9(F, &9)); moreover,
the equality A(6y(2),0) = A~ (0p(2)) holds for each z € F.

Proof. may be found in [53], section 2, Lemma 2.4.3. B

It follows from the relations (50), (58) — (60) and Lemma 2.8 that the following
equality

(62) Xp(z,v+1) = A(0o(2), v H Xi(z,v),

where k = 1,2,3, 2 € F, v € N+ [1/eo(F)], holds for any compact F in Q. In
what follows AP stands for the set of all maps from an non-empty set B to an
non-empty set A.

Lemma 2.9. As above, let F' be a compact subset in § (in particular, F' may
be an one-point set). Forn € N, z € F, v € N+ [1/¢g¢], let

(63) A(Bo(2),v™Y) € Mat ,(H(F, &0))

and let the sequence X, € (CF)" satisfy the following relation

(64) Xor1(2) = Az, v ) X0 (2).

Moreover, suppose that, for each z € F', the polynomial

(65) Do) (M) = det(AE — A(8u(2),0))

has only simple roots, that none of the elements of the first row of the matriz

(66) C = C(fy(2)) € Mat ,,(CF)
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vanishes, that det(C(0y(z))) # 0, and that the matrix

(C(00(2)) ™" A(0o(2), 0)C(0o(2))

1s diagonal.
Then there is eo € (0,e9) such that, for any z € F,v € N+ [1/es], the first
element x,(z) of the column X, (z) satisfies the equation

(67) xl/-l-n + Z qj 90 xu-l—]( ) - 07
moreover,

(68) 4 (60(z),v™") € H(F,e2),
forj3=0,...,n—1, and

(69) Doy () (N = A"+ D qf(Bo(2), 0N

coincides with the polynomial (65).

Proof. may be found in [53], section 2, Lemma 2.4.4. B

Lemma 2.10. Let us consider a compact F in § (in particular, F' may be an
one-point set). Forn € N and v € N, let X, (2) € (C)". As above, let H(F,¢)
denotes the set of all the functions f(0o(2),v™1) € Q(0y(2),v™1) induceded by all
the elements f( 1) € QG,v 1Y), which are well defined in the point (6o(2),v 1)
Jor any (z,v71) € F x Ny(e), and let $Ho(F) denotes the set of all the functions

(fobo)(z) = f(Bo(2)) € Q(Oo(2))

induced by all the f(3) € Q(3) well defined in the point 6y(z) for any z € F.
Let further b3 (0o(2)) € $H0(F) for j =0, ..., n, and let by (00(2)) = 1. Let

(70) A(O(2),v™1) € Mat ,(H(F, <p)).

Suppose that, for each z € F, all the roots of the polynomial

n—1

(71) D™(60(2),A) = A" + > b;(0o(2))N

=0

( k) be an m X n - matriz defined as follows:

are simple. Let B~ (0y(z)) =
Il =1,...,n5fn > 1, then by = 0,7 =1, ....n — 1,

let bnl = _bl—1<90< ))7
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and the (n — 1) x (n — 1) - submatriz of the matrix B~ (0y(z)) formed by its
first n — 1 rows and its last n — 1 columns is the unit matriz. We suppose
that P~ (0p(2),\) € $o(F)[A], Q~(00(2),\) € $Ho(F)[A]), and suppose that, for
any z € F, the polynomial Q™ (00(z), ) does not vanish on the set of all the roots
of the polynomial D™~ (0y(2), \) and that, on the latter set, the map

(72) A — P™(00(2), \)/Q7 (60(2), A)

is injective. Let finally

(73) Q™ (0o(2), B~ (0o(2)))A(bo(2),0) = P~ (0o(2), B~ (00(2)))
for z € F.

Then, for every z €, F all the roots of the polynomial (65) are simple, and there
exists a matriz C = C(0y(z)) € Mat ,(CF) satisfying the following conditions:

1) for every z € F, the matriz (C(0y(2)))"tA(0y(2),0)C(z) is diagonal;

2) for every z € F, no element in the first row of the the matriz C(6y(z)) is
equal to zero.

Proof. may be found in [53], section 2, Lemma 2.4.5. B

The substitution

(74) w = (dan+di)/(n—1)
transforms the polynomials (51) — (53), and the rational function
P~ (w)/Q™ (w)

respectively in

(75) D~ (6p(2),w) = —(n—1)"*A%(A +1)?x
((n+1)%(n+7)% = 22(1+ 7)%00(2)n%),

(76) P~ (w) = P (n) = A*®2(2A0)* " (n + 1)*(n — 1) 724

(77) Q™ (w) = QY (n) = (n — 1) 7% (d1)*" (24)*%,

and

(78) P™(w)/Q™(w) = h™(n) = P (n)/Q7T(n) =

(n = 1)*(1 = 80) 2" (n + 1)%27 4,

where 69 = 1/A, v1 = (1 —d¢9) /(1 + dp). Let

(79) D™Bo(2),m) = (n+1)*(n+71)* = 2°(1 +71)*fo(2)”

The substitution (74) and the inverse substitution n = (d1 +w)/(w — d2) relate the
roots w of the polynomial D~ (0o(z),w) with the roots n of the D™(0y(z),n). To be
able to make use of Lemmata 2.9 and 2.10, it is necessary to study the roots of the
polynomial (79).



ON THE MEASURE OF NONDISCRETENESS OF SOME MODULES. 23

§3. Properties of the roots of the polymomial D" (3,7).
Let

(80) R=r'2 ¢ =¢/2+m,

where 1 < r, ¢ € R. If ¢ € (—27,0], then ¢ € (0, 7], and ¢ — 7 € (—m,0].
Hence, z = (R?, 2(¢) — 7)), where 1 < R, v € R. Let further

(81) DYY(R,¥,n) = (n+ 1)(n+ 1) + 2(1 + 71)Rexp(iy))n,

where 1 < R, 1 € R. Then, in view of (79),

(82) DMBo(2),m) = [ PV (R, ¢ — km,m)

k=0

The properties of the roots ng) (r, 1, 0¢), N1 (r, 1, d) of the trinomial

(83) DYY(R,4,n) = (n+ 1)(n+ 1) + 2(1 + 71)r exp(iy))n,

are studied in [54] and [61], and we use the notations and results of those papers.
Lemma 3.1 Ifr = 1,¢ = —7 + 2lw/myg, where

moy = 2, ceey 150, [l = 1, ceey Mo — 1],
then
(84) ‘hN(n(/)\(nw?éO))‘ > ‘hN(n{\(nw?éO))‘

Proof. See [61], Lemma 4.9, its Corollary and Remark to this Corollary.

Lemma 3.2 Let r = 1, 69 > 0. Then h™(n{(r,, o)) decreases with increasing
of Y € (0,m).

Proof. See [61], Corollary of the Lemma 4.20.

Lemma 3.3 Let

r = 17 (50 Z 0, S :Cos(w/2)7 |¢| <

Then h™ (n7(r,1,00)) decreases with increasing of s € (dp/4,1).
Proof. See [61], Lemma 4.21.
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84. The case ¢ = —
If ¢ = —m, then in view of (80),

(85) ¥ =0/2+ 1 =pi/2,
(86) DMN—=1,m) = [[ DYV (1, 7/2 = k7, ).
k=0

In view of (66) in [61],

(87) Mk ( 7T/2 50) = (17 7T/27 60)7

where g < 1, k = 0, 1, and therefore the roots of DVV(1,—7/2,n) are complex
conjugate to the corresponding roots of DVV(1,7/2 — xkm,n). Consequently,

(88) [P~ (01 (1,7/2,00)) = |h™ (0 (r, =7/2,00))

(89) [P~ (5 (1,7/2,00))| > |h™ (' (r, /2, 60)).
According to the Lemma 3.1 and (88) —(89), if €3 = 2 = 1 then
(90) |2 (g (1, 207/2, 60))| > [h™ (7' (1, €17/2, 60)) .

In accordance with (80), let

(91) Fg' (60(2); 603 1) = Fg' (0o ((r, 6)); 00;m) =

1 1
H H n— b~ (g (r'/?,6/2 + K, 80)).

=0
and D (0(2);00) = D5 (0o((r,9)); dp) be the discriminant relatively to 7 of the
polynomial F§* (6o ((r, )), 051
Lemma 4.1. Let k? =
irreducible over Q(i).

Proof. According to (3.1.6) in [54], let

n)-
k, A = 11. Then trinomial DVV(1,7/2 — km,n) is

2
(92) Do(R, . 60) = R + Rexp(—it) + (%) exp(—2it)

and let Ro(R, ), dp), is defined by means (3.1.15) — (3.1.16) in [54]. Then, according
to (3.1.25) in [54],

(93) M (R, 4, 00) = —(1 + 71) exp(ih) (Ro(R, 1, 1) + (—1)* Ro(R, ¥, 60))
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compose the set of all the roots of the polynomial (83).
Therefore, in view of (3.1.22) in [54], DVV(1,7/2— k7, n) is irreducible over Q(7)
if and only if

(94) Do(1,7/2,00) =1 — <%) +i ¢ {a*:a € Q(3)}

The contrary means that

32A1 — 8A? + 1
Nm (giy)/0(DPo(1, 7/2,80) = (1 = (60/2)*)> +1 = — — a2

with a € Q. Then 32A% — 8A2 + 1 = (4aA)?. If p =19, A = 11, then
2((20)* — (2A)H) +1=2(3* -3%)+1=—7 mod p,

and we have for corresponding Legendre symbol the equalities
ST (2R (8 2
19) \19)\19)

Lemma 4.2. Let €3 = 1,k*> = K, A = 11. Then

h™ (i (1, €0m/2,60)) ¢ R.

Proof. Let
K = @(Z)’ n= 771/9\(17507]'/2760)7L = K(U)

In view (81),
(95) —(nk (1,€0m/2,00) + L)1 (1, €07/2, d0) + 71) X

(2(1 +y1)np (1, 80m/2,80)) " = egi.

Therefore L = K(n) = Q(n). Clearly, L/Q is a normal extension.

Clearly, the map w — w, w € C induces an automorphism of the field L. We
denote this automorphism by oy. Clearly, o1 (n; (1,e07/2,80)) = npp (1, —e07/2, o).
We denote by o2 the authomorphism of the extension L/K, which transforms 7
into v1/n. Then o2(v/n) = n,02(7) = 71/7. Let o be the identity map L — L.
Then a% = 0% = 09, 0102 = 09071, and for o3 = 0102 we have the equality 032) = 0p.
Let Ly is the maximal real subfield in L. Then, clearly, [L : Lo] = 2, [L : Q] = 4
and [Lo : Q] = 2. Therefore Ly is a normal subfield of L, and o9(Lg) = Lo;
if hN(nl/{\(l, 6077'/2, 50)) € Lg, then Jg(l’LN(T]]/{\(l, 6077'/2, 50))) € Ly,
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and, in view of (81), (78),
—(1+ )" Y2 (1 = 6p) 2730 =

(2(1+ 71) (1 + €02)) 2 (=2(1 + 71)e0i) 7> M (1 = §o) ~*h127% =
(DY (1,e0m/2,1))*(DYV (1, e0m/2, —1))*(DVV (1,20m/2,0))*% (1 — 6p) ~*"127%
hN(nk (1,807T/2,(50)>02(hN(77k (1,807‘(’/2,(50))) € Lo..

According to (3.1.43), (3.1.71) in [54] and in view of (90), (87) and Lemma 4.2, the
plynomial F§'(—1;00;7n) has only different from zero and mutually distinct roots,
and therefore D" (—1,7)D0(—1;d0) # 0. Let

O:.={z=(r¢)efdl+e/2<r<l+4e,—m—e<p<—m+e}

where € > 0, and let F. be the closure of the domain O..
Clearly, there exists ¢ € (0,7/m) such that

(96) D" (0o(2),0)Dg (0o (2); do:m) # 0,

for any z € F.; since € < 7, it follows that (1,2k7) & F. for any k € Z.

I wish to apply the Lemma 2.10. On the role of compact F' of this Lemma I
take the set F' = F, which is compact in the set F\{(1,2k~): k € Z}.

The polynomial D™~ (0y(z),w) in (51) is connected with the D" (0y(z),n) from
the equality (79) by means the equality (75) and, according to (74) and (96), has
only simple roots for any z € F;; this polynomial D~ (6y(z),w) will play the role of
the polynomial D™~ (6y(z),A) in (71). The not dependend from z polynomials (52)
and (53) will play the role of the polynomials P~ (0y(z), A) and Q~(0y(2), \) of the
Lemma 2.10. According to (96), the map (72) is injective on the set of all the roots
of the polynomial D™~ (0y(z),A) (i.e. the polynomial (51)). The matrix B~ (6y(2))
from (54) plays now the role of the matrix B~ (0y(z)) of the Lemma 2.10. The
matrix (61) plays now the role of the matrix A(fy(z);v~1) of the Lemma 2.10;
according to (56), (57), the equality A(6y(z),0) = A~ (0y(z)) holds with A~ (6y(2))
from (60) and therefore the condition (73) also is fulfilled. So, all the conditions of
the lemma 2.10 are fulfiiled, and therefore for every z € F' = F, all the roots of the
polynomial (65) are simple, and there exists C = C(fy(z)) € Mat ,,(CF) satisfying
the following conditions:

1) for every z € F, the matrix (C(6g(2))) "1 A(6p(2),0)C(0y(2)) is diagonal;

2) for every z € F, no element in the first row of the the matrix C'(0y(z)) is
equal to zero.

Therefore we can now apply the Lemma 2.9.

As above, the set F. plays the role of te compact F, the matrix (61) will play
the role of the matrix A(6y(z);v 1) in the Lemma 2.9, the column Xy (z;v) in
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the equality (62) with any £ = 1,2,3 and any v € N + [1/go(F)] will play the
role X, (z) from (64). Consequently, according to the assertion of the Lemma 2.9,
there is e = 2(F) € (0,e(a, m)) such that, for any z € F,v € N+ [1/e5(F)] and
any k = 1,2,3, the first komponent f;(z;v) of the column Xj(z;v) satisfies the

equation
3

fizv+4)+> g 0o(2);iv ") fi(ziv +4) =0,
§=0

where ¢} (60(2);v™!) € H(F,e2) for j =0,...,3 moreover the polynomial

3
X4 q (00(2); 00N
j=0

coincides with polynomial (65), the roots of which, in view of (78), coincide with
the roots of the polynomial F§'(0y(z);d0;n) in (91), and this polynomial has only
simple roots.

So, the functions f}(z;v), for any z € F' = F.(a,m) any v € N+ [1/e2(F')] and
any k = 1, 2, 3 satsfies the equation

3
(97) Tora+ Y45 (00(2);v sy =0,
=0

In view of (14), z, = f;(z;v) is the solution of the equation (97).

Clearly, for any j = 0, ..., 3 the rational functions ¢}(fo(z);v") from (97)
admit the representation in the form g% (6o (2); ') = ¢;(fo(2); v 1) /qa(Bo(2);v71),
where g;(09(2); v™1) € Q[ (2); v for j =0,...,4 have no common divisors with
exeption of different from zero constants and q4(6o(z);v 1) is different from zero
for any z € F, v € N+ [1/e5(F')]. Consequently, the equation (97) is equivalent to
the equation

3
(98) 0 (00(2); v asa+ > qi(00(2);v )y =0,
=0

where z € F = F,, v € N+ [1/eo(F)] and z, = f{(z;v), for K = 1,2,4 is solution
for this equation. In view of (18) - (25), the fnctions f;(z;v), for any k = 1,2,4,
and any v € N are regular in the domain |z| > 1 and, because for z, = f/(z;v)
with k =1,2,4, v € N+ [1/e2(F)] and z € O, C F = F_, the equality (98) holds,

then, according to the uniqueness theorem, it is fullfilled for all z € QV.

Lemma 4.3. Letr € N+ 1, Lp(z) = Y 2Y/y*, where k € N.
y=1
Then the functions 1, L1(2), ..., L.(z) are linear idependent over C(z).
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Proof. See [54], Section 2, Lemma 3.2.1. B

Corollary. . The functions 1,L1(1/z), ..., L.(1/2) form a linear idependent
system over C(z) for any r € N+ 1.

Proof. See [54], Section 2, Corollary of the Lemma 3.2.1.

Since z, = fi(z;v) with k = 1,2,4, v € N+ [1/eo(F)], |2| > 1 is the solution
of the equation (98), it follows that, in view of (24) — (25) and Corollary of the
Lemma 4.2, the four sequences of the polynomials

zy = a"(0o(2);v), = B7(00(2);v), 2 = ¢™(00(2):v), 21 = 9" (0o(2); V)
with v € N+ [1/e2(F)], z € §, also are solutions of the equation (98).
§5. On some sequences.

For a prime number p, let v, denotes the p-adic valuation on Q.
Lemma 5.1.Let p is a prime number. Let

deN—-1,reN—-1,dieN—-1,doeN—-1,rneN-1,r, e N—-1,

and maz(ry, r2) < p.
Then p~4(dp +r)! € (=1)4d!r! 4+ pZ and

((dl +do)p+r1 + 7"2) c (d1 + d2) (7"1 + 7“2) + pZ.
dip+r1 dy T1
Proof may be found in [56], Lemma 9.
Lemma 5.2. Let p is a prime number, d € Nyr e Ny r < p,d~ € N—1 and

d~ < d. Then p g1
7Y% - p 2
7.
() () () 0

Proof may be found in [56], Lemma 10. W
Let [ € N and p is arbitrary prime number in (5, +00).
In view of the Lemma 5.2 and (16),

(99) vp(Qpr k) = 2,

if ke [1, vA]NZ, vy(k) = 0.
In view of the Lemma 5.1,

(100) Up (1 pa — 1,a) = 1,
where d =0,...,lA, and therefore

(101) vp(a®(0o(2), pl) — a*((60(2))", 1) = 1,
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ifaeZ,beN,|a|l >b,00(z) =a/b,p > |a| + b; moreover in this case

(102) vup((00(2))"™ = (60(2))™) = 1

for m € Z and therefore

(103) vp(a®(6o(2),pl) — a*(0o(2),1) > 1.

Let p > 2[A. In view of (99) and (17), if k € [0, plA] N Z and v, (k) = 0, then
(104) 0B > L

Let ©,, is the ring of all the p-integers of the field Q. Then

PiATE PIA—k 1
w0 (-2 (1) (2h))-
k=pl+k+1 k=1 k=1
plA+k plA—k k
1 1 1
- PO i ED S-S Rl B DR i
k=pl+k+1 k=1 k=1
K € pZ K € pZ K € pZ
and, if £k = pd, withd=0,...,lA, then
plA+pd 1 plA—pd 1 pd 1
CEONEES D SHEE B I S B IS ol
k=pl+pd+1 K= K=
K € pZ K € pZ K € pZ

IA+d 1 IA—d 1 d 1
(3 5 (E8) (T
(5—l+d+1 pa) < 6=1 p5> (5—1 p6

(L) (53) ()

In view of (105) — (106), if p > 2lA, then

plA+Ek plA—k k
(107) ( ( > 1//1) — < > 1//4> + (Z 1//1)) cplO,.
k=pl+k+1 k=1 k=1

29
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In view of (103), (17), (105) — (107),

(108) Bt pd —P_lﬂz*,d =

plA+Ek plA—k k
2(a0pa — ,4) ( ( Z 1//'6) — < Z 1//1) + (Z 1/5)) +

rk=pl+k+1 k=1 k=1

plA+pd plA—pd pd
2a2‘,d< ( ( Z 1//4) - ( Z 1/,4> + (Zl/"‘)) _
r=pl+pd+1 k=1 k=1
IA+6 IA—d d
p! (— ( > 1/5) - (Z 1/5) + (Z 1/5))) €90,

o=l+d+1 =1 k=1

In view of (104), (107), if a € Z,b € N, |a| > 0,00(2) = a/b,p > 21A + |a| + b, then
(109) vp(B*(Bo(2); pl) — p~' B*((80(2))7; 1)) > 0,

and, in view of (102),

(110) vp(B(00(2); pl) — p~ 8% (60 (2); 1)) > 0,

According to (20), (21), (103), (109) — (110),if

a€Z,beN, by(z)=a/b#0,p>2A+|a| + b,

then

(111) up(¢ (0o(2); pl) — P~ 29" (60(2); 1)) > —1,

(112) 0 (0 (B0(2): pL) — p~ 2" (Oo(2); 1)) > —2.
Let

(113) aj(w;v) = o™ (wyv), o (w;v) = 8% (w; v),

(114) as(wiv) = ¢*(wiv), az(w;v) = P (wiv),

where v € N. Then (103), (110) — (112) may be rewritten in the form

(115) vp(a (0o (2); pl) — p~7a (Bo(2); 1) > 1 — 4,
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where 7 =0, ..., 3.
Lemma 5.3. Let k; € N— 1, where j =0, ..., 3,

3
> ki>0,J={j€{0,..,3}:k; >0}
j=1

and

Ha;wo(z);lj) #0

for some z € Q\{0} and l; € N, with j € J. Then, for each m € N the sequences
(116) a;(Oo(2);m~+1),...,a;(0o(2);m+p),...

with 7 € J compose a linearly independent system over C.
Proof. Let
a€Z,beN, by(z)=a/b#0.

Since 0o(z) € Q, it follows that a}(00(2);1;) € Q for j € J, and there exists a
number d € N, such that that d|a}(6(2);1;)| € N for any j € J.

Since o (0o(2);v) € Q for any j € J and v € N, it follows that it is sufficient to
prove the linear independence of the system (116) over the field Q. The opposite
assumption means the existence b; € Z, where j € J, such that

(117) S 1ol > 0.3 by (Bo(2):v) =0,

jeJ jeJ

where v € m + N. Let k = sup{j € J:b; # 0} and let p is the prime number such
that
p>2mA+1+d+a| + b (dlbja}(6o(2); v)| + 21;A).
jeJ

We take now in (113) — (114) v = pli. Then according (117), (115),

—k =vy(a(00(2);plk)) =vp | D b (Bo(2)iv) | =1k
JEINA{k}

H

Lemma 5.4. Let A is equal to the prime number p > 5. If z = (1,0), then
condition of the Lemma 5.3 is fulfilled for J = {0, 2, 3}. If z = (1,—m), then
condition of the Lemma 5.3 is fulfilled for J = {0, 1,2, 3}.

Proof. In view of (16),

(118) aj o =p”.
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2

p—1
* ) p 2 4
(119) Q) p1 =P (H(l + E) eEp +p Dpa
k=1
p—1 D 2
(120) aj, = 4p* <H(1 + E) /(1 +p)? € 4p* — 8p + p*O,,
k=1
(121) ai g, € p'Op,

where k=1,... ,p— 2.
In view of (18), (118) - (121),

(122) a*(1;1) € 6p® — 8p* + p*O,, " (—1;1) € 4p® — 8p® + p*O,,.

In view of (17), (118) — (121),

(123) B1 o0 =207 g (— (i 1//{) — (Zp: 1//{)) €

2
2p2(—]; +1+pO,) =2p(—2+p+p°D,),

(Z 1/5) " (Zl/%) -

k=p+1

2
_1+pz p‘f’f@ _1_p9p7

2p—1 p—1
(124) B 1 =20 ,_ 1(—(2 1/m)—1+<21/m)>e
K=p+1 k=1

—2p*(1+p*0,) (1 + p*D,) = —2p*(1 + p*Dy),
2p D
—( > 1//.1) - (Zl/ﬁ;) =
K=p+2 k=1

k(p+ k) 2p

1 1 L 1 1 1
_p+p—+p<27) € —+1—p+p29p:2—p(1+2p—2p2+1939p),

k=1
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(125) By, =207, <— ( Xp: 1//{) + <Zp: 1/1@)) €
K=p+2 k=1

4p(1 = 2p + p*O,) (1 + 2p + p*O,) = 4p(1 + p°D,,),

pt+k p—k k
(126) B}, =20, (— ( > 1//{> - (Zl/l@) + (Z 1/,<¢>) € p*9,,

r=k+2 k=1 k=1

where k =1,...,p— 2,
In view of (19), (123) — (126),

(127) B*(1,1) € —4p +2p° + p°0,) — 2p*(1 + p*O,)+

4]9(1 + p2gp) + pggp C p2gp)

(128) B (=1,1) € —(—4p + 2p* + p*9,) — 2p*(1 + p*O,)—

4p(1 + p*O,) +p°O,p) C 8p+ p*O,).
In view of (20) — (21), (118) — (128), if £2 = 1, then

p 1+k
SeYY ot e At =

k=0

1+p P 1+p P
D7 P ek ke @7 D il e
t=1 k=t—1 k=t—1

p (et 1 +ai,) +p H((eB] 1 + B1,)) +pOy) C
p~2(ep® + 4p® + PP Op+
p H((—e2p*(1 +p29p) + 4p(1 +p29p)) +pO, C8+¢c+pO,,

p 1+k
Pl = 30Dt ar, 200 ) =
k=0 t=1
1+p 1+p
8226 tt 3 Z €1+kz * +6Z€ tt 2 Z 1+k:6ykE
k=t—1 k=t—1

2p 3 (eat ,y +f ) +p 2 (EB o1 + B ) + PO, C

33
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273 (ep® + 4p* + p* O, )+
p 3 (—e2p* (1 + p*O,) + 4p(1 + p*O,) + pO, Cp ' (8 — 2¢) + O,).
m

Lemma 5.5. Let r(1), ..., r(v), ... be an arbitrary sequence of numbers in
C\{0}. Then for each m € N the sequences of numbers

r(m+ 1)aj(Lm+1),...,r(m+ p)aj(L;m+ p), ...

where j = 0,2,3 compose a linear independent system over C, and for each m € N
the sequences of numbers

r(m+1Daj(=L;,m+1),...,r(m+p)a(=1;m+p), ...

where j = 0,1,2,3 compose a linear independent system over C.
Proof. According to the Lemmata 5.3 and 5.4, for each m € N the sequences
of numbers
G (Lm+1),. .. a5 (Lm+ p), ...

where j = 0, , 2,3 compose a linear independent system over C, and for each m € N
the sequences of numbers

where 7 = 0,1, 2,3 compose a linear independent system over C.
If there exist ag, ag, ag in C such that |ag| + |az| + |as| > 0, and

agr(m+ p)a(L;m+ ) + azr(m -+ pad(Lm + u) + agr(m + g (L m+ g) =
then the equality
apagy(1;m + p) + a2a50(1;m + p) + asaz(l;m+p) =0
holds for the same m and pu.
If there are ag, a1, az, as in C, for which the inequality |ag|+ |a1|+|az|+|as| > 0

holds and
agr(m + p)og(L;m + p) + arr(m + p)ai(l;m+ p)+

agr(m + p)as(l;m+ p)agr(m + p)az(l;m+p) =0,
then the equality
apagy(l;m + p) + a1 (L;m + p) + azas(1;m + p) + asai(l;m+ p) = 0,

holds for the same m and u. B
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According to the Lemma 5.5, the sequences of polynomials

aj(wym+1), ..., o (wym+p), ...
with 7 = 0,1, 2,3 compose a linear independent system over C(z). for each m € N.
Therefore for the equation (98) we have the inclusion

1(00(2); v )g0(00(2); v 1) € CAo(2)]\0.

For a prime p € N, let, as above, v, stand for the p-adic valuation on @Q, and let
further 7(x) denotes the number of prime p € NN (—oo, z], where x € R. So, we
have 7(z) = 0 for x < 2. Let {«, 8,7} C R. If 7(a) < w(B) and 1 < +, then
let d 3, denotes the smallest positive integer d such that v, (%) > 0 for all the
primes p € NN (a, f] and all the kK € NN [1, ~]. If either v < 1, or 7(f) < 7(a),

we let, by definition, d, g~ = 1. Clearly,

(129) dag~ = H p[ln(’Y)/l”(P)] < Vmax(ﬂ(ﬁ)—w(a),o).

a<p<p

Lemma 5.6. If1 <a <3, 1< vy < ya for some vy > 0, then for anye > 0 there
exists Co(yo0,€) such that

(130) da,g~ < Co(v0,€) exp(a(B/a —1 +¢)),
and
(131) d1,a,y < Co(y1,€) exp(a(l +¢)).

Proof (see [56], Lemma 4). It may be assumed that 8 < 7; then it follows from
the inequalities (129) — (131) that

da,py < exp((In(y0) +In(a))((8 — @)/ In(ea) + O(8 — )/ In*(ea)) <

Co(0,€) exp(a(f/a — 1 +¢)),

(132) di,0,~ < exp((In(y1) + In(e))(e/ In(ear) + O(cr/ ln2(ea))) <

Co(vo,¢) exp((a(l+¢)).1
Lemma 5.7. If

(133) v>2/Ap>vA,
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then

(134) vp(B) k) = 0.

Proof (see [50], p.23). If p > vA + k, then (134) directly follows from the
equalities (16) — (17). If vA < p < vA + k, then we must consider in (17) only the
case v+ k< kK <VvA+EkifvA<p<v+k then p<r <vA+k<2VA <2p
and, consequently, (k,p) = 1; therefore in this case we must consider only p >
maz(v + k,vA). But then

2
vp(s) <1, v, ((Zifi) ) >2.0

According to the Lemma 5.7, d1,uA,2uA5;k € Z. Let N, A e N, A > 2. Let us
consider the numbers

()6

where k=0, ..., vA. How small may be chosen r(v) € (0, +00) N Q such that
vA\ (VA + k
A
() (alh)
for all the £k = 0, ..., vA? Probably G.V. Chudnovsky was the first man, who

discovered, that r(r) may be chosen sufficiently small; Hata [17] in details studied
this effect. Therefore I name such r(v) by Chudnovsky-Hata’s multiplier.
Lemma 5.8. Let p € N is a prime number such that

(136) 2{vA/p}y < {v(A-1)/p}.

Then A Aok
v VA +
>
((F)0a5) =
where k=10, ..., VA.

Proof. See [67], section 2. W

Let dj(v) denotes the product of all the prime numbers p € N, which satisfy to
the condition (136). Then, according to the Lemma 5.8,
(137) (di(v))2ayx €Z

forany k=0, ..., VA.
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Lemma 5.9. If the conditions (133) hold, then

diya2va(di(v) 265, € Z,

where k=10, ..., VA.
Proof. We prove that

(138) Up(dl,VA,QVA(dT(V))_2ﬂz,k:) 2 07

for any prime number p € N.

We partially repeat the proof of the Lemma 5.7.

If p > vA +k, then, since k < vA + k, it follows that v,(k) = 0, and, according
o (137), the relation (138) holds. If p > vA, then, since k < VA + k < 2vA < 2p,
it follows that v,(x) < 1; moreover, if p < v + k < &, then, since x < 2p, it follows
that v, (k) = 0, and, in view of (137), the relation (138) holds. On the other hand,
if p > max(vA,v+k) then the inequality (136) turns into equality with both sides
equal to zero. Therefore v,(dj(r)) = 0 and the relation (134) holds. If p < VA,
then, since x < 2vA, it follows that v,(di A 20a/K) > 0 and, according to (137),
the relations (134) holds. W

Let

(139) D**(V) = dl,u(A—}—l),ZzzA-
Then dy ,a 204 is divisor of D**(v) and according to the Lemma 5.9,
(140) D**(v)(di(v)) %85 1, € Z,

where k=0, ..., VA.
Lemma 5.10. If (133) holds, then

(141) (D™ (v))*(d} (v)) %" (w; v) € Z[w],

(142) (D™ (v))*(d} (v)) 726" (w; v) € Z[w],

(D™ ())*(d} (v)) 26" (w; v) € Zlw], (D™ (v))*(d] (v)) ~*¢" (w;v) € Z[w].
Proof. The relations (141) — (142) follow from (18) — (19), (140) and (137). It
follows from (20) — (21), (137), (140) and (139) that

(D™ (v))*(di (V) *(w;v) =

VA vtk
>0 D (@ ) a0 )
k=0
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+

vA
ZZ )R D (1) (d5 (1)) 285, (DT ()2 € Zluw,
k=0

(D™ (1)) (di (V) (w3 v) =

vA v+k

ZZ V—l—k t d* ) 220&;’k(D**(1/))3t_3+

k=0 t=1
vA v+k
Y ()R () (df (v) 7?85 (D (1) ?) € Zuw).
k=0 t=1

§6. Proof of the Theorem 1.
Lemma 6.1. Ifr > 1, then

Vh_{go(|f2*<(7av 0)7 V)|)1/V = hN(n{\(TﬂT?éO))?

Jim fy((r,0),v)/f5((r,0),v) = In(r),

where h™(n) is defined in (78).
Proof. See the Lemma 4.2.1 in [57] B
Lemma 6.2. Ifr > 1, then

Tim (| f5((r,0), ) )M < B (07 (2,7, 60),
fork=1,2

Proof. According to (24), |£3((r, 8), »)| < [/3((r,0), ).

In view of (9), (Ro(t; v)(v(A — 1)!(vA)!)? is product of 2+ v(4A — 2) factors of
the form (t — v + k)¢ with ¥ € N — 1 and €2 = ¢; clearly, if t > v + 1, then
[(t—v+k)75(0/00)(t — v+ k)*| < 1, [((9/) RO (¢, v)| < (2+ v(4A — 2))Ri(t, v)
and [f{((r, ), v)| < (2+ v(4A —2))|f5((r,0),v)|. B

In view of (3.1.55) in [54], n§ (1,7, do) = 1, n{(r, m, dg) = 71; therefore, according
the Lemmata 6.1 — 6.2 and (78) that

(143) (L 9), )] < (0™ () F0(1) =
(1/A)(A/(A +1))EHD)2*m0(1) =
((1/A)(1+ (1/A)) " E+D)2AE0(1) < (1/(ed)) M 0(1).
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Clearly, In(h™~(y1)) = —2In(A) —2(A+ 1) In((A + 1) /A); if A =11, then
(144) In(h™(5/6)) = 221n(11) — 241n(12) = —6.884063593...

I shall make here all calculations 'by hands’ using only calcuator of the firm ’Casio.’
Therefore everyone can check them up. I take below A = 11. According to (132)
and (139),

(A+1—e)v—0(1) <In(D**(v)) < (A+1+¢e)v+ O(1),
with any € > 0 and O(1) depending only from . For A = 11 we have
(12—e)v — O(1) <In(D**(v)) < (12 +e)v + O(1).
In view of (32) and (45) in [67],

V(A — &)+ O(1) < log(d:(v)) < v(AI +¢) + O(1),

I=1(A)=In(A) — (A —1)/(2A) In(A — 1) = (A +1)/(2A)) In(A + 1)—
(r/(28)) > cot(mr/(A=1))+(x/(24)) D cot(mk/(A+1)).
1<k<(A-1)/2 1<k<(A+1)/2

For A = 11 we have

I =1In(11) — (5/11) In(10) — (6/11) In(12)—
(m/22) > cot(mr/10)) + (7/22) > cot(mr/12).

Further we have
In(12) = 2,48490665...;In(11) = 2,397895273...; In(10) = 2, 302585093...;

(6/11)In(12) = 1,355403627...; (5/11) In(10) = 1,046629588...;
cot(m/10) + cot(2m/10) + cot (37 /10) + cot(4mw/10) + cot(57/10) =
2/sin(mw/5) + 2/ sin(27/5) =
8Y2((1 =5~ YHL2 4 (1457 Y2)1/2) = 5 505527682...;
cot(m/12) + cot(27/12) + cot(3m/12) + cot(4mw/12) + cot(5mw/12) =
2/sin(r/6) +2/sin(n/3) + 1 = 5+ 4/V/3 = 7,309401077....;
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(/22) > cot(mr/12) — (7/22) > cot(mr/10) =

1<k<6 1<k<5
(1/22)(7, 309401077... — 5, 505527682...) = 0, 257592518... ,
I =2,397895273... — 1,046629588... — 1,355403627... + 0, 257592518 =
= 0.253454575... ,2A1 = 22 x 0,253454575... = 5,576000668... .
Let wo(A) =3(A+1) —2AI(A). Then
(145) wo(11) = 36 — 5, 576000668... = 30, 42399933 .
and
(146)  v(wa2(11) —¢) = O(1) < W((D**(1))*/(d] (¥)?) < v(w2(11) +¢) + O(1)
with any € > 0 and O(1) depending only from e.
In view of (78) we must calculate the values |h™(n)(1,7/2,80)| for k = 0,1

According to (3.1.43) and (3.1.71) in [54], for our case A = 11 we have

g1 = 25/36 = 0,694444444. .., g = 121/9 = 13,44444444...

go = 26, 88888888... .

In view of (3.1.6) and (3.1.10) in [54], [Do(1, 7/2,1/11)| = 1,412753353... . In view
of (3.1.41) in [54],

p1 = 8(|Rg(r, ¥, 60)|* + [Ro(r, 4, 60)[*) /(1 + 80)* =

1
8 (7”2 +rt+ il ‘DO<T7¢7(50)|) /(14 60)?,
and in our case
p1 =8(5/4+ |Do(1,7/2,1/11)]) /(1 +1/11)* =

(121/144)8 (1,25 + 1,412753353...) = 17.89961976...,
In view of (3.1.42) in [54],

p2 =8 (1 - 4%34 + |Do(1,7/2, 1/13)]) J(1+1/11)2 =

(121/144)8 (485/484 + 1,412753353...) = 16, 2329531... .
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In view of (3.1.70) and (3.1.61) in [54],
po = 8(IR 1 (7,4, 60)|* + [Ro(r, 1, 80)*) /(1 + 60)* =

8 (r2 + (24 00)?/4 + (2 + 6o) cos(v) + | Do (r, 9, 50)\) /(14 d¢)2,

and in our case
po = 8(1013/484 + |Do(1,7/2,1/11)]) /(1 +1/11)? =

(121/144)8 (2,092975207... + 1,412753353...) = 23, 56628643.....

Further we have

V(p1/2)? — 1 = /(17.89961976.../2)2 — 0, 694444444... = 8,910928821...

V(p2/2)% = g2 = /(16,2329531.../2)% — 13, 44444444 = 7, 241045998... ,

VP0/2)% — g0 = /(23, 56623643.../2)% — 26, 88838883... = 10, 58081165... .
In view of (3.1.37) in [54],

m (L7/2,1/10) P =p1/2 =V (p1/2)> — a1 =
17.89961976.../2 — 8,910928821... = 0,038881059...,
no(L,7/2,1/11) 7 = p1/2 +V/(p1/2)? — a1 =
17.89961976.../2 + 8,910928821... = 17,8607387....
In view of (3.1.37) in [54],

Im(1,7/2,1/11) + 112 = po/2 — /(p2/2)2 — g2 =
16, 2329531.../2 — 7,241045998... = 0.875430551...,
mo(1,7/2,1/11) + 11* = pa/2 + \/(p2/2)2 — g2 =
16, 2329531.../2 + 7,241045998... = 15.35752255... .

In view of (3.1.61) in [54], in our case

s = cos(¢/2) = cos(m/4) = ? > 0o/4 = i

Therefore, in view of (3.1.65) in [54],

(1, 7/2,1/11) = 11* = po/2 = /(p0/2)* — g0 =
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11,78314322... — 10, 58081165...... = 1.202331565...,
mo(1,7/2,1/11) = 11* = po /2 + v/ (P0/2)% — g0 =
11,78314322... 4+ 10, 58081165...... = 22.36395487....

In view of (78),
In([A™ (e (1,7/2,1/11))| =

In(|(me(1,7/2,1/11))% — 1?) +201n(11/10) — 41n 2+
10In(|nme(1,7/2,1/11)]%),
where k = 0, 1. Further we have
In((m(1,7/2,1/1))* = 1]* =
In(1,202331565...) + In(0, 875430551...) = 0,051223187...,
201n(11/10) = 1,906203596... ,

101n(|n:(1,7/2,1/11)?) = 101n(0, 038881059...) = —32, 47248062...,
In(16) = 2, 772588722....,

(147) “In(|h™ (i (1, 7/2,1/11)]) = 32, 47248062...+

2,772588722... — 0,051223187... — 1,906203596... = 33, 28764256...,

In(|(no(1,7/2,1/11))* = 1J°) =
In(15.35752255...) + In(22.36395487...) = 5,839055938...,
101n(|no(1, 7/2,1/11)|%) = 101n(17, 8607387...) = 28, 82604935...,

(148) In(|h™ (10(1, 7/2,1/11))|) = 28, 82604935... +

9, 839055938... + 1,906203596 — 2, 772588722... = 33, 79872016...
In view of (144), (147) and (148),

(149) 0<h™(m(1,7/2,1/11)| < h~(5/6) < 1 < h™(no(1,7/2,1/11))|
Let

(150) Te(A) = (=1)* (|~ (m (1, 7/2,1/A)]) — w2 (A)),
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where k = 0,1 I view of (145) and (147),

(151)  ~43(11) = 33, 28764256... — 30, 42399933 = 2.86364323... > 0
and
(152) —v(y7(11) +e)+0(1) <

In(|h™ (m (1, 7/2,1/10)) (D™ (v))*/(d} (v)?)) <
—v(7(11) =) + O(1) — —ox,

if 0 <e <vf(11)/2 and v — +o0.
In view of (150), (145) and (148),

~vE(11) = 30,42399933... + 33, 79872016... = 64, 22271949... ,

(153) v(vp(11) —e) +0(1) <
In(|h™ (no(1, 7/2,1/11)|"(D**(v))? /(d} (v)?) <
v(v9(11) +¢) + O(1).
Let v*(A) =45 (A) /71 (A). In view of (152) and (153), there exists

— L
v=too ([~ (i (1, 7/2, 1/11)

In(|A™(no(1, 7/2,1/11)|"(D** ())*/(d
¥(D**(v))*/(d

~*(11) (= 64, 21607509.../2, 856998639... = 22, 42692763...)

and

(154) v*(11) < 7y = 22, 42693

43

(of course, if our Theorem is true for some ~, then all the bigger numbers can play
the role of ). Let ho(e) = (7§(11) + 6¢) /(75 (11) — 2¢), where € € (0,~7(11)/2).
Clearly, ho(e) increases together with increasing ¢ in (0,7 (11)/2). Consequently,

in view of (154), ho(0) < . Therefore there exists €19 € (0,75(13)/2) such that

(155) ho(e) <~
for all the € € (0,e19). Let

(156) R1 = Ry(e) = exp(75(13) + 2¢),
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(157) Ry = Ry(e) = exp(y; (13) — 2),

(158) rit =71y =1r" =r"(e) = exp(75(13) + 2¢),
where ¢ € (0,10). Then
Ry > Ry > 1,In(Ry1/R2) =
In view of (155),
(159) (In(r"(e)R1(e)/Ra(e)))/ In(Ra(€)) = ho(e) <~

for all the € € (0,e10). I apply further the following result [68]:
Lemma 6.3. Let se N—1,n €N,

a; € C, a;(v) € C,a,(v) =1, a;(v) —a = O(1/v)

forveNandi=0,...,n
Let us consider the following difference equation

(160) Zak y(v+ k) =0,

where v € N — 1. For m € N let V,,, denotes the linear over C space of solutions

y = y(v) of the equation Y ax(v)y(v + k) = 0, where v € m + N — 1. Let the
k=0
absolute values of all the roots of the characteristical polynomial

(161) T(z) = Z ay 2~
k=0

are among the numbers {p;:1 <1i < 14 s}, such that p; < p; for1 <i<j<s+1
and ps41 = 0.

Let e; and k; denote respectively the sum and the maximum of the multiplicities
of those roots, whose absolute value is equal to the number p;, wheret =1, ..., s+1,
and let k* = ks11. We suppose that, if s > 0, then e; > 0 fori=1...,s. For
given y = y(v) in C 1N let

wny (V) = max(ly(v)], ..., ly(v +n —1))).

Then there exist a constant A >0, m € N, a™(v) > 0 with v € m + N — 1 and the

subspaces V.7 1, ..., Vi oy such that lim o”(v) =0,
’ V—00

Vin =V 1@ ..., @V g, dime(V,) ;) =€, 1 <i<s+1,
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and, if y € V. 4 for some 0 € {1,..., s}, then

(162) exp(—A(ln(v) + v %)) (pg) wn(y) (m) < Wiy (v)
for v € m+ N — 1; moreover, Vn/l\’j = Vn\{’j ©...0Vy g, wherej=1..., 5+1,
and, if s > 1 natural projections m; : Vn/,b\’j — er,j for j =1...,s, have the

folloving properties:
if y € V) g for some 0 € {1, ..., s}, then

(163) Wiy (V) < exp(A(n(v) + 11 75)) ()" wi,y (m),

(Wnmgqyy (M) = @(V)wny (1)) (p9)” exp(—A(ln(v) + v~ HE)) < wny (1),

forvem+N—-1;,if k* >0,y € V) o1 (= V) oi1),

then |y(v)| < (A/v)"/¥ w, ,(m), where v € m + N — 1.

Proof. The proof is given in [68]. W

Remark 6.1. Clearly, for any ¢ € (0,1) there exists Cy > 0 such that the
inequalities (162) and (163) may be respectively replaced by the inequalities

(164) (1/Co)(pg exp(—¢))"wn(y)(m) < wyy (V)
and
(165) wn,y (V) < Co(pg exp())”wn,y(m).

In the considered case the equation (97) plays the role of the equation (160), and
polynomial (91) plays the role of the polynomial (161). In view of (149), we have

n=4,s=2p1=|h~(ng(L,7/2,1/11))| = |[h~ (5 (1, —7/2,1/11))],

p2 = |h~(ny' (1,7/2,1/11))| = [~ (ny' (1, =7/2,1/11))|.

Further we have e; = e; = 2, k1 = ko = 1, k3 = 0. Since k3 = 0, it follows
that Vi 3 = 0, Vo = V.7 ,. In view of (143) and (149), the space V), of the
Lemma 6.3 contains f3;, ((1,—m);v) for k = 1,2; moreover, since dime(V,)],) = 2,
it follows from the Lemma 5.5 that f5((1,—n);v), fi((1,—m);v) compose a basis
of VYo = Vo If

(166) y=Z1f5((1,=m);v) + Za2 fg (1, —m); v)
with {Z1, Z3} C C, we let

(167) P’ (y) = (max(|Z1], | Za]).
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It is well known that function wy, ,(m) (with variable y € V,,) is a norm on the
space V;,. We denote by p”(y) the restriction of wy ,(m) on the space V, o = V] 5.
So, on the two-dimensional space V,y , = V;}, 5 we have two norms p" (y) and p"(y).
Therefore there exists a constant C; > 0 such that

(168)

p’(y) < Cip™(y), Cip* (y) > p"(v)

for any y € V¥ 5 = Vi) .
In view of (164) — (165) and (168),

(169)

(170)

(CoC1)) ™ (ps exp(—€)) D" (y) < way(v),

wn,y(v) < CoCi(psexp(e))’p (y).

In view of (165),

(171)

g (=1;v)] < O(1)(p1 exp(e))”,

where £k =0,1,2,3,v € N and O(1) depends only from . Let {m, n} C N,

where j
that

(172)

where 1

k=1,...

(173)

then let

(174)

;i eR
co.,m, k=1, , N,
o (v) € Z
1,...,m+n and v € N. Let there are 4,71 > 1,...,r/ > 1 such
o (V)] < g (ri")"
L,....,mand v € N. Let yx(v) = —af, . (v) + > a;raf (v), where
i=1
,nand v € N. If
Z
X=1:|€eR"
Zy,

Goo(X) = max(|Z1|,...,|Zx]),
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yN(X) =y N X v) =Dy ()2
k=1
for v € N, let

$i(X) =D aixZ
k=1

fori=1,...,m, and let

ag(X,v) =) an (V) 2y
k=1

for v € N. Clearly,

Y\ (X, v) = —ap (X,v) + Y al ()¢i(X)
i=1
for X € R” and v € N,
ab (X, v) eZ

for X € Z"™ and v € N.
Lemma 6.4. Let {l,n} CN, v{* > 0,74 > 1, Ry > Ry > 1,

(175) a; = (log(r{R1/Rz))/ log(Ry),

where i =1,...,m, let X € Z"\{0},

m -1
VO = A (Ry )~ log(n2R2))/ log(R2) AA — A (Z ,YO(T,Z{\)(log(}yé\))/log(R2)+l>
i=1

and let for each v € N — 1 hold the inequalities

(176) YR 7 oo (X) < sup{|y (X, k) s =v, ..., v+1—1},
(177) [y (X, v)] <75 (R2) ™" goo (X)

Then

(178) sup{[|¢i (X)) [(goo(X))*:i =1, ..., m} >~

Proof. Proof may be found in [58], Theorem 2.3.1. W

47
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Inourcase m=n=2,a11=1In2, a12 =as1 =((2)/2,a22 =3((3)/2,
af (v) = =(D™*(v))*/(di ()*)B* (1, v),

ap (v) = (D™ (v))*/(di (v)*)o" (—1,v),
ag(v) = —(D™(1))*/(di(v)))$" (=1, v),

ay (v) = —(D™())*/(di (v))¥* (-1, v).

According to the Lemma 5.10,a (v) € Z, where j =1,... ,4 and v € N,
In view of (171) and (176),

o} ()] < (p1exp(e))” exp(v(wz(11) +€) + O(1)) =

exp((7p(11) + 2¢))v + O(1),

where j =1,...,4,v € N and O(1) depends only from e. Therefore there exists a
constant o > 0 such that (172) holds with 77 defined in (158).

So, yr(v) = (D**(v))?/(d;(v)?)) f5.(1;v), where v € m + N with m defined in
the Lemma 6.3, for £ = 1, 2 now plays the role of y;(v) of the Lemma 6.4. In view
of (169), (170) and (146),

exp((v3(13) — 2¢))v + O(1))p“(y) =

(p3exp(—e))” exp(v(wa(13) — &) + O(1))p" (y) < way, (v),
way, (1) < (psexp(e))” exp(v(wz(13) +¢) + O(1))p"(y) =

exp((73 (13) + 2¢))v + O(1))p" (y),

where O(1) depends only from e, k = 1, 2, and v € m + N with m defined in the
Lemma 7.6; according to (166), (167) and (173), (174) with n = 2, we have the
equality p¥(y) = ¢oo(X). So, there exist v{* > 0, 74 > 0 such that (176), (177)
hold with Ry, Ry defined in (156) — (157), with l =n =5, v € m + N, where m is
defined in the Lemma 7.6 (the condition ¥ € m + N is not essential, because of the
substitution v := v —m — 1 influences only on constants v(', 77", 75,74 and 7).
So, all the conditions of the Lemma 7.7 are fullfilled. Therefore (178) holds, and,
in view of (175) and (159),

o = hO(‘S) <7,

where i =1, 2.1
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