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§0. Foreword.

In [59] I have shown how the method of the paper [66] may be used for a short
proof of the following

Theorem. The Z− module with generators

f1 =

(

log 4
ζ(2)

)

, f2 =

(

ζ(2)
3ζ(3)

)

, f1 =

(

1
0

)

, f1 =

(

0
1

)

has these four generators as free generators, it is not a Liouville module and mea-
sure of nondiscreteness of this Z- module is not bigger than

γ = (ln(ρ2))/(ln(ρ1)) (= 106, 00...),

where

ρ∼1 = (5 + 321/2 + (1281/2 − 8)1/2 + (20481/2 + 32)1/2) exp(−3), ρ∼2 = ρ1 exp(6).

In this paper I shall prove the following Theorem, cf. [45].
Theorem 1. The above γ can be reduced to γ = 22, 42693.
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2 LEONID A. GUTNIK

§1. My auxiliary functions.

In this section, I use the general functions of C.S.Mejer, which are defined as
follows ([19], ch. 5). We denote below by F the Riemann surface of Log (z) and
identify it with the direct product of the multiplicative group R∗

+ = {r ∈ R| r > 0}
with the operation ×, not to be written down explicitly as usual, and the additive
group R, so that z1z2 = (r1r2, φ1 + φ2) for any two z1 = (r1, φ1) and z2 = (r2, φ2)
on this Riemann surface. Let θ0(z) = r exp(iφ) for any z = (r, φ) ∈ R∗

+ × R. It is
clear that θ0 is a surjective homomorphism of R∗

+ × R on the multiplicative group
of C. For each z = (r, φ) ∈ F, we denote r by |z|, φ by Arg (z) and the complex
number number r+ iφ by Log (z). Clearly, Log (z1z2) = Log (z1)+Log (z2) for any
two points z1 and z2 in F. Clearly, the surface F is a metric space relatively to
the distance ρ(z1, z2) = |Log(z1) − Log(z2)|. Clearly, θ0(z) = exp(Log (z)) for any
point z ∈ F. Clearly,

|θ0(z1) − θ0(z2)| = | exp(Log (z1)) − exp(Log (z2))| =

| exp(Log (z2)|| exp(Log (z1) − Log (z2)) − 1| ≤
|z2|| exp(|Log (z1) − Log (z2)|) − 1| = |z2|(exp(ρ(z1, z2)) − 1).

Consequently, |θ0(z1) − θ0(z2)| ≤ (exp(ρ(z1, z2)) − 1) min(|z1|, |z2|). Therefore the
map θ0 is continuous. Let θ1(z) = (r, φ − π) for any z = (r, φ) ∈ F. Clearly, the
map z → θ1(z) is a bijection of F onto F, and θ0((θ1)

m(z)) = (−1)mθ0(z) for each
point z = (r, φ) ∈ F and m ∈ Z. Let D be a domain in F. For a complex-valued
function f(z) on D, let f(z) = f∧(r, φ). It is well known that the function f(z) is
holomorphic in D if the complex-valued function f∧(r, φ) of two real variables r
and φ has continuous partial derivatives in D and, for every point z = (r, φ) ∈ D,
the Cauchy-Riemann conditions

r((((∂/∂r)f∧)(r, φ)) = −i(((∂/∂φ)f∧)(r, φ)) :=

(δf)(z) := θ0(z)(((∂/∂z)f)(z))

are satisfied; these conditions determine a differentiations δ and ∂/∂z on the ring of
all the holomorphic in D functions. In particular, the function Log (z) is holomor-
phic on F and ((∂/∂z) Log )(z) = θ0(z

−1), (δ Log )(z) = 1. Let z = θ0(z) ∈ C�{0},
where z ∈ F; we can consider z as independent variable also. Clearly, z = θ0(z) is
holomorphic function on F and

(δθ0)(z) = θ0(z) =

(

z

((

∂

∂z

)

z

)) ∣

∣

∣

∣

z=θ0(z)

.

Moreover, if R(z) ∈ C(z), D0,R is the set composed by all the points z ∈ C, where
R is well defined and DR = (θ0)

−1(D0,R), then R(θ0(z)) is holomorphic on DR and

(δ(R ◦ θ0)(z) =

(

z

((

∂

∂z

)

R

))

(θ0(z));
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therefore we denote the operator z ∂
∂z

also by δ below. Let

(1) G(m,n)
p,q

(

z

∣

∣

∣

∣

a1, . . . ap

a1, . . . ap

)

=
1

2πi

∫

L

g(s)ds,

where z ∈ F,

g = g(s) = g(z, s) = g(m,n)
p,q

(

z

∣

∣

∣

∣

a1, . . . ap

a1, . . . ap

)

(s) =

exp(sLog (z))
m
∏

j=1

Γ(bj − s)
n
∏

j=1

Γ(1 − aj + s)

q
∏

j=1+m
Γ(1 − bj + s)

p
∏

j=n+1
Γ(aj − s)

,

an empty product is, by definition, equal to 1, 0 ≤ m ≤ q, 0 ≤ n ≤ p; the
parameters aj ∈ C, j = 1, . . . , p, and bk ∈ C, k = 1, . . . , q, are chosen such that,
if Pr(g) is the set of all the poles of Γ(bk − s) with k = 1, . . . , m, and Pl(g) is the
set of all the poles of Γ(1 − aj + s) with j = 1, . . . , n, then Pl(g) ∩ Pr(g) = �.
There are 3 possibilities to choose the curve L.

(A) First, the curve L = L0 may be chosen to pass from −i∞ to +i∞ in such
a way that the set Pr(g) lies to the right of it and the set Pl(g) lies to the left of
it. The integral (1) is convergent in either of the following two cases:

(A1) | arg(z)| < (m+ n− p/2 − q/2)π;
(A2) | arg(z)| ≤ (m+ n− p/2 − q/2)π and (p− q)/2 + Re (∆∗(g)) < −1, where

∆∗(g) =

q
∑

k=1

bk −
p
∑

j=1

aj .

(B) Second, the curve L = L1 may be chosen to pass from +i∞ to +i∞, in such
a way that the set Pr(g) lies to the right of it and the set Pl(g) lies to the left of
it. The integral (1) is convergent in each of the following three cases:

(B1) p < q;
(B2) 1 ≤ p ≤ q and |z| < 1;
(B3) 1 ≤ p ≤ q, |z| ≤ 1 and Re (∆∗(g)) < −1.
(C) Third, the curve L = L2 may be chosen to pass from −∞ to −∞, in such

a way that the set Pr(g) lies to the right of it and the set Pl(g) lies to the left of
it. The integral (1) is convergent in each of the following 3 cases:

(C1) q < p;
(C2) 1 ≤ q ≤ p and |z| > 1;
(C3) 1 ≤ q ≤ p, |z| ≥ 1 and Re (∆∗(g)) < −1.
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If both conditions (A) and (B) are satisfied, then each of these conditions leads
to the same result. If both conditions (A) and (C) are satisfied, then each of these
conditions leads to the same result.

Let G be the integral (1) with L = Lk, where k = 1, 2, and let Sk be the set
of all the unremovable singularities of g encircled by Lk. If one of conditions (B)
holds for k = 1 or one of conditions (C) holds for k = 2, then

(2) G = (−1)k
∑

s∈Sk

Res (g; s).

Remark 1.1. In each of the three cases (A), (B) and (C) the curve of integration
L is chosen in such a way that the set Pr(g) lies to the right of it and the set Pl(g)
lies to the left of it.

The proof of the all these assertions may be found in [52].
I shall work with the sets Ω∧ = {z ∈ F: |z| ≥ 1, Ω∨ = {z ∈ F: |z| > 1}, and also

with Ω(h∧) = {z ∈ F: |z| ≤ 1}, Ω(h∨) = {z ∈ F: |z| < 1}.
Clearly, Log (θk

1(z)) = Log (z) − kiπ, if z ∈ F and k ∈ Z.
Let ∆ ∈ N, 1 < ∆, δ0 = 1/∆, l = 1, 2, dl = ∆ + (−1)l, γ1 = d1/d2. To

introduce the first of my auxiliary function f1(z, ν), I use the set Ω(h∧). I shall
prove that f1(z, ν) ∈ Q[θ0(z)] for each ν ∈ N; therefore using the principle of
analytic continuation we may regard it as being defined in F, and, consequently, in
the set Ω∧. Let

(3) f1(z, ν) = G
(1,2)
4,4

(

θ1(z)

∣

∣

∣

∣

−d1ν, −d1ν, 1 + d2ν, 1 + d2ν
0, 0, ν, ν

)

=

(1/(2πi))

∫

L1

g
(1,2)
4,4 (s)ds,

where ν ∈ N,

g
(1,2)
4,4 (s) = exp(sLog (θ1(z))Γ(−s)Γ(1 + s)−1×

(

Γ(1 + d1ν + s)/(Γ(1 − ν + s)Γ(1 + d2ν − s))
)2
,

and the curve L1 passes from +∞ to +∞ encircling N−1 in the negative direction,
but no point in −N. Here p = q = 4, m = 1, n = 2,

(4) p = q = 4, a1 = a2 = −d1ν, a3 = a4 = 1 + d2ν, b1 =

b2 = 0, b3 = b4 = ν, ∆∗ = −2ν − 2

and, since we take |z| ≤ 1, convergence conditions (B2) and (B3) hold. To compute
the function f1(z, ν), we use formula (2) and the well-known formula

(5) Γ(s) = Γ(s+ l)

l
∏

k=1

(s+ l − k)−1
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with l ∈ N. The set of unremovable singular points of the function g
(1,2)
4,4 (s), which

are encircled by the curve L1, consists of the points s = ν, . . . , d2ν, all these points
are poles of the first order, and, for k = 0, . . . , ν∆, the following equality holds:

−Res (g
(1,2)
4,4 ; ν + k) = (θ0(z))

ν+k((ν + k)!)−2((ν∆ + k)!)2(k!)−2((ν∆ − k)!)−2 =

= (θ0(z))
ν+k
(

(d1ν)!/(ν∆)!
)2
(

ν∆

k

)2(
ν∆ + k

d1ν

)2

.

The function f1(z, ν) is equal to a finite sum

(6) f1(z, ν) =
(

(d1ν)!/(∆ν)!
)2
θ0(z)

ν
∆ν
∑

k=0

(θ0(z))
k

(

ν∆

k

)2(
∆ν + k

d1ν

)2

.

Therefore, as it has been already remarked, using the principle of analytic contin-
uation we may regard it as being defined in F ⊃ Ω∧.

Now, let me introduce my other auxiliary functions defined for z ∈ Ω∧. Let

(7) f2(z, ν) = (−(−1)ν/(2πi))

∫

L2

g
(2,2)
4,4 (s)ds =

= −(−1)νG
(3,2)
4,4

(

θ1(z)

∣

∣

∣

∣

−d1ν, −d1ν, 1 + d2ν, 1 + d2ν
0, 0, ν, ν

)

,

where z ∈ Ω∧, ν ∈ N,

g
(3,2)
4,4 = g

3,2)
4,4 (s) = exp(sLog (θ1(z))×

(Γ(−s))2Γ(ν − s)Γ(1 − ν + s)−1Γ(1 + d1ν + s)2Γ(1 + d2ν − s)−2,

and the curve L2 passes from −∞ to −∞, encircling −N in the positive direction but
no point in N−1. Here m = 2, n = 2, and (4) holds; since now |z| ≥ 1, convergence
conditions (C2) and (C3) are satisfied. To compute the function f2(z, ν), we use

formula (2). The set of all the unremovable singular points of the function g
(3,2)
4,4 (s),

encircled by the curve L2, consists of the points s = −1 − d1ν − k with k ∈ N − 1;
each of these points is a pole of the first order. Therefore making use of (2) one
obtains

Res (g
(3,2)
4,4 ;−1 − d1ν − k) = (−θ0(z))−1−d1ν−k×

((d1ν + k)!)2((∆ν + k)!)2(−1)∆ν+k(k!)−2((1 + 2∆ν + k)!)−2 =

(−1)1+ν(θ0(z))
−(1+d1ν+k)











∆ν−ν
∏

j=1

(1 + ∆ν − ν + k − j)

∆ν
∏

j=0
(1 + ∆ν + k + j)











2

,
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(8) f2(z, ν) =
+∞
∑

k=0

z−(1+d1ν+k)











∆ν−ν
∏

j=1

(1 + ∆ν − ν + k − j)

∆ν
∏

j=0

(1 + ∆ν + k + j)











2

.

Let a ∈ N − 1, b ∈ N + a,
and

(9) R(a; b; t) =
b!

(b− a)!

(

b
∏

κ=a+1

(t− κ)

)

b
∏

κ=0

1

t+ κ
,R0(t; ν) = R(ν; ∆ν; t).

Let t = 1 + ∆ν + k with k ∈ N − 1; in view of (8), it follows that

(10) f2(z, ν)
(

(∆ν)!/(d1ν)!
)2

=

∞
∑

t=∆ν+1

R0(t; ν)
2z−t+ν .

Since R0(t; ν) = 0 for t = ν + 1, . . . , ∆ν, we have

(11) f2(z, ν)
(

(∆ν)!/(d1ν)!
)2

=

∞
∑

t=ν+1

R0(t; ν)
2z−t+ν .

Let

(12) f3(z; ν) =
1

2iπ

∫

L2

g
(4,2)
4,4 (s)ds =

G
(4,2)
4,4

(

z

∣

∣

∣

∣

−d1ν, −d1ν, 1 + d2ν, 1 + d2ν
0, 0, ν, ν

)

,

where z ∈ Ω∧, ν ∈ N,

g
(4,2)
4,4 = g

(4,2)
4,4 (s) =

exp(s(Log (z))Γ(−s)2Γ(ν − s)2Γ(1 + d1ν + s)2Γ(1 + d2ν − s)−2.

Here m = 4, n = 2, and (4) holds; convergence conditions (C2) and (C3) are
satisfied, since now |z| ≥ 1. The set of all the unremovable singular points of the

function g
(4,2)
4,4 (s), encircled by L2, consists of s = −1 − d1ν − k with k ∈ N − 1;

each of these s is a pole of the second order. Therefore

Res (g
(4,2)
4,4 ;−d1ν − 1 − k) = lim

s→−d1ν−1−k
(∂/∂s)

(

(s+ d1ν + 1 + k)2g
(4,2)
4,4

)

,

where k ∈ N − 1.
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Let s = −d1ν − 1 − k + u and

H1(u) = g
(4,2)
4,4 (−d1ν − 1 − k + u) =

exp((−d1ν − 1 − k + u) Log (z)) Γ(d1ν + 1 + k − u)2×
Γ(∆ν + 1 + k − u)2Γ(−k + u)2Γ(2 + 2∆ν + k − u)−2 =

(

π/ sin(πu)
)2

exp((−d1ν − 1 − k + u) Log (z)) Γ(d1ν + 1 + k − u)2×

Γ(∆ν + 1 + k − u)2Γ(1 + k − u)−2Γ(2 + 2∆ν + k − u)−2 =

(

π/ sin(πu)
)2
H∗(u),

where

H∗(u) = exp((−d1ν − 1 − k + u) Log (z)) Γ(d1ν + 1 + k − u)2×

Γ(∆ν + 1 + k − u)2Γ(1 + k − u)2Γ(2 + 2∆ν + k − u)−2 =

exp((ν − T ) Log (z)) Γ(T − ν)2×
Γ(T )2Γ(T − ∆ν)−2Γ(1 + ∆ν + T )−2 =

exp((ν − T ) Log (z))R0(T ; ν)2((∆ν)!/(d1ν)!)
−2

and T = ∆ν + 1 + k − u. Since (πu/(sin(πu))2 is an even function, it follows that

((∆ν)!/(d1ν)!)
2 Res (g

(4,2)
4,4 ;−1 − d1ν − k) =

(exp((ν − T ) Log (z))(R0(T ; ν)2 Log z − (∂/∂T )(R0(T ; ν)2))

∣

∣

∣

∣

T=1+∆ν+k

=

(θ0(z)
ν−tR0(T ; ν)2 Log z − θ0(z)

ν−t(∂/∂T )(R0(T ; ν)2)

∣

∣

∣

∣

T=1+∆ν+k

,

where t = 1 + ∆ν + k. Thus, in view of (10),

f3(z, ν) = f2(z, ν) Log z − ((∆ν)!/(d1ν)!)
−2

∞
∑

t=∆ν+1

θ0(z)
−t+ν(∂/∂t)(R0(t; ν)

2);

since R0(t; ν)
2 has zeros of the second order in the points t = ν + 1, . . . , ∆ν, it

follows that

f3(z, ν) = f2(z, ν) Log z − ((∆ν)!/(d1ν)!)
−2

∞
∑

t=1+ν

θ0(z)
−t+ν(∂/∂t)(R0(t; ν)

2).



8 LEONID A. GUTNIK

Let

(13) f4(z, ν) = −((∆ν)!/(d1ν)!)
−2

∞
∑

t=1+ν

θ0(z)
−t+ν(∂/∂t)R0(t; ν)

2;

then

(14) f3(z, ν) = f2(z, ν) Log z + f4(z, ν).

Let

(15) f∗
j (z, ν) =

(

(ν∆)!/(νd1)!
)2
fj(z, ν), j = 1, 2, 3.

Expanding function R0(t; ν)
2 into partial fractions, we obtain

R0(t; ν)
2 =

ν∆
∑

k=0

α∗
ν,k(t+ k)−2 +

ν∆
∑

k=0

β∗
ν,k(t+ k)−1

with

(16) α∗
ν,k =

(

ν∆

k

)2(
ν∆ + k

ν∆ − ν

)2

,

(17) β∗
ν,k = lim

t→−k
∂/∂t

(

R0(t; ν)
2(t+ k)2

)

=

2α∗
ν,k

(

−
∆ν+k
∑

κ=ν+k+1

κ−1 −
∆ν−k
∑

κ=1

κ−1 +

k
∑

κ=1

κ−1

)

,

where k = 0, . . . , ∆ν. Let

(18) α∗(w; ν) = wν
∆ν
∑

k=0

α∗
ν,kw

k,

(19) β∗(w; ν) = (w)ν
∆ν
∑

k=0

β∗
ν,kw

k,

(20) φ(w; ν) =

ν∆
∑

k=0

ν+k
∑

t=1

(w)ν+k−t(α∗
ν,kt

−2 + β∗
ν,kt

−1),
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(21) ψ(w; ν) =
ν∆
∑

k=0

ν+k
∑

t=1

(w)ν+k−t(α∗
ν,k2t−3 + β∗

ν,kt
−2),

(22) Ln(w) =
+∞
∑

t=1

wtt−n.

Since Res t=∞(R0(t; ν)
2; t) = 0, it follows that β∗(1; ν) = 0 and

(23) β∗(w; ν) = (1 − w)β∗∗(w; ν)

with β∗∗(w; ν) ∈ Q[w] for ν ∈ N. It follows from (6), (11), (13), and (16) – (23)
that f∗

1 (z, ν) = α∗(θ0(z); ν),

(24) f∗
2 (z, ν) = (θ0(z))

ν
+∞
∑

t=1+ν

(θ0(z))
−tR0(t; ν)

2 =

= (θ0(z))
ν

+∞
∑

t=1+ν

(θ0(z))
−t

ν∆
∑

k=0

α∗
ν,k(t+ k)−2+

(θ0(z))
ν

+∞
∑

t=1+ν

z−t
ν∆
∑

k=0

β∗
ν,k(t+ k)−1 =

(θ0(z))
ν

ν∆
∑

k=0

α∗
ν,kz

k
+∞
∑

t=1+ν+k

(θ0(z))
−tt−2 +

(θ0(z))
ν

ν∆
∑

k=0

β∗
ν,kz

k
+∞
∑

t=1+ν+k

(θ0(z))
−tt−1 =

α∗(θ0(z); ν)L2((θ0(z))
−1)+

β∗(θ0(z); ν)L(− log(1 − 1/(θ0(z)))) − φ∗(θ0(z)); ν) =

α∗(θ0(z); ν)L2((θ0(z))
−1)+

β∗∗(θ0(z); ν)(1 − θ0(z))(− log(1 − 1/(θ0(z)))) − φ∗((θ0(z)); ν),

(25) f∗
4 (z, ν) = (z)ν

+∞
∑

t=1+ν

(θ0(z))
−t ∂

∂t
R(t; ν)

2 =
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(θ0(z))
ν

+∞
∑

t=1+ν

(θ0(z))
−t

ν∆
∑

k=0

2α∗
ν,k(t+ k)−3+

(θ0(z))
ν

+∞
∑

t=1+ν

(θ0(z))
−t

∆ν
∑

k=0

β∗
ν,k(t+ k)−2 =

(θ0(z))
ν

ν∆
∑

k=0

2α∗
ν,k(θ0(z))

k
+∞
∑

t=1+ν+k

(θ0(z))
−tt−3 +

(θ0(z))
ν

ν∆
∑

k=0

β∗
ν,k(θ0(z))

k
+∞
∑

t=1+ν+k

(θ0(z))
−tt−2 =

2α∗((θ0(z)); ν)L3((θ0(z))
−1) + β∗((θ0(z)); ν)L2((θ0(z))

−1) − ψ∗((θ0(z)); ν) =

2α∗((θ0(z)); ν)L3((θ0(z))
−1)+

β∗∗((θ0(z)); ν)(1 − (θ0(z))L2((θ0(z))
−1) − ψ∗((θ0(z)); ν).

§2. General properties of Mejer’s functions

and its application to my auxiliary functions.

Let the operator 5b;k, with k = 1, . . . , q (respectively 5a;j , with j = 1, . . . , p)
when acting on the function g replaces parameter bk by bk +1 (respectively replaces
parametr aj by aj + 1), and let δ denotes the operator θ0(z)∂/∂z. It is clear that

(26) Pr(5b;kg) ⊂ Pr(g)

for k = 1, ..., q, and

(27) Pl((5a;j)
−1g) ⊂ Pl(g)

for j = 1, . . . , p. In view (26) and (27),

(28) 5b;kG = (1/(2πi))

∫

L

(5b;kg)(s)ds,

where k = 1, . . . , q, and

(29) (5a;j)
−1G = (1/(2πi))

∫

L

((5a;j)
−1g)(s)ds,

where j = 1, . . . , p, assuming that one of the conditions (A), (B), (C) of the absolute
convergence of the integral (28) (respectively (29)) is satisfied; here L is taken to
be the same as in (1).
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Lemma 2.1 Let g = g(s) = g(z, s) be the integrand in (1). Let ε1(k) = −1 for
any k = 1, . . . ,m, and let ε1(k) = 1 for any k = m+1, ..., q. Let further ε2(j) = 1
for j = 1, ..., n, and let ε2(j) = −1, for j = n + 1, . . . , p. In the case, when one
of the conditions (A), (B), (C) of the absolute convergence of the integral in the
equality (28) (respectively (29)) holds, the corresponding condition (A), (B), (C)
holds also for the integral (1). If one of the conditions (B1), (B2), (C1), (C2) is
fulfilled for the integral (1), then the corresponding condition is fulfilled for each of
the integrals (28), (29). Moreover, ε1(k) 5b;k G = (δ − bk)G where k = 1, ..., q,
and ε2(j)(5a;j)

−1G = (δ + 1 − aj)G were j = 1, ..., p.
Proof may be found in [53], section 1, Lemma 2.1.1. �

Corollary. If one of conditions, (B1), (B2), (C1), (C2) is satisfied, then the
function G given by the integral (1) is holomorphic in the corresponding domain
and, for each d ∈ N, the equalities

(5b;k)dG = (ε1(k))
d

(

d−1
∏

κ=0

(δ − bk − κ)

)

G,

where k = 1, . . . , q, and

(5a;j)
−dG = (ε2(j))

d

(

d−1
∏

κ=0

(δ − aj + 1 + κ)

)

G,

where j = 1, ..., p, hold true.
Proof may be found in [53], section 1, Corollary to the Lemma 2.1.1. �

Let 5 denotes the operator replacing each of bk, with k = 1, . . . , q, by bk +1 and
each of aj, with j = 1, . . . , p, by aj +1. For each A ⊂ C and each c ∈ C, we denote
the set {c+ a : a ∈ A} by A+ c. Clearly,

(30) Pr(g) 6= Pr(5g) = Pr(g) + 1 ⊂ Pr(g),

as in (26). But

(31) Pl(g) ⊂ Pl(g) + 1 = Pl(5g) 6= Pl(g),

as in (27).The first inequality in (30) holds because the set Pr(g) includes some
(possibly not unique) β with the smallest real part; then β /∈ Pr(g) + 1. The last
inequality in (31) holds because the set Pl(g)+1 includes some (possibly not unique)
number α with the biggest real part; then α /∈ Pl(g). Nevertheless, we have the
equalities (Pl(g) + 1)

⋂

(Pr(g) + 1) = Pl(g)
⋂

Pr(g) = ∅. Therefore for the same L,
as in (1), we let

(32) (5G)(z) = (1/(2πi))

∫

L+1

(5g)(z, s)ds,
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assuming that one of the conditions (A), (B), (C) of the absolute convergence of
the integral (32) is satisfied.

Lemma 2.2 If one of the conditions (B1), (B2), (C1), (C2) is fulfilled for the
integral (1), then the corresponding condition of the absolute convergence of the
integral (32) holds also, and (5G)(z) = θ0(z)G(z).

Proof may be found in [53], section 1, Lemma 2.1.2. �

Remark 2.1. In view of (37), Pl(g) + 1 lies to the left of the contour of
integration L and one of the conditions (B1), (B2), (C1), (C2) is satisfied, then

(5G)(z) = (1/(2πi))

∫

L

(5g)(z, s)ds.

This remark is important since the location of the curve L must be taken into
account. We shall make use of this remark when we apply both Lemma 2.1 and
Lemma 2.2 simultaneously.

Lemma 2.3 If the conditions mentioned in Remark 2.1 are satisfied, then

(−1)m+p−nθ0(z)









p
∏

j=1

(δ + 1 − aj)



G



 (z) =

((

q
∏

k=1

(δ − bk)

)

G

)

(z).

Proof may be found in [53], section 1, Lemma 2.1.3. �

Lemma 2.4. Let H stand for either C or F, let D be a domain in H, and let a
function f(z) is holomorphic in D. Let ηa(z) = az, where {a, z} ⊂ H, and a 6= 0
in the case H = C. Then

(δ(f ◦ ηa))(z) = ((δf) ◦ ηa)(z)

for z ∈ a−1D and the function δ(f ◦ ηa) (and therefore (δf) ◦ ηa) is holomorphic
in the domain a−1D.

Proof may be found in [53], section 1, Lemma 2.1.4. �

Corollary 1. Let Ω be a domain in H, and let a ∈ C�0, if H = C. If the
function f(z) is holomorphic in the domain ηaΩ = {az : z ∈ Ω}, then

δ(f ◦ ηa))(z) = ((δf) ◦ ηa)(z)

and the function δ(f ◦ ηa) (and therefore (δf) ◦ ηa) is holomorphic in Ω.
Proof. The assertion follows from Lemma 2.4 with D = ηaΩ.�
Corollary 2. Let Ω be a domain in F. If the function f(z) is holomorphic in

the domain θ1(Ω) = {θ1(z) : z ∈ Ω}, then

(δ(f ◦ θ1))(z) = ((δf) ◦ θ1)(z)
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and the function δ(f ◦ θ1) (and therefore (δf) ◦ θ1) is holomorphic in Ω.
Proof. The assertion follows from Corollary 1 on taking a = (1,−π).�
Let as before G = G(z) denotes the integral (1). It has been proved in [52], that

the function G(z) is holomorphic in Ω = F, if one of the conditions (B1) or (C1)
is satisfied, that it is holomorphic in the domains Ω = Ω(h∨) if condition (B2) is
satisfied, and that it is holomorphic in the domains Ω = Ω∨ if condition (C2) is
satisfied. In each of these cases, ηa(Ω) = Ω, if a ∈ SO2 = {a ∈ F: |a| = 1.}

Lemma 2.5. Let one of the conditions (B1), (C1), (B2), (C2) holds, and let
d ∈ N. Then

(5b;k)d(G ◦ θ1) = (ε1(k))
d

(

d−1
∏

κ=0

(δ − bk − κ)

)

(G ◦ θ1),

where k = 1, ..., q,

(5a;j)
−d(G ◦ θ1) = (ε2(j))

d

(

d−1
∏

κ=0

(δ − aj + 1 + κ)

)

(G ◦ θ1),

where j = 1, ..., p, and (5(G ◦ θ1))(z) = θ0(θ1(z))(G ◦ θ1)(z). If the conditions of
Remark 2.1. are satisfied, then

(−1)m+p−n+1θ0(z)









p
∏

j=1

(δ + 1 − aj)



 (G ◦ θ1)



 (z) =

((

q
∏

k=1

(δ − bk)

)

(G ◦ θ1)
)

(z).

Proof. may be found in [53], section 1, Lemma 2.1.5 and its Corollary. �

Corollary. Let d ∈ N, and one of the conditions (B1), (C1), (B2) and (C2) is
satisfied. Then

(5b;k)d(G ◦ θ1) = (ε1(k))
d

(

d−1
∏

κ=0

(δ − bk − κ)

)

(G ◦ θ1),

where k = 1, ..., q,

(5a;j)
−d(G ◦ θ1) = (ε2(j))

d

(

d−1
∏

κ=0

(δ − aj + 1 + κ)

)

(G ◦ θ1),

where j = 1, ..., p, and

(5(G ◦ θ1))(z) = −θ0(z)(G ◦ θ1)(z).
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Moreover, if the conditions of Remark 2.1 are satisfied, then

(−1)m+p−n+µθ0(z)









p
∏

j=1

(δ + 1 − aj)



 (G ◦ (θ1)
µ)



 (z) =

((

q
∏

k=1

(δ − bk)

)

(G ◦ (θ1)
µ)

)

(z),

where µ ∈ N − 1.
Proof. For the proof it suffices to let a = (1,−π).�
I wish to apply the Lemmata 2.1 - 2.5 and their Corollaries to my auxil-

liary functions. In view of (4), (7) and (12), Pl(g
(m,n)
4,4 ) + 1 ⊂ −N + 1 − d1ν

andPr(g
(m,n)
4,4 ) ⊂ N−1 for (m,n) = (1, 2), (3, 2), (4, 2); consequently, the condition

of Remark 2.1 is satisfied. Therefore it follows from the Corollary to Lemma 2.5
that

(33) (−1)m+4−n+µθ0(z)((δ + 1 + d1ν)
2(δ − d2ν)

2fk)(z, ν) =

(δ2(δ − ν)2fk)(z, ν)

for z ∈ Ω(h∨), (m,n, µ) = (1, 2, 1), if k = 1, for z ∈ Ω∨, (m,n, µ) = (3, 2, 1), if k = 2,
and for z ∈ Ω∨, (m,n, µ) = (4, 2, 0), if k = 3.

Let

(34) G = G
(m,n)
4,4

(

(θ1)
µ(z)

∣

∣

∣

∣

−d1ν, −d1ν, 1 + d2ν, 1 + d2ν
0, 0, ν, ν

)

with z ∈ Ω(h∨), (m,n, µ) = (1, 2, 1) if k = 1, with z ∈ Ω∨, (m,n, µ) = (3, 2, 1)
if k = 2, and with z ∈ Ω∨, (m,n, µ) = (4, 2, 0) if k = 3, and let

G1 =

(

4
∏

k=3

5b;k

)





2
∏

j=1

(5a;j)
−d1









4
∏

j=3

(5a;j)
d2



G.

According to the Corollary of the Lemma 2.1,

(35)





4
∏

j=3

(5a;j)
−d2



G1 = (−1)2d2

(

d2−1
∏

κ=0

(δ − (ν + 1)d2 + κ)2

)

G1

and

(36)

(

4
∏

k=3

5b;k

)





2
∏

j=1

(5a;j)
−d1



G =
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(−1)[m/2](δ − ν)2

(

d1−1
∏

κ=0

(δ + 1 + d1ν + κ)2

)

G,

where, as before, m = 1, 3, 4. In view of (4) – (12), (34) – (36),

(37)

((

d2
∏

κ=1

(δ − d2ν − κ)2

)

fk

)

(z, ν + 1) =

(

(δ − ν)2

(

d1
∏

κ=1

(δ + d1ν + κ)2

)

fk

)

(z, ν),

where k = 1, 2, 3. The equalities (33) and (37) for k = 1 hold in Ω(h∨); how-
ever, since f1(z, ν) is a polinomial, it follows that these relations hold in F ⊃ Ω∨,
according to the principle of analytical continuation.

Let f(z; ν) stand for one of the functions fk(z; ν), k = 1, 2, 3. Then it follows
from (33) and (37) that

(38) ((δ + 1 + d1ν)
2(δ − d2ν)

2f)(z, ν) = (δ2(δ − ν)2f)(z, ν)

and

(39)

((

d2
∏

κ=1

(δ − d2ν − κ)2

)

f

)

(z, ν + 1) =

((

(δ − ν)2
d1
∏

κ=1

(δ + d1ν + κ)2)

)

f

)

(z, ν).

Let

(40) D∧(θ0(z), ν, w) = θ0(z)(w + 1 + d1ν)
2(w − d2ν)

2−

w2(w − ν)2, δ = θ0(z)(∂/∂z),

where w is an independent variable. Then relation (38) may by rewritten as follows:

(41) D∧(θ0(z), ν, δ)f = 0.

In view of (15), the functions f = f ∗
j (z, ν) with j = 1, 2, 3, satisfy equation (41).

It follows from (15) that

(42) fj(z, ν) = ((d1ν)!/(∆ν)!)
2f∗

j (z, ν),
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where j = 1, 2, 3. Let us substitute (42) in (39); this gives

(((ν + 1)d1)!/((ν + 1)∆)!)2

((

d2
∏

κ=1

(δ − d2ν − κ)2

)

f∗
j

)

(z, ν + 1) =

((d1ν)!/(∆ν)!)
2(δ − ν)2

((

d1
∏

κ=1

(δ + d1ν + κ)2

)

f∗
j

)

(z, ν),

where j = 1, 2, 3. It follows from the last equation that

(43)

(

∆−1
∏

κ=1

((∆ − 1)ν + κ)2

)((

d2
∏

κ=1

(δ − d2ν − κ)2

)

f∗
j

)

(z, ν + 1) =

(

∆
∏

κ=1

(∆ν + κ)2

)((

(δ − ν)2
d1
∏

κ=1

(δ + d1ν + κ)2

)

f∗
j

)

(z, ν),

where j = 1, 2, 3. Let ν−1 be an independent variable taking its values in C

including 0; let i = 0, 1,

D∗
i (θ0(z), ν

−1, w) = ν−4D∧(θ0(z), ν + i, νw) =

b∨i,0(θ0(z), ν
−1)w0 + . . . + b∨i,3(θ0(z), ν

−1)w3 + (θ0(z) − 1)w4,

(44) P ∗
i = P ∗

i (ν−1, w) =

(w − 1)2−2i

(

∆−i
∏

k=1

(∆ − i+ kν−1)2

)

∆−1+2i
∏

k=1

(w + (−1)i(d1+i + kν−1))2 =

pi,0(ν
−1)w0 + . . . + pi,2∆+2i(ν

−1)w2∆+2i ∈ Z[ν−1, w],

and set P∼
i (w) = P ∗

i (0, w). Then

D∗
i (θ0(z), ν

−1, w) ∈ Q[θ0(z), ν
−1, w], D∗

0(θ0(z), 0, w) = D∗
1(θ0(z), 0, w).

It follows from (41) and (42) that

(45) D∗
i (θ0(z), ν

−1, ν−1δ)f∗
k (z, ν + i) = 0

for ν ∈ N, z ∈ Ω∨, k = 1, 2, 3; furthermore, it follows from (43) that

(46) (P ∗
1 (ν−1, ν−1δ)f∗

k )(z, ν + 1) = (P ∗
0 (ν−1, ν−1δ)f∗

k )(z, ν)
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for ν ∈ N, z ∈ Ω∨, k = 1, 2, 3. Let k = 1, 2, 3, and Xk(z, ν) denotes the column
consisting of the elements ((ν−1δ)j−1f∗

k )(z, ν), where j = 1, . . . , 4. Let i = 0, 1,
and let Bi(θ0(z), ν

−1) = (akj) be a 4 × 4-matrix defined as follows:

a4j = b∨i,j−1(θ0(z), ν
−1)/(1 − θ0(z))

for j = 1, . . . , 4,
a12 = a23 = a34 = 1,

and each of the other entries akj is equal to 0.
Following the well known procedure of representation of a differential equation

in matrix form, we deduce from (45) that

(47) (ν−1δ)Xk(z, ν + i) = Bi(θ0(z), ν
−1)Xk(z, ν + i)

for i = 0, 1, k = 1, 2, 3, ν ∈ N, and z ∈ Ω∨. In view of (44), the operator ν−1δ
commutes with the operator P ∗

i (ν−1, ν−1δ) for i = 0, 1. Therefore it follows from
the relation (46) that

(48) P ∗
1 (ν−1, ν−1δ)Xk(z, ν + 1) = P ∗

0 (ν−1, ν−1δ)Xk(z, ν)

for i = 1, 2, k = 1, 2, 3, ν ∈ N, and z ∈ Ω∨.
Let Matn(K), where n ∈ N, denotes the set of all the n×n-matrices with entries

in the subset K of a given ring. Let

(49) P ∗(ν−1, w) = P ∗
0 (ν−1, w), Q∗(ν−1, w) = P ∗

1 (ν−1, w).

Relation (48) may be rewritten as follows:

(50) Q∗(ν−1, ν−1δ)Xk(z, ν + 1) = P ∗(ν−1, ν−1δ)Xk(z, ν).

Let further

(51) D∼(θ0(z), w) = D∗
0(θ0(z), 0, w) = D∗

1(θ0(z), 0, w) =

θ0(z)(w + d1)
2(w − d2)

2 − w2(w − 1)2,

(52) P∼(w) = P ∗(0, w) = ∆2∆(w − 1)2(w + d1)
2d1 ,

(53) Q∼(w) = Q∗(0, w) = (d1)
2d1(w − d2)

2d2 ,

and

(54) B∼(θ0(z)) = B0(θ0(z), 0) = B1(θ0(z), 0).
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Regarded as a polinomial of w, the polynomial

D∼
1 (θ0(z), w) = (1/(θ0(z) − 1))D∼(θ0(z), w) = w4 −

4
∑

k=1

b∼k (θ0(z))w
k−1,

coincides with the characteristic polynomial of the matrix B∼(θ0(z)), so that

(55) det(B∼(θ0(z)) − d2E) = D∼
1 (θ0(z), d2) =

−1

θ0(z) − 1
(∆(∆ + 1))2.

It follows that (B∼(θ0(z)) − d2E)−1 ∈ Mat4(Q[θ0(z)]); moreover, the last column
of this matrix consists of the elements of the ideal (θ0(z)]− 1)Q[θ0(z)]] in Q[θ0(z)].
Let

Km = (θ0(z)] − 1)−mQ[θ0(z)] ∩ Q[(θ0(z) − 1)−1],

K∗
m = (θ0(z) − 1)−mQ[θ0(z), ν

−1] ∩ Q[(θ0(z) − 1)−1, ν−1],

where m ∈ N − 1. Clearly, K0 = Q, K∗
0 = Q[ν−1] and

Bi(θ0(z), ν
−1) −B∼(θ0(z)) ∈ ν−1Mat4(K

∗
1 )

for i = 0, 1.
Lemma 2.6. Let i = 0, 1 and m ∈ N. Let

H∼
i,m−1 ∈Mat4(Km−1), H

∗
i,m−1 ∈Mat4(K

∗
m−1), Hi,m−1 = H∼

i,m−1 + ν−1H∗
i,m−1,

bi,m ∈ C, ci,m ∈ C.

Then for i = 0, 1 there exists H∗
i,m(θ0(z), ν

−1) ∈Mat4(K
∗
m) such that

(ν−1δ + bi,m + ci,mν
−1)Hi,m−1Xk(z, ν + i) =

(H∼
i,m−1(B

∼(θ0(z)) + bi,mE) + ν−1H∗
i,m(θ0(z), ν

−1))Xk(z, ν + i),

where k = 1, 2, 3, ν ∈ N, z ∈ Ω∨.
Proof. may be found in [53], section 2, Lemma 2.4.1. �

Corollary. Let m ∈ N, i = 0, 1, s = 1, . . . , m, bi,s ∈ Q and ci,s ∈ C. Then
For each i = 0, 1 there exist H∗

i,m ∈Mat4(K
∗
m), which depend, of course, from the

numbers bi,1, . . . , bi,m, ci,1, . . . , ci,m, such that

(

m
∏

s=1

(ν−1δ + bi,m+1−s + ν−1ci,m+1−s))Xk(z, ν + i) =

(ν−1H∗
i,m +

m
∏

s=1

(B∼(z) + bi,m+1−sE))Xk(z, ν + i),
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where E is unit matrix of fourth order and k = 1, 2, 3.
Proof. may be found in [53], section 2, Corollary to the Lemma 2.4.1.�
Lemma 2.7. Let i = 0, 1, Wi = Mat4(K

∗
2∆+2i).

Then there exists a matrix Ui(θ0(z), ν
−1) ∈ Wi such that

(56) (U0(θ0(z), ν
−1) − P∼(B∼(θ0(z))) ∈ ν−1W0,

(57) U1(θ0(z), ν
−1) −Q∼(B∼(z)) ∈ ν−1W1,

(58) P ∗(κ−1, κ−1δ)Xk(z, κ) = U0(z, κ
−1)Xk(z, κ),

and

(59) Q∗(κ−1, κ−1δ)Xk(z, κ+ 1) = U1(θ0(z), κ
−1)Xk(z, κ+ 1)

for k = 1, 2, 3, κ ∈ N.
Proof may be found in [53], section 2, Lemma 2.4.2. �

Remark 2.2. Of course, the assertions of the Lemmata 2.6 and 2.7 are almost
obvious because ν−1δ maps the ring Q[(z − 1)−1, ν−1]

(respectively Q[z, ν−1]-module (z − 1)−mQ[z, ν−1])
into its ideal ν−1Q[(z − 1)−1, ν−1]
(respectively Q[z, ν−1]-module ν−1(z − 1)−m−1Q[z, ν−1]) and

ν−1(z − 1)−m−1Q[z, ν−1] ⊃ (z − 1)−mQ[z, ν−1] × ν−1(z − 1)−1Q[z, ν−1],

where z = θ0(z).
In view of the relation (55) and the argument preceding Lemma 2.6, it follows

from the relation (53), that

det(Q∼(B∼(z)) = ((−1/(θ0(z) − 1))(∆(∆ + 1))2)2d2(d1)
2d1 ,

that Q∼((B∼(z))−1) ∈Mat4(Q[z]), that each of the elements of the last column of
that matrix lies in the ideal (z − 1)Q[z] of the ring Q[z], and that

(60) A∼(z) = (Q∼(B∼(z)))−1P∼(B∼(z)) ∈Mat4(Q[z, 1/(z− 1)]),

where z = θ0(z). Let

(61) A(θ0(z), ν
−1) = (U1(θ0(z), ν

−1))−1U0(z, ν
−1).

Clearly, A(θ0(z), ν
−1) ∈Mat4(Q(z, ν−1)), where z = θ0(z).
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Let k be a field and k̄ be its algebraic closure, R(x) ∈ k(x), where

x =





x1
...
xn



 ,

and x1, ..., xn are independed variables. Then R(x) is said to be well defined in
a point a ∈ k̄n if R(x) = P (x)/Q(x) with {P (x), Q(x)} ⊂ k[x], Q(a) 6= 0. Let
further N0(ε) = {ν−1 ∈ C : |ν−1| ≤ ε}, where ε > 0. If F is a compact in F, we
denote by H(F, ε) the set of all the functions f(θ0(z), ν

−1) ∈ Q(θ0(z), ν
−1) induced

by all the elements f(z, ν−1)) ∈ Q(z, ν−1)), well defined in the point (θ0(z), ν
−1)

for any (z, ν−1) ∈ F × N0(ε), and let H0(F ) be the set of all the

(f ◦ θ0)(z) = f(θ0(z)) ∈ Q(θ0(z)),

induced by all the f(z) ∈ Q(z), well defined in the point θ0(z) for any z ∈ F.
Lemma 2.8. Let F be a compact in F�{z ∈ F : z = (1, 2πk) , k ∈ Z}. There

exists an ε0 = ε0(F ) ∈ (0, 1) such that A(θ0(z), ν
−1) ∈ Mat 4(H(F, ε0)); moreover,

the equality A(θ0(z), 0) = A∼(θ0(z)) holds for each z ∈ F.
Proof. may be found in [53], section 2, Lemma 2.4.3. �

It follows from the relations (50), (58) – (60) and Lemma 2.8 that the following
equality

(62) Xk(z, ν + 1) = A(θ0(z), ν
−1)Xk(z, ν),

where k = 1, 2, 3, z ∈ F, ν ∈ N + [1/ε0(F )], holds for any compact F in Ω∨. In
what follows AB stands for the set of all maps from an non-empty set B to an
non-empty set A.

Lemma 2.9. As above, let F be a compact subset in F (in particular, F may
be an one-point set). For n ∈ N, z ∈ F, ν ∈ N + [1/ε0], let

(63) A(θ0(z), ν
−1) ∈ Mat n(H(F, ε0))

and let the sequence Xν ∈ (CF )n satisfy the following relation

(64) Xν+1(z) = A(z, ν−1)Xν(z).

Moreover, suppose that, for each z ∈ F , the polynomial

(65) pθ0(z)(λ) := det(λE − A(θ0(z), 0))

has only simple roots, that none of the elements of the first row of the matrix

(66) C = C(θ0(z)) ∈ Mat n(CF )
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vanishes, that det(C(θ0(z))) 6= 0, and that the matrix

(C(θ0(z)))
−1A(θ0(z), 0)C(θ0(z))

is diagonal.
Then there is ε2 ∈ (0, ε0) such that, for any z ∈ F, ν ∈ N + [1/ε2], the first

element xν(z) of the column Xν(z) satisfies the equation

(67) xν+n(z) +
n−1
∑

j=0

q∗j (θ0(z), ν
−1)xν+j(z) = 0,

moreover,

(68) q∗j (θ0(z), ν
−1) ∈ H(F, ε2),

for j = 0, . . . , n− 1, and

(69) pθ0(z)(λ)∗ = λn +

n−1
∑

j=0

q∗j (θ0(z), 0)λj

coincides with the polynomial (65).
Proof. may be found in [53], section 2, Lemma 2.4.4. �

Lemma 2.10. Let us consider a compact F in F (in particular, F may be an
one-point set). For n ∈ N and ν ∈ N, let Xν(z) ∈ (CF )n. As above, let H(F, ε)
denotes the set of all the functions f(θ0(z), ν

−1) ∈ Q(θ0(z), ν
−1) induceded by all

the elements f(z, ν−1)) ∈ Q(z, ν−1)), which are well defined in the point (θ0(z), ν
−1)

for any (z, ν−1) ∈ F × N0(ε), and let H0(F ) denotes the set of all the functions

(f ◦ θ0)(z) = f(θ0(z)) ∈ Q(θ0(z))

induced by all the f(z) ∈ Q(z) well defined in the point θ0(z) for any z ∈ F.
Let further b∼j (θ0(z)) ∈ H0(F ) for j = 0, ..., n, and let b∼n (θ0(z)) = 1. Let

(70) A(θ0(z), ν
−1) ∈ Mat n(H(F, ε0)).

Suppose that, for each z ∈ F , all the roots of the polynomial

(71) D∼(θ0(z), λ) = λn +
n−1
∑

j=0

bj(θ0(z))λ
j

are simple. Let B∼(θ0(z)) = (bik) be an n × n - matrix defined as follows:
let bnl = −b∼l−1(θ0(z)), l = 1, . . . , n;if n > 1, then bi1 = 0, i = 1, ..., n − 1,
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and the (n − 1) × (n − 1) - submatrix of the matrix B∼(θ0(z)) formed by its
first n − 1 rows and its last n − 1 columns is the unit matrix. We suppose
that P∼(θ0(z), λ) ∈ H0(F )[λ], Q∼(θ0(z), λ) ∈ H0(F )[λ]), and suppose that, for
any z ∈ F, the polynomial Q∼(θ0(z), λ) does not vanish on the set of all the roots
of the polynomial D∼(θ0(z), λ) and that, on the latter set, the map

(72) λ→ P∼(θ0(z), λ)/Q∼(θ0(z), λ)

is injective. Let finally

(73) Q∼(θ0(z), B
∼(θ0(z)))A(θ0(z), 0) = P∼(θ0(z), B

∼(θ0(z)))

for z ∈ F.
Then, for every z ∈, F all the roots of the polynomial (65) are simple, and there

exists a matrix C = C(θ0(z)) ∈ Mat n(CF ) satisfying the following conditions:
1) for every z ∈ F , the matrix (C(θ0(z)))

−1A(θ0(z), 0)C(z) is diagonal;
2) for every z ∈ F , no element in the first row of the the matrix C(θ0(z)) is

equal to zero.
Proof. may be found in [53], section 2, Lemma 2.4.5. �

The substitution

(74) w = (d2η + d1)/(η − 1)

transforms the polynomials (51) – (53), and the rational function

P∼(w)/Q∼(w)

respectively in

(75) D∼(θ0(z), w) = −(η − 1)−4∆2(∆ + 1)2×
((η + 1)2(η + γ1)

2 − 22(1 + γ1)
2θ0(z)η

2),

(76) P∼(w) = P∼
1 (η) = ∆2d2(2∆η)2d1(η + 1)2(η − 1)−2∆,

(77) Q∼(w) = Q∼
1 (η) = (η − 1)−2d2(d1)

2d1(2∆)2d2 ,

and

(78) P∼(w)/Q∼(w) = h∼(η) = P∼
1 (η)/Q∼

1 (η) =

(η − 1)2(1 − δ0)
−2d1(η + 1)22−4η2d1 ,

where δ0 = 1/∆, γ1 = (1 − δ0)/(1 + δ0). Let

(79) D∧(θ0(z), η) = (η + 1)2(η + γ1)
2 − 22(1 + γ1)

2θ0(z)η
2.

The substitution (74) and the inverse substitution η = (d1 +w)/(w− d2) relate the
roots w of the polynomial D∼(θ0(z), w) with the roots η of the D∧(θ0(z), η). To be
able to make use of Lemmata 2.9 and 2.10, it is necessary to study the roots of the
polynomial (79).
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§3. Properties of the roots of the polymomial D∧(z, η).

Let

(80) R = r1/2, ψ = φ/2 + π,

where 1 ≤ r, ψ ∈ R. If φ ∈ (−2π, 0], then ψ ∈ (0, π], and ψ − π ∈ (−π, 0].

Hence, z = (R2, 2(ψ − π)), where 1 ≤ R, ψ ∈ R. Let further

(81) D∨∨(R,ψ, η) = (η + 1)(η + γ1) + 2(1 + γ1)R exp(iψ)η,

where 1 ≤ R, ψ ∈ R. Then, in view of (79),

(82) D∧(θ0(z), η) =
1
∏

κ=0

D∨∨(R,ψ − κπ, η)

The properties of the roots η∧0 (r, ψ, δ0), η
∧
1 (r, ψ, δ0) of the trinomial

(83) D∨∨(R,ψ, η) = (η + 1)(η + γ1) + 2(1 + γ1)r exp(iψ)η,

are studied in [54] and [61], and we use the notations and results of those papers.
Lemma 3.1 If r = 1, ψ = −π + 2lπ/m0, where

m0 = 2, ..., 150, l = 1, ..., m0 − 1],

then

(84) |h∼(η∧0 (r, ψ, δ0))| > |h∼(η∧1 (r, ψ, δ0))|.

Proof. See [61], Lemma 4.9, its Corollary and Remark to this Corollary.

Lemma 3.2 Let r = 1, δ0 ≥ 0. Then h∼(η∧0 (r, ψ, δ0)) decreases with increasing
of ψ ∈ (0, π).

Proof. See [61], Corollary of the Lemma 4.20.

Lemma 3.3 Let

r = 1, δ0 ≥ 0, s = cos(ψ/2), |ψ| < π

Then h∼(η∧1 (r, ψ, δ0)) decreases with increasing of s ∈ (δ0/4, 1).

Proof. See [61], Lemma 4.21.
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§4. The case φ = −π.
If φ = −π, then in view of (80),

(85) ψ = φ/2 + π = pi/2,

(86) D∧(−1, η) =
1
∏

κ=0

D∨∨(1, π/2− κπ, η).

In view of (66) in [61],

(87) η∧k (1,−π/2, δ0) = η∧k (1, π/2, δ0),

where δ0 < 1, k = 0, 1, and therefore the roots of D∨∨(1,−π/2, η) are complex
conjugate to the corresponding roots of D∨∨(1, π/2− κπ, η). Consequently,

(88) |h∼(η∧1 (1, π/2, δ0))| = |h∼(η∧1 (r,−π/2, δ0))|,

(89) |h∼(η∧0 (1, π/2, δ0))| > |h∼(η∧1 (r, π/2, δ0))|.

According to the Lemma 3.1 and (88) –(89), if ε20 = ε21 = 1 then

(90) |h∼(η∧0 (1, ε0π/2, δ0))| > |h∼(η∧1 (1, ε1π/2, δ0))|.

In accordance with (80), let

(91) F∧
0 (θ0(z); δ0; η) = F∧

0 (θ0((r, φ)); δ0; η) =

1
∏

κ=0

1
∏

k=0

(η − h∼(η∧k (r1/2, φ/2 + κπ, δ0)).

and D∧
0 (θ0(z); δ0) = D∧

0 (θ0((r, φ)); δ0) be the discriminant relatively to η of the
polynomial F∧

0 (θ0((r, φ)); δ0; η).
Lemma 4.1. Let κ2 = κ,∆ = 11. Then trinomial D∨∨(1, π/2 − κπ, η) is

irreducible over Q(i).
Proof. According to (3.1.6) in [54], let

(92) D0(R,ψ, δ0) = R2 +R exp(−iψ) +

(

δ0
2

)2

exp(−2iψ)

and let R0(R,ψ, δ0), is defined by means (3.1.15) – (3.1.16) in [54]. Then, according
to (3.1.25) in [54],

(93) η∧k (R,ψ, δ0) = −(1 + γ1) exp(iψ)(R0(R,ψ, 1) + (−1)kR0(R,ψ, δ0))
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compose the set of all the roots of the polynomial (83).
Therefore, in view of (3.1.22) in [54], D∨∨(1, π/2−κπ, η) is irreducible over Q(i)

if and only if

(94) D0(1, π/2, δ0) = 1 −
(

δ0
2

)2

+ i 6∈ {a2: a ∈ Q(i)}

The contrary means that

Nm (Q(i))/Q(D0(1, π/2, δ0) = (1 − (δ0/2)2)2 + 1 =
32∆4 − 8∆2 + 1

16∆2
= a2

with a ∈ Q. Then 32∆4 − 8∆2 + 1 = (4a∆)2. If p = 19, ∆ = 11, then

2((2∆)4 − (2∆)2) + 1 ≡ 2(34 − 32) + 1 ≡ −7 mod p,

and we have for corresponding Legendre symbol the equalities

(−7

19

)

=

(−1

19

)(

64

19

)

= −1.

�

Lemma 4.2. Let ε20 = 1, κ2 = κ,∆ = 11. Then

h∼(η∧k (1, ε0π/2, δ0)) /∈ R.

Proof. Let
K = Q(i), η = η∧k (1, ε0π/2, δ0), L = K(η).

In view (81),

(95) −(η∧k (1, ε0π/2, δ0) + 1)η∧k (1, ε0π/2, δ0) + γ1)×

(2(1 + γ1)η
∧
k (1, ε0π/2, δ0))

−1 = ε0i.

Therefore L = K(η) = Q(η). Clearly, L/Q is a normal extension.
Clearly, the map w → w, w ∈ C induces an automorphism of the field L. We

denote this automorphism by σ1. Clearly, σ1(η
∧
k (1, ε0π/2, δ0)) = η∧k (1,−ε0π/2, δ0).

We denote by σ2 the authomorphism of the extension L/K, which transforms η
into γ1/η. Then σ2(γ/η) = η, σ2(η) = γ1/η. Let σ0 be the identity map L → L.
Then σ2

1 = σ2
2 = σ0, σ1σ2 = σ2σ1, and for σ3 = σ1σ2 we have the equality σ2

3 = σ0.
Let L0 is the maximal real subfield in L. Then, clearly, [L : L0] = 2, [L : Q] = 4
and [L0 : Q] = 2. Therefore L0 is a normal subfield of L, and σ2(L0) = L0;
if h∼(η∧k (1, ε0π/2, δ0)) ∈ L0, then σ2(h

∼(η∧k (1, ε0π/2, δ0))) ∈ L0,
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and, in view of (81), (78),

−(1 + γ1)
4γ2d1(1 − δ0)

−4d12−3ε0i =

(2(1 + γ1)(1 + ε0i))
2(−2(1 + γ1)ε0i)

2γ2d1(1 − δ0)
−4d12−8 =

(D∨∨(1, ε0π/2, 1))2(D∨∨(1, ε0π/2,−1))2(D∨∨(1, ε0π/2, 0))2d1(1 − δ0)
−4d12−8

h∼(η∧k (1, ε0π/2, δ0))σ2(h
∼(η∧k (1, ε0π/2, δ0))) ∈ L0.�

According to (3.1.43), (3.1.71) in [54] and in view of (90), (87) and Lemma 4.2, the
plynomial F∧

0 (−1; δ0; η) has only different from zero and mutually distinct roots,
and therefore D∧(−1, η)D∧

0 (−1; δ0) 6= 0. Let

Oε = {z = (r, φ) ∈ F: 1 + ε/2 < r < 1 + ε,−π − ε < φ < −π + ε}

where ε > 0, and let Fε be the closure of the domain Oε.
Clearly, there exists ε ∈ (0, π/m) such that

(96) D∧(θ0(z), 0)D∧
0 (θ0(z); δ0; η) 6= 0,

for any z ∈ Fε; since ε < π, it follows that (1, 2kπ) 6∈ Fε for any k ∈ Z.
I wish to apply the Lemma 2.10. On the role of compact F of this Lemma I

take the set F = Fε, which is compact in the set F�{(1, 2kπ): k ∈ Z}.
The polynomial D∼(θ0(z), w) in (51) is connected with the D∧(θ0(z), η) from

the equality (79) by means the equality (75) and, according to (74) and (96), has
only simple roots for any z ∈ Fε; this polynomial D∼(θ0(z), w) will play the role of
the polynomial D∼(θ0(z), λ) in (71). The not dependend from z polynomials (52)
and (53) will play the role of the polynomials P∼(θ0(z), λ) and Q∼(θ0(z), λ) of the
Lemma 2.10. According to (96), the map (72) is injective on the set of all the roots
of the polynomial D∼(θ0(z), λ) (i.e. the polynomial (51)). The matrix B∼(θ0(z))
from (54) plays now the role of the matrix B∼(θ0(z)) of the Lemma 2.10. The
matrix (61) plays now the role of the matrix A(θ0(z); ν

−1) of the Lemma 2.10;
according to (56), (57), the equality A(θ0(z), 0) = A∼(θ0(z)) holds with A∼(θ0(z))
from (60) and therefore the condition (73) also is fulfilled. So, all the conditions of
the lemma 2.10 are fulfiiled, and therefore for every z ∈ F = Fε all the roots of the
polynomial (65) are simple, and there exists C = C(θ0(z)) ∈ Mat n(CF ) satisfying
the following conditions:

1) for every z ∈ F , the matrix (C(θ0(z)))
−1A(θ0(z), 0)C(θ0(z)) is diagonal;

2) for every z ∈ F , no element in the first row of the the matrix C(θ0(z)) is
equal to zero.

Therefore we can now apply the Lemma 2.9.
As above, the set Fε plays the role of te compact F, the matrix (61) will play

the role of the matrix A(θ0(z); ν
−1) in the Lemma 2.9, the column Xk(z; ν) in
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the equality (62) with any k = 1, 2, 3 and any ν ∈ N + [1/ε0(F )] will play the
role Xν(z) from (64). Consequently, according to the assertion of the Lemma 2.9,
there is ε2 = ε2(F ) ∈ (0, ε(a,m)) such that, for any z ∈ F, ν ∈ N + [1/ε2(F )] and
any k = 1, 2, 3, the first komponent f ∗

k (z; ν) of the column Xk(z; ν) satisfies the
equation

f∗
k (z; ν + 4) +

3
∑

j=0

q∗j (θ0(z); ν
−1)f∗

k (z; ν + j) = 0,

where q∗j (θ0(z); ν
−1) ∈ H(F, ε2) for j = 0 , . . . , 3 moreover the polynomial

λ4 +
3
∑

j=0

q∗j (θ0(z); 0)λj

coincides with polynomial (65), the roots of which, in view of (78), coincide with
the roots of the polynomial F∧

0 (θ0(z); δ0; η) in (91), and this polynomial has only
simple roots.

So, the functions f∗
k (z; ν), for any z ∈ F = Fε(a,m) any ν ∈ N + [1/ε2(F )] and

any k = 1, 2, 3 satsfies the equation

(97) xν+4 +

3
∑

j=0

q∗j (θ0(z); ν
−1)xν+j = 0.

In view of (14), xν = f∗
4 (z; ν) is the solution of the equation (97).

Clearly, for any j = 0, . . . , 3 the rational functions q∗j (θ0(z); ν
−1) from (97)

admit the representation in the form q∗j (θ0(z); ν
−1) = qj(θ0(z); ν

−1)/q4(θ0(z); ν
−1),

where qj(θ0(z); ν
−1) ∈ Q[θ0(z); ν

−1] for j = 0 , . . . , 4 have no common divisors with
exeption of different from zero constants and q4(θ0(z); ν

−1) is different from zero
for any z ∈ F, ν ∈ N + [1/ε2(F )]. Consequently, the equation (97) is equivalent to
the equation

(98) q4(θ0(z); ν
−1)xν+4 +

3
∑

j=0

qj(θ0(z); ν
−1)xν+j = 0,

where z ∈ F = Fε, ν ∈ N + [1/ε2(F )] and xν = f∗
k (z; ν), for k = 1, 2, 4 is solution

for this equation. In view of (18) - (25), the fnctions f ∗
k (z; ν), for any k = 1, 2, 4,

and any ν ∈ N are regular in the domain |z| > 1 and, because for xν = f∗
k (z; ν)

with k = 1, 2, 4, ν ∈ N + [1/ε2(F )] and z ∈ Oε ⊂ F = Fε, the equality (98) holds,
then, according to the uniqueness theorem, it is fullfilled for all z ∈ Ω∨.

Lemma 4.3. Let r ∈ N + 1, Lk(z) =
∞
∑

y=1
zy/yk, where k ∈ N.

Then the functions 1, L1(z) , . . . , Lr(z) are linear idependent over C(z).
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Proof. See [54], Section 2, Lemma 3.2.1. �

Corollary. . The functions 1, L1(1/z), . . . , Lr(1/z) form a linear idependent
system over C(z) for any r ∈ N + 1.

Proof. See [54], Section 2, Corollary of the Lemma 3.2.1. �

Since xν = f∗
k (z; ν) with k = 1, 2, 4, ν ∈ N + [1/ε2(F )], |z| > 1 is the solution

of the equation (98), it follows that, in view of (24) – (25) and Corollary of the
Lemma 4.2, the four sequences of the polynomials

xν = α∗(θ0(z); ν), xν = β∗(θ0(z); ν), xν = φ∗(θ0(z); ν), xν = ψ∗(θ0(z); ν)

with ν ∈ N + [1/ε2(F )], z ∈ F, also are solutions of the equation (98).

§5. On some sequences.

For a prime number p, let vp denotes the p-adic valuation on Q.
Lemma 5.1.Let p is a prime number. Let

d ∈ N − 1, r ∈ N − 1, d1 ∈ N − 1, d2 ∈ N − 1, r1 ∈ N − 1, r2 ∈ N − 1,

and max(r1, r2) < p.
Then p−d(dp+ r)! ∈ (−1)dd!r! + pZ and

(

(d1 + d2)p+ r1 + r2
d1p+ r1

)

∈
(

d1 + d2

d1

)(

r1 + r2
r1

)

+ pZ.

Proof may be found in [56], Lemma 9.
Lemma 5.2. Let p is a prime number, d ∈ N, r ∈ N, r < p, d∼ ∈ N − 1 and

d∼ < d. Then
(

dp

d∼p+ r

)

∈ d

(

d− 1

d∼

)(

p

r

)

+ p2Z.

Proof may be found in [56], Lemma 10. �

Let l ∈ N and p is arbitrary prime number in (5,+∞).
In view of the Lemma 5.2 and (16),

(99) vp(α
∗
pl,k) ≥ 2,

if k ∈ [1, ν∆] ∩ Z, vp(k) = 0.
In view of the Lemma 5.1,

(100) vp(α
∗
pl,pd − α∗

l,d) ≥ 1,

where d = 0 , . . . , l∆, and therefore

(101) vp(α
∗(θ0(z), pl) − α∗((θ0(z))

p, l) ≥ 1,
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if a ∈ Z, b ∈ N, |a| ≥ b, θ0(z) = a/b, p > |a| + b; moreover in this case

(102) vp((θ0(z))
pm − (θ0(z))

m) ≥ 1

for m ∈ Z and therefore

(103) vp(α
∗(θ0(z), pl) − α∗(θ0(z), l) ≥ 1.

Let p > 2l∆. In view of (99) and (17), if k ∈ [0, pl∆] ∩ Z and vp(k) = 0, then

(104) vp(β
∗
pl,k) ≥ 1.

Let Op is the ring of all the p-integers of the field Q. Then

(105) Op 3



−





pl∆+k
∑

κ=pl+k+1

1

κ



−
(

pl∆−k
∑

κ=1

1

κ

)

+

(

k
∑

κ=1

1

κ

)



−















−















pl∆+k
∑

κ = pl + k + 1
κ ∈ pZ

1

κ















−















pl∆−k
∑

κ = 1
κ ∈ pZ

1

κ















+















k
∑

κ = 1
κ ∈ pZ

1

κ





























,

and, if k = pd, with d = 0 , . . . , l∆, then

(106) −















pl∆+pd
∑

κ = pl + pd+ 1
κ ∈ pZ

1

κ















−















pl∆−pd
∑

κ = 1
κ ∈ pZ

1

κ















+















pd
∑

κ = 1
κ ∈ pZ

1

κ















=

−
(

l∆+d
∑

δ=l+d+1

1

pδ

)

−
(

l∆−d
∑

δ=1

1

pδ

)

+

(

d
∑

δ=1

1

pδ

)

=

1

p

(

−
(

l∆+d
∑

δ=l+d+1

1

δ

)

−
(

l∆−d
∑

δ=1

1

δ

)

+

(

d
∑

δ=1

1

δ

))

.

In view of (105) – (106), if p > 2l∆, then

(107)



−





pl∆+k
∑

κ=pl+k+1

1/κ



−
(

pl∆−k
∑

κ=1

1/κ

)

+

(

k
∑

κ=1

1/κ

)



 ∈ p−1Op.
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In view of (103), (17), (105) – (107),

(108) β∗
pl,pd − p−1β∗

l,d =

2(α∗
pl,pd − α∗

l,d)



−





pl∆+k
∑

κ=pl+k+1

1/κ



−
(

pl∆−k
∑

κ=1

1/κ

)

+

(

k
∑

κ=1

1/κ

)



+

2α∗
l,d

(



−





pl∆+pd
∑

κ=pl+pd+1

1/κ



−
(

pl∆−pd
∑

κ=1

1/κ

)

+

(

pd
∑

κ=1

1/κ

)



−

p−1

(

−
(

l∆+δ
∑

δ=l+d+1

1/δ

)

−
(

l∆−d
∑

δ=1

1/δ

)

+

(

d
∑

κ=1

1/δ

)))

∈ Op.

In view of (104), (107), if a ∈ Z, b ∈ N, |a| > 0, θ0(z) = a/b, p > 2l∆ + |a| + b, then

(109) vp(β
∗(θ0(z); pl) − p−1β∗((θ0(z))

p; l)) ≥ 0,

and, in view of (102),

(110) vp(β
∗(θ0(z); pl) − p−1β∗(θ0(z); l)) ≥ 0,

According to (20), (21), (103), (109) – (110),if

a ∈ Z, b ∈ N, θ0(z) = a/b 6= 0, p > 2l∆ + |a| + b,

then

(111) vp(φ
∗(θ0(z); pl) − p−2φ∗(θ0(z); l)) ≥ −1,

(112) vp(ψ
∗(θ0(z); pl) − p−3ψ∗(θ0(z); l)) ≥ −2.

Let

(113) α∗
0(w; ν) = α∗(w; ν), α∗

1(w; ν) = β∗(w; ν),

(114) α∗
2(w; ν) = φ∗(w; ν), α∗

3(w; ν) = ψ∗(w; ν),

where ν ∈ N. Then (103), (110) – (112) may be rewritten in the form

(115) vp(α
∗
j (θ0(z); pl) − p−jα∗

j (θ0(z); l)) ≥ 1 − j,
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where j = 0, . . . , 3.
Lemma 5.3. Let kj ∈ N − 1, where j = 0, ..., 3,

3
∑

j=1

, kj > 0, J = {j ∈ {0 , ... , 3}: kj > 0}

and
∏

j∈J

α∗
j (θ0(z); lj) 6= 0

for some z ∈ Q�{0} and lj ∈ N, with j ∈ J. Then, for each m ∈ N the sequences

(116) α∗
j (θ0(z);m+ 1) , . . . , α∗

j (θ0(z);m+ µ) , . . .

with j ∈ J compose a linearly independent system over C.
Proof. Let

a ∈ Z, b ∈ N, θ0(z) = a/b 6= 0.

Since θ0(z) ∈ Q, it follows that α∗
j (θ0(z); lj) ∈ Q for j ∈ J, and there exists a

number d ∈ N, such that that d|α∗
j (θ0(z); lj)| ∈ N for any j ∈ J.

Since α∗
j (θ0(z); ν) ∈ Q for any j ∈ J and ν ∈ N, it follows that it is sufficient to

prove the linear independence of the system (116) over the field Q. The opposite
assumption means the existence bj ∈ Z, where j ∈ J, such that

(117)
∑

j∈J

|bj | > 0,
∑

j∈J

bjα
∗
j (θ0(z); ν) = 0,

where ν ∈ m + N. Let k = sup{j ∈ J : bj 6= 0} and let p is the prime number such
that

p > 2m∆ + 1 + d+ |a| + b
∑

j∈J

(d|bjα∗
j (θ0(z); ν)| + 2lj∆).

We take now in (113) – (114) ν = plk. Then according (117), (115),

−k = vp(α
∗
k(θ0(z); plk)) = vp





∑

j∈J�{k}

bjα
∗
j (θ0(z); ν)



 ≥ 1 − k.

�

Lemma 5.4. Let ∆ is equal to the prime number p > 5. If z = (1, 0), then
condition of the Lemma 5.3 is fulfilled for J = {0, 2, 3}. If z = (1,−π), then
condition of the Lemma 5.3 is fulfilled for J = {0, 1, 2, 3}.

Proof. In view of (16),

(118) α∗
1,0 = p2.
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(119) α∗
1,p−1 = p2

(

p−1
∏

k=1

(1 +
p

k

)2

∈ p2 + p4Op,

(120) α∗
1,p = 4p2

(

p−1
∏

k=1

(1 +
p

k

)2

/(1 + p)2 ∈ 4p2 − 8p3 + p4Op,

(121) α∗
1,k ∈ p4Op,

where k = 1 , . . . , p− 2.
In view of (18), (118) - (121),

(122) α∗(1; 1) ∈ 6p2 − 8p3 + p4Op, α
∗(−1; 1) ∈ 4p2 − 8p3 + p4Op.

In view of (17), (118) – (121),

(123) β∗
1,0 = 2α∗

1,0

(

−
(

p
∑

κ=2

1/κ

)

−
(

p
∑

κ=1

1/κ

))

∈

2p2(−2

p
+ 1 + pOp) = 2p(−2 + p+ p2Op),

−
(

2p−1
∑

κ=p+1

1/κ

)

− 1 +

(

p−1
∑

κ=1

1/κ

)

=

−1 + p

p−1
∑

κ=1

(
1

κ(p+ κ)
∈ −1 − p2Op,

(124) β∗
1,p−1 = 2α∗

1,p−1

(

−
(

2p−1
∑

κ=p+1

1/κ

)

− 1 +

(

p−1
∑

κ=1

1/κ

))

∈

−2p2(1 + p2Op)(1 + p2Op) = −2p2(1 + p2Op),

−
(

2p
∑

κ=p+2

1/κ

)

+

(

p
∑

κ=1

1/κ

)

=

1

2p
+

1

p+ 1
+ p

(

p−1
∑

κ=1

1

κ(p+ κ)

)

∈ 1

2p
+ 1 − p+ p2Op =

1

2p
(1 + 2p− 2p2 + p3Op),
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(125) β∗
1,p = 2α∗

1,p

(

−
(

2p
∑

κ=p+2

1/κ

)

+

(

p
∑

κ=1

1/κ

))

∈

4p(1 − 2p+ p2Op)(1 + 2p+ p2Op) = 4p(1 + p2Op),

(126) β∗
1,k = 2α∗

1,k

(

−
(

p+k
∑

κ=k+2

1/κ

)

−
(

p−k
∑

κ=1

1/κ

)

+

(

k
∑

κ=1

1/κ

))

∈ p3Op,

where k = 1 , . . . , p− 2,
In view of (19), (123) – (126),

(127) β∗(1, 1) ∈ −4p+ 2p2 + p3Op) − 2p2(1 + p2Op)+

4p(1 + p2Op) + p3Op ⊂ p2Op)

(128) β∗(−1, 1) ∈ −(−4p+ 2p2 + p3Op) − 2p2(1 + p2Op)−

4p(1 + p2Op) + p3Op) ⊂ 8p+ p2Op).

In view of (20) – (21), (118) – (128), if ε2 = 1, then

φ(ε; 1) = ε

p
∑

k=0

1+k
∑

t=1

ε1+k−t(α∗
1,kt

−2 + β∗
1,kt

−1) =

ε

1+p
∑

t=1

(ε)−tt−2

p
∑

k=t−1

α∗
1,k(ε)1+k + ε

1+p
∑

t=1

(ε)−tt−1

p
∑

k=t−1

β∗
1,k(ε)1+k ∈

p−2(εα∗
1,p−1 + α∗

1,p) + p−1((εβ∗
1,p−1 + β∗

1,p)) + pOp) ⊂

p−2(εp2 + 4p2 + p3Op+

p−1((−ε2p2(1 + p2Op) + 4p(1 + p2Op)) + pOp ⊂ 8 + ε+ pOp,

ψ(ε; 1) = ε

p
∑

k=0

1+k
∑

t=1

ε1+k−t(α∗
ν,k2t−3 + β∗

ν,kt
−2) =

ε

1+p
∑

t=1

2ε−tt−3

p
∑

k=t−1

ε1+kα∗
ν,k + ε

1+p
∑

t=1

ε−tt−2

p
∑

k=t−1

ε1+kβ∗
ν,k ∈

2p−3(εα∗
1,p−1 + α∗

1,p) + p−2(εβ∗
1,p−1 + β∗

1,p) + pOp ⊂
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2p−3(εp2 + 4p2 + p3Op)+

p−2(−ε2p2(1 + p2Op) + 4p(1 + p2Op) + pOp ⊂ p−1(8 − 2ε) + Op).

�

Lemma 5.5. Let r(1), ..., r(ν), ... be an arbitrary sequence of numbers in
C�{0}. Then for each m ∈ N the sequences of numbers

r(m+ 1)α∗
j (1;m+ 1), ..., r(m+ µ)α∗

j (1;m+ µ), ...

where j = 0, 2, 3 compose a linear independent system over C, and for each m ∈ N

the sequences of numbers

r(m+ 1)α∗
j (−1;m+ 1), . . . , r(m+ µ)α∗

j (−1;m+ µ), ...

where j = 0, 1, 2, 3 compose a linear independent system over C.
Proof. According to the Lemmata 5.3 and 5.4, for each m ∈ N the sequences

of numbers
α∗

j (1;m+ 1), . . . , α∗
j (1;m+ µ), ...

where j = 0, , 2, 3 compose a linear independent system over C, and for each m ∈ N

the sequences of numbers

α∗
j (−1;m+ 1), . . . , α∗

j (−1;m+ µ),

where j = 0, 1, 2, 3 compose a linear independent system over C.
If there exist a0, a2, a3 in C such that |a0| + |a2| + |a3| > 0, and

a0r(m+ µ)α∗
0(1;m+ µ) + a2r(m+ µ)α∗

2(1;m+ µ) + a3r(m+ µ)α∗
3(1;m+ µ) = 0,

then the equality

a0α
∗
0(1;m+ µ) + a2α

∗
20(1;m+ µ) + a3α

∗
3(1;m+ µ) = 0

holds for the same m and µ.
If there are a0, a1, a2, a3 in C, for which the inequality |a0|+|a1|+|a2|+|a3| > 0

holds and
a0r(m+ µ)α∗

0(1;m+ µ) + a1r(m+ µ)α∗
1(1;m+ µ)+

a2r(m+ µ)α∗
2(1;m+ µ)a3r(m+ µ)α∗

3(1;m+ µ) = 0,

then the equality

a0α
∗
0(1;m+ µ) + a1α

∗
1(1;m+ µ) + a2α

∗
2(1;m+ µ) + a3α

∗
3(1;m+ µ) = 0,

holds for the same m and µ. �
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According to the Lemma 5.5, the sequences of polynomials

α∗
j (w;m+ 1), . . . , α∗

j (w;m+ µ), . . .

with j = 0, 1, 2, 3 compose a linear independent system over C(z). for each m ∈ N.
Therefore for the equation (98) we have the inclusion

q4(θ0(z); ν
−1)q0(θ0(z); ν

−1) ∈ C[θ0(z)]�0.

For a prime p ∈ N, let, as above, vp stand for the p-adic valuation on Q, and let
further π(x) denotes the number of prime p ∈ N ∩ (−∞, x], where x ∈ R. So, we
have π(x) = 0 for x < 2. Let {α, β, γ} ⊂ R. If π(α) < π(β) and 1 ≤ γ, then
let dα,β,γ denotes the smallest positive integer d such that vp

(

d
κ

)

≥ 0 for all the
primes p ∈ N ∩ (α, β] and all the κ ∈ N ∩ [1, γ]. If either γ < 1, or π(β) ≤ π(α),
we let, by definition, dα,β,γ = 1. Clearly,

(129) dα,β,γ =
∏

α<p≤β

p[ln(γ)/ln(p)] ≤ γmax(π(β)−π(α),0).

Lemma 5.6. If 1 ≤ α ≤ β, 1 ≤ γ ≤ γ0α for some γ0 > 0, then for any ε > 0 there
exists C0(γ0, ε) such that

(130) dα,β,γ ≤ C0(γ0, ε) exp(α(β/α− 1 + ε)),

and

(131) d1,α,γ ≤ C0(γ1, ε) exp(α(1 + ε)).

Proof (see [56], Lemma 4). It may be assumed that β ≤ γ; then it follows from
the inequalities (129) – (131) that

dα,β,γ ≤ exp((ln(γ0) + ln(α))((β − α)/ ln(eα) +O(β − α)/ ln2(eα)) ≤

C0(γ0, ε) exp(α(β/α− 1 + ε)),

(132) d1,α,γ ≤ exp((ln(γ1) + ln(α))(α/ ln(eα) + O(α/ ln2(eα))) ≤

C0(γ0, ε) exp((α(1 + ε)).�

Lemma 5.7. If

(133) ν > 2/∆, p > ν∆,
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then

(134) vp(β
∗
ν,k) ≥ 0.

Proof (see [50], p.23). If p > ν∆ + k, then (134) directly follows from the
equalities (16) – (17). If ν∆ < p ≤ ν∆ + k, then we must consider in (17) only the
case ν + k < κ ≤ ν∆ + k; if ν∆ < p ≤ ν + k, then p < κ ≤ ν∆ + k ≤ 2ν∆ < 2p
and, consequently, (κ, p) = 1; therefore in this case we must consider only p >
max(ν + k, ν∆). But then

vp(κ) ≤ 1, vp

(

(

ν∆ + k

ν∆ − ν

)2
)

≥ 2.�

According to the Lemma 5.7, d1,ν∆,2ν∆β
∗
ν,k ∈ Z. Let N, ∆ ∈ N, ∆ ≥ 2. Let us

consider the numbers

(135)

(

ν∆

k

)(

ν∆ + k

ν∆ − ν

)

,

where k = 0, . . . , ν∆. How small may be chosen r(ν) ∈ (0, +∞) ∩ Q such that

r(ν)

(

ν∆

k

)(

ν∆ + k

ν∆ − ν

)

∈ Z

for all the k = 0, . . . , ν∆? Probably G.V. Chudnovsky was the first man, who
discovered, that r(ν) may be chosen sufficiently small; Hata [17] in details studied
this effect. Therefore I name such r(ν) by Chudnovsky-Hata’s multiplier.

Lemma 5.8. Let p ∈ N is a prime number such that

(136) 2{ν∆/p} < {ν(∆ − 1)/p}.

Then

vp

((

ν∆

k

)(

ν∆ + k

ν∆ − ν

))

≥ 1,

where k = 0, . . . , ν∆.
Proof. See [67], section 2. �

Let d∗1(ν) denotes the product of all the prime numbers p ∈ N, which satisfy to
the condition (136). Then, according to the Lemma 5.8,

(137) (d∗1(ν))
−2α∗

ν,k ∈ Z

for any k = 0, . . . , ν∆.
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Lemma 5.9. If the conditions (133) hold, then

d1,ν∆,2ν∆(d∗1(ν))
−2β∗

ν,k ∈ Z,

where k = 0, . . . , ν∆.
Proof. We prove that

(138) vp(d1,ν∆,2ν∆(d∗1(ν))
−2β∗

ν,k) ≥ 0,

for any prime number p ∈ N.
We partially repeat the proof of the Lemma 5.7.
If p > ν∆ + k, then, since κ ≤ ν∆ + k, it follows that vp(κ) = 0, and, according

to (137), the relation (138) holds. If p > ν∆, then, since κ ≤ ν∆ + k ≤ 2ν∆ < 2p,
it follows that vp(κ) ≤ 1; moreover, if p ≤ ν + k < κ, then, since κ < 2p, it follows
that vp(κ) = 0, and, in view of (137), the relation (138) holds. On the other hand,
if p > max(ν∆, ν+k) then the inequality (136) turns into equality with both sides
equal to zero. Therefore vp(d

∗
1(ν)) = 0 and the relation (134) holds. If p ≤ ν∆,

then, since κ ≤ 2ν∆, it follows that vp(d1,ν∆,2ν∆/κ) ≥ 0 and, according to (137),
the relations (134) holds. �

Let

(139) D∗∗(ν) = d1,ν(∆+1),2ν∆.

Then d1,ν∆,2ν∆ is divisor of D∗∗(ν) and according to the Lemma 5.9,

(140) D∗∗(ν)(d∗1(ν))
−2β∗

ν,k ∈ Z,

where k = 0, . . . , ν∆.
Lemma 5.10. If (133) holds, then

(141) (D∗∗(ν))3(d∗1(ν))
−2α∗(w; ν) ∈ Z[w],

(142) (D∗∗(ν))3(d∗1(ν))
−2β∗(w; ν) ∈ Z[w],

(D∗∗(ν))3(d∗1(ν))
−2φ∗(w; ν) ∈ Z[w], (D∗∗(ν))3(d∗1(ν))

−2ψ∗(w; ν) ∈ Z[w].

Proof. The relations (141) – (142) follow from (18) – (19), (140) and (137). It
follows from (20) – (21), (137), (140) and (139) that

(D∗∗(ν))3(d∗1(ν))
−2φ(w; ν) =

ν∆
∑

k=0

ν+k
∑

t=1

(w)ν+k−t(d∗1(ν))
−2α∗

ν,k(D∗∗(ν))3t−2+
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ν∆
∑

k=0

ν+k
∑

t=1

(w)ν+k−tD∗∗(ν)(d∗1(ν))
−2β∗

ν,k(D∗∗(ν))2t−1) ∈ Z[w],

(D∗∗(ν))3(d∗1(ν))
−2ψ(w; ν) =

ν∆
∑

k=0

ν+k
∑

t=1

(w)ν+k−t(d∗1(ν))
−22α∗

ν,k(D∗∗(ν))3t−3+

ν∆
∑

k=0

ν+k
∑

t=1

(w)ν+k−tD∗∗(ν)(d∗1(ν))
−2β∗

ν,k(D∗∗(ν))2t−2) ∈ Z[w].

�

§6. Proof of the Theorem 1.

Lemma 6.1. If r ≥ 1, then

lim
ν→∞

(|f∗
2 ((r, 0), ν)|)1/ν = h∼(η∧1 (r, π, δ0)),

lim
ν→∞

f∗
4 ((r, 0), ν)/f∗

2 ((r, 0), ν) = ln(r),

where h∼(η) is defined in (78).
Proof. See the Lemma 4.2.1 in [57] �

Lemma 6.2. If r ≥ 1, then

lim
ν→∞

(|f∗
2k((r, φ), ν)|)1/ν ≤ h∼(η∧1 (z, π, δ0)),

for k = 1, 2
Proof. According to (24), |f∗

2 ((r, φ), ν)| ≤ |f∗
2 ((r, 0), ν)|.

In view of (9), (R0(t; ν)(ν(∆− 1)!(ν∆)!)2 is product of 2 + ν(4∆− 2) factors of
the form (t− ν + k)ε with k ∈ N − 1 and ε2 = ε; clearly, if t ≥ ν + 1, then

|(t− ν + k)−ε(∂/∂t)(t− ν + k)ε| ≤ 1, |((∂/∂t)R2
0)(t, ν)| ≤ (2 + ν(4∆ − 2))R2

0(t, ν)

and |f∗
4 ((r, φ), ν)| ≤ (2 + ν(4∆ − 2))|f∗

2 ((r, 0), ν)|. �

In view of (3.1.55) in [54], η∧0 (1, π, δ0) = 1, η∧1 (r, π, δ0) = γ1; therefore, according
the Lemmata 6.1 – 6.2 and (78) that

(143) |f∗
2k((1, φ), ν)| ≤ (h∼(γ1))

((1+ε))ν)O(1) =

((1/∆)(∆/(∆ + 1))(∆+1))2(1+ε)ν)O(1) =

((1/∆)(1 + (1/∆))−(∆+1))2(1+ε)ν)O(1) < (1/(e∆))2(1+ε)ν)O(1).
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Clearly, ln(h∼(γ1)) = −2 ln(∆) − 2(∆ + 1) ln((∆ + 1)/∆); if ∆ = 11, then

(144) ln(h∼(5/6)) = 22 ln(11) − 24 ln(12) = −6.884063593... .

I shall make here all calculations ’by hands’ using only calcuator of the firm ’Casio.’
Therefore everyone can check them up. I take below ∆ = 11. According to (132)
and (139),

(∆ + 1 − ε)ν −O(1) ≤ ln(D∗∗(ν)) ≤ (∆ + 1 + ε)ν + O(1),

with any ε > 0 and O(1) depending only from ε. For ∆ = 11 we have

(12 − ε)ν −O(1) ≤ ln(D∗∗(ν)) ≤ (12 + ε)ν + O(1).

In view of (32) and (45) in [67],

ν(∆I − ε) +O(1) ≤ log(d∗1(ν)) ≤ ν(∆I + ε) + O(1),

where

I = I(∆) = ln(∆) − ((∆ − 1)/(2∆)) ln(∆ − 1) − ((∆ + 1)/(2∆)) ln(∆ + 1)−

(π/(2∆))
∑

1≤κ≤(∆−1)/2

cot(πκ/(∆ − 1)) + (π/(2∆))
∑

1≤κ≤(∆+1)/2

cot(πκ/(∆ + 1)).

For ∆ = 11 we have

I = ln(11) − (5/11) ln(10) − (6/11) ln(12)−

(π/22)
∑

1≤κ≤5

cot(πκ/10)) + (π/22)
∑

1≤κ≤6

cot(πκ/12).

Further we have

ln(12) = 2, 48490665...; ln(11) = 2, 397895273...; ln(10) = 2, 302585093...;

(6/11) ln(12) = 1, 355403627...; (5/11) ln(10) = 1, 046629588...;

cot(π/10) + cot(2π/10) + cot(3π/10) + cot(4π/10) + cot(5π/10) =

2/ sin(π/5) + 2/ sin(2π/5) =

81/2((1 − 5−1/2)1/2 + (1 + 5−1/2)1/2) = 5, 505527682...;

cot(π/12) + cot(2π/12) + cot(3π/12) + cot(4π/12) + cot(5π/12) =

2/ sin(π/6) + 2/ sin(π/3) + 1 = 5 + 4/
√

3 = 7, 309401077...;
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(π/22)
∑

1≤κ≤6

cot(πκ/12) − (π/22)
∑

1≤κ≤5

cot(πκ/10) =

(π/22)(7, 309401077...− 5, 505527682...) = 0, 257592518... ,

I = 2, 397895273...− 1, 046629588...− 1, 355403627...+ 0, 257592518 =

= 0.253454575... , 2∆I = 22 × 0, 253454575... = 5, 576000668... .

Let ω2(∆) = 3(∆ + 1) − 2∆I(∆). Then

(145) ω2(11) = 36 − 5, 576000668... = 30, 42399933 .

and

(146) ν(ω2(11) − ε) −O(1) ≤ ln((D∗∗(ν))3/(d∗1(ν)
2) ≤ ν(ω2(11) + ε) +O(1)

with any ε > 0 and O(1) depending only from ε.
In view of (78) we must calculate the values |h∼(η∧k (1, π/2, δ0)| for k = 0, 1

According to (3.1.43) and (3.1.71) in [54], for our case ∆ = 11 we have

q1 = 25/36 = 0, 694444444..., q2 = 121/9 = 13, 44444444...

q0 = 26, 88888888... .

In view of (3.1.6) and (3.1.10) in [54], |D0(1, π/2, 1/11)| = 1, 412753353... . In view
of (3.1.41) in [54],

p1 = 8(|R∗
0(r, ψ, δ0)|2 + |R0(r, ψ, δ0)|2)/(1 + δ0)

2 =

8

(

r2 + rt+
1

4
+ |D0(r, ψ, δ0)|

)

/(1 + δ0)
2,

and in our case

p1 = 8 (5/4 + |D0(1, π/2, 1/11)|)/(1 + 1/11)2 =

(121/144)8 (1, 25 + 1, 412753353...) = 17.89961976..., .

In view of (3.1.42) in [54],

p2 = 8

(

1 +
1

484
+ |D0(1, π/2, 1/13)|

)

/(1 + 1/11)2 =

(121/144)8 (485/484 + 1, 412753353...) = 16, 2329531... .
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In view of (3.1.70) and (3.1.61) in [54],

p0 = 8(|R∗
−1(r, ψ, δ0)|2 + |R0(r, ψ, δ0)|2)/(1 + δ0)

2 =

8
(

r2 + (2 + δ0)
2/4 + r(2 + δ0) cos(ψ) + |D0(r, ψ, δ0)|

)

/(1 + δ0)
2,

and in our case

p0 = 8 (1013/484 + |D0(1, π/2, 1/11)|)/(1 + 1/11)2 =

(121/144)8 (2, 092975207...+ 1, 412753353...) = 23, 56628643... .

Further we have

√

(p1/2)2 − q1 =
√

(17.89961976.../2)2 − 0, 694444444... = 8, 910928821... ,

√

(p2/2)2 − q2 =
√

(16, 2329531.../2)2 − 13, 44444444... = 7, 241045998... ,
√

(p0/2)2 − q0 =
√

(23, 56628643.../2)2 − 26, 88888888... = 10, 58081165... .

In view of (3.1.37) in [54],

|η1(1, π/2, 1/11)|2 = p1/2 −
√

(p1/2)2 − q1 =

17.89961976.../2− 8, 910928821... = 0, 038881059...,

|η0(1, π/2, 1/11)|2 = p1/2 +
√

(p1/2)2 − q1 =

17.89961976.../2 + 8, 910928821... = 17, 8607387... .

In view of (3.1.37) in [54],

|η1(1, π/2, 1/11) + 1|2 = p2/2 −
√

(p2/2)2 − q2 =

16, 2329531.../2− 7, 241045998... = 0.875430551...,

|η0(1, π/2, 1/11) + 1|2 = p2/2 +
√

(p2/2)2 − q2 =

16, 2329531.../2 + 7, 241045998... = 15.35752255... .

In view of (3.1.61) in [54], in our case

s = cos(ψ/2) = cos(π/4) =

√
2

2
> δ0/4 =

1

44
.

Therefore, in view of (3.1.65) in [54],

|η1(1, π/2, 1/11)− 1|2 = p0/2 −
√

(p0/2)2 − q0 =
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11, 78314322...− 10, 58081165...... = 1.202331565... ,

|η0(1, π/2, 1/11)− 1|2 = p0/2 +
√

(p0/2)2 − q0 =

11, 78314322...+ 10, 58081165...... = 22.36395487... .

In view of (78),
ln(|h∼(ηk(1, π/2, 1/11))| =

ln(|(ηk(1, π/2, 1/11))2 − 1|2) + 20 ln(11/10) − 4 ln 2+

10 ln(|ηk(1, π/2, 1/11)|2),
where k = 0, 1. Further we have

ln(|(η1(1, π/2, 1/1))2 − 1|2 =

ln(1, 202331565...) + ln(0, 875430551...) = 0, 051223187... ,

20 ln(11/10) = 1, 906203596... ,

10 ln(|η1(1, π/2, 1/11)|2) = 10 ln(0, 038881059...) = −32, 47248062...,

ln(16) = 2, 772588722... ,

(147) − ln(|h∼(η1(1, π/2, 1/11)|) = 32, 47248062...+

2, 772588722...− 0, 051223187...− 1, 906203596... = 33, 28764256...,

ln(|(η0(1, π/2, 1/11))2 − 1|2) =

ln(15.35752255...) + ln(22.36395487...) = 5, 839055938...,

10 ln(|η0(1, π/2, 1/11)|2) = 10 ln(17, 8607387...) = 28, 82604935...,

(148) ln(|h∼(η0(1, π/2, 1/11))|) = 28, 82604935...+

5, 839055938...+ 1, 906203596− 2, 772588722... = 33, 79872016...

In view of (144), (147) and (148),

(149) 0 < h∼(η1(1, π/2, 1/11)| < h∼(5/6) < 1 < h∼(η0(1, π/2, 1/11))|

Let

(150) γ∗k(∆) = (−1)k(ln(|h∼(η1(1, π/2, 1/∆)|)− ω2(∆)),
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where k = 0, 1 I view of (145) and (147),

(151) γ∗1(11) = 33, 28764256...− 30, 42399933 = 2.86364323... > 0

and

(152) −ν(γ∗1(11) + ε) +O(1) ≤

ln(|h∼(η1(1, π/2, 1/11))|ν(D∗∗(ν))3/(d∗1(ν)
2)) ≤

−ν(γ∗1 (11) − ε) + O(1) → −∞,

if 0 < ε < γ∗1(11)/2 and ν → +∞.
In view of (150), (145) and (148),

γ∗0(11) = 30, 42399933...+ 33, 79872016... = 64, 22271949... ,

(153) ν(γ∗0 (11) − ε) +O(1) ≤

ln(|h∼(η0(1, π/2, 1/11)|ν(D∗∗(ν))3/(d∗1(ν)
2) ≤

ν(γ∗0(11) + ε) +O(1).

Let γ∗(∆) = γ∗0(∆)/γ∗1(∆). In view of (152) and (153), there exists

− lim
ν→+∞

ln(|h∼(η0(1, π/2, 1/11)|ν(D∗∗(ν))3/(d∗1(ν)
2)

ln(|h∼(η1(1, π/2, 1/11)|ν(D∗∗(ν))3/(d∗1(ν)
2)

=

γ∗(11) (= 64, 21607509.../2, 856998639...= 22, 42692763...)

and

(154) γ∗(11) < γ = 22, 42693

(of course, if our Theorem is true for some γ, then all the bigger numbers can play
the role of γ). Let h0(ε) = (γ∗0(11) + 6ε)/(γ∗1(11) − 2ε), where ε ∈ (0, γ∗1(11)/2).
Clearly, h0(ε) increases together with increasing ε in (0, γ∗1(11)/2). Consequently,
in view of (154), h0(0) < γ. Therefore there exists ε10 ∈ (0, γ∗1(13)/2) such that

(155) h0(ε) < γ

for all the ε ∈ (0, ε10). Let

(156) R1 = R1(ε) = exp(γ∗1(13) + 2ε),
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(157) R2 = R2(ε) = exp(γ∗1(13) − 2ε),

(158) r∧1 = r∧2 = r∧ = r∧(ε) = exp(γ∗0(13) + 2ε),

where ε ∈ (0, ε10). Then

R1 > R2 > 1, ln(R1/R2) = 4ε.

In view of (155),

(159) (ln(r∧(ε)R1(ε)/R2(ε)))/ ln(R2(ε)) = h0(ε) < γ

for all the ε ∈ (0, ε10). I apply further the following result [68]:
Lemma 6.3. Let s ∈ N − 1, n ∈ N,

a∼i ∈ C, ai(ν) ∈ C, an(ν) = 1, ai(ν) − a∼i = O(1/ν)

for ν ∈ N and i = 0, . . . , n.
Let us consider the following difference equation

(160)
n
∑

k=0

ak(ν)y(ν + k) = 0,

where ν ∈ N − 1. For m ∈ N let Vm denotes the linear over C space of solutions

y = y(ν) of the equation
n
∑

k=0

ak(ν)y(ν + k) = 0, where ν ∈ m + N − 1. Let the

absolute values of all the roots of the characteristical polynomial

(161) T (z) =
n
∑

k=0

a∼k z
k

are among the numbers {ρi: 1 ≤ i ≤ 1 + s}, such that ρj < ρi for 1 ≤ i < j ≤ s+ 1
and ρs+1 = 0.

Let ei and ki denote respectively the sum and the maximum of the multiplicities
of those roots, whose absolute value is equal to the number ρi, where i = 1, . . . , s+1,
and let k∗ = ks+1. We suppose that, if s > 0, then ei > 0 for i = 1 . . . , s. For
given y = y(ν) in Cm−1+N, let

ωn,y(ν) = max(|y(ν)| , . . . , |y(ν + n− 1)|).

Then there exist a constant A > 0, m ∈ N, α∧(ν) > 0 with ν ∈ m+ N − 1 and the
subspaces V ∨

m,1, . . . , V
∨
m,s+1 such that lim

ν→∞
α∧(ν) = 0,

Vm = V ∨
m,1 ⊕ . . . ,⊕V ∨

m,s+1, dimC(V ∨
m,i) = ei, 1 ≤ i ≤ s+ 1,



ON THE MEASURE OF NONDISCRETENESS OF SOME MODULES. 45

and, if y ∈ V ∨
m,θ for some θ ∈ {1, ..., s}, then

(162) exp(−A(ln(ν) + ν1−1/kθ ))(ρθ)
νωn(y)(m) ≤ ωn,y(ν)

for ν ∈ m+ N − 1; moreover, V ∧
m,j = V ∨

m,j ⊕ . . . ⊕ V ∨
m,s+1, where j = 1 . . . , s+ 1,

and, if s ≥ 1 natural projections πj : V ∧
m,j → V ∨

m,j for j = 1 . . . , s, have the
folloving properties:

if y ∈ V ∧
m,θ for some θ ∈ {1, ..., s}, then

(163) ωn,y(ν) ≤ exp(A(ln(ν) + ν1−1/kθ ))(ρθ)
νωn,y(m),

(ωn,πθ(y)
(m) − α(ν)ωn,y(m))(ρθ)

ν exp(−A(ln(ν) + ν1−1/kθ )) ≤ ωn,y(ν),

for ν ∈ m+ N − 1; if k∗ > 0, y ∈ V ∨
m,s+1 (= V ∧

m,s+1),

then |y(ν)| ≤ (A/ν)ν/k∗

ωn,y(m), where ν ∈ m+ N − 1.
Proof. The proof is given in [68]. �

Remark 6.1. Clearly, for any ε ∈ (0, 1) there exists C0 > 0 such that the
inequalities (162) and (163) may be respectively replaced by the inequalities

(164) (1/C0)(ρθ exp(−ε))νωn(y)(m) ≤ ωn,y(ν)

and

(165) ωn,y(ν) ≤ C0(ρθ exp(ε))νωn,y(m).

In the considered case the equation (97) plays the role of the equation (160), and
polynomial (91) plays the role of the polynomial (161). In view of (149), we have

n = 4, s = 2, ρ1 = |h∼(η∧0 (1, π/2, 1/11))| = |h∼(η∧0 (1,−π/2, 1/11))|,

ρ2 = |h∼(η∧1 (1, π/2, 1/11))| = |h∼(η∧1 (1,−π/2, 1/11))|.
Further we have e1 = e2 = 2, k1 = k2 = 1, k3 = 0. Since k3 = 0, it follows
that V ∨

m,3 = 0, V ∧
m,2 = V ∨

m,2. In view of (143) and (149), the space V ∨
m,2 of the

Lemma 6.3 contains f∗
2k((1,−π); ν) for k = 1, 2; moreover, since dimC(V ∨

m,2) = 2,
it follows from the Lemma 5.5 that f ∗

2 ((1,−π); ν), f∗
4 ((1,−π); ν) compose a basis

of V ∨
m,2 = V ∧

m,2. If

(166) y = Z1f
∗
2 ((1,−π); ν) + Z2f

∗
6 ((1,−π); ν)

with {Z1, Z2} ⊂ C, we let

(167) p∨(y) = (max(|Z1|, |Z2|).
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It is well known that function ωn,y(m) (with variable y ∈ Vm) is a norm on the
space Vm. We denote by p∧(y) the restriction of ωn,y(m) on the space V ∨

m,2 = V ∧
m,3.

So, on the two-dimensional space V ∨
m,2 = V ∧

m,2 we have two norms p∨(y) and p∧(y).
Therefore there exists a constant C1 > 0 such that

(168) p∨(y) ≤ C1p
∧(y), C1p

∨(y) ≥ p∧(y)

for any y ∈ V ∨
m,2 = V ∧

m,2.
In view of (164) – (165) and (168),

(169) (C0C1))
−1(ρ3 exp(−ε))νp∨(y) ≤ ωn,y(ν),

(170) ωn,y(ν) ≤ C0C1(ρ3 exp(ε))νp∨(y).

In view of (165),

(171) |α∗
k(−1; ν)| ≤ O(1)(ρ1 exp(ε))ν ,

where k = 0, 1, 2, 3 , ν ∈ N and O(1) depends only from ε. Let {m, n} ⊂ N,

ai,k ∈ R

for i = 1 , . . . ,m, k = 1 , . . . , n,

α∧
j (ν) ∈ Z

where j = 1 , . . . ,m + n and ν ∈ N. Let there are γ∧0 , r
∧
1 ≥ 1, . . . , r∧m ≥ 1 such

that

(172) |αi(ν)| < γ∧0 (r∧i )ν

where i = 1 , . . . ,m and ν ∈ N. Let yk(ν) = −α∧
m+k(ν) +

m
∑

i=1
ai,kα

∧
i (ν), where

k = 1 , . . . , n and ν ∈ N. If

(173) X =





Z1
...
Zn



 ∈ Rn,

then let

(174) q∞(X) = max(|Z1| , . . . , |Zn|),
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y∧(X) = y∧(X, ν) =

n
∑

k=1

y∧k (ν)Zk

for ν ∈ N, let

φi(X) =

n
∑

k=1

ai,kZk

for i = 1 , . . . ,m, and let

α∧
0 (X, ν) =

n
∑

k=1

α∧
m+k(ν)Zk

for ν ∈ N. Clearly,

y∧(X, ν) = −α∧
0 (X, ν) +

m
∑

i=1

α∧
i (ν)φi(X)

for X ∈ Rn and ν ∈ N,
α∧

0 (X, ν) ∈ Z

for X ∈ Zn and ν ∈ N.
Lemma 6.4. Let {l, n} ⊂ N, γ∧1 > 0, γ∧2 > 1

2 , R1 ≥ R2 > 1,

(175) αi = (log(r∧i R1/R2))/ log(R2),

where i = 1 , . . . ,m, let X ∈ Zn\{0},

γ∧3 = γ∧1 (R1)
(− log(2γ2R2))/ log(R2), γ∧4 = γ∧3

(

m
∑

i=1

γ0(r
∧
i )(log(2γ∧

2 ))/ log(R2)+l

)−1

and let for each ν ∈ N − 1 hold the inequalities

(176) γ∧1 (R1)
−νq∞(X) ≤ sup{|y∧(X, κ)|:κ = ν, . . . , ν + l − 1},

(177) |y∧(X, ν)| ≤ γ∧2 (R2)
−νq∞(X)

Then

(178) sup{‖φi(X)‖(q∞(X))αi: i = 1, . . . , m} ≥ γ∧4 .

Proof. Proof may be found in [58], Theorem 2.3.1. �
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In our case m = n = 2 , a1,1 = ln 2, a1,2 = a2,1 = ζ(2)/2, a2,2 = 3ζ(3)/2,

α∧
1 (ν) = −(D∗∗(ν))3/(d∗1(ν)

2))β∗(−1, ν),

α∧
2 (ν) = −(D∗∗(ν))3/(d∗1(ν)

2))α∗(−1, ν),

α∧
3 (ν) = −(D∗∗(ν))3/(d∗1(ν)

2))φ∗(−1, ν),

α∧
4 (ν) = −(D∗∗(ν))3/(d∗1(ν)

2))ψ∗(−1, ν).

According to the Lemma 5.10,α∧
j (ν) ∈ Z, where j = 1 , . . . , 4 and ν ∈ N.

In view of (171) and (176),

|α∧
j (ν)| ≤ (ρ1 exp(ε))ν exp(ν(ω2(11) + ε) + O(1)) =

exp((γ∗0(11) + 2ε))ν + O(1),

where j = 1 , . . . , 4 , ν ∈ N and O(1) depends only from ε. Therefore there exists a
constant γ0 > 0 such that (172) holds with r∧j defined in (158).

So, yk(ν) = (D∗∗(ν))3/(d∗1(ν)
2))f∗

2k(1; ν), where ν ∈ m + N with m defined in
the Lemma 6.3, for k = 1, 2 now plays the role of yk(ν) of the Lemma 6.4. In view
of (169), (170) and (146),

exp((γ∗3(13) − 2ε))ν + O(1))p∨(y) =

(ρ3 exp(−ε))ν exp(ν(ω2(13) − ε) + O(1))p∨(y) ≤ ω2,yk
(ν),

ω2,yk
(ν) ≤ (ρ3 exp(ε))ν exp(ν(ω2(13) + ε) + O(1))p∨(y) =

exp((γ∗3(13) + 2ε))ν +O(1))p∨(y),

where O(1) depends only from ε, k = 1, 2, and ν ∈ m + N with m defined in the
Lemma 7.6; according to (166), (167) and (173), (174) with n = 2, we have the
equality p∨(y) = q∞(X). So, there exist γ∧1 > 0, γ∧2 > 0 such that (176), (177)
hold with R1, R2 defined in (156) – (157), with l = n = 5, ν ∈ m+ N, where m is
defined in the Lemma 7.6 (the condition ν ∈ m+ N is not essential, because of the
substitution ν := ν − m − 1 influences only on constants γ∧

0 , γ
∧
1 , γ

∧
2 , γ

∧
3 and γ∧4 ).

So, all the conditions of the Lemma 7.7 are fullfilled. Therefore (178) holds, and,
in view of (175) and (159),

αi = h0(ε) < γ,

where i = 1, 2 .�



ON THE MEASURE OF NONDISCRETENESS OF SOME MODULES. 49

References
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[16] S.Eckmann, Über die lineare Unaqbhangigkeit der Werte gewisser Reihen, Results in Math-

ematics, 11 (1987), 7 – 43.

[17] Hata M.,1990., Legendre type polinomials and irrationality mesures, J. Reine Angew. Math.,

407 (1990), 99 – 125.

[18] A.O. Gelfond, Transcendental and algebraic numbers, (in Russian), GIT-TL, Moscow, 1952.
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Poincaré type (in Russian), VINITI, Moscow, 2468 – 92 (1992), 1 – 55.

[32] , On the decomposition of the difference operators of Poincaré type in Banach algebras
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VINITI, Moscow, 3384-B97 (1997), 1 – 41.

[38] , On the variability of solutions of difference equations of Poincaré type (in Russian),
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