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Abstract

Let G be a simple complex algebraic group equipped with a factorizable Poisson Lie

structure. Let U~(g) be the corresponding quantum group. We study U~(g)-equivariant

quantization C~[G] of the affine coordinate ring C[G] along the Semenov-Tian-Shansky

Poisson Lie bracket. For a simply connected group G we prove an analog of the Kostant-

Richardson theorem stating that C~[G] is a free module over its center.
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1 Introduction

Let G be a simple complex algebraic group. Suppose G is a Poisson Lie group relative

to a quasitriangular Lie bialgebra structure on g = Lie G. Consider G as a G-manifold

with respect to conjugating action. In the present paper we study quantization of a special

Poisson structure on G making it a Poisson Lie G-manifold with respect to the conjugating

action. This (STS) Poisson structure is due to Semenov-Tian-Shansky. In fact, the STS

∗This research is partially supported by the Emmy Noether Research Institute for Mathematics, the

Minerva Foundation of Germany, the Excellency Center ”Group Theoretic Methods in the study of Algebraic

Varieties” of the Israel Science foundation, and by the RFBR grant no. 03-01-00593.
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bracket makes G a Poisson Lie manifold over DG, where DG is a Lie group corresponding

to the double Lie bialgebra Dg.

The affine coordinate ring C[G] can be quantized along the STS Poisson bracket to a

U~(Dg)-algebra C~[G]. This quantization can be realized as a subalgebra in U~(g). Simul-

taneously, C~[G] is realized as a quotient of the so called reflection equation (RE) algebra

associated with U~(g). For G being a classical matrix group, the corresponding ideal in the

RE algebra is given explicitly.

Our main result is a quantum analog of the Kostant-Richardson theorem. In [K] Kostant

proved that the algebras C[g] and U(g) are free modules over their subalgebras of g-invariants.

Richardson generalized the case of C[g] to the affine coordinate ring of a semisimple complex

algebraic group, [R]. Namely, if the subalgebra of invariants I(G) (class functions) is poly-

nomial, then C[G] is a free I(G)-module generated by a G-submodule in C[G] with finite

dimensional isotypical components. We prove the analogous statement for C~[G].

The main result of the present paper can be formulated as follows.

Theorem. Let G be a simple complex algebraic group and let C~[G] be the U~(Dg)-equiva-

riant quantization of C[G] along the STS bracket. Then

i) the subalgebra I~(G) of U~(g)-invariants coincides with the center of C~[G],

ii) I~(G) ' I(G) ⊗ C[[~]] as a C-algebra.

Suppose that I(G) is a polynomial algebra. Then

iii) C~[G] is a free I~(G)-module generated by a U~(g)-submodule E ⊂ C~[G]. Each isotypic

component in E is C[[~]]-finite.

Remark that for simply connected G the algebra of invariants is a polynomial algebra

generated by the characters of fundamental representations, [St]. That is true for some

non-simply connected groups, for example, for SO(2n + 1).

Acknowledgements. The author is grateful to the Max-Planck Institute for Mathe-

matics in Bonn for hospitality and the excellent research conditions. He thanks D. Panyushev

and P. Pyatov for valuable remarks.

2 Quantized universal enveloping algebras

Throughout the paper g is a simple complex Lie algebra equipped with a quasitriangular

Lie bialgebra structure. That is, we fix a classical solution r ∈ g ⊗ g to the Yang-Baxter
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equation

[r12, r13] + [r12, r23] + [r13, r23] = 0 (1)

and normalize it so that the symmetric part Ω := 1
2
(r12 + r21) of r is the inverse (canonical

element) of the Killing form on g. Recall that quasitriangular solutions to the equation (1)

are parameterized by combinatorial objects called Belavin-Drinfeld triples, [BD].

By U~(g) we denote the quantization of the Lie bialgebra (g, r), [Dr1, EK]. It is a

quasitriangular topological Hopf C[[~]]-algebra isomorphic to the algebra U(g)[[~]] of formal

power series in ~ with coefficients in U(g) completed in the ~-adic topology.

Consider the twisted tensor square U~(g)
R

⊗U~(g) of U~(g) constructed as follows, [RS].

The Hopf algebra U~(g)
R

⊗U~(g) is obtained by the twist of the ordinary tensor square U ⊗̂2
~

(g)

by the cocycle R23 ∈ U ⊗̂4
~

(g). The symbol ⊗̂ means completed tensor product (in the ~-

adic topology). The diagonal embedding ∆: U~(g) → U~(g)
R

⊗U~(g) via comultiplication is a

homomorphism of Hopf algebras. The algebra U~(g)
R

⊗U~(g) is a quantization of the double

Dg, which in the simple quasitriangular case is isomorphic to g⊕ g as a Lie algebra. We will

use notation U~(Dg) for U~(g)
R

⊗U~(g).

3 Simple groups as Poisson Lie manifolds

Given an element ξ ∈ g let ξl and ξr denote, respectively, the left- and right invariant vector

fields on G. Namely,

(ξlf)(g) =
d

dt
f(getξ)|t=0, (ξrf)(g) =

d

dt
f(etξg)|t=0 (2)

for every smooth function f on G.

There are two important Poisson structures on G. First of them, the Drinfeld-Sklyanin

(DS) Poisson bracket [Dr1], is defined by the bivector field

$DS = rl,l − rr,r. (3)

This bracket makes G a Poisson Lie group, [STS].

The Semenov-Tian-Shansky (STS) Poisson structure on the group G is defined by the

bivector field

$STS = rl,l
− + rr,r

− − rr,l
− − rl,r

− + Ωl,l − Ωr,r + Ωr,l − Ωl,r = rad,ad
− + (Ωr,l − Ωl,r). (4)

Here r− is the skew symmetric part 1
2
(r12 − r21) of r.
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Consider the group G as a G-space with respect to the conjugating action. Then the

STS bracket makes G a Poisson-Lie manifold over G endowed with the Drinfeld-Sklyanin

bracket, [STS].

Let V be a finite dimensional G-module. The Lie algebra g generates the left and right

invariant vector fields on End(V ) defined similarly to (2). Introduce a bivector field on

End(V ) by the formula (4), where the superscripts l, r mark the left-and right invariant

vector field on End(V ). This bivector field is Poisson on the G×G-invariant variety End(V )Ω

of matrices A ∈ End(V ) satisfying the quadratic equation [A⊗A, Ω] = 0. Restriction of this

Poisson structure to G ⊂ End(V ) coincides with (4).

In the defining representation of SL(n) the variety End(V )Ω is the entire matrix space.

Let G be an orthogonal or symplectic group and V its defining representation with the

invariant form B ∈ V ⊗ V . The variety End(V )Ω coincides with the set of matrices fulfilling

BX tB−1X = d, XBX tB−1 = d. (5)

Here d is a numeric parameter. The condition d 6= 0 specifies a principal open set in End(V ),

which is a group and a trivial central extension of G. This extension can be defined for an

arbitrary matrix algebraic group and it will play a role in our consideration.

4 Quantization of the STS bracket on the group

By quantization of a Poisson affine variety C[M ] we understand a C[[~]]-free C[[~]]-algebra

C~[M ] such that C~[M ]/~C~[M ] ' C[M ]. The quantization is called equivariant if

equipped with an action of a quantum group U~(g) that is compatible with the multipli-

cation, namely

x . (ab) = (x(1) . a)(x(2) . a) for all x ∈ U~(g) for all a, b ∈ C~[M ]

For an equivariant quantization to exist, M must be a Poisson Lie manifold over the Poisson

Lie group G corresponding to the Lie bialgebra g.

4.1 Some commutative algebra

In the present subsection we collect, for reader’s convenience, some standard facts about

C[[~]]-modules that we use in what follows.

Lemma 4.1. Let E be a free finite C[[h]]-module. Then every C[[h]]-submodule of E is finite

and free.
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This assertion holds true for modules over principal ideal domains, see e.g. [Jac].

Given an C[[h]]-module E we denote by E0 its ”classical limit”, the C-module E/~E. A

C[[~]]-linear map Ψ: E → F induces a C-linear map E0 → F0, which will be denoted by Ψ0.

Lemma 4.2. Let E be a finite and W an arbitrary C[[h]]-modules. A C[[h]]-linear map

W → E is an epimorphism if the induced map W0 → E0 is an epimorphism of C-modules.

This is a particular case of the Nakayama lemma for modules over local rings, see e.g. [GH].

We say that a C[[~]]-module E has no torsion (is torsion free) if ~x = 0 ⇒ x = 0 for

x ∈ E.

Lemma 4.3. A finitely generated C[[h]]-module is free if it is torsion free.

The latter assertion easily follows from the Nakayama lemma.

Lemma 4.4. Every submodule and quotient module of a finite C[[~]]-module is finite.

This statement is obvious for quotient modules. For submodules, it follows from Lemma 4.1.

Lemma 4.5. Let Ψ: E → F be a morphism of free finite C[[~]]-modules such that the induced

map Ψ0 : E0 → F0 is an isomorphism of C-vector spaces. Then Ψ is an isomorphism.

Using Lemma 4.1, the latter assertion can be reduced to the case E = F and Ψ being an

endomorphism of E. An endomorphism of a free module is invertible if and only if its residue

mod ~ is invertible.

Lemma 4.6. Let Ψ: E → F be a morphism of a C[[~]]-modules. Suppose that E is finite,

F is torsion free, and Ψ0 : E0 → F0 is injective. Then E is free, and Ψ is injective.

Proof. First let us prove that Ψ is embedding assuming E to be free. In this case the image

im Ψ is finite and has no torsion. Therefore it is free, by Lemma 4.3. The map Ψ0 factors

through the composition E0 → (imΨ)0 → F0, and the left arrow is surjective by construction.

Since Ψ0 is injective, the map E0 → (im Ψ)0 is also injective and hence an isomorphism, by

Lemma 4.5. Therefore E ' im Ψ.

Now let E be arbitrary and let {ei} be a set of generators such that their projections

mod ~ form a base in E0. Such generators do exist in view of the Nakayama lemma. Let

Ê be the C[[~]]-free covering of E generated by {ei}. The composite map Ψ̂ : Ê → E → F

satisfies the hypothesis of the lemma with free Ê. We conclude that Ψ̂ is injective. This

implies that E = Ê, i. e. E is free, and that Ψ is injective.
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4.2 Quantization of the DS and STS brackets

Let G be a simple complex algebraic group and V its faithful representation. The affine

ring C[G] is realized as a quotient of C[End(V )] by an ideal generated by a finite system of

polynomials {pi}.

Let G] denote the smooth affine variety G × C∗, where C∗ is the multiplicative group of

the field C. The variety G] is an algebraic group, however we will not use this fact until

Section 6.

The affine coordinate ring C[G]] is isomorphic to the tensor product C[G]⊗C[f, f−1]. It

can be realized as the quotient of C[End(V )]⊗ C[f, f−1] by the ideal (p]
i), where p]

i(f, X) =

fkipi(f
−1X) and ki is the degree of the polynomial pi.

The algebra C[End(V )]⊗C[f, f−1] is equipped with a Z-grading by setting deg End∗(V ) =

1, deg f = 1, and deg f−1 = −1. The polynomials {p]
i} are homogeneous, hence C[G]] is a Z-

graded algebra. Let us select in C[G]] the subalgebra which is the quotient of C[End(V )][f ]

by the ideal (p]
i). This subalgebra is identified with the affine ring of the Zariski closure

Ḡ] in End(V ) × C. It is graded, with finite dimensional homogeneous components. Clearly

C[G]] is generated by C[Ḡ]] over C[f−1].

Define a two sided G-action on C[G]] by setting it trivial on C[f, f−1]. This makes C[G]]

a U(g)-bimodule algebra. The action preserves grading and preserves the subalgebra C[Ḡ]].

The DS and STS brackets are naturally defined on C[G]] and C[Ḡ]] via the right and left

g action on C[G]] and C[Ḡ]] . They make C[G]] and C[Ḡ]] Poisson Lie algebras over the

Lie bialgebras gop ⊕ g and Dg, correspondingly. The Poisson Lie manifolds GDS and GSTS

are sub-manifolds in G]
DS and G]

STS (as well as in Ḡ]
DS and Ḡ]

STS) defined by the equation

f = 1.

Recall the Takhtajan quantization of the DS Poisson structure on G, [T]. Consider

the quasitriangular quasi-Hopf algebra
(

U(g)[[~]], Φ,R0

)

, where U(g)[[~]] is equipped with

the standard comultiplication, Φ is g-invariant associator, and R0 = e
~

2
Ω is the universal

R-matrix. Since Φ and R0 are invariant, C[G] ⊗ C[[~]] is a commutative algebra in the

quasi-tensor category of U(g)op[[~]]⊗̂U(g)[[~]]- modules. The latter is a quasi-Hopf algebra

with the associator (Φ−1)′Φ′′ and the universal R-matrix (R−1
0 )′R′′

0, [Dr3]. Here the prime is

relative to the U(g)op[[~]]-factor while the double prime to the U(g)[[~]]-factor.

Let J ∈ U(g)⊗̂2[[~]] be a twist making U(g)[[~]] a quasitriangular Hopf algebra U~(g).

Then (J −1)′J ′′ converts U(g)op[[~]]⊗̂U(g)[[~]] into the Hopf algebra U~(g)op⊗̂U~(g). Applied

to C[G]⊗C[[~]], this twist makes it a U~(g)op⊗̂U~(g)-module algebra, C~[G
]
DS]. This algebra

is commutative in the category of U~(g)-bimodules. It is a quantization of the DS-Poisson
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Lie bracket on G.

The above quantization extends to the algebras C~[G
]
DS] and C~[Ḡ

]
DS]; the construction

is literally the same. Since the two sided action of g preserves the grading, the algebras

C~[G
]
DS] and C~[Ḡ

]
DS] are Z-graded. The algebra C~[GDS] is obtained from C~[G

]
DS] or from

C~[Ḡ
]
DS] as the quotient by the ideal (f − 1).

Now consider C~[GDS], C~[G
]
DS], and C~[Ḡ

]
DS] as U~(g)op⊗̂U~(g)-algebras, using identifi-

cation between U~(g)op and U~(g)op via the antipode. Perform the twist from U~(g)op⊗̂U~(g)

to U~(Dg) and the corresponding transformation of the algebras C~[GDS], C~[G
]
DS], and

C~[Ḡ
]
DS]. The resulting algebras C~[GSTS], C~[G

]
STS], and C~[Ḡ

]
STS] are U~(Dg)-equivariant

quantizations along the STS bracket, [DM]. They are commutative in the braided category

of U~(Dg)-modules.

The algebras C~[G
]
STS] and C~[Ḡ

]
STS] are Z-graded and C~[G

]
STS] = C~[ḠSTS][f−1]. The

homogeneous components in C~[Ḡ
]
STS] are C[[~]]-finite and vanish for negative degrees. The

algebra C~[GSTS] is obtained from C~[G
]
STS] (or from C~[Ḡ

]
STS]) by factoring out the ideal

(f − 1).

5 The algebra C~[GSTS] as a module over its center

In the present section C~[G] stands for C~[GSTS], that is, for the U~(Dg)-equivariant quan-

tization of C[G] along the STS bracket. The action of U~(g) is induced by the diagonal

embedding ∆: U~(g) → U~(Dg) and can be expressed though the left and right coregular

actions of U~(g) on C~[GDS] as

x(a) = x(2) . a / γ(x(1)).

Here γ stands for the antipode in U~(g) and the actions are defined by ξ . a = ξ l(a), and

a / ξ = ξr(a) for ξ ∈ g, cf. (2). We use that fact that C~[GDS] and C~[GSTS] coincide as

U~(g)-bimodules (but not algebras) and the U~(g)-action is the action of U(g)[[~]].

Proposition 5.1. Let G be a simple complex algebraic group equipped with the STS bracket.

Let g be its Lie bialgebra, Dg the double of g, and let C~[G] be the U~(Dg)-equivariant

quantization of the affine ring C[G] along the STS bracket. Then the subalgebra I~(G) of

U~(g)-invariants in C~[G] coincides with the center.

Proof. The statement holds true for Ḡ] too. Let us prove it for Ḡ] first. The case of G will

be obtained by factoring out the ideal (f − 1).
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The subalgebra I~(Ḡ
]) lies in the center of C~[Ḡ

]]. Indeed, let R̂ be the universal R-

matrix of U~(Dg). It is expressed through the universal R-matrix R ∈ U ⊗̂2
~

(g) by R̂ =

R−1
41 R

−1
31 R24R23, therefore R̂ ∈ U~(Dg)⊗̂U~(g). The algebra C~[Ḡ

]] is commutative in the

category of U~(Dg)-modules, hence (R̂2.a)(R̂1.b) = ba for any a, b ∈ C~[Ḡ
]]. Hence ab = ba

for a ∈ I~(Ḡ
]).

Conversely, suppose that ab = ba for some a and all b ∈ C~[Ḡ
]]. Represent a as a = a0 +

O(~), where a0 ∈ C[Ḡ]]. We have 0 = ~$STS(a0, b) + O(~2) and therefore $(a0, b) = 0. The

Poisson bivector field $STS is induced by the classical r-matrix of the double ξi⊗ξi ∈ (Dg)⊗2.

The element ξ ∈ g∗ acts on Ḡ] by vector field r−(ξ)l − r−(ξ)r + 1
2

(

Ω(ξ)l + Ω(ξ)r
)

(here we

consider the elements of g⊗g as operators g∗ → g by paring with the first tensor component).

Let e be the identity of the group G. At every point (e⊗ c) ∈ G×C∗ = G] ⊂ Ḡ] this vector

field equals Ω(ξ). Since the Killing form is non-degenerate, ζ . a0 = 0 for all ζ ∈ g in an

open set in Ḡ]. Therefore ζ . a0 = 0 for all ζ ∈ g and a0 is g-invariant.

We can assume that a is homogeneous with respect to the grading in I~(Ḡ
]). Let a′

0 be

U~(g)-invariant element such that a′
0 = a0 mod ~. We can choose a′

0 of the same degree as

a (in fact, we can take a′
0 = a0 /θ−

1

2 , see the proof of Proposition 5.2). Then a−a′
0 is central

and divided by ~. Acting by induction, we represent a as a sum a =
∑∞

`=0 ~`a′
`, where each

summand is U~(g)-invariant. The above sum converges in the ~-adic topology.

Let us emphasize that we have proven Proposition 5.1 also for G] and Ḡ].

The following proposition asserts that the subalgebra of invariants in C~[G] is not quan-

tized.

Proposition 5.2. Let C~[G] be the U~(Dg)-equivariant quantization of the STS bracket on

G. Then I~(G) is isomorphic to I(G) ⊗ C[[~]] as a C-algebra.

Proof. Consider two subalgebras I1 and I2 in A = C~[GDS] defined by the following condi-

tions:

I1 = {a ∈ A : x . a = a / x, ∀x ∈ U~(g)}, I2 = {a ∈ A : x . a = a / γ2(x), ∀x ∈ U~(g)}. (6)

The algebra I1 is isomorphic to I(G) ⊗ C[[~]] as a C-algebra. This readily follows from the

Takhtajan construction of C~[GDS] rendered in Subsection 4.2.

The algebra I2 is isomorphic to I1. Indeed, the fourth power of the antipode in U~(g)

is implemented by the similarity transformation with a group-like element θ ∈ U~(g), [Dr2].

This element has a group-like square root θ
1

2 = e
1

2
ln θ ∈ U~(g). The logarithm is well defined,

because θ = 1 + O(~). In the case of the Drinfeld-Jimbo or standard quantization of U(g)
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the element θ
1

2 belongs to U~(h), where h is the Cartan subalgebra. The map a 7→ a / θ− 1

2

is an automorphism of A, and this automorphism sends I1 to I2.

Thus we have proven that I2 is isomorphic to I(G)⊗C[[~]] as a C-algebra. Consider the

RE twist converting C~[GDS] into C~[GSTS]. This twist relates multiplications by the formula

(15), where T should be replaced by C~[GDS] and K by C~[GSTS]. It is straightforward to

see that these multiplications coincide on I2.

Remark 5.3. In the proof of Proposition 5.2, we used the observation that the multiplica-

tions in C~[GDS] and C~[GSTS] coincide on I2. In fact, formula (15) implies that C~[GDS]

and C~[GSTS] are the same as left I2-modules. Therefore the structure of left I1-module

on C~[GDS] is the same as the structure of I~(G)-module on C~[GSTS]. This assertion also

holds for G] and Ḡ].

Let T be the maximal torus in G. Then I(G) ' C[T ]W , where W is the Weyl group,

[St]. Suppose that the subalgebra of invariants in C[G] is polynomial. For example, that

is the case when G is simply connected; then C[T ]W is generated by characters of the

fundamental representations [St]. Under the above assumption, the algebra C[G] is a free

module over I(G), [R]. There exists a G-submodule E0 ⊂ C[G] such that the multiplication

map I(G) ⊗ E0 → C[G] gives an isomorphism of vector spaces. Each isotypic component in

E0 has finite multiplicity. We will establish the quantum analog of this fact.

Theorem 5.4. Let C~[G] be the U~(Dg)-equivariant quantization of the STS bracket on G.

Suppose that the subalgebra I(G) of g-invariants is a polynomial algebra. Then

i) C~[G] is a free I~(G)-module generated by a U~(g)-submodule E ⊂ C~[G].

ii) each isotypic component in E is C[[~]]-finite.

Proof. Let E0 be the U(g)-module generating C[G] over I(G). Naturally considered as a

subspace in C[G]], it obviously generates C[G]] over I(G]). Using invertibility of f , we can

make every isotypic component of E0 homogeneous and regard E0 as a graded submodule in

C[Ḡ]].

Put E = E0 ⊗C[[~]]. Let V0 be a simple finite dimensional g-module and V = V0 ⊗C[[~]]

the corresponding U~(g)-module. Let (E0)V0
denote the isotypic component of E0. The

isotypic component C[G]]V is isomorphic to I(G]) ⊗ (E0)V0
⊗ C[[~]], as a U~(g)-module.

Let m̃ denote the multiplication in C~[G
]]. The map

m̃ : I~(G
]) ⊗C[[~]] EV → C~[G

]]V (7)
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is U~(g)-equivariant and respects grading. Let the superscript (k) denote the homogeneous

component of degree k. The map (7) induces U~(g)-equivariant maps

⊕i+j=kI~(G
])(i) ⊗C[[~]] E

(j)
V → C~[Ḡ

]]
(k)
V , I~(Ḡ

])(k) ⊗C[[~]] EV → C~[G
]]V . (8)

The left map has a C[[~]]-finite target, while the right one has a C[[~]]-finite source. All

the C[[~]]-modules in (8) are free. Modulo ~, the left map is surjective, and the right one

injective. Therefore they are surjective and injective, respectively, by Lemmas 4.2 and 4.6.

Since C~[G
]] = C~[Ḡ

]][f−1], this implies that the map (7) is surjective and injective and

hence an isomorphism.

Now recall that I~(G
]) is isomorphic to I~(G)[f, f−1]. Taking quotient by the ideal (f−1)

proves the theorem for G.

6 Quantization in terms of generators and relations

In this section we describe the quantization of C[G] along the DS and STS brackets in terms

of generators and relations for G being a classical matrix group. We give a detailed consid-

eration to the DS case. The case of STS is treated similarly, upon obvious modifications.

Function algebras on quantum classical matrix groups from the classical series were de-

fined in terms of generators and relations in [FRT]. Here we prove that the algebras of [FRT]

are included in flat C[[~]]-algebras, C~[GDS].

6.1 FRT and RE algebras

In this subsection we recall the definition of the FRT and RE algebras, [FRT, KSkl].

Let V0 be the defining representation of G and let V be the corresponding U~(g)-module.

Let R denote the image of the universal R-matrix of U~(g) in End(V ⊗2).

The FRT algebra T is generated by the matrix coefficients {T i
j} ⊂ End∗(V ) subject to

the relations

RT1T2 = T2T1R, (9)

where T = ||T i
j ||. So T is the quotient of the free algebra C[[~]]〈T i

j 〉. The latter is a

U~(g)-bimodule algebra, the two sided action being extended from the two sided action on

End∗(V ). The ideal (9) is invariant, so T is also a U~(g)-bimodule algebra. It is Z-graded

with deg End∗(V ) = 1, and the grading is equivariant with respect to the two-sided U~(g)-

action.
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The RE algebra K is also generated by the matrix coefficients of the defining represen-

tation, this time denoted by K i
j. Let K = ||K i

j|| be the matrix of the generators. The

RE algebra K is the quotient of the free algebra C[[~]]〈K i
j〉 by the ideal generated by the

relations

R21K1R12K2 = K2R21K1R12. (10)

The algebra K is a U~(Dg)-module algebra, [DM]. It is Z-graded, and the grading is invariant

with respect to the U~(Dg)-action.

Recall from [DM] that the RE twist of the Hopf algebra U op
~

(g)⊗̂U~(g) to the twisted

tensor square U~(Dg), converts the algebra T to K (cf. also Subsection 4.2.

6.2 Algebra C~[GDS] in generators and relations.

In this section we describe the algebra C~[G] = C~[GDS] in terms of generators and relations.

From now on we use the group structure on G], which is the trivial central extension

of G. For G orthogonal and symplectic, G] is defined by equation (5) with f 6= 0. Let χ

be a character of the subgroup C∗ in G]. We extend the defining representation of G to a

representation of G] on V0 ⊕ C by setting c(v ⊕ µ) = χ(c)v ⊕ χ(c)µ for all c from C∗ ⊂ G].

The indeterminant f is the matrix coefficient of the one dimensional representation of C∗.

Suppose f 6= 0. The group G] can be identified with the G] × G]-orbit in End(V0 ⊕ C),

which for G orthogonal and symplectic is defined by the equation

B0T
tB−1

0 T = f 2, TB0T
tB−1

0 = f 2, (11)

and by the equation

det(T ) = fn (12)

for G = SL(n). The element B0 ∈ V0 ⊗ V0 in equation (11) is the classical invariant of the

(orthogonal or symplectic) group G.

The Zariski closure of G] in End(V0⊕C) is defined by the above equations for all f . Clearly

the ideals in C[End(V0)][f ] generated by (11) and by (12) are radical. This is obvious for

the G = SL(n) and follows from [We] for G orthogonal and symplectic. The corresponding

quotients of C[End(V0)][f ] are the affine coordinate rings of Ḡ].

Recall that there exists a two sided U~

(

sl(n)
)

-invariant detq(T ) ∈ T of degree n such that

detq(T ) = det(T ) modulo ~. For G orthogonal or symplectic let B be the U~(g)-invariant

element from V ⊗ V .
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Proposition 6.1. The U~(g)op ⊗ U~(g)-equivariant quantization C~[Ḡ
]] can be realized as

the quotient of T [f ] by the ideal of relations

BT tB−1T = f 2, TBT tB−1 = f 2 (13)

for g orthogonal or symplectic and

detq(T ) = fn (14)

for g = sl(n). The quantization C~[G] is obtained from C~[Ḡ
]] by factoring out the ideal

(f − 1).

Proof. Let U∗
~
(g]) denote the restricted dual to U~(g

]). It is spanned by matrix coefficients

of finite dimensional representation and is a Hopf algebra. The algebra C~[G
]] is generated

within U∗
~
(g]) by the matrix coefficients of the defining representation.

Denote by S the algebra T [f ], by T the algebra U ∗
~
(g]), and by J the ideal in T [f ]

generated by the relations (13) or (14), depending on the type of G. The algebras S, T, and

J are graded, and the grading is U~(g
])-compatible. Note that homogeneous components in

S are C[[~]]-finite.

There is a U~(g
])-equivariant homomorphism Ψ: S → T of graded algebras that is iden-

tical on End∗(V ) ⊕ C[[~]]f . It is easy to check that the ideal J lies in ker Ψ. Since the

image of Ψ is C[[~]]-free, we have the direct sum decomposition S = ker Ψ ⊕ im Ψ. There-

fore (im Ψ)0 ↪→ S0. Let us show that J = ker Ψ. Since both ideals are graded and the

homogeneous components are finite, it suffices to show that the embedding J ↪→ ker Ψ in-

duces surjective map J0 → (ker Ψ)0. Then we can apply the Nakayama lemma to each

homogeneous component.

Denote by J[
0 the image of J0 in (ker Ψ)0 ⊂ S0. The defining ideal N (Ḡ]) ⊂ S0 lies in

J[
0 and N (Ḡ]) is a maximal G] ×G]-invariant ideal that contains no positive integer powers

of f . Therefore we will prove the equality N (Ḡ]) = J[
0 = (ker Ψ)0 if we show that (ker Ψ)0

contains no positive integer powers of f . But that is obvious, since f is invertible in T (the

latter is a Hopf algebra, and f is group-like). This proves J = ker Ψ. Another consequence

is that im Ψ is a quantization of C[Ḡ]] that lies in C~[Ḡ
]], hence it coincides with C~[Ḡ

]].

The quantization C~[G
]] is isomorphic to C~[Ḡ

]][f−1]. This easily follows from functo-

riality of the Takhtajan quantization. Therefore C~[G
]] is realized as the quotient of the

algebra T [f, f−1] by the ideal of the relations (13). On the other hand, C~[G
]] is a free

module over C[[~]][f, f−1]. The quotient of C~[G
]] by the ideal (f − 1) is C[[~]]-free and is

the quantization of C[G].
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6.3 Algebra C~[GSTS] in generators and relations

Under the twist from U op
~

(g)⊗̂U~(g) to U~(Dg), the defining relations of C~[G] in T transform

to certain relations in the RE algebra K and generate a U~(Dg)-invariant ideal in K. Let us

compute this ideal.

The multiplications in T and K are related by the formula (see [DM])

mT (a ⊗ b) = mK

(

R1 . a / R−1
1′ ⊗ b / R−1

2′ / R2

)

. (15)

Formula (15) applied to the equation

T tB−1T = B−1, TBT t = B (16)

gives

Rt
1K

t
(

(Rt
1′)

−1B−1(R2′)
−1

)

R2K = B−1, KR1BKtRt
2 = R1′BRt

2′ . (17)

For G orthogonal and symplectic the ideal generated by (17) lies in the kernel of the U~(Dg)-

equivariant projection K → C~[G].

Similarly one can express the element detq(T ) through the generators K i
j in the SL(n)-

case. We denote by detq(K) the resulting form of degree n. The ideal
(

detq(K) − 1
)

is

annihilated by the U~(Dg)-equivariant projection K → C~[G].

Proposition 6.2. i) For the orthogonal and symplectic complex algebraic group G the quan-

tization C~[GSTS] is isomorphic to the quotient of K by the ideal of relations (17).

ii) For G = SL(n) the quantization C~[GSTS] is isomorphic to the quotient of K by the

ideal
(

detq(K) − 1
)

.

Proof. This proposition can be proven by a straightforward modification of the proof of

Proposition 6.1. Another way is to start from Proposition 6.1 and use the RE twist applied

to the DS quantization.

6.4 Appendix: on twist of module algebras

Let H is a Hopf algebra, V a finite dimensional H-module, and T (V ) the tensor algebra of

V . Let W be a H-submodule in T (V ) generating an ideal J(W ) in T (V ). Denote by A the

quotient algebra T (V )/J(W ).

Let F ∈ H ⊗ H be a twisting cocycle and H̃ the corresponding twist of H. Denote

by Ã the twisted module algebra A. The multiplication in A is expressed through the

multiplication in A by mÃ = mA ◦ F and similarly for T̃ (V ) and T (V ).
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For each n = 0, 1, . . . , introduce an automorphism of V ⊗n by induction:

Ωn = id, n = 0, 1, Ωn = (∆m ⊗ ∆k)(F)
(

Ωm ⊗ Ωk

)

, k + m = n.

This definition does not depend on a partition k + m = n. The elements Ωn amounts to a

linear automorphism Ω of T (V ).

Proposition 6.3. The algebra Ã is isomorphic to the quotient algebra T (V )/J(Ω−1W ).

Proof. Since the ideal J(W ) ⊂ T (V ) is invariant, it is also an ideal in T̃ (V ). It is easy to

see that the quotient T̃ (V )/J(W ) is isomorphic to Ã . The algebra T̃ (V ) is isomorphic to

T (V ). The isomorphism is given by the maps T (V ) ⊃ v1 ⊗ . . . ⊗ vn 7→ Ωn(v1 ⊗ . . . ⊗ vn).

This implies the proposition.
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