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ABSTRACT. Determinants of invertible pseudo-differential operators (PDOs) close
to positive self-adjoint ones are defined through the zeta-function regularization.

We define a multiplicative anomaly as the ratio det(AB)/(det(A)det(B)) con-
sidered as a function on pairs of elliptic PDOs. We obtained an explicit formula for
the multiplicative anomaly in terms of symbols of operators. For a certain natural
class of PDOs on odd-dimensional manifolds generalizing the class of elliptic dif-
ferential operators, the multiplicative anomaly is identically 1. For elliptic PDOs
from this class a holomorphic determinant and a determinant for zero orders PDOs
are introduced. Using various algebraic, analytic, and topological tools we study
local and global properties of the multiplicative anomaly and of the determinant
Lie group closely related with it. "The Lie algebra for the determinant Lie group
has a description in terms of symbols only.

Our main discovery is that there is a quadratic non-linearity hidden in the defi-
nition of determinants of PDOs through zeta-functions.

The natural explanation of this non-linearity follows from complex-analytic prop-
erties of a new trace functional TR on PDOs of non-integer orders. Using TR we
easily reproduce known facts about noncommutative residues of PDOs and obtain
several new results. In particular, we describe a structure of derivatives of zeta-
functions at zero as of functions on logarithms of elliptic PDOs.

We propose several definitions extending zeta-regularized determinants to gen-
eral elliptic PDOs. For elliptic PDOs of nonzero complex orders we introduce a
canonical determinant in its natural domain of definition.
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1. INTRODUCTION

Determinants of finite-dimensional matrices A, B € M, (C) possess a multiplicative
property:

det(AB) = det(A)det(B). (1.1)
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An invertible linear operator in a finite-dimensional linear space has different types of
generalizations to infinite-dimensional case. One type is pseudo-differential invertible
elliptic operators '
A:T(E) - [I'(£),

acting in the spaces of smooth sections I'(E) of finite rank smooth vector bundles
L7 over closed smooth manifolds. Another type is invertible operators of the form
Id + K where K is a trace class operator, acting in a separable Hilbert space H. For
operators A, B of the form Id + K the equality (1.1) is valid.

However, for a general elliptic PDO this equality cannot be valid. It is not trivial
even to define any determinant for such an elliptic operator. Note that there are
no difficulties in defining of the Fredholm determinant detp,(Id +K). One of these
definitions is

detp (Id+K):=1+Tr K +Tr (/\21\') +...+Tr(ATK)+ ... (1.2)

The series on the right is absolutely convergent. For a finite-dimensional linear opera-
tor A its determinant is equal to the finite sum on the right in (1.2) with K := A—1d.
Properties of the linear operators of the form Id + K (and of their Fredholm determi-
nants) are analogous to the properties of finite-dimensional linear operators (and of
their determinants).

In some cases an elliptic PDO A has a well-defined zeta-regularized determinant

detc(A) = exp (~0/0:Ca(s)| _)
where (4(s) 1s a zeta-function of A. Such zeta-regularized determinants were invented
by D.B. Ray and .M. Singer in their papers [Ra], [RS1]. They were used in these
papers to define the analytic torsion metric on the determinant line of the cohomol-
ogy of the de Rham complex. This construction was generalized by D.B. Ray and
I.M. Singer in [RS2] to the analytic torsion metric on the determinant line of the
J-complex on a Kihler manifold.

However there was no definition of a determinant for a general elliptic PDO until
now. The zeta-function (4(s) i1s defined in the case when the order d(A) is real and
nonzero and when the principal symbol a4(z,€) for all z € M, £ € T*M, £ # 0, has
no eigenvalues A in some conical neighborhood U of a ray L from the origin in the
spectral plane U C C 3 A,

But even if zeta-functions are defined for elliptic PDOs A, B, and AB (so in
particular, d(A), d(B), d(A) + d(B) are nonzero) and if the principal symbols of
these three operators possess cuts of the spectral plane, then in general

det(AB) # det(A) det(B).
It is natural to investigate algebraic properties of a function

F(A, B) 1= det(AB) /(det(A) det(B)). (1.3)



4 MAXIM KONTSEVICH AND SIMEON VISHIK

This function is defined for some pairs (A, B) of elliptic PDOs. For instance, F'(A, B)
is defined for PDOs A, B of positive orders sufficiently close to self-adjoint positive
PDOs (with respect to a smooth positive density g on M and to a Hermitian structure
h on a vector bundle £, A and B act on ['(£)).! (In this case, zeta-functions of A,
B and of AB can be defined with the help of a cut of the spectral plane close to R_.
Indeed, for self-adjoint positive A and B the operator AB is conjugate to A/2BA!/?
and the latter operator is self-adjoint and positive.)

Properties of the function F'(A, B), (1.3), are connected with the following remark
(due to E. Witten). Let A be an invertible elliptic DO of a positive order possessing
some cuts of the spectral plane. Then under two infinitesimal deformations for the
coefficients of A in neighborhoods U; and U; on M on a positive distance one from
another (i.e., Uy N U; = @) we have

616logdete(A) = —Tr (54 A7'6A- A7) (1.4)

This equality is proved in Section 1.1. Here, é;A are deformations of a DO A in
U; without changing of its order. The operator on the right is smoothing (i.e., its
Schwarz kernel is C°° on M x M). Hence it is a trace class operator and its trace is
well-defined. Note that the expression on the right in (1.4) is independent of a cut
of the spectral plane in the definition of the zeta-regularized determinant on the left
in (1.4).

It follows from (1.4) that logdet¢(A) is canonically defined up to an additional
local functional on the coefficients of A. Indeeed, for two definitions, log det¢(A) and
log dety(A), for a given A, we have

86, (log det¢(A) — logdet;(A)) = 0. (1.5)

The equality 6;6,F'(A) = 0 for deformations §;A in U, UyNU, = 8, is the character-
istic property of local functionals.
It follows from (1.4) that

f(A, B) := logdet{ AB) — log det{ A) — log det(B) (1.6)

is a local (on the coefficients of invertible DOs A and B) functional, if these zeta-
regularized determinants are defined. Namely, if §;A and ;B are infinitesimal vari-
ations of A and of B in U;, j =1,2, Uy NU; =0, then

8,6.f(A, B) = 0. (1.7)

IThe explicit formula for F(A, B) in the case of positive definite commuting elliptic differential
operators 4 and B of positive orders was obtained by M. Wodzicki [Kas]. For positive definite
elliptic PDOs A and B of positive orders a formula for F'(A, B) was obtained in [Fr]. However it
was obtained in another form than it is written and used in the present paper. The authors are very

indebted to L. Friedlander for his information about the multiplicative anomaly formula obtained
in [Fr].
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This equality is deduced from (1.4) in Section 1.1.

For some natural class of classical elliptic PDOs acting in sections ['( £) of a vector
bundle £ over an odd-dimensional closed M, their determinants are multiplicative
(Section 4), if operators are sufficiently close to positive definite ones and if their
orders are positive even numbers. The operators from this (odd) class generalize
differential operators.

As a consequence we can define (Section 4) determinants for classical elliptic PDOs
of order zero from this natural (odd) class. Such determinants cannot be defined
through zeta-functions of the corresponding operators because the zeta-function for
such an operator A is defined as the analytic continuation of the trace Tr(A™*).
However the operator A™¢ for a general elliptic PDO A of order zero is not of trace
class for any s € C.? Also such a determinant cannot be defined by standart methods
of functional analysis because such an operator A is not of the form Id 4+ K, where
K is a trace class operator. Nevertheless, canonical determinants of operators from
this natural class can be defined. Here we use the multiplicative property for the
determinants of the PDOs of positive orders from this natural (odd) class of operators
(on an odd-dimensional closed M).

This determinant is also defined for an automorphism of a vector bundle on an
odd-dimensional manifold acting on global sections of this vector bundle. (Note that
the multiplication operator by a general positive smooth function has a continuous
spectrum.) The determinant of such an operator is equal to 1 (Section 3).

A natural trace Tr(_y) is introduced for odd class PDOs on an odd-dimensional
closed M. A canonical determinant det(_yj(A) for odd class elliptic PDOs A of
zero orders with given o(log A) is introduced (Section 6.3) with the help of Tr(_y).
The determinant det(_;y(A) is defined even if log A does not exist. This det(_y(A)
coincides with the determinant of A (defined by the multiplicative property), if A
sufficiently close to positive definite self-adjoint PDOs (Section 6.3).

Let D, be a family of the Dirac operators on an odd-dimensional spinor manifold M
(corresponding to a family (h,, V*) of Hermitian metrics and unitary connections on
a complex vector bundle on M). As a consequence of the multiplicative property we
obtain the fact that det (D,, D,,) is a real number for any pair (u;, uz) of parameters
and that this determinant has a form

det (Dy, Dy,) = € (u1) € (u2) (det (Dil))lﬂ (det (Dzz))lfz

for any pair of sufficiently close parameters (uy,u;). The factor e(u) = %1 on the

?Such an operator is defined by the integral (i/2m) f. ,\@3 (A=XN""dA, where I = Creisa

smooth closed contour defined as in (2.30), (2.31) and surrounding once the spectrum Spec(A) of
A (Spec(A) is a compact set) and oriented opposite to the clockwise, /\(—;) is an appropriate branch
of this multi-valued function. Here, R is such that Spec A lies inside {A: |A| € R/2} and 8 is an

admissible cut of the spectral plane for A and )‘(_a’) 1= exp (—s log(s) A),  — 27 < Im(logey A) < 6.
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right is a globally defined locally constant function on the space of invertible Dirac op-
erators according to the Atiyah-Patody-Singer formula for the corresponding spectral
flows.

Absolute value positive determinants |det |A for all elliptic operators A from the
odd class on an odd-dimensional manifold M are defined as

(1det |A)? = det (A" A).

They are independent of a smooth positive density on M (and of a Hermitian struc-
ture on ). Tt is proved (in Section 4.5) that (| det|A)? has a form |f(A4)|?, where
f(A) is a holomorphic multi-valued function on A. We call it a holomorphic deler-
minant. The monodromy of f(A) (over a closed loop) is multiplying by a root of 1 of
degree 2™, where m is a non-negative integer bounded by a constant depending on
dim M only (Section 4.5).

The algebraic interpretation of the function F(A, B), (1.3), in the general case is
connected with a central extension of the Lie algebra S)og( M, E) consisting of symbols
of logarithms for invertible elliptic PDOs Elly (M, E) C U,CL*(M, E), a € C. (The
principal symbols of elliptic PDOs from EllJ (M, E) restricted to S*M are homotopic
to [d.) The algebra Si,g(M, E) is spanned as a linear space (over C) by its subalgebra
CS%M, E) of the zero order classical PDOs symbols and by the symbol of log A.
Here, A is any elliptic PDO with a real nonzero order such that its principal symbol
admits a cut of the spectral plane along some ray from the origin.

The logarithm of the zeta-regularized determinant dety) A for an elliptic PDO
A admitting a cut L = {A: argA = 0} of the spectral plane C is defined as®
exp (—CLI'(O)(O)). There is a more simple function of A than ( 4(0). That is the
value (4,6)(0) at the origin. In the case of an invertible linear operator A in a
finite-dimensional Hilbert space H we have (4,(5)(0) = dim H. So (4, (0) is a reg-
ularization of the dimension of the space where the PDO acts. It is known that
Ca,8)(0) is independent of an admissible cut L ([Wol], [Wo2]). However in gen-
eral (4,6)(0) depends not only on (M, E) but also on the image of the symbol o(A)
in CS*(M, E)/C5° ™Y (M,E), a :=ord A, n := dim M. If H is finite-dimensional,
then (4(0) = dim H is constant as a function of an invertible A € GL(H). Let invert-
ible PDOs A and B of orders o and 8 be defined in I'(M, E), let o, 8,a+ 8 € R*, and
let there be admissible cuts 04, 8g, and 8,45 of the spectral plane for their principal
symbols a := 0,(A), b := o5(B), and for o445(AB) = ab. Then the function

Z (0(A)) := —a(a(0) (1.8)
is additive,
Z(oc(AB)) = Z (c(A))+ Z (¢(B)). (1.9)

3Here, ¢'(0) := 8,{(8)|s=0- The zeta-function is defined as the analytic continuation of the series

e
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The function Z (6(A)) = —a ((4(0) + ho(A)), where ho(A) is the algebraic multiplic-
ity of A = 0 for an elliptic PDO A € Ell§(M, E) C CL*(M, E), was introduced by
M. Wodzicki. He proved the equality (1.9). The function Z(c(A)) was defined by
him also for zero order elliptic symbols o(A) € SEN(M, E) which are homotopic to
Id. For such a(A) this function coincides with the multiplicative residue

r*(o(A)) = /0’ res (a7} (t)a(t)) dt, (1.10)

where a(t) is a smooth loop in SEN(M, E) from a(0) = Id to a(1) = o(A). The
integral on the right in (1.10) is independent of such a loop. This asssertion follows
from the equality which holds for all PDO-projectors P € CL°(M, E), P* = P,

res P = 0. (1.11)

Reverse, the equalities (1.11) are equivalent to the independence of (4 (4)(0) of an
admissible cut L) for ord A # 0 ([Wol]). The additivity (1.9) holds also on the space

SEIS(M, E) ([Kas]). Hence, the function {4(0) as a function of & (log(a) A), where A
is an invertible PDO of order one, is the restriction to the affine hyperplane ord A =1
of the linear function —Z (¢(A)) on the linear space {cr (log(a) A)} =: Sieg(M, E) of
the logarithmic symbols (defined in Section 2).

It occurs that (:,"(8)(0) for ord A = 1 is the restriction to the hyperplane ord A = 1
of a quadratic form on the space log(s(A4). Hence the formula

Tr(log A) = log(det(A))

(true for invertible operators of the form Id 4+ K, where K is a trace class operator)
cannot be valid on the space of logarithms of elliptic PDOs. (Here, we suppose that
Tr(log A) is some linear functional of log A.)

We have an analogous statement for all the derivatives of (4,4)(s) at s = 0. Namely
for k € Z, U0 there is a homogeneous polynomial of order (k -+ 1) on the space of
log gy A such that 9%Ca,8)(8)]s=0 for ord A =1 is the restriction of this polynomial to
the hyperplane ord A = 1 (Section 3} in logarithmic coordinates.

These results on the derivatives ¥(49)(s)|s=0 as on functions of logg) A are ob-
tained with the help of a new canonical trace TR for PDOs of noninteger orders
introduced in Section 3. For a given PDO A € CLYM,E), d ¢ Z, such a trace
TR(A) is equal to the integral over M of a canonical density ¢(z) corresponding
to A. Polynomial properties of 85(4(s)(s)|s=0 follows from analytic properties of
TR(exp(s! + Bp)) in s € C and in By € CL°(M, E) for s close to zero. Here, { is a
logarithm of an invertible elliptic PDO A € Elly(M, E).

This trace functional provides us with a definition of TR-zeta-functions. These
zeta-functions (AR (s) are defined for nonzero order elliptic PDOs A with given families
A~ of their complex powers. However, to compute (1% (so) (for soord A ¢ Z) we do
not use any analytic continuation.
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The Lie algebra of the symbols for logarithms of elliptic operators contains as a
codimension one ideal the Lie algebra of the zero order classical PDO-symbols. (We
call it a cocentral one-dimensional extension.) This Lie algebra of logarithmic sym-
bols has a system of one-dimensional central extensions parametrized by logarithmic
symbols of order one. On any extension of this system a non-degenerate quadratic
form is defined. We define a canonical associative system of isomorphisms between
these extensions (Section 5). Hence a canonical one-dimensional central extension
is defined for the Lie algebra of logarithmic symbols. The quadratic forms on these
extensions are identified by this system of isomorphisms. This quadratic form is
invariant under the adjoint action.

The determinant Lie group is a central C*-extension of the connected component
of Id of the Lie group of elliptic symbols {on a given closed manifold M). This Lie
group is defined as the quotient of the group of invertible elliptic PDOs by the normal
subgroup of operators of the form Id +&, where K is an operator with a C* Schwartz
kernel on M x M (i.e., a smoothing operator) and detp,(Id +X) = 1. (Here, detp, is
the Fredholm determinant.) It is proved that there is a canonical identification of the
Lie algebra for this determinant Lie group with a canonical one-dimensional central
extension of the Lie algebra of logarithmic symbols (Section 6). The determinant Lie
group has a canonical section partially defined using zeta-regularized determinants
over the space of elliptic symbols (and depending on the symbols only). Under
this identification, this section corresponds to the exponent of the null-vectors of
the canonical quadratic form on the extended Lie algebra of logarithmic symbols
(Theorem 6.1). The two-cocycle of the central C*-extension of the group of elliptic
symbols defined by this canonical section is equal to the multiplicative anomaly. So
this quadratic C*-cone is deeply connected with zeta-regularized determinants of
elliptic PDOs. ,

An alternative proof of Theorem 6.1 without using variation formulas is obtained
in Section 6.6. This theorem claims the canonical isomorphism between the canonical
central extension of the Lie algebra of logarithmic symbols and the determinant Lie
algebra.

The multiplicative anomaly F'( A, B) for a pair of invertible elliptic PDOs of positive
orders sufficiently close to self-adjoint positive definite ones gives us a partially defined
symmetric 2-cocycle on the group of the elliptic symbols. We define a coherent system
of determinant cocycles on this group given for larger and larger domains in the space
of pairs of elliptic symbols and show that a canonical skew-symmetric 2-cocycle on
the Lie group of logarithmic symbols is canonically cohomologous to the symmetric
2-cocycle of the multiplicative anomaly (Section 6.4). Note that the multiplicative
anomaly cocycle is singular for elliptic PDOs of order zero.

The global structure of the determinant Lie group is defined by its Lie algebra
and by spectral invariants of a generalized spectral asymmetry. This asymmetry is
defined for pairs of a PDO-projector of zero order and of a logarithm of an elliptic
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operator of a positive order. This invariant depends on the symbols of the projector
and of the operator but this dependence is global (Section 7). The first variational
derivative of this functional is given by an explicit local formula.* This functional is a
natural generalization of the Atiyah-Patodi-Singer functional of spectral asymmetry
[APS1], {APS2], [APS3]. The main unsolved problem in algebraic definition of the
determinant Lie group is obtaining a formula for this spectral asymmetry in terms
of symbols.

The determinant Lie algebra over the Lie algebra of logarithmic symbols for odd
class elliptic PDOs on an odd-dimensional closed M is a canonically trivial central
extension. So a flat connection on the corresponding determinant Lie group is defined.
Thus a multi-valued determinant on odd class operators is obtained. It coincides with
the holomorphic determinant defined on odd class elliptic PDOs (Section 6.3).

The exponential map from the Lie algebra of logarithms of elliptic PDOs to the
connected component of the Lie group of elliptic PDOs is not a map “onto” (i.e., there
are domains in this connected Lie group where elliptic PDOs have no logarithms at
all}). There are some topological obstacles (in multi-dimensional case) to the existence
of any smooth logarithm even on the level of principal symbols (Section 6).

A canonical determinant det(A) is introduced for an elliptic PDO A of a nonzero
complex order with a given logarithmic symbol o(log A). For this symbol to be
defined, it is enough that a smooth field of admissible cuts 0(z, €), (z,£€) € S*M, for
the principal symbol of A to exist and a map §: S*M — S! = R/27Z to be homotopic
to trivial. This canonical determinant det(A) is defined with the help of any logarithm
B (such that o(B) = o(log A)) of some invertible elliptic PDO. However det(A) is
independent of a choice of B. The canonical determinant is defined in its natural
domain of definition. The ratio

di(A)/ det(A) =: do(o(log A)) (1.12)

depends on o(log A) only and defines a canonical (multi-valued) section of the de-
terminant Lie group. This section is naturally defined over logarithmic symbols of
nonzero orders (Section 6). With the help of dy(c(log A)) we can control the behavior
of det(A) near the domain where o(log A) does not exist (Section 8.3). The canoni-
cal determinant det(A) coincides with the TR-zeta-regularized determinant, if log A
exists. However det(A) is also defined, if o(log A) exists but log A does not exist.

A determinant of an elliptic operator A of a nonzero complex order is defined
(Section 8) for a smooth curve between A and the identity operator in the space of
invertible elliptic operators. This determinant is the limit of the products of TR-
zeta-regularized determinants corresponding to the intervals of this curve (in the
space of elliptic operators) as lengths of the intervals tend to zero. This determinant
is independent of a smooth parametrization of the curve. However, to prove the
convergence of the product of TR-zeta-regularized determinants, we have to use the

4The same properties have Chern-Simons and analytic (holomorphic) torsion functionals.
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non-scalar language of determinant Lie groups and their canonical sections. This
determinant of A is equal to a zeta-regularized determinant, if the curve is A%, 0 <
t <1 up to a smooth reparametrization. Such a curve exists in the case when any
log A exists. For a product of elliptic PDOs (of nonzero orders) and for a natural
composition of monotonic curves in the space of elliptic PDOs (corresponding to
the determinants of the factors), this determinant is equal to the product of the
determinants of the factors.

Any logarithmic PDO-symbol of order one defines a connection on the determinant
Lie group over the group ol elliptic PDO-symbols. The determinant Lie group is the
quotient of the Lie group of invertible elliptic operators. The image d;(A) of an elliptic
operator A in the determinant Lie group is multiplicative in A. For any smooth
curve s, in the space SEII of elliptic symbols from Id to the symbol o(A) = s,y its
canonical pull-back 3, is a horizontal curve in the determinant Lie group from d; (Id).
Hence dy(A)/3; defines a determinant (Section 8.1) for a general elliptic PDO A of
any complex order (in particular, of zero order). This determinant depends on a
smooth curve s; from Id to ¢(A) in the space of symbols of elliptic PDOs without a
monotonic (in order) condition. It does not change under smooth reparametrizations
of the curve.

For a given logarithmic PDO-symbol of order one (i.e., for a given connection)
this determinant for a finite product of elliptic operators is equal to the product of
their determinants. (Here, the curve in the space of elliptic symbols in the definition
of the determinant of the product is equal to the natural composition of smooth
curves corresponding to the determinants of factors.) There are explicit formulas for
the dependence of this determinant on a first order logarithmic symbol (defining a
connection on the determinant Lie group) and on a curve s, (from Id to ¢(A)) in a
given homotopic class (Section 8.1). [ts dependence of an element of the fundamental

group m; (SE]lg) is expressed with the help of the invanant of generalized spectral

asymmetry. In the case when s; is ¢ (A*) (up to a reparametrization), det,,)(A) is
the zeta-regularized determinant corresponding to the log A definding A*.

1.1. Second variations of zeta-regularized determinants. Let the zetaregular-
ized determinant det¢(A) of an elliptic DO A € ENI¥(M, E), d € Z, be defined with
the help of a family A{_B‘; of complex powers of A. (Such a family is defined with the

help of an admissible cut Ly = {A: arg A = 8} of the spectral plane, see Section 2.)
Then we have

61 (=0T (A7) lomo) = 0, (s Tr (64 AP A7) |1mo. (1.13)

The function Tr (§; A - A"' A~*) is defined in a neighborhood of s = 0 by the analytic
continuation of this trace from the domain Res > dimM/d, d = ord A, where the
operator (6;4- A7'A7*) is of trace class. This analytic continuation has a simple
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pole at s = 0 with its residue equal to
Res,oo Tr (614 AT'A™) = —res (64 A7) /d,

where res is the noncommutative residue [Wol], [Wo2]. However at s = 0 the function
35 (s Tr (§;A- A~1A~*)) is holomorphic.
The second variation 6;6,det¢(A) can be written (by (1.13)) in the form

b261det(A) = 3(S—TI/ ATEDE A (AN 6A(A-N)” d/\) (1.14)
(8)

(Here, I'(gy is the simple contour surrounding an admissible cut L(g), see Section 2,
(2.1).) The operator §;A(A — A)"' 6,4 is smoothing (since its symbol is equal to
zero as Uy N Uz = B) and its trace-norm is uniformly bounded for A € T'g), |A| — co.
The operator norm H(A - /\)-11|(2) in Ly(M,E)is O ((1 + ’/\])_]) for A € T'(4). Hence

the trace-norm of §;A(A—A)"'6A(A—-N)""is O ((1 + |/\|)_l) for A € Ty, and
for s close to zero we have

Tr ( A AEDE AA = N 6A(A =N d)\) =
(6)

=[x (s41) 7y (5 A(A =) 6A (A—/\)“l)d)\. (1.15)
€2}

The function Tr (51/1 (A-XN)"16A(A - /\)_]) is holomorphic (in A) inside the con-
tour I'gy. Hence we can conclude from (1.14), (1.15) that

S261dete(A) = —Tr (6,4 A716,A A7), (1.16)

and the formula (1.4) is proved. O

Let us deduce from (1.16) the equality 6;6,f(A, B) = 0. Here, f(A, B) (given by
(1.6)) is the logarithm of the multiplicative anomaly (1.3).

By (1.4) we have

§162(log det(AB) —logdet(A)—log det(B))= —Tr(8,(AB)(AB) ' 86,(AB)(AB)™) +
+Tr (A A7'6,A- A7)+ Tr (6,B- B7'6,B- B7') =
= (-Tc (A6,B- B7'6,B- B'A™") + Tr (6,B- B~'86,8- B™")) -
—Tr(6:A8,B- BT'A™") = Tr (A§B- BT'A7'6,A- A™") . (1.17)

The operator A§;B- B~'6;B- B! is a smoothing operator in ['(E) (since its symbol
is equal to zero because Uy N U, = §). Hence it is a trace class operator and

Tr (A&,.B .B7'6,B - B"A“l) = Tp (513 .B716,8 - B‘1) .
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By the analogous reason we have
Tr (A6 B-B'AT'6,A- A7) = Tr (6,B- BT A7'6,A).

Since § 8- B 1A~'§,A is a smoothing operator with its Schwarz kernel equal to zero
in a neighborhood of the diagonal M — M x M (because U; N U; = @), we see that

Tr (A6iB- BT AT'6,A- A7) = 0.
Hence the equality (1.7) is deduced. O

2. DETERMINANTS AND ZETA-FUNCTIONS FOR ELLIPTIC PDOs.
MULTIPLICATIVE ANOMALY

Let a classical elliptic PDO A € ElI3(M, E) ¢ CL4(M, E) be an elliptic operator
of a positive order d = d(A) > 0 such that its principal symbol a4(z,€) has no
eigenvalues in nonempty conical neighborhood A of a ray Ly = {A € C,arg A = 0}
in the spectral plane C. Suppose that A is an invertible operator A: H,)(M, E) —
H(,_4y(M, E), where H(, are the Sobolev spaces ([H562], Appendix B). Then there
are no more than a finite number of the eigenvalues A of the spectrum® Spec(A) in
A. Let Lgg be the ray in A € C such that there are no eigenvalues A € Spec(A) with
arg A = . Then the complex powers A, of A are defined for Re z«0 by the integral

i

z z -1
Alyy = 5= frm X (A= A)7ld), (2.1)
where I'(g) is a contour I'y g(p)UTo 6(p)UT'2,0(p), T1,6(p): = A=z exp(20),+00>z > p},
Los(p): ={A=pexp(iv),02@>0-27},T24(p): ={A=zexpi(§—27),p <Lz <400},
and p is a positive number such that all the eigenvalues in Spec(A) are outside of
the disk D, := {A: |A| < p}. The function A* on the right of (2.1) is defined as
exp(zlog A), where § > Imlog A > 0 —27 (i.e., Imlog A =0 on 'y 5, Imlog A =0 — 2%
on I';4). For Re 2«0 the operator Afy defined by the integral on the right of (2.1)
is bounded in H,)(M, E) for an arbitrary s € R (as the integral on the right of (2.1)
converges in the operator norm on H;)(M, E)). Families of operators Af;, depend
on {admissible) 0.
For —k € Z., the operator A(',;; coincides with (A™")* ([Sh], Ch. II, Proposi-
tion 10.1). Operators Afy, are defined for all z € C by the formula

= A 22)

where z — k belongs to the domain of definition for (2.1) and where Afg')k are defined
by (2.1). It is proved in [Se], Theorem 1, and in [Sh], Ch. II, Theorem 10.1.a, that

A is an invertible elliptic PDO of a positive order. Hence 0 ¢ Spec(A} and Spec(A) is discrete,
i.e., it consists entirely of isolated eigenvalues with finite multiplicities ([Sh], Ch. I, § 8, Theorem 8.4).
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the operator Afy, defined by (2.2) is independent of the choice of k and that (2.2)
holds for all & € Z [or the family Afy,. The operators Afy for Rez < k € Z form a

family of bounded linear operators from H,)(M, E) into Hi,—aaw) (M, E).

The operator A, is a classical elliptic PDO of order zd(A), Al € ]:;ll’d("' (M, E).
Its symbol

(=) = > biq—;9(2, ) (2.3)
J€Z410L0

is defined in any local coordinate chart U on M (with a smooth trivialization of E|y).
Here, d := d(A) and b%4_;4(z,1,€) = t777b7,_; (2, €) for t € Ry (i.e., this term is
positive homogeneous of degree dz — 7). This symbol is defined through the symbol

bz, 6, 0) = D boaj(z,& ) (2.4)

JEZ4LVO

of the elliptic operator (4 — A)™'. The term b_4_;(z, £, A) is positive homogeneous in
({, /\'/d) of degree —(d+j). (The parameter A in (2.4) has the degree d = d(A).) The

symbol b(z, €, A) is defined by the followmg recurrent system of equalities (a{z, &) :=
Zz+uoa—d—3(f1f) is the symbol of A, D, :=1"'0,)

b—d(maga ’\) = (a’d - )\)_1 ’

bog—r(z,&A) = —b_y (ad-lb—d + Zae.-adﬂz.-b-d) ,

(2.5)
1
boa—j(z,&,A) 1= =ba Y —Ofaa-iDgb_y-,
lol+i+i=5 -
e., (a(z, &) — X)) o b(z,€,A) = Id, where the composition has as its positive homoge-

neous in ({, I/d) components

1
Y =0aui(e, 6, \)DIb_goi(z,€, M),

fe|+k+1=const cr

Here, ag_i(z,€,A) := ag-g — bx oA 1d. The terms b_y_; are regular in (z,£,A), £ #0,
such that the principal symbol («g — A1d) is invertible.®

8The operators (A — A)"! and A — X in general do not, belong to the classes CL=4(M,E;A) and
CL4(M, E;A) ([Sh)], Ch. L1, § 9) of elliptic operators with parameter. Here, A is an open conical
neighborhood of the ray L(g) = {A: arg A = 0} in the spectral plane such that all the eigenvalues
of the principal symbol ag(z,£) of A do not belong to A for any (z,£) € T*M, £ # 0. For a
general elliptic PDO A € CLY(M, E), d > 0, of the type considered above and for an arbitrary
j > d there are no uniform estimates in £ € T*M, AEA (&,X)#(0,0) of |b_g—j(z,&, A)| through
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If Rez < 0, the formula for by (x,€) is ([Sh], Ch. 11, Sect. 11.2)"

1
b:d-j,a(maf) = 5-

21]’ [‘(9) /\(G)b_d_j(ﬂ:, g, /\)d/\ (26)

For Re z <k the symbol bfy (x, £) is defined as the composition of classical symbols®

a*(z,€) Ob(e) (2,€) =: b{g(z, ), (2.7)

where ¢*(z,£) = 2 i€z 4u0 “Ld__,( ,€) is the symbol of PDO A*. The composition on
the left in (2.7) is independent of the choice of k¥ > Rez, k € Z ([Sh], Ch. I, Theo-
rem 11.1.a). The components b%;_;(z,£) of the symbol of A? are the entire functlons
of z coinciding with af,_;(x,€) for z = k € Z ([Sh], Ch. II, Theorem 11.1.b.e).

The logg A is a bounded linear operator from H,)(M, E) into H,_.)(M, E) for
an arbitrary € > 0, s € R. This operator acts on smooth global sections f € ['(E) as
follows

(loge) A) J == 0. (A} f) (2.8)
For arbitrary & € Z and s € R operators A* is a holomorphic function of z from
Rez < k into the Banach space L (H(,)(M, E),H(,_kd)(ﬁ/[,E)) of bounded linear

operators, d = d(A) ([Sh], Ch. II, Theorem 10.1.e). Hence, the term on the right in
(2.8) is defined. The symbol of the operator log, A is

U(log(e)A) 9.5 (=, Z 0:6%4_;6(2, &) |s=0. (2.9)

1E€EZ LU0

z=0.

The operator Afyl.=o is the identity operator. Hence its symbol bfy(z,€)|z=0 has as
its positive homogeneous components

bra-jo(®€)|z=0 = b0 1d. (2.10)

We see from (2.10) that
0:0%40(, ) |s=0 = d(A) log [£] 1d +0;6; o(, £/[€])]:=0,
0:b%40(%, €)lemo = |E]77 Bubly_;o(w, E/1€])]s=0 for j > 1.

hold in local coordinate charts (U,z) on M. Here, [£| is taken with respect to some
Riemannian metric on TM (and hence on T*M also). The term 9,b%; ,(x,&/|€]) on
the right in (2.11) is an entire function of z positive homogeneous in £ of degree zero.

(2.11)

—d—j d—
C (|§| + |A|1/‘f) and of |ag_;(z, €)| through C (|§| + |).|‘/d)
"Here, Algy 1= exp (z!og(a) )\), where 0 — 27 < Imlogy, A < 0.

8The composition a o b of the classical symbols a = Zj aq-; and b = Ei bpp—j 18 a0b =
2 (a0b)mya—j, whereaob:= 3", (a!)'l(??a(a:,f)D;'b(r,f).
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By analogy, 0.67;_;,(z,&/|£|) is an entire function of 2 positive homogeneous in { of
degree zero. So the symbol of log ) A locally takes the form

0:bfg) (2, 8)]zm0 = log [E]1d + 3 c_jo(z,€), (2.12)

JEZ 40

where c_jg(z,€) == [€]77 0.0%,_; 4(x,€/|€]) is a smooth function on "M \ i(M) pos-
itive homogeneous in ¢ of degree (—7). (Here, i(M) is the zero section of T"M.)

The equality (2.12) means that in local coordinates (z,£) on T*M the symbol of
log(gy A is equal to d(A)log|£|1d plus a classical PDO-symbol of order zero. The
space Sig(M, E) is also the space of symbols of the form

o = klog(g A + oo, (2.13)

k € C (for an arbitrary elliptic PDO A € CLY(M, E) of order d > 0 and such that
there exists an admissible cut L of the spectral plane C 3 A). Comparing (2.12)
and (2.13) we see that the space Si,i(M, E) does not depend on Riemannian metric
on T'M and on A and L.

The zeta-regularized determinant det(gy A is defined with the help of the zeta-
function of A. This function (4s)(z) is defined for Rez > dim M/d(A) as the trace
Tr (A(],‘)) of a trace class operator’ Al (Here, d(A) > 0.} This operator has a
continuous kernel on M x M for Rez > dim M/d(A). The Lidskii theorem [Li],
[Kr], [ReS], XIIL.17, (177), [Si], Chapter 3, [LP], [Re], XI, claims that for such z the

series of the eigenvalues of Aff is absolutely convergent and that the matrix trace

Sp (Aaf)) =3 (A{_gz)e,', 65) of A(_aﬁ is equal to its spectral trace'®

Tr (A7) = Y i (2.14)
AESpec(A)

Here, (e;) is an orthonormal basis in the Hilbert space Lo(M, E) (with respect to a
smooth positive density g on M and to a Hermitian metric 2 on £). A bounded
linear operator in a separable Hilbert space is a trace class operator, if the series in
the definition of the matrix trace is absolutely convergent for any orthonormal basis.
In this case, the matrix trace is independent of a choice of the basis, [Kr}, p. 123.
Thus for Rez > dim M/d(A) the matrix trace of Ay is independent of a choice of
the orthonormal basis (e;). The Lidskii theorem claims (in particular) that this trace

¥A bounded linear operator B acting in a separable Hilbert space is a trace class operator, if the
series of its singular numbers (i.e., of the arithmetic square roots of the eigenvalues for the self-adjoint
operator B* B) is absolutely convergent. The operator A(_s‘) is a PDO of the class CL~*%(M, E) with
Re(zd) > dim M. Hence it has a continuous kernel ([Sh], Ch. 1, 12.1) and this kernel is smooth of
the class C* (k € Z1) on M x M for Re(zd) — k > dim M.

Here, the sum is over the cigenvalues A; of A(_az), including their algebraic multiplicities ([Ka],

Ch. 1, § 5.4), the function /\(_93) is defined as exp (—zlog(a))‘), 0 — 2w < Im(log(sy A) < 6.
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is independent also of p, and of h. Hence for Rez > dim M/d(A)} the zeta-function
Ca9)(2) is equal to the integral of the pointwise trace of the matrix-valued density
on the diagonal A: M — M x M defined by the restriction to A(M) of the kernel
A_zo(z,y) of A

The zeta-function (4 (s)(2) possesses a meromorphic continuation to the whole com-
plex plane € 3 z and (4,9)(2) is regular at the origin. The determinant of A is a
regularization of the product of all the eigenvalues of A (including their algebraic
multiplicities). The zeta-regularized determinant of A is defined with the help of the
zeta-function'! (4 g)(2) of A as follows

det(gyA 1= exp (—('),(:A,(g)(zﬂz:o) . (2.15)

Remark 2.1. Note that if an admissible cut L) of the spectral plane crosses a finite
number of the eigenvalues of A, then det(s(A) does not change. Let A possess two es-
sential different cuts 0y, 0; of the spectral plane, i.e., in the case when there are infinite
number of eigenvalues A € Spec(A) in each of the sectors A := {A: 0, < arg A < 0},
Az :={X: 0; <arg A <0, + 2r}. Then in general det(g(A) depends on spectral cuts
L(g) with 0 = 9_,‘.

Remark 2.2. 1f the determinant (2.15) is defined, then the order d(A) =: d of the
elliptic PDO A € ENl(M, E) € CL*M, E) is nonzero. Also for the zeta-regularized
determinant of A to be defined, its zeta-lunction has to be defined. So a holomorphic
family of complex powers of A has to be defined. Hence the principal symbol ag(A')
of some appropriate nonzero power A of A (I € C*, Al € BlI¥(M, E) c CL¥(M, E))
has to possess a cut L of the spectral plane C 3 A. This condition is necessary for
the holomorphic family (Al):e) of PDOs to be defined by an integral analogous to
(2.1). In this case, log, (/1’) is defined. (Note that Id = {ord A € R*.) Hence some
generator log A := log g (A') /1 of a family A® is also defined. Thus the existence of
a family A® is equivalent to the existence of log A.

On the algebra CS(M, E) (of classical PDO-symbols) there is a natural bilinear
form defined by the noncommutative residue res ({Wol], {Wo2] or [Kas])

(a,b),., = res(a ob).

Here, a o b is the composition of PDO-symbols a, b. This scalar product is non-
degenerate (i.e., for any a # 0 there exists b such that (@, b),es # 0) and it is invariant

*'In the case d(A) < 0 the meromorphic continuation of {4 s)(2z) is done from the half-plane
Rez < dimM/d(A) = —dim M/|d(A)|. (In this half-plane the series on the right in (2.14) is
convergent.)
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under conjugation with any elliptic symbol ¢ € Ell¥(M, £} C CSYM, E), i.e., ca(z, €)
is invertible for (z,£) € S*M. Namely

(cac‘l,cbc"l) = res (cabc"l) = res(ab) = {a, b)yes. (2.16)

Tes

Remark 2.3. The noncommutative residue is a trace type functional on the algebra
CSZ(M, E) of classical PDO-symbols of integer orders, i.e., res([a, b]) = 0 for any
a,b & CS%4(M, E). The space of trace functionals on CS% M, E) is one-dimensional,
[Wo3]. Namely for L := CSZ(M, F) the algebras with the discrete topology L/[L, L)
and C are isomorphic by res. (Note also that resa = 0 for a € CL4(M, E) of non-
integer order d. So (¢, b)res = 0 for ord « +-ord b ¢ Z.) The invariance property (2.16)
ol the noncommutative residue follows from the spectral definition of res ([Wo2l,

[Kas]).

Proposition 2.1. Let A; € Ellg(M, E), o € R*, be a smooth family of elliptic PDOs
and let B € BUS(M,E), B € RX, 8 #£ —a. Let the principal symbols o, (A,) and
os(B) be sufficiently close to positive definite self-adjoint ones.'* Set

F(A, B) := det(z)(AB) [det(z)(A)dets)(B). (2.17)

Then the variation formula holds

dllog F(Ae, By=~ (7 (A A7) o (log(s)(4.B)) a+B) 0 log s B) /ﬁ)ms. (2.18)

Here, a cut Lz of the spectral plane'® is admissible for A;, B, A:B and it is suf-
ficiently close to Lzy. The term o (log(i) (AtB)) [la+p)—0c (log(ﬁ) B) /B on the
right in (2.18) is a classical PDO-symbol from CS°(M, E). It does not depend on

an admissible cut Lz close to L. Hence, the scalar product (, )res on the right in

(2.18) is defined. The right side of {2.18) is locally defined.**

Remark 2.4. The principal symbols o445 (A:B) are adjoint to o445 (Bl/gAtBlﬂ).
The latter principal symbols are sufficiently close to self-adjoint positive definite
ones. The function F'(A, B) is called the multiplicative anomaly.

First we formulate a corollary of this proposition.

Corollary 2.1. Let A and B be invertible elliptic PD0Os A€ Ellj(M,EYC CL*(M,E),
B € Ellg(M, E) C CLP(M,E) such that a,B,(a + B) € R* and such that their

12We suppose that a smooth positive density and a Hermitian structure are given on M and on

E.
%Note that F (A, B) is independent of L¢z) by Remark 2.1. In general a cut Lz depends on ¢.

19T he symbols ¢ (log(e) A) , O (AEB)) are locally defined for a PDO A of an order from R with

its principal symbol admitting a cut Lg) of the spectral plane.
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principal symbols a,(x,€) and bg(z,€) are sufficiently close to positive definite self-
adjoint ones. Then the multiplicative anomaly is defined. Its logarithm is given by a
locally defined integral

1 N
log F(A, B) = -/0 dt(o (A A7) o (log) (AB)) /(e + B) -
-0 (log(,-r) (At)) /a)m. (2.19)
Here, Ay := niy B, 0 == ABR" € BI§(M, E) € CLY(M, E). (In particular, we

have Ag := B?,-r/)ﬂ, Ap:= A, F(Ao,B)=1.)

The ezpression o (log(,-,) (AgB)) [la+pB)—0 (iog(,-r) (A,)) Ja on the right in (2.19)
is a classical PDO-symbol from CS°(M, E). Thus the integral formula for the multi-

plicative anomaly has the form

log F(A, B) = - /0] dt(o (]og(,-,) 7;) o (log(ﬁ) (nfﬁ)B(”m/ﬁ)) /(a+ B) —

-0 (log(*) (nf*)B"/ﬁ)) /a)res. (2.20)
Operators logzyn and n{zy are defined by (2.30) and (2.31) below.
The proof of Proposition 2.1 is based on the assertions as follows.

Proposition 2.2. Let Q be a PDO from CLY (M, E) and let C, A be PDOs of real
positive orders sufficiently close to self-adjoint positive definite PDOs. Then the
Junction

P(s) = Co)(@;38) — Cays)(@;8) := Tr (Q (C(;a)/ordc A—s/ordA))

has a meromorphic continuation to the whole complex plane C 5 s. The origin is
a regular point of this function. [is value at the origin is defined by the following
expression through the symbols o(A), o(C), o(Q)

P(0) = - (a(Q),o (log(*) ‘) 22 oz A)) : (2.21)

ordC ord A
The same assertions about P(s) and P(0) are also valid for Q € CL™(M,E), m € Z.

Proposition 2.3. Under the conditions of Proposition 2.2, the family of PDOs
Ky = =Q (CC = ALY [s € CL* (M, E) (2.22)
is a holomorphic'® family of PDOs. In particular, it is holomorphic at s = 0.

15This family of PDOs is holomorphic in the sense of [Gu], Sect. 3, (3.17), (3.18).
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Corollary 2.2. The pointwise trace on the diagonal tr Ky(z, z) of the kernel K (z,y)
of K, is a density on M for Res < —dim M. This density has a meromorphic
continuation from s < —dimM to the whole complex plane C 3 s. The residue of
this densily at s = 0 1s equal to

Ress=o tr Ks(z,z) = tr (—Q (C(sqi)ordc - A”IordA)) szo(a:,:c) =
= —res, o (_% (C;T{)ordc _ As[ordA)) _

(%) 3=0

lOg(ﬁ.) C ]Og{i) A
- _ 2.2;
1Sz @ (Q ( ord C ord A » (2:23)

where res, is the density on M corresponding to the noncommutative residue [Wo2],
[Kas]. These assertions follows immedialely from Proposition 3.4 below.'®

Remark 2.5. The formula (2.21) follows from (2.23) since
P(0) = — Res,=o Tr K.

Proof of Proposition 2.1. The variation & log F (A, B) is
at logF(A:, B) = at (—asCA,B.(i)(S)L:ﬂ + aa(Ag.fr(S)l.s:O) - (2-24)

For Res > 1 the operators (A,;B);) and A7(;) are of trace class. For such s these
operators form smooth in ¢ famlhes of trace Cﬁass operators. By the Lidskii theorem
we have for such s

Tr ( t(rr)) Z (At_,(’,;)ei,ef) ; (2.25)

where e; is an orthonormal basis in L,(M, E). (Here, we suppose that a smooth
positive density on M and a Hermitian structure on F are given.) For Res > 1 we
have

8. Tr (A7fy) = Tr (DA (2.26)

Indeed, A7 (;y is a smooth (in ) family of trace class operators. So d;A[ ;) is a trace
class operator. Hence the series

50, (Ane) = X (0:475000)

is absolutely convergenti. Thus the series on the right in (2.25) can be differentiated
term by term ({WW], Chapter 4, 4.7) and the equality (2.26) follows from (2.25).

18This proposition claims that analogous assertions are true for any holomorphic (in a weak sense)
family of classical PDOs. The proof of this proposition is based on the notion of the canonical trace
for PDOs of noninteger orders introduced in Section 3 (below).
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For Res > 1 the equalities hold
aTr (AB)g) = (=) Tr ((AA7) (AB)S) |
0. (A50) = (=) Tr ((AA7") A7)

(Here, At is defined as 9;A;.) Indeed, for such s we have

(2.27)

& Tr (A;;ﬁ}) Tr( i AT (A= N A (A -0 d/\) =

2r T
; _ . ;
=Tr [ —— A? A=A DA ] =
r( 2% Lz (8,\( f ) ) t)
; .
= (—8)Tr | — ATt A, )T dNA, ) =
(T (g [ A (a7 A,

= (—s)Tr (A75VA) = (=9) Tr (AAT'AZL)) . (2.28)

The zeta-function (A;(’ﬂ) =: Ca.(#){s) has a meromorphic continuation to the
whole complex plane C 3 s and s = 0 is a regular point for this zeta-function.
So (—s)T (A ATTAL )) also has a meromorphic continuation with a regular point
s = 0. Hence the equallty holds

0, (s Tr (AAT'A%,))

= ((1+s0)Tr (AATAZ)) | (229)

and the meromorphic function on the right is regular at s = 0.

The formula (2.18) is an immediate consequence of (2.24), (2.27), (2.29), and of
(2.21). In (2.21) A,A7" is substituted as Q. Proposition 2.1 is proved. O
Proof of Corollary 2.1. 1. If the principal symbols a,, b5 of A, B are sufficiently
close to positive definite self-adjoint ones, then the principal symbol a, (bﬁ) /B of ]
possesses a cut L) along R_. If all the eigenvalues of b are in a sufﬁmently narrow

conical neighborhood of Ry, then the principal symbol (aa (bg)a:)' ﬁ)(,)(bg)&/)ﬁ of

r](ﬂ)B(,r) possesses for all 0 < ¢ <1 a cut Ly of the spectral plane.!”
Set A, = nfy BI°. Then Ay = B, F(A0,B) = 1, A = A, F(A,B) =

(%)
F(A,B). We can use the variation formula of Proposition 2.1 and the equalities

(2.24), (2.27). Note that the operator A,A;' =9, (7}%5)) (nfi))_] is equal to log ;1.
Here, log;yn€ CL%(M, E) is the operator

a=0

i -1 . .
oy '/;RI* logsA-(n—A)7 dA, 7 —2r <Imlog; A <7, (2.30)

17"This symbol is independent of a choice of an admissible cut Lz close to L.
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[g,# s the contour I'y gz(e) U Lo z(e) U Ty g #(e) U 'R, where

I'iri(e):i={A+zexp(i®),R2z2e}, Dap:le):={A=zexp(i(f—27)),e<z<R},
Toz(e) := {A =cexpliv),# 29 > 7 — 27},

and I'g is the circle |A] = R, A = Rexp(iyp), oriented opposite to the clockwise
(# =27 < p < #) and surrounding once the whole spectrum in Ly(M, F) of the
bounded operator n € CL%(M, E). The radius € > 0 is small enough such that this
spectrum does not intersect the domain {A,|A| < ¢}. We have logzyn = Bm(‘i)h:o,
where

? -
Ny o= %]F _ )\E,-r) (n — A)"hdA (2.31)
The spectrum of elliptic PDO 5 is compact. The operator logz 7 is a classical PDO
from CL°(M, E). The symbol o (log(,-,) 7}) € CS°(M, E) is equal to (i/27) fp, log A -
o ((7] - /\)"1) d). Here, o (('r] — )\)_1) is a classical PDO-symbol from CS°(M, E),
the principal symbol oo(n)(z,£), £ # 0, has all its eigenvalues in the half-plane

Cy = {A: ReA > 0} and 'y is a contour in C; oriented opposite to the clockwise
and surrounding once the compact set U ¢)es+ar Spec (oo(n)(z,£)) C Cy.

Hence, if the function Tr (Q; ((AtB)(-;) — At—'(’ﬁ))) for Q, := A;A7! has an analytic
continuation to the neighborhood of the origin and if s = 0 is a regular point of this
analytic function, then we have from (2.24), (2.27), (2.29)

Bilog F (Ar, B) = —8id, (Tr (AB)H — Tr Aty — Tr BE) | _ =
= 14901 (o) (B3 Aty =T (o) (A5 A5, =
= (L+s0,) Tr (AA7 ((AB)G " = e BG®)) |, (232)

=0

By Proposition 2.1 we have for 0 <t <1

dlogF( Ay, B)=—(o(log) n),0 (log (A B) [+ B) = (10g(5)(A) ) /) s (2.33)
Thus Corollary 2.1 is proved. O

Remark 2.6. Let A, € Ellg(M, E), 0 <t <1, be a smooth family of invertible elliptic
PDOs of order o € R* such that the principal symbols a; , of A; are sufficiently close

to positive definite ones. Let B € Ellg(M,E) have a real order 8 # —a and let the
principal symbol bg be sufficiently close to positive definite self-adjoint one. Let Ay

be a power of B, Ay = B(c;/)ﬁ. Set A := A,. By Proposition 2.1 the multiplicative
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anomaly of (A, B) is given by the locally defined integral

log F(4, B) = = [ di((Q0), 0 (log(e)(A:B)) / (e + ) ~
—-0a (log(;,)(At)) /a) o (2.34)

Here, Q; := /i,A;" € CL°(M,E). Tts symbo! o (@) is locally defined in terms of
o (Ay). The right side ol it is the integral of the locally defined density on M. This is
a formula for the multiplicative anomaly corresponding to a general smooth variation
between B(C,:.r")ﬁ and A,

Remark 2.7. The assertions of Proposition 2.2 that P(s) is regular at s = 0 and that
there exists a local expression for P(0) is the contents of Lemma 4.6 in {Fr]. Propo-
sition 2.2 is a consequence of Proposition 2.3, of Corollary 2.1, and of Remark 2.5.

(%)
are equal to Id. These symbols are entire functions of s € C (i.e., all the homoge-
neous terms of o (/) are entire functions of s € C in any local coordinates on M.)

The family of PDOs C(u) = C(’;‘I)O"lo € Elly € CL*(M,E) is holomorphic in the
sense of [Gu], (3.18). The latter means that for PDOs Ci(u) := C(u) — PC(u) €
CL**(M, E) as § — 0 we have

Proof of Proposition 2.3. The symbols o (C"Ic’rdc) and o (A:;-:frdA) at s = 0

(it + 6) = Cuti) 16 = Cuw)|
for s > Rep — k. (Here P,C(p) € CL*(M, E) are the PDOs defined by the image
of o(C(x)) in CS*(M, E)/CS**1(M, E) and by a fixed partition of unity on M
subordinate to a fixed local coordinates cover of M.) In (2.35) ||-]|'” is the operator
norm from H,) (M, E) into Lo(M, E) of the operator defined on the dense subspace of
global C*-sections ['(E) in the Sobolev space H(,)(M, E) and Crlp): T(E) — T(£)
is a linear operator. (In (2.35), as well as in [Gu), (3.18), A = (Ay,...,An) 1s an
arbitrary collection of ordinary differential operators of order one with the scalar
principal symbols, acting on I'(E).) The subscript A in (2.35) means

1BS = Il As, ., [Am, B]... ]I (2.36)

=0 (2.35)

The operators C(x) and A(u) := Agfrd‘q for ¢ = 0 are the identity operators.
Hence o(C(0)) = o(A(0)) = Id and the symbol .5 := 8,(o(C(1)) — o(A(1)))lu=o0 is

a PDO-symbol from CS°(M, E). For any PDO S € CLYM, E) with 0(8) = S the
operator Ko + @S is smoothing in ['(£), i.e., it has a C* Schwartz kernel. (Here,

Ko =~ lim Q(C(r) — A(u))
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is the value at s = 0 of K, from (2.22).) Indeed, Ko+ QP2m+1S': Hi_pmy — Himy is a
bounded linear operator since by (2.35) it is a bounded operator from H,)(M, )
to Lo(M,E) for s > —(2m + 1). Similarly, by (2.35) [Al,Ko—i—Qsz.;.]S] is a
bounded operator from H, (M, E) to Ly(M, E) for such s and for an arbitrary DO
Ay : T'(E) — I'(F) of order one with a scalar principal symbol. Hence K¢+ QPgmHS'
is a bounded linear operator from H,y to Hyy for s > —2m. Applying (2.35) with
higher commutators A, we see that Ko+ QPz,n_HS' is a bounded linear operator {rom
H(_m) to H(m}.

Operators Cp(p) := C(p) — PnC(p) and Ap(p) from Hiy(M, E) to L,(M, E) for
|#| £ r and for s > r —m are uniformly bounded by (2.35). The analogous assertion
is true by (2.35) for higher commutators of C,,(g) (or of A, (g)) with DOs A; of first
order with scalar principal symbols. (Such type operators are defined in (2.36) and
are used in (2.35).)

For a holomorphic family of PDOs we have a Cauchy integral representation.
Namely for I, := {u, |u| = r} it holds

1 Cm(z)
Cnl) = 5= [ d 2.37

() 2riJr, 2 —p “ ( )
for a family C.(z) of linear operators on I'(£). This integral is absolutely con-
vergent in the operator norm topology in the space of bounded linear operators
L (‘H(,)(M,E),LQ(M,E)) for s > » — m. This integral is convergent also with re-

spect to the semi-norm |[||£:) from (2.36) for s > r —m, where A = (Ay,..., Ax) is
an arbitrary collection of first order DOs with the scalar principal symbols. (Indeed,
the Cauchy integral representation (2.37) holds also for a holomorphic family PDOs
["415 R [Akvcm(#)] e ])

To prove that K, (from (2.22)) is a holomorphic at ¢ = 0 family of PDOs, it is
enough to note that for K,,(u) := —Q (Cn(p) — An(pt)) /1t we have

(Km(1) = Kn(0)) /1o = —Q (CP(1) — AD () (2.38)
for CP(pu) := (Cm(pt) — Con(0) — 18uCrnlu=o) /1 because Crn(0) = A, (0) (= 0 for
m € Z4) and because Kn(0) := —Q(9.Cmlu=0 — OpAmlu=0), where 9,C,, is the

operator Cy, from (2.35). The operator C{¥)(u): ['(E) — T(E) converges to the
operator 92Cm(pt)|u=0/2: T(E) — T(£) in the semi-norms

lc@ ) - 02Culmo/? ) =0 (2.39)

'3
as it — 0 for s > r — m because for |¢| < r, u # 0, we have

CO(y) = ﬁ A — - _Z?u)dz. (2.40)
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The operator 92Cm(j)|u=0/2 is defined as this integral with ¢ = 0. The integral
in (2.40) is convergent and continuous in g (for sufficiently small |g|) with respect to
the semi-norms |||]£:) for s > r — m. The assertion (2.39) is true for all s > —m. (It
is enough to substitute in (2.39) p with sufficiently small |g|.) Hence the family K,
from (2.22) is holomorphic at s = 0. O

3. CANONICAL TRACE AND CANONICAL TRACE DENSITY FOR PDQOSs oOF
NONINTEGER ORDERS. DERIVATIVES OF. ZETA-FUNCTIONS AT ZERO

For any classical PDO A € CL*(M, E), where o € C\ Z, a canonical trace and
a canonical trace density of A are defined. Indeed, since the symbol of A has an
asymptotic expansion as [} — 400

(L(ZE,f) = Z aﬂr—k(m)E)a
k€Z+UO
the Schwartz (distributional) kernel A(z,y) of A has an asymptotic expansion for
z — y, ¢ # y in any local coordinate chart U on M as follows

A(Tay) = Z A—n—a+k($sy - "E) + A(N)(G:? y) (31)
k=0,1,....N

Here, n = dimM, N € Z, is sufficiently large'®, A(n)(z,y) is continuous and this
kernel is smooth enough'® near the diagonal in U x /. The term A_,_q4r(z,y—z) is
positive homogeneous in y — x of degree (—n— a+ &) lor all pairs (z, y) of sufficiently
close z and y from U and for 0 < ¢ < 1, 1.e.,

A_n_0+k($,t(y — .’L)) = twn-a+kA_n_a+k($, y— 27) (32)
Remark 3.1. The (local) kernel A_,_,1x(z,y — ) corresponds to the integral
[ tamsl € explile — y, €))de. (3.3)
This integral is defined as follows. The analogous truncated integral
[ e sz, &) explifz — v,€))de (3.4)

is an oscillatory integral, [Ho1], 7.8, since the estimates hold

|D£Dg (P(|f|)“a-—k(-'b‘,§))| < Cpan(l + |£|)Rea—k_|~f|

for z € K C U. (Here, U is a coordinate chart on M, K is a compact, p(?) is a
C-function, p(t) = 0 for small ¢ and p(t) = 1 for ¢t > 1.) This truncated integral

1814 is enough to take N € Z . greater than n + Rea + 1.
19The kernel A(ny(z,y) is of the class C'(U x U) for I+dim M +Rea < N 1. Here we suppose
that the coordinate system is defined in some neighborhood V of U.
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defines a distribution on C$°(z,y) of order®® < [ for Rea — k — I < —dim M, [H&1],
Theorem 7.8.2.
The integral

J@ = pllgh)aa-s(z, &) explile - y,€))de (3.5)

is absolutely convergent for Rea — & > —n, n := dim M. All the partial derivatives
in z, y under the sign of this integral are also absolutely convergent for such a. So
the kernel (3.5) is smooth in (z,y) for such Rec.

The integral (3.3) is the Fourier transformation £ — y—az =: u of the homogeneous
in £ distribution aq—g(2,€) (depending on z as on a parameter) of the degree o — k.
Fora—k € {m € Z,m < —dimM} and for a fixed  the distribution a,_i(z,€) has
a unique extension to the distribution belonging to ' (R™) (¢ € R™*\ 0, n := dim M),
[H61), Theorem 3.2.3. The Fourier transformation of a,—x(z,£) is a homogeneous
in u = y — « distribution of the degree (—a + & — n), [Ho61], Theorem 7.1.16. So
this integral for « — &k ¢ Z, U0 (and for a fixed z} has a unique extension to the
distribution belonging to D’ (R").

Note that aq-x(z,€) is (for a fixed z) a temperate distribution, i.e., it belongs to
S’ (R™). Indeed, p({¢|)aa-x(z,€) is (for a fixed z) a temperate distribution, [Hol],
7.1. Fora—k ¢ {m e Z,m< —n}, n:=dim M, (and for a fixed z) the distribution
from D' (R"\ 0)

(l ‘p(lgl))aa—k(ma‘f) (36)

(equal to [€]*7*(1 — p(I€]))aa—k(z, £/]€]) lor [£] small enough) has a unique extension
to a distribution from D' (R™) with a compact support. (This fact follows from [Hé1],
Theorem 3.2.3, because (3.6) is homogeneous in |¢| for sufficiently small |£|.) Hence
this extension of (3.6) is also a temperate distribution. Its Fourier transformation
provides us with an analytic continuation in « of the integral (3.5) from the domain
{a: Rea>k—-n}toa€e C\{meZ,m<k—n} SotheFourier iransformation
of ag—i(x,&) is defined and belongs to S’ (R™).

The wave front set for the oscillatory integral (3.4) is contained in {z,y —z = 0,£},
[H61], Theorem 8.1.9. Hence the kernel (3.4) is smooth outside of the diagonal z = y.
The Fourier transformation (3.5) from € to u = y — = (for a fixed z) has its wave
set belonging to {v = 0,&} ([H61], Theorem 8.1.8) because the wave front set for
(1 — p(l€]))aa-x(z,€) (z is fixed) belongs to the cotangent space at € = 0. So the
kernel (3.3) is smooth for z # y.

The canonical trace density a?N)(m) :=tr Avy(z, z) on U is defined as a pointwise
trace of the kernel A(ny. This density does not change under a shift N — N + k,
k € Z4. This density for a large positive N is denoted further by ay(z).

20A distribution u on C§°(V) (for a local coordinate chart on M) is of order | € Z U0, v € D'/(V),
if for any compact K in V the estimates hold [u(f)] < Ci 3 5¢,50p |02 f], f € CP(K).
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Proposition 3.1. The denisity ay(z) at ¢ € M is independent of a smooth coordi-
nate system U 3 x on M near z.

Proof. Let z = f(Z) be a smooth change of local coordinates near z. Then according
to Taylor’s formula we have for X and Y sufficiently close one to another

Acnark (J(X), S(Y) = J(X)) =
= Acpeath (f(X), Y BAX)Y — X)P/B +rn(X, Y)) =

1<lalgN
= B—n—a-i—k(-xa Y - X) + B—n—a+k+1 (X: Y — X) +...+ R—n-a-l-k,{N)(XJ };)J

where R_,_s4r(V)(X,Y) is a local kernel continuous near the diagonal and such that
R_ ok ny(X,X) = 0. (Here, ry is o(|X — Y|N) for close X and Y and ry is
smooth in X, Y.) Hence Ry) does not alter the demsity ay. Thus a local change of
coordinates does not alter this density. O

Hence any PDO A € CL*(M, E) of a noninteger order o € C\Z defines a canonical
smooth density a(x) on M. We call a(z) the canonical trace density of A. Integrals
of such densities provide us with a linear functional on CL*(M, E) 3 A defined as

TR(A) := / a(x). (3.7)

M
We call it the canonical traceof A€ CL*(M,F), o ¢ Z.

Remark 3.2. Let Rea < —n. Then a PDO A € CL*(M, E) has a continuous
Schwartz kernel A(z,y) and the density a(x) on M coincides with the pointwise
trace tr A(z, z) of the restriction of the kernel A(z,y) to the diagonal.

Remark 3.3. Let « € R_, o« < —n, and let the principal symbol o_.{z,£) of an
elliptic PDO A € Elig(M, E) C CLY(M, E) possess a cut Ly of the spectral plane
C. Then the spectrum of A is discrete.?' According to the Lidskii theorem [Li], [Kr],
[ReS], XIIL.17, (177), [Si], Chapter 3, [LP], [Re], XI, the operator A is of trace class

and we have

TrA = [trA(:r:,m).

Hence in this case we have

TR(A) = Tr A.

21 A is a compact operator in Lo(M, E). Its spectrum is discrete in C\ 0. The only accumulation
point of this spectrum is 0 € C, [Yo].
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Remark 3.4. Let A € Ellg(M, £) C CL*(M, E) be an elliptic PDO of order a € R.,.
and let its principal symbol o,(A)(z,€) possess a cut Lig of the spectral plane.
Then the holomorphic family A7} is defined. The operator A7 is of trace class for

Q) (6)
Res:-a > n. For s € Csuch that s- o ¢ Z and that Res - o > n we have??
Caoy(s) = Tr (A7) = TR(43). | (3.8)

This zeta-function has a meromorphic continuation to the whole complex plane. (This
assertion also follows from Proposition 3.4 below.) The kernel A('g’)(:c,T ) for @ # y also
has a meromorphic continuation. Homogeneous terms of the symbol o (A('g‘;) (z,€)

of (-é’) € Ellg** (M, E)y Cc CL™™*(M, E) in any local coordinate chart U on M are

holomorphic in s. Hence by the definition of TR and by (3.8), the equality

Cagir(s) = TR (AG) (3.9)
holds for all s € C such that s« ¢ Z.

Here we use the weakest properties of a holomorphic (local) in z {amily of PDOs
it has to possess.

Definition. A (local) family A(z) € CL/®(M, E) is called a w-holomorphic
family, if in an arbitrary local coordinate chart?® U 3 2,y and for any sufficiently
large N € Z, the difference of the Schwartz kernel for A(z) and a kernel corresponding
to a truncated symbol of A(z)

N
Acal) = X [ pUEDIEF O ay(z,2,¢ 16D explife — y,£)d (3.10)

is a C™-smooth (local) kernel on U x U, where m = m(N) tends to infinity as N — oo
and this kernel on U x U is holomorphic in z together with its partial derivatives
in (z,y) of orders not greater than m(N). Here, p(t) is a cutting C*°-function,
p(t) =01for 0 <t <1/2, p(t)y=1fort > 1, f(z) is (locally) holomorphic in z, and
a_j(z,z,£/|€|) are holomorphic in z functions on S* M|y with the values in densities

at . The kernel A; ,(z) has to be holomorphic in z for z, y from disjoint local charts
Uz, Vay, UNnV =140

22For such Res an operator family A(_e’) is defined by the integral (2.1) with an admissible for

A cut Ly close to Leg). Note that A?o')
algebraic eigenspace of A corresponding to the eigenvalue A = 0 and Py(A) is the zero operator on
algebraic eigenspaces of A for nonzero eigenvalues.

3t is enough to check these conditions for a fixed finite cover of M by coordinate charts.

= Id — Py(A), where Py(A) is the projection operator on
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Proposition 3.2. For classical PDOs A, B such that ord A+ord B ¢ Z the equality
holds

TR(AB) = TR(BA), (3.11)
TR([A, B]) = 0.

Remark 3.5. The equality TR([A, B]) = 0 means that TR is a trace class functional.
Note that the bracket [A, B} is defined for classical PDOs A, B having arbitrary
orders. However the equality TR(|A, B]) = 0 is valid only if oord A + ord B ¢ Z
(otherwise the TR-functional is not defined).

Proof of Proposition 3.2. 0. We assume that ord A,ord B € R. The general case
follows by the analytic continuation (Proposition 3.4).

1. It is enough to prove the equality (3.11) in the case when A is an elliptic PDO
such that log A exists and such that exp(zlog A) =: A* is a trace class operator for
z from a domain U C C. Indeed, any A € CL*(M, E) is the difference A = A, — A,
such that ord A; = ord A+ N, N € Zy, ord A; > 0, A; € EIS***N (M, E), and auch
that log Ay, log A, exist. It is enough to set
of2+N
(m

Here, c € R, and N € Z, are sufficiently large constants, o := ord A, and A%,
is the Laplacian for (M, F) corresponding to a Riemannian metric on M and a
unitary connection for an Hermitian structure on £. Operators defined by (3.12) are
invertible and possess complex powers (for sufficiently large ¢ and N).

Let A be the difference Ay — A, where A;, A, possess complex powers. Suppose
we can prove that TR (A;B) = TR (BA;). Then TR(AB) = TR(BA).

2. Let A be an invertible elliptic operator with ord A > 0 and such that complex
powers A® are defined. Let us prove that in this case the equality (3.11) holds (under
the condition ord A + ord B # 0). Let so 3> 1 be so large that for Res > sg the
elliptic operators A1=*/2 and AU~#)/2B are of trace class. By Remark 3.3 for such s
we have

TR (A™AB) = Tr (A~ AB) = Tr (AC=/2BAC-9/2) =
=Tr (BAA™*) = TR (BAA™"). (3.13)

(Here we use the fact that A(=2)/2 is of trace class and that A1~*)/2B is bounded.)

Let qd(sy ‘= ZjeZ+UO q(1-3)a+p-3 and T(s) = ZjEZ+UOT(1—s)a+ﬁ—ja a = ord 4, /8 =
ord B, be the symbols of A'~?B and of BA!~*. Note that for Res > sy the canonical
trace density of A is also equal to the restriction to the diagonal M (in M x M) of
the Schwartz kernels corresponding to A'~*B minus the local kernel for a finiie sum

A= (A5 + cld):)”N +A, Ay = (D5 +eld) (3.12)
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of homogeneous terms in g, corresponding to j =0,..., N (where N € Z is large
enough). This difference of the kernels is sulficiently smooth near the diagonal. But
it is continuous on the diagonal and holomorphic in s also for as > n+4+1-N+a+ 8,
(1-s)a+8 ¢ Z,n := dim M. So this difference is regular near the diagonal for s close
to zero, if N € Z, is large enough. The analogous assertions are true also for BA!~*
and for r(,) when we take the difference with kernels corresponding to a sufficiently
much number of the first homogeneous terms in the symbols r(,). But the canonical
traces TR(A'""*B) and TR (BA'~*) do not change for Res > sy when we subtract
these (positive homogeneous in y — z) kernels. (Indeed, the kernels we subtract do
not change the canonical trace densities on M defining the functional TR.) Hence
we can set s = 0 in the equality (3.13) as o + 8 ¢ Z. So TR(AB) = TR(BA). O

The use of complex powers of PDOs in the proof above looks a bit artificial. The
direct proof using only the language of distributions also is possible but we do not
give it here.

Remark 3.6. Note that families A™* and A7*B for an elliptic PDO A, ord A € Ry,
possessing complex powers and for a classical PDO B, are holomorphicin s families
of PDOs. So the assertion (used in (3.13)) that TR (A™*B) is holomorphic in s (for
—sord A+ ord B ¢ Z) can also be deduced from Proposition 3.4 below.

Proposition 3.3. The traces of a classical elliptic PDO A € CL*(M,FE), o ¢ Z,
and of its transpose 'A € CL* (M, EY) coincide

TR(A) = TR (*A). (3.14)

(Here, EV is the tensor product of a fiber-wise dual to E vector bundle and a line
bundle of densities on M.)

Proof. Let A(z) be a holomorphic family of classical PDOs such that A{e) = A,
ord A(z) = z. Then for Rez < —dim M we have

TR(A(2)) = Tr(A(2)) = Tr (*A(2)) = TR (*A(2)) . (3.15)

Proposition 3.4 below claims that TR{A(z)) and Tr (*A(z)) are holomorphic in z
for z ¢ {m € Z,m > dimM}. (Here, we use that *A(z) is a holomorphic family.) So
using the analytic continuation of (3.15), we obtain

TR(A) = TR(A(20)) = TR (*A(z0)) = TR (*A(2)) .

To produce an analytic family A(z), it is enough to set A(z) := AC*®, where
C € Ellg(M, E) is an elliptic PDO possessing complex powers. [

Proposition 3.4. Lel Alz) be a holomorphic in z family of classical PDOs, ord Alz) =
z, where z is from an open domain U C C. Then TR(A(z)) is @ meromorphic in z
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function regular for z € U\ Z. This function has no more than simple poles at the
points ZNU. Its residue at m € ZNU s given by

Resz=m TR(A(z)) = — res A(m). (3.16)
(Here, res is the noncommutative vesidue, [Wo2], [Kas].) For m < —dimM this
function is regular at m € U (by (3.16)).

Analogous assertions are true for holomorphic families A(z) of PDOs such that
ord A(z) =: f(z) is a (locally) holomorphic function. For TR(A(z)) to be a meromor-
phic function with simple poles at f~'({m € Z,m > dimM}) =: Sy, it is necessary
that f'(z0) # 0 for any zo € Sy. If [(2) satisfies this condition, then TR(A(z)) has

simple poles with the residues

Res.—,, TR(A(z)) = —

1
reso (A(z 3.17
iy s (A4 1)
for f(20) € ~n+(ZLU0), n:=dimM.

The equalitics analogous to (3.16) and to (3.17) are valid also for the densities
az(z) and ves; o (A (z0)) on the diagonal t € M — M x M (corresponding to the
canonical trace TR(A(2)) and to the noncommutative residue res o (A (2g))). Namely
1

Res.—, az(2) = e res, o A(z)) (3.18)

for zp € Sy.

Remark 3.7. 1. For classical PDOs it is natural to introduce a modified trace func-
tional

TRa(A) := (exp(2riord A) — 1} TR(A). (3.19)

The additional factor in this definition does not change if ord A shifts by an integer.
(Note that the order of A may differ by an integer on different components of a
manifold.)

For a holomorphic family A(z) of classical PDOs this trace functional is holomor-
phic for all z. Here, we do not suppose that f(z) := ord A(z) has nonzero derivatives
f'(z0) at {z0: f(20) € Z, f(20) > —dim M}. This statement follows from the proof
of Proposition 3.4.

2. For classical elliptic PDOs it is natural to introduce a trace functional

TRe(A) := TR(A)/T(—(ord A + dim M)). (3.20)

For a holomorphic family A(z) of elliptic PDOs this trace is holomorphic for all z.
(The proof of Proposition 3.4 gives us such a statement. Here we do not suppose

that f'(z0) # 0 for f(20) € Z, f (20) 2 —dim M)
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Remark 3.8. The assertion that the noncommutative residue res is a trace linear
functional on the algebra C'Sz(M, F) of integer orders classical PDO-symbols follows
immediately from Propositions 3.2, (3.11), and 3.4, (3.16). Indeed, by (3.16) and by
(3.11) we have

1‘63([/1, B]) = - Resz=ord,4+ord5 TR([A(Z), B(z)]) =0

for A,B € CL%*M,E) and for any holomorphic families A(z), B(z) such that
A(ord A+ord B)= A, B(ord A+ord B) = B. (For example, set A(z):= AC*ordAordB
B(z) = BC#ordA-ordB where C is an invertible first order elliptic PDO possessing
complex powers).

Proof of Proposition 3.4. The positive homogeneous in € terms of the symbol
a(A(z)) correspond to the positive homogeneous in y — = (local) summands of the
Schwartz kernel for A(z). Namely (in the notations of (3.10)) the integral

J IOz, 3,616 explile — y,€))de

defined in Remark 3.1 is the positive homogeneous of degree —n — f(z)+jiny—=
(local) kernel. These kernels do not alter TR(A(z)) for f(z) ¢ Z (and also for
f(z) € Z,if f(z) < n—j). Note that the kernel (3.10) is smooth enough near the
diagonal in U x U and is locally holomorphic in z. So the canonical trace TR and
the canonical trace density of this kernel are regular in z.

Therefore the singularities of TR{A(z)) are defined by the restriction to the diag-
onal of the kernel

N
;}/(P(m) — D[ aj(z, 2, &/IE]) exp(ilz — y, €))dE. (3.21)

The kernel (3.21) is smooth in (z,y) and holomorphic in z for f(z) —j+n #0
(because p(|€]) = 0 small |£]). Namely the integral (3.21) is absolutely convergent for
Re f(z) > j — n (and the convergence is uniform in (z,y,z) for Re f(2) > j —n + ¢,
e > 0). The corresponding integral over || = const is absolutely convergent for any
z. For & = y the integral (3.21) has an explicit analytic continuation. It is produced
with the help of the equality

T
j sde = 1/(A +1)
4]
for Re A > —1. The right side of this equality is meromorphic in A € C.

We suppose from now on that f’(z¢) # 0 for zo such that f(20)+n € ZLU0. The
residue of the integral (3.21) at z = zp such that f(z0) = ~-n+j is

iy [ e s, (5.22)
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where djg are natural densities on the fibers of S*M. Note that a_;(z,x,6/|€])|£]/ €
is positive homogeneous 1n £ of degree —n. So we have

Res,=., TR(A(z)) = —

1
reso (A (20)) . 3.23
f, (ZO) ( ( 0)) ( )
The proposition is proved. []
Let ell(M, E) be the Lie algebra of logarithms of (classical) elliptic PDOs. As a
linear space, ell(M, F) is spanned by its codimension one linear subspace C L°(M, E)
of zero order PDOs and by a logarithm ! = log A of an invertible elliptic PDO

A € Elly(M, E) ¢ CLYM, E) such that A admits a cut L of the spectral plane
C. The space {sl + By}, s € C, By € CL°(M, E), of logarithms of elliptic PDOs is
independent of {. This space has a natural structure of a Fréchet linear space over
C. The Lie bracket on ell(M, £} is defined by

[S]I + b[,Szl + bg] = [I,S|b2 - Sgbl] + [b], bg] S CLD(M,E) - C[[(M, E). (3.24)
The bracket [I, $16; — s28;] is a classical zero order PDO because
[, 5162 — s2b] = 9, (Al (5162 — 52b1) A7) lemo € CLY(M, E).

(Here, Afg) := exp(t!) is a holomorphic in ¢ family with the generator {. The inclusion

[1,b] € CLY(M, E) for b € CL°(M, F) can be also deduced from (an obvious) local
inclusion of [log ||, (b)] to classical zero order PDO-symbols and of the description
the corresponding Lie algebra Si.(M, E) in Section 2.)

The exponential map from ell(M, £) to the connected component Ellg(M, £) 3 Id
of elliptic PDOs is

sl Bg — exp (sl 4+ By) € Ellj(M, E). (3.25)

The PDO A, := exp(sl+ By) € ElIg(M, E) C CL*(M, E) is defined as A]|;=1, where
the operator A] is the solution of the equation

0;A; = (sl + Bo)AL, (3.26)
A2 = 1d, A} = exp(Bo). (3.27)
(Note that A, := A] depends on an element sl + By € ell(M, E) only and that A,

does not depend on a choice of [ € log (Ellé(ﬂff, E)) The solution of (3.26), (3.27) is
given by the substitution

AT = AT, (3.28)
O F, = (A" BoA™) F,,  Fyi=1d. (3.29)

The operator A°7 in (3.28), (3.29) is defined for Re(s7) <« 0 by the integral (2.1)
with 2 := s7. This family is continued to s7 € C by (2.2}). The operator A™°" ByA*"
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in (3.28) is a PDO from CL°(M, E). The operator exp(Byp) in (3.27) is defined by
the integral

exp Bo 1= 5= fF (Bo = A)™" exp Ad), (3.30)
-~ R

where I'p is a circle |A| = R oriented opposite to the clockwise and surrounding
Spec By** (Recall that this spectrum is a compact in the spectral plane C and that
the operator (By — A)™" is a classical elliptic PDO from ElY(M, E) ¢ CL°(M, E) for
M € T since By € CL°(M, E).) We have exp By € EIIY(M, E) C CL*(M, E).

The existence and the uniqueness of a smooth solution for such type equations in
the space of PDO-symbols is proved in Section 8. So we have the solution o (F}) of
the equation on elliptic symbols

0,0 (Fy) =0 (A~ BoA" ) o (F,), o(F)=1d. (3.31)

Let S, € Elg(M,E), 0 < 7 < 1, be a smooth curve in the space of invertible
elliptic operators from Sp = Id to Sy with ¢ (S;) = o (7). Then

0.5, = (47" Bar™) +1.) 5.,

where 7, is a smooth curve in the space CL™(M, E) of smoothing operators (i.e.,
in the space of operators with smooth kernels on M x AM). Set u, := S7'F, — Id.
Then u, € CL=®(M, E) is the solution of the equation in CL=*(M, E)

Oty = — (S7'r.8:) (Id+u,), o =0. (3.32)

This is a linear equation in the space C L™ (M, E) of smooth kernels on M x M with
known smooth in I x M x M coefficients S7'r.S, € CL™(M, E). (This equation
can be solved by using the Picard approximations.)

Proposition 3.5. The ezponential map (3.25) is w-holomorphic, i.e., for any (local)
holomorphic map ¢: (CN,O) 3 g — s(g)l+Bo(q) € ell(M, F), the family exp(p(q)) €
EIIS(Q)(M, E) is w-holomorphic.

The function
TR (exp(sl + By)) =: T(s, Bo)
is defined for any s € C\ Z and for any By € CL%(M, E). Note that T'(p(q)) is

meromorphic in ¢ with poles at {¢: s(¢) € Z,s(q) > —dim M} by Propositions 3.4,
3.5.

24The integral (3.30) is analogous to the integrals (2.30), (2.31). We suppose here also that the
principal symbol og(Ba)(z,€) has all its eigenvalues inside the circle |A] = R/2 for all (z,£) € 5™ M.
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Proposition 3.6. The function T(s, By) is meromorphic in (s, Bo)® and has simple
poles at the hyperplanes s € Z, s > —dim M. We have

Resy=m T(s, By) = —res o (exp (ml + By)). (3.33)
Here, m € Z, m 2 —dim M, and res is the noncommutative residue ({Wo2]).
Proof. This assertion is an immediate consequence of Propositions 3.5, 3.4. [

Proposition 3.7. The product A(2)B(z) of w-holomorphic families is w-holomorphic.

Proof of Proposition 3.5. We can solve the equation for symbols o (Af (By)) of
AL (Bo) :=exp (t (sl + Bo))

o (AL (Bo)) = o (sl + 2Bo) o (AL (Bo)), o (AS(Bo)) = Id (3.34)

for any (s, z, Bo). These symbols are holomorphic in (s, (), 2,0 (Bo)). (Here we use
the substitution (3.28), (3.29) but on the level of PDO-symbols. So we don’t have to
inverse elliptic PDOs in solving of (3.34). This equation is solved above, (3.31).)
Let {U:} be a finite cover of M by coordinate charts, p; be a smooth partition
of unity subordinate to {U;}, and let ¢; € C°(U;), ¥ = 1 on supp (p;). These
data define a map fy from PDO-symbols to PDOs on M. The difference AL (By) —
fn (0 (AL (Bo))) has a smooth enough kernel on M x M (for N € Z large enough),
and this kernel K3(z,y) is a solution of a linear equation with the right side smooth
enough and holomorphic in s, By (for s close to a given so € C). Here, we choose N

depending on sg. So the kernel I(I(\;,"B")(q)(:c,y) := K3'(z,y) is sufficiently smooth on
M x M and holomorphic in ¢ close to qo, s (go) = so- The PDO fx (o (Al (Bg))) is w-
holomorphic in s, By by its definition. So A, (Bo) := exp (sl + Byp) is a w-holomorphic
ins, Bg. O

An alternative proof of this proposition is as follows (it uses Proposition 3.7).

1. First prove that A, (By) := exp(s!{ + By) is holomorphic in By. To prove the
analyticity in By for any fixed s € C\ Z, it is enough to prove that

{0: (exp(ls + 2Bo))}| (3.35)

exists and that we have

{0: (exp(s + 2Bo))} | __ =0. (3.36)

z=0

#That means that the function is meromorphic in (s, By) on any finite-dimensional linear (or
affine) subspace in ¢ll(M, E). In the independent of coordinates (s, Bg) form this theorem claims
that the function T'is meromorphic near the origin on the space of logarithms for elliptic PDOs and
that T has a simple pole along the codimension one linear submanifolds of integer orders PDOs.
The residues of T are given by (3.33).
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Indeed, to prove the same assertions for z # 0, we can change the logarithm [ of
an elliptic operator A of order one to the logarithm

I, == 14528,

of another elliptic PDO A, € Ell}(M,E) c CL'(M,E). (Note that the principal
symbols of A and of A, are the same.)
By the Duhamel principle, we have2®

exp(ls + 2By) —expls = fgl dr o, (exp(’r(l's + zBp)) exp((1 — 7)ls)) =

= /01 dr exp(r(ls + 2Bg))zBoexp((1 — 7)s). (3.37)

We conclude from (3.37) that

0. {(exp{ls + 2By))} L:O = /;dh- exp(ris)Byexp((1—7)ls), (3.38)
ds {(exp(ls + zBo))} | _ =0. (3.39)
To deduce (3.38), (3.39) from (3.37), note that the equation for A z):=exp(r(s!--2zBy)
0. AL(2) = (sl + zBy) AL (2), (3.40)
Adz) = Id, Aj(z) =exp(rzB,), AI(0) = A" (3.41)
is solved by the substitution

Al(z) = A Fy(2), (3.42)
8, F,(z) = ( T B AT ) Fy( (3.43)
Fo(2)=1d, F.(0)=1d. (3.44)

Hence for 0,F,(z)|;=0 =: Q,(7) we have
9:Qs(1) = AT Bo A", Q,(0) =0, (3.45)

and @,(7) € CL°(M, E) depends smoothly on 7. Thus we have
1
exp(sl + zBy) — exp(s!) :/ dr A7 (Id42Q, (1) +0(2)) zBo A*U),  (3.46)
d. exp(s! + zBo / dr A*T B A*1 -7, (3.47)

26Note that for any T
exp(r(ls + zBo))exp((1 = 7){s) € Ellg(M, E), exp(r(ls + zBg))zBgexp((1 — 7)ls) € CL*(M, E).
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Here o(z) is considered with respect to a Fréchet structure on CL%(M, E). This
structure is defined by natural semi-norms (8.20) on C5°(M, E) (with respect o a
finite cover {U;} of M) and by natural semi-norms on the kernels of A — fnvo(A) €
C*(M x M) for appropriate k € Z, U0, N € Z, are large enough.?”

The expression on the left in (3.47) is the derivative of the function with its values
in CL*(M, E) and the operator on the right in (3.47) is also from CL*(M, E).

2. The family of elliptic PDOs

A, (Bo) :=exp(pl + Bo) € Ellf(M, E) C CL*(M, E) (3.48)

is w-holomorphic in g. Indeed, set I, := { + By/y. Then A, := exp(uly) is holo-
morphic in g, v for v # 0. We have also A, = A, y|y=u-

Thus it is enough to prove that A, is w-holomorphic in g at = 0. Set A](z) :=
exp (7 (ul + 2By)), Fr(p, z) 1= exp(—7ul)A](z). By (3.41), (3.42) we have

- Fr(pt, 2) = 2 (Adexp(oprty Bo) Fr(pt,2),  Folp,z) = 1d = Fr(p,0).  (3.49)
We have to prove that the family Fr(p,1)|-=; is w-holomorphic in p at g = 0. The

coefficient z Adexp(—purty Bo =: zv(pr) € CLY(M, E) in (3.49) is holomorphic in 7.
Set 0, Fr(p,2) = fr(p,2). (We know that f; exists, if g # 0.) Then

Or fr(1t,2) = 20 (7)1, 2) + 20,00 oty 2), F(11,0) =0= fol, ). (3.50)
Let us substitute g = 0 to the right side of this equation. Then (3.50) takes the form

0, f+(0,2) = 2Bof+(0,2) — z7 [I, Bo]exp (72Bs), fo(0,2) = 0. (3.51)

This is a linear equation in CL°(M, E) and it has a unique solution. (The analogous
assertion is proved in Section 8.) So fi(0,2) := 3.F1(pt,2)|u=0 exists. Hence the
family F3(y, z) is holomorphic in g (In particular, it is holomorphic in g for z = 1.)
O

Remark 3.9. The holomorphic in u dependence of A, (By) in the sense of [Gu] (Sec-
tion 3, (3.17), (3.18)) means that the image of o (A4,) in CS#/CS#~V is holomorphic
in p (for N € Z,) and that for any 1 € C and for any m € Z, there exists a lin-

ear operator Ap,(jt): ['(E) — T'(E) such that the asymptotics (analogous to (2.35))
hold?® for s > Reyu — m as |6] — 0

[t + ) = An(i0) /6 = An()] ) = 0 (3.5

Here, A,(pt) := A, — Pn A, (where PpA, € CLP(M, E) is the PDO defined by the
image of o (A,) in CS*(M,E)/CS* ™' (M,E) and by a fixed partition of unity
subordinate to a finite cover of M by local charts).

2TWe use the notations of the first proof of this proposition.
2BWith respect to the semi-norms |||[_{;) from (2.36), (2.35).
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This assertion follows from the Cauchy integral representation for A,,(x) analogous
to (2.37). The Cauchy integral representation for Ay, (x) (with 0 < r < |g| in (3.53),
(3.54) below) can be deduced from Proposition 3.5. This integral representation
implies the expression of the operator A,,(u) in (3.52) as of the Cauchy integral of
linear operators in ['( E)

Am(pt) = = d 3.53

mm)_%dﬁmg@—pﬁz' (3.53)

Here, I',(y) is the contour {z: |z — | = r} oriented opposite to the clockwise. (This
integral is analogous to (2.37).)

The Cauchy integral formulas for Ay (u) and A,,(x) hold and these integrals are
convergent with respect to the operator semi-norms ||HE:) fors > r+Rep—m. (The
same assertion is true for any smooth simple contour I' surrounding once the point
p and belonging to D,.(u) :={z € C: |z —pu} <r}.)

Set A (14,8) := (Am(it + &) — An(1)) /86 — An(r). Then for r > || we have

o1 1 o L
Am”””‘mwﬁmqu—mu—#—é) u—ﬂﬁ)A“)d' (3.54)

This integral converges with respect to the operator semi-norms 1|||£:) for s > r +

Rey — m. Its semi-norm ||||£f) (for any s > r —m) is O(|4]) as |§] — 0.

The convergence of these integrals in appropriate semi-norms ||- ||(A") is a consequence
of a holomorphic in ¢ dependence of Fi{g,1) (defined by (3.49)).

Proof of Proposition 3.7. Let A(2) € CL/®(M,E) and B € CLY? (M, E) be
w-holomorphic families (f(z) and g(z) are holomorphic in U C C). In the notations
of the proof of Proposition 3.5 the kernels of A(z) ~ fvon(A(z)) =: rvA(2)* and of
rn B(z) are holomorphic for 2z close to zp and are sufficiently stmooth on M x M for
such z.

The product fxA(z)- fy B(z) is w-holomorphic by the standard proof of the com-
position formula for classical PDOs (see for example, [Sh], 3.6, the proof of Theo-
rem 3.4). For N € Z, large enough (depending on 29 € /) and for z close to z; the
kernels of rnvA(2) - fnB(z), fnA(z) -rnB(z), rvA(z) - 75 B(2) are sufficiently smooth
on M x M and holomorphicin z. O

2Here, an(A) is the image of A in -

CLordA(M, E)/CLordA—N-l(M, E) - CSDMA(M,E)/CSMCIA-N"I(M,E)
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3.1. Derivatives of zeta-functions at zero as homogeneous polynomials on
the space of logarithms for elliptic operators. For an element J = al + By,
a € CF, of ell(M, E) the TR-zeta-function of expJ € Ellg(M, E) C CL*(M,E) is
defined for s€C,as¢ Zby

o 5(8) := TR(exp(—sJ)). (3.55)

Let o € R* and let for A € ElI{(M, E) its complex powers Afy, be defined. (Here,
0 is fixed and the cut L of the spectral plane has to be adn]lSSlb]e for A.) Let

05 Algylsro = J (ie., for any C*-section f € ['(£) we have J, (Afa)f) ls=0 = Jf).
This equality can be written as

By Remarks 3.3 and 3.4 the TR-zeta-function of A coincides for « Res < —dim M
with the classical -function

(o a(8) = Cexpu(o)(8)- (3.57)
By Propositions 3.3, 3.5 the TR-zeta-function (5 ;(s) is meromorphic in s with no

more than simple poles at s € Z, s < dim M. Hence (3.57) holds everywhere. By
(3.33) we have

Res,—o (o s () = resId = 0.

So C};{%Jv(g)(s) (and (o s(s)) are regular at s = 0. Hence the derivatives at s = 0 are
defined

¢80 1(0) 1= OCaxpa(9)| _, = OFCIR 49| _,-

Our definition of the TR-function differs flom the usual one in two aspects. Firstly
we consider it as a function depending on a logarithm of an elliptic operator and not
on an operator with an admissible cut. Secondly, the order « should not be real.

Remark 3.10. The main difference between a TR-zeta-function and a classical one is
that we do not use an analytic continuation of the TR-zeta-function in its definition.
This function ({R(s) := TR(A™*) is canonically defined at any point so such that
spord A ¢ Z. This definition uses a family A~* of complex powers of a nonzero order
elliptic PDO A. However, if we know a PDO A~%, sqord A ¢ Z, then we know
TR (s0). For example, in the classical definition of zeta-functions it was not clear, if
the equality holds

Ca(s0) = (B (1), (3.58)

where A7 = B™%, sqord A = sy ord B ¢ Z, {or nonzero orders elliptic PDOs A, B
with existing complex powers A=*, B™*. For TR-zeta-functions the equality (3.58)
follows from their definitions. These zeta-functions coincide with the classical ones
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for Re(sord A) > dim M, Re(sord B) > dim M. Hence the equality (3.58) holds for
classical zeta-functions also.

Note that the equality (3.58) is not valid in general, if spord A = s;0rd B € Z.
If spord A is an integer and if spord A < dim M, then (a(s) has a pole at 34 for a
general elliptic PDO A. If such A is an elliptic DO and if spord A € Z4 U 0, then s
is a regular point.

Remark 3.11. The existence of the complex powers of an invertible elliptic operator
A € Ellf(M,E) C CL¥(M,E) (for « € C*) is equivalent to the existence of a
logarithm log A.3® This condition is not equivalent to the existence of a spectral
cut Ly for o,(A). For instance, such a cut does not exist in the case « € C\ R.
However, if such a cut L exists for Ay € EllG(M, E) C CL°(M, E), ¢ € R*, and
if A € Ellg°(M,E) C CL*(M,E) is equal to A7, then log A defined as alog; A

exists.

Theorem 3.1. The function C!Ef,),J(O) on the hyperplane {J =14Bg, Bo€ CLY{M, E)}
(where | = log A and A is an elliptic operator from Ellj(M, E) ¢ CLY(M, E) such
that log A ezists) is the restriction to this hyperplane of a homogeneous polynomial
of order (k+ 1) on the space ell(M,E) := {J = ¢l + Bo,c € C,By € CL*(M,E)} of
logarithms of elliptic operators.

Proof. According to Proposition 3.6 the function s7'(s, By) := s TR{exp(s! + By))
is equal to the sum of a convergent near (sq, Bo) = (0,0) power series®

ST(S,BQ)‘——— > s"Qum(Bo). (3.59)

m€Z+U0

The functions @,,,(Bo) are holomorphic near By = 0 (in the same sense as in Propo-
sition 3.6). Hence we have

Qm(l30)= Z Qm,q(BO)1 (360)

q€Z LU0

where Q. , is a homogeneous polynomial of order ¢ on the linear space CL°(M, E) >
By.

3%Indeed, let A* be defined. Then for sy sufficiently close to zero and such that spa € R the
principal symbol o (A*°) of the operator A’® possesses a cut along R.. = L(yy on the spectral plane.
So in this case, log ;) (A*°) is defined for a cut Lz) close to Lx). Thus log A := sg! logz) A% is
also defined.

MThis power series is uniformly convergent in By from a neighborhood of zero in any finite-
dimensional linear subspace of CLY(M, E} 3 By.
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The function C(XPJ(O) is expressed through @, ,(Bo) as follows. For s € C\ Z we

have

sTR(exp(s({+ Bo))) = 3 s™ 3 QmglsBo) =

mgZ U0 q€Z U0

= Z Sm+qulq(B0). (361)

m,gEZ U0
Hence we have
S (0 (=) R = Y sQ, (Bo), (3.62)
keZ LU0 m,g€Z LU0
i.e., we have for an arbitrary £ € Z, U0 that
¢ ey (0) = K (-1 ) Qma(Bo). (3.63)
m,qEL U0, m+g=k+1
The function
Tipi(cd + By) := Z " Qm,q(Bo) (3.64)
m,g€Z ;U0,m+q=k+1

(where ¢ € C) is a homogeneous polynomial of order (& + 1) on ell(M, E) = {cl +
Bo, By € CL°(M,E)}. Hence according to (3.63) (—1)* (k! (fi"})) 14-80)(0) s the
restriction of this homogeneous polynomial of order (£ + 1) to the hyperplane ¢ = 1.

The theorem is proved. O

Proposition 3.8. gepr(O) is a homogeneous function on ell(M, E)\ CL°(M,E) of
degree k.

Proof. We have

CeprJ(S) = TR(CXP ’\SJ) = (exp.f(/\‘s))
af(_..exP‘\J(S) = ’\ka:Cepr(s)(’\S)'
Then substitute s =0. O

Remark 3.12. The homogeneous function of degree & on ell(M, ££)\ CL°(M, E) de-
fined in Proposition 3.8 has the form Ty4y/(ord J) = T4/, where Tyyy is a homo-
geneous polynomial of order k& + 1 on ell(M, E) defined by (3.64). So

() iy (0) = Tiga (0, Bo) fa = kL (=1} 3 ™ 'Quy(Bo).

m4g=k+1, m,geZ (365)

The polynomial T4 (@, Bg) is invariantly defined on the linear space ell(M, E) (i.e.,
it does not depend on a choice of {). By (3.65) we conclude that Qéfl)a(ausu)(o) has a
singularity O (') = O ((ord J)™!) as « tends to zero.
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Remark 3.13. The linear form Qo (Bo) (defined by (3.60) depends on o(Byp) only.
It coincides (up to a sign) with the multiplicative residue — ves* o(exp(By)) (defined
by (1.10)) for the symbol of exp(By). The linear function Ti(el + By) depends on
o (exp(cl + Byp)) only. By (3.65) T) coincides (up to a sign) with the defined by (1.8)
function —Z(ofexplcl+ Bo))). Hence T(cl + Bp) possesses the property (1.9).

Proposition 3.9. The term Qg 4:1(Bo) in the formula {3.63) for dg(HBn)(O) is as
Jollows

Qo k+1(Bo) = —res (Bg"‘l) /(k, + 1)L (3.66)

Proof. It follows from Proposition 3.6 that
{s TRexp (sl + Bo)} ’ _, = —reso (exp Bo) . (3.67)

Here, the expression on the left is a continuous function of s at s = 0. (TR is defined
for s ¢ Z and s TRexp(sl + Bp) is continuous in s at s = 0.) According to (3.59)},
(3.60) we have power series at s =0, By =0

sTRexp(sl+ Bo)= Y s"Qm(Bo),

mEZL4UO
Qn(B)= ¥ Qus(Bo). o)
JEZ U0
We deduce from (3.67), (3.68) that
Qo (Bo) = —reso (exp By),

Qo;(Bo) = —reso (BS) /7' (3.69)

In particular,
Qoa (Bo) = —res (B?) /2= —(B, B)rea /2. (3.70)

The proposition is proved. O
Remark 3.14. For all k € Z, U0 we have®

Tisr (log(g)(AB)) = Ty (log(e)(BA)) (3.71)
)

for an arbitrary pair (A, B) of invertibleelliptic PDOs A € ENI*(M, £E) C CL*(M, E
and B € El¥(M, E) C CLP(M, E) such that log(g,(AB) is defined for some cut L
of the spectral plane. (In this case log (B A) is also defined. It is enough to suppose
the existence of log gy oa+s(AB) for the principal symbol of AB € ElSHP (M, E) C
CL**#(M, E). Then log5(AB) is defined for a cut L close to L,).)

32The homogeneous polynomial Ty4; of order k + 1 on ¢ll(M, E) is defined by (3.64).
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Remark 3.15. Let A = exp (ol + Ag) € ES(M, E), B = exp (B! + Ao) € EII’(M, E)
be of nonzero orders. Here we suppose that A, B are sufficiently close to positive

definite self-adjoint ones. These conditions are satisfied, il Ag and By are sufficiently
small. Then

log F'(A4,B) = ~Ty(al+Ao) fa—Ty(Bl+Bo) /B+Ta((c+B)l+Do) [ (a+B), (3.72)

where (a + 8) + Do := log;, (exp (al + Ao)exp (8l + Bo)). Hence (by Proposi-
tion 2.1) the expression on the right in (3.72) depends on the symbols o {al + Ap)
and o (Bl + Bo) only.

Remark 3.16. Let Ay, ..., Ax be elliptic PDOs from CL¥(M,E) 3 A; (1 £ ¢ < k) of
nonzero orders «; such that their complex powers are defined. (The latter condition
means that some nonzero powers §; of their principal symbols g, (A,-)ﬁ‘ possess

spectral cuts Lyg,).) Let B; € CL%(M,E) (1 <i < k) be aset of k PDOs. In this
situation a generalized TR-zeta-function is defined by

a8y (81, .y 81) = TR (B A} ... BrAY). (3.73)

This function is defined on the complement U to the hyperplanes in C*, namely on
U :=C\ {(sl, o 8k): T (B 4 siag) € Z}. This function is analytic and non-
ramified on UU. Indeed, this function is defined by TR for any point s € U without
an analytic continuation in parameters s := (s1,...,5%) of the holomorphic family
B A} ... BiAj*. By Proposition 3.4 the expression (3.73) is meromorphic in s with
simple poles on the hyperplanes ¥, (£ + s;a;) = m € Z, m > —dim M. Note that
by (3.17) we have for m € Z, m > —dim M,

Resz‘(ﬁ‘+s‘a‘.)=,n fravisa (81,... ,8k) =—reso (B] Al B A |z(s):m)' (3.74)

(Here, Res is taken with respect to a natural parameter z = 2(s) := ¥; (5; + si%)
transversal to hyperplanes {s,z(s) = m}.) For ¥;(fi+ siai) = m < —dim M,
m € Z, the function f{a;},(8:;) ($1,... ,5k) is regular on the hyperplane z(s) = m.

Remark 3.17. Let A € Ellj (M, E) C CL*(M,FE), a € R*, be an invertible elliptic
operator such that a holomorphic family of its complex powers Afp exists. Let
B € CLP(M, E). Then a generalized zeta-function of A

TR (BA(_J’)) =! Cgﬁa,(a)(s) =:(4,8,06)($)

is defined on the complement U to the arithmetic progression, namely on U := C\ {s :
—as + B € Z}. Suppose for simplicity that § € Z. Then the function as - (4,5,9)(s)
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is holomorphic® at s = 0 and for s close to zero we have

os (M) = Y *E(A,B), (3.75)

kEZ+U0

where £} are homogeneous polynomial of orders & in log A with their coefficients
linear in B. Indeed, by Propositions 3.4, 3.5 we know that the left side of (3.75) is a
holomorphic in s, log A function (for s close to zero). Namely we have

sTR(Bexp(sl+ Ag)y = > s*Pu(B, Ao,

keZ ;U0

P (B, Ag) is a regular in Ag € CL°(M, E) analytic function. Set

Pe(B,Ao)= Y. Pim(B, A,

mEZ+U0

where Py . (B, Ag) is a homogeneous in Ag polynomial of order m with its coefficients
linear in B. So

sTR(Bexp(s(l4 Ao))) =D "™ P (B, Ap),
as TR (Bexp (—s(al + Ag))) = 3 of(—1)"** 18 mp (B, Ay).

Thus the coefficients Fi(A, B) in (3.75) are homogeneous polynomials of orders k in
log A := al + Ag. Namely

Fi(A, B) = (=1)F! > " P (B, Ag), (3.76)

r+m=k, r,meZ U0

Note that for #:=ord B € Z, < —dim M, Fy(A, B) is zero. For 8 > —dim M this
term Fy(A, B) is equal to —reso(8). It is independent of A and depends on o(B)
only.

More generallly, we can define this zeta-function for arbitrary log A € ell(M, E) \
CL°(M,E) and B € CLEM, E).

Remark 3.18. An analogous to the power series expansion (3.75) is also valid for a
generalized TR-zeta-function (3.73). Suppose for simplicity that ¥ 8; =: ¢ € Z,
g > —dim M. Then

(st 4o+ asy) fransy (1, ,8) = D0 sV st Py, ({A), {Bi))

n;€Z4U0

33For # ¢ Z this function is also holomorphic at s = 0 but in this case, s = 0 is not a distinguished

point for the TR of the family BA(';).
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for s; € C close to zero. Indeed, by Propositions 3.4, 3.5 for C; € CLY(M,E) we
have

(s1+...+sx) TR(Byexp (81l + Ci)... Brexp (sl + Ci)) =
= Z 3’1711 ...S;?kPml,....mk (Cla"'ack)a

m;€EZ LU0
where Py, ({C;}) is a holomorphic in C; regular function on CLO(M, E)®*. So
(aysy + ...+ agsk) TR(Brexp (si (a1l + Ch)) ... Biexp(si (axl + C))) =

mg Mir+ng pny,..., n A
= ofsr I oty proeeme (oo Cr),

M1y Mi

where PR ({C;}) is polyhomogeneous in C; of orders m; polynomial with its coeffi-
cients polylinear in By, ..., By. Thus

(alsl 4 ...+ o:ksk) f{A.'}.{B.'} (51,. . ,Sk) = Z S’;” .. 'Ssznl.---.nk ({A,‘} ,{Bg}),

ﬂ_,’GZ+UU

where the coefficients

Fo, . o {AL{B D= > o KPR (G, Cr) (3.77)

mj+ry=ng miri€Za00
are polyhomogeneous in log A; = a;l + C; of orders n; and polylinear in By,..., By
polynomials. The coefficient Fo._ o ({A:}, {B:}) is independent of {A;} and it is equal
to —reso (By,...,By). For Y8, = ¢ < —dim M (q € Z) this coefficient is equal to
ZEro.

Remark 3.19. Invertible elliptic operators A;, A in (3.73), (3.74) can have different
logarithms in ell(M, F). Let ord A # 0. Then by Remark 3.7, 2., and by Proposi-

tions 3.4, 3.5 we conclude that
Cap(s) == TR (BA™) [T(sord A — ord B — dim M) (3.78)

is an entire function of s and of log A € ell(M, E) linear in B € CL™(M, E) and
depending on a holomorphic family A=*** Note that TR is canonically defined
for sord A -ord B ¢ Z (and also for sordA —ord B = m € Z, m > dim M).
But the proof of Proposition 3.4 gives us the regularity of (3.78) for all s € C.
The value of Q:A,B(S) for s = m € Z depends on A, B, m but not on logA. (If
g:=—mord A +ord B € Z, then the latter assertion follows from Proposition 3.4,
(3.17). If ¢ ¢ Z, then it follows from the definition of TR becase this definition
does not use any analytic continuations.) So the values of {4 g(m) at m € Z as of a
function on ell(M, E) 3 log A are the same at all different log A (for a given A).

3That is (4 p(s) is defined by log A, B, s.
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So we have a power expansion of (4,8(s)

Cas(s)= > o*s*Pi(B,sAo), (3.79)
k€eZ ;U0

where Py (B, Ag) is the s*-coefficient (as s — 0) for TR (B exp (— (sl + Ao))) /T (sa—
B —n), f:=ord B, n :=dimM. Here, logA := ol + Ag, 0 € C, [ € ell(M,F) is a
logarithm of an order one elliptic PDO, Ay € CL°(M, E). Note that P is an entire
function in Ag linear in B € CL(M, F). The series (3.79) is convergent for all s € C.
As well as in (3.75) we have

Pi(B,A))= Y. Pim(B, A,

kmeZ U0

where Py ,, are homogeneous polynomials of order m in Ag linear in B. So

Cam(s)= . sMma* P (B, Ao). (3.80)

k.mEZ+UO

The coefficient 3y mer & Pem (B, Ao) in (3.80) is a homogeneous polynomial of order
r in (@, Ag) (i.e., in log A) and it is linear in B. The values of the convergent series
(3.80) at s € Z are equal for different log A = al + Ap € ell(M, F) of A.

The analogous assertion is true for

Fiansa(s) = fransa(s)/T (—dimM = 3~ (siord A; + ord B;)) . (3.81)

Here, f(a.},(8:}(s) is defined by (3.73), s := (s1,...,3x) € C*. The function (3.81) is
an entire function of s, {B;}, {log A;}. (However fia.,3,(8,(s) depends on log A; and
not on A; only.) For s € Z* the values fia; (83(s) on {log A;} € ell(M, E)* do not
depend on log A; and depend on {A;} only. So this function has the same values at
all the points {log A;} € ell(M, E)*, where the i-th component of a vector {log A;} is
any log A;.

4. MULTIPLICATIVE PROPERTY FOR DETERMINANTS ON ODD-DIMENSIONAL
MANIFOLDS

The symbol a(P)(z,£) of a differential operator P € CL*(M,E), d € Z, U0,
is polynomial in £. Hence ox(P)(z,£) is not only positive homogeneous in ¢ (i.e.,
or(P)(z,1€) = tror(P)(z,€) for t € RY) but it also possesses the property

ou(P)(z, =€) = (=1)" ou(P)(x, ). (4.1)

This property of a symbol o(A) makes sense for A € C L™ (M, E), where m € Z. The
condition (4.1) is invariant under a change of local coordinates on M. Hence it is
enough to check it for a fixed finite cover of M by local charts.
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Denote by CL{.,,(M, E) the class of PDOs from CL™(M, E) whose symbols pos-
sess the property (4.1) (for m € Z). We call operators from C'L¢_ 1)(M',E) the odd

class operators.

Remark 4.1. Let A € CLL (M, E), m € Z, be an invertible elliptic operator. Let

all the eigenvalues of its principal symbol o,,(A)(z,£) have positive real parts for
¢ #£0. Then m is an even integer, m = 2, | € Z.

Remark 4.2. Let A € CL’('lll)(ﬂd',E) and B € CL" 1)(J\/}',E’), my,my € Z. Then
AB € CL’("_‘ST"’(!\’I, E). 1f besides B is an invertible elliptic operator, then B~ €
CL{(M, E) and AB™le CLZN™(M, E).

The following proposition defines a canonical trace for odd class PDOs on odd-
dimensional manifold M.

Proposition 4.1. Let A € CL( WM E), meZ, be an odd class PDO. Let C be any

odd class elliptic PDO C € EIFY (M, E)NCL?? | (M, E), q € Z, 2q > m, sufficiently
close to positive definite and self-adjoint PDé Then ayg Jcncmlzzed TR- zeta -funclion
TR (AC Tr) is reqular at s = 0. Its value at s =0

TR (ACG}) la=o =: Tr(_1)(A) (4.2)
is independent of C. We call it the canonical trace of A.

Proof. 1. By Proposition 3.4 and by Remark 3.6 the TR (AC(;“;) has a meromorphic
continuation to the whole complex plane C 3 s and its residue at s = 0 is equal to
—res o A) (where res is the noncommutative residue, [Wo2), [Kas]). By Remark 4.5
below, reso(A) = 0 for any odd class PDO A on an odd-dimensional manifold M.
2. Let B € EI"(M,E)Nn CL{Zy(M, E), » € Zy, be another positive definite odd
class elliptic operator. Then by Corollary 2.2, (2.23), and by Remark 3.4 we have

TR (ACS) - TR (AB}) = Tr (AC3) — Tr (ABg}) for Res > 1,
Tr (A (C(}r‘; - B(_ﬂ‘;)) =T (O’(A), o (log(,-r) C) [2q—0 (log(,-,) B) /‘21‘) -

(Note that (2.23) is valid for any Q € CL™(M, E), m € Z.) Applying Corollary 4.3
below, (4.14), (4.15), to pairs (C B, B) and (CB, C), we obtain

logsy C/2q — log(z) B/2r € CL{ (M, E).

(4.3)

Hence on the right in (4.3) we have a product of odd class symbols. By Remark 4.5
the residue res of this product is equal to zero (as M is odd-dimensional). Thus

TR (ACG) ls=0 = TR (AB}) fu=o. O



DETERMINANTS OF ELLIPTIC PSEUDO-DIFFERENTIAL OPERATORS 47

Remark 4.3. Let A € CL?_I)(M, E£) be an odd class operator on an odd-dimensional

manifold M. Then®® exp(zA) € CL{_,,(M, E) N Elg(M, £) is a holomorphic family
of odd class elliptic operators of zero orders. By Proposition 4.1

Tr_yyexp(zA4) := TR (exp(zA)C(;‘;) |s=0 (4.4)

is defined for z € C. It is an entire function of 2 € C since by (4.4) and by the
equalities analogous to (2.25), (2.26) we have

d. Tr—yy(exp(zA)) = Tr_y(Aexp(zA)),
05 Tr(_y)(exp(zA)) = 0.
The problem is to estimate the entire function exp(zA) as |z| — oco. Note that in

general the spectrum Spec A contains a continuous part. So the nature of the entire
function Tr(_yyexp(zA) is different from the Dirichlet series.

Theorem 4.1. Let M be an odd-dimensional smooth closed manifold. Lel A €
CLZ, (M, E) and B € CLE’f_’l)(M, E) be invertible elliptic PDOs (where my, ma,mq+
mg € Z\0). Let their principal symbols o, (A)(2,£) and 0,,,(B)(2,€) be sufficiently
close to positive definite self-adjoint ones. Then det(z)(A), det(z(B) and det((AB)
are defined (with the help of zeta-functions with the cut Lzy of the spectral plane close
to Lim). We have

det(,-,)(AB) = (Iet(ﬁ-)(A)det(ﬁ)(B). (4.5)

Corollary 4.1. Let A € CL?_I)(]VI, EYNEIYM, E) = Ell?_l)_O(M,E) be an invert-
ible zero order elliptic PDO on a closed odd-dimensional M such that its principal
symbol oo A)(x, &) is sufficiently close to a positive definite self-adjoint symbol. Then
such PDO A of zero order has a correctly defined determinant. Namely

det(s)(A) = detqs)(AB) /detz(B) (4.6)

for an arbitrary invertible elliptic B € CL{Z,|(M, E), m € Zy, such that its principal
symbol is sufficiently close to a positive definite self-adjoint symbol.

The correctness of the definition (4.6) follows from the multiplicative property
(4.5). Indeed, for two such elliptic operators B € LlIg" (M, E) N CLY,(M, ),
C € Ellg*(M, E) N CL{Z,(M, E), mi,mq € Z, we have

det(i)(AB)/det(;r)(B) = det(ﬁ)(AC)/det(ﬁ)(C) = det(;,)(CA)/det(ﬁ)(C)
as (by (4.5)) we have
det(i)(AB)det(;r)(C) = det(,})(CAB) = det(ﬁ-)(B)det(ﬁ)(CA).

3% A PDO exp(zA) is defined by (3.30).
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Corollary 4.2. The multiplicative property holds for odd class elliptic PDOs A, B €
Ell?_l)'o(M, E) sufficiently close to positive definite self-adjoint ones (M is closed and
odd-dvmensional). Namely

det(ﬁ-)(AB) = det(,-,)(A)det(,-,)(B). (47)

Indeed, let C = C,C; be a product of positive definite self-adjoint odd class elliptic
PDOs on M of positive orders. Then by Theorem 4.1, (4.5), we have

det(sy(AB) = dets) (ABC\Ca) [detqz) (C1Ca) =
= det(,-,) (CQA) det(,-,) (BCI) /det(,-,) (01) det(ﬁ-) (Cg) = (let(,-r)(A)det(,-r)(B). (48)

Remark 4.4, Let A be an adjoint operator to A € Ellf:”l)’o(M,E‘), m € Z, and let
M be close and odd-dimensional. Let A be sufficiently close to a positive definite
self-adjoint one {with respect to some positive density and to a Hermitian structure).

Then
det(,})(A') = det.(,-,)(A). (49)

Remark 4.5. Let A be a PDO of the odd class C'LE’}_l)(Mr, E), m € Z, on odd-
dimensional manifold. Then the noncommutative residue of A is equal to zero,
reso(A) = 0.

To prove this equality, note that since M is odd-dimensional, the density res; o( A)
(corresponding to the noncommutative residue of A) on M is the identity zero. In-
deed, the density res; o(A) at @ € M is represented in any local coordinates U 3 z
on M by the integral over the fiber S;M over z (of the cospherical fiber bundie for
M) of the homogeneous component o_,(A), n := dim M. Since n is odd, we have

O'_n(A)(:It, _E) = —U—ﬂ(A)(:Ea 6)

Thus we have to integrate over S; M the product of an odd (with respect to the center
of the sphere S;M) function o_,(A)(z, ) and a natural density on the unit sphere
S;M. This integral res; o(A) is equal to zero.

Remark 4.6. The equality (4.5) means that the multiplicative anomaly for elliptic
operators (nearly positive and nearly self-adjoint) of the odd class is zero. To apply
the general variation formula (2.18) of Proposition 2.1 to prove that the multiplica-
tive anomaly is zero, we have to use deformations A, belonging to the odd class
CLE (M, E)NElG (M, E). This is a rather restrictive condition. Note that for A

and B from the odd class a deformation A, in the integral formula (2.20) for the
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multiplicative anomaly is not inside the odd class. For a deformation not inside the
odd class we cannot conclude from (2.18) and (2.20) that F/(A, B) = 1.

Proposition 4.2. Let the principal symbol of n € C'L?_l)(l'l/f, E) N EI§(M, E) be
sufficiently close to a positive definite self-adjoint one. Then the PDOs nfﬁ) and
log(zy 7 defined by (2.31) and by (2.30) are from CLY(M, E) and they are odd class
operators.

Proof of Proposition 4.2. By (2.5) we see that

a0 (0= N7") (2,6 0) = (eo(n)(z,€) = ) =00 (1 = N7 (2, -, \),
o (=071 (2,62 =

=~ (-0 T é;@?a_g(n — Do (= 27)) =
jal4itims O
i<jo1

= (=1 o_; (1= N7") (=, =& N).
(Here, o_;(n — A) := 0_;(n) — 6;0A.) Thus we have

o_; (?Ifir)) (z,8) = ;_wfr

(4.10)

Mayo—i (=271 (z,6,0) =

= (=1Y o_; (nfs)) (z,—€). (4.11)

R

Hence Uf«) € CL?_])(JM, E).
By (4.10), we have log(;yn € CL{_,,(M, E) since

T-j (log(ﬁ) 71) (2,€) := 2% ]rg,i logs A - o_; ((U - )‘)_1) (,€,A)dX =

= (=1 o_; (logzyn) (2, —€). (4.12)

The proposition is proved. O
The proof of Theorem 4.1 is based on the assertions as follows.

Proposition 4.3. Let A, and Ay be tnvertible elliptic operators of the odd class
ENZ (M, E) := CLTZ, (M, E) N EN™(M, E), m € Z\ 0, such that their principal
symbols are sufficiently close to positive definite self-adjoint ones. Then

108(5) Ay — logz) Az € CL(()_”(M,E). (4.13)
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Corollary 4.3. Let A € CL"\\(M, E) and B € CL{,(M, E} be invertible elliptic
PDOs of the odd class and let their principal symbols om, (A)(z,£) and 0., (B)(z,£)

be sufficiently close to positive definite self-adjoint ones. Let my,mqy,my+mse € Z\0.
Then the following PDO

(my 4+ my) ™! log(z(AB) —mj! log(z)(A) € CL°(M,E) (4.14)
is defined and it belongs to CL{_\(M, E). By (4.13) and (4.14) we have also

(my +mg)™! log(z)(AB) — m3 ! log:)(B) € CL?_”(M', ). (4.15)

Remark 4.7. Proposition 4.2 and its proof are valid for any admissible spectral cut
8 for oo(n). Proposition 4.3 and Corollary 4.3 are valid for any admissible spectral
cuts for Ay, A2, AB, A, B. (The logarithms in (4.13), (4.14) are defined with respect
to these spectral cuts. We do not use in the proofs that the cuts for A, and for A,
in (4.14) are the same.)

Remark 4.8. The proofs of Propositions 4.2, 4.3 and Corollary 4.3 are done with using
symbols of PDOs (but not the PDOs of the form (A — A)~' themselves). Hence a

spectral cut L admissible for o ((A — )\)'1) (z,&) can smoothly depend on a point

(z,€) € S*M. However it has to be the same at the points (z,£) and (z, —€). Hence
this spectral cut defines a smooth map

6: P"M :=S*M/(+1) — S' = R/27Z. (4.16)

Here, (—1) transforms (z,¢) € S*M into (z, —€).
The map (4.16) has to be homotopic to a trivial one for a smooth family of branches
Ag) over points (2,€) € P*M in the formulas (4.11), (4.17) to exist.

The condition of the existence of a field of admissible for the symbol o(A) cuts
(4.16) homotopic to a trivial field is analogous to the sufficient condition of the
existence of a o(log A) given by Remark 6.9 below. So Propositions 4.2, 4.3 and
Corollary 4.3 are valid in this more general situation of existing spectral cuts for

o ((A — ,\)_1) depending on p € P"M. In this situation there exists a o(log A)
defined with the help of this smooth field of spectral cuts. These fields of cuts may be
different for AB and for A (or for A; and A,) in Proposition 4.3 and in Corollary 4.3.

Proof of Corollary 4.3. Indeed, set Ay := A’(":.r1)+m‘, Ay = (AB)F;I) Then A;, A; €
EN ™™ (M, B). So by (4.13) we have

(my + ma) log(zy A — mylogz)(AB) = logz) Ay — log(z) A3 € CLTL (M, E).
O
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Proof of Proposition 4.3. Because A, € CL{ \(M, E) and A; € CLT (M, E)
(m is even), the formulas analogous to (4.10) hold for the homogeneous components
of o ((A1 - /\)_l) and of o ((Ag - /\)_1).36 Hence for Res > 0 we have

octni (ATi) (2,6) = = [ A ooy (A= )7 (2,6, 0)dA =

Y (s
= (=1) 0anse; (A7) (2, =€), (4.17)
Here we use that since A € CL?I_‘U(M, 1), the formulas analogous to (4.10) are true

for o ((/h - /\)_l) (z,€,A). Namely

ozt (A1 = N7 (2,6, 0) = (=1) oy (A = N)7') (2,6,0). (4.18)
According to (2.11) for j € Z, we have
o_; (logzy A1) = =Bh0_a,a—; (A7l))
Hence by (4.17) we have for j € Z..
o_; (log(z) A1) (z, =€) = (=1) o_; (logz) A1) (,£).

The same equality holds for o_; (log(i)(Ag)), J € Z4. According to (2.11) and to
(4.17) we have also

0s0-ms (ATin)

=0

(2:6) = Do (A7) | o =
= 0u0me (A1) | (2, €/16]) -
— 0,0 s (A7ln) | _ (@:€/1E]) € CLL (M, B) JCL! (M, B).

Hence log ;) A1 — log;z) A2 € CL?_”(M, E). The proposition is proved. O

Proof of Theorem 4.1. By Remark 4.1, the orders m; = 2{; and my = 2{; of A
and B are nonzero even integers. We have {),0,,1; + I; € Z\ 0. By Remark 2.6,
(2.34), we have

=0

log F(4,B) = - [ i (J(Qt), 7 (log) 4:B) _ 7 (log At)) . (4.19)

20 4 24, 24

Here, Q, := A;A;" and A, is a smooth family of operators between Bé}r';h and A in the

odd class elliptic operators such that the principal symbols o4, (A;) are sufficiently
close to positive definite self-adjoint ones.

38For the sake of brievity we suppose here that m; = 2I; and my = 2l; are positive even numbers.
If [} € Z_, we have to change (A — A)~' by (A~! — X)~! and s by —s.



52 MAXIM KONTSEVICH AND SIMEON VISHIK

The numbers m; and m; are even. So in the odd class elliptic PDOs we can find
deformations A; and B, of Aand B from A = Ay and B = B, to (Ame + I(l) = Ag

and (Apg + 1d)? = By. Here, Aprg is the Laplacian on (M, g) corresponding to
some unitary connection on (E, hg). The deformations can be chosen so that the
principal symbols oy, (A:), o, (B:) are sufficiently close to positive definite self-
adjoint ones. Hence, a.pplying the formula (4.19) twice (namely first to (A, B) and

then to ((AM g+ Id B,)), we have by Proposition 4.2 and by Remark 4.5)
F(A,B) = F (A5 +1d)", (Ape +1d)7) = 0.

We can deduce from (4.19) that F(A, B) = 0 using only one explicit deformation
of A. Set 5 := A(IT{;IB—I/I"' Ay = (n(,}Bl/h) Gy where 7z, is defined by (2.31). Let
{y € Z,. Then according to (2.6) we have
i

oo (A") (2.6) = o

-1/ . R
o I‘(,-r))\ '0'—211*.? ((A )\) )(m’f’)\)d)\ (420)

(Here, 'z is the contour [(g) from (2.6) with 6 = & close to 7. The integral on the
right in (4.20) is absolutely convergent for /; € R.)
Hence according to (4.20) and to (4.18) we have

025 (AG") (2,6) = (=1 0ezm (AG") (2, -0), (4.21)
i.e., we have A~/ ¢ CL(""I)(M EYNEI*(M,E) for ly € Zy. Tor |y € Z_

can conclude that A% € CL l)(j\/I, E)NEll;%(M, E) (changing A='/" by A4 in
(4.20)). Hence according to Remark 4.2, we have

n =AY BT e CLY (M, E) N ElY(M, E). (4.22)
By Proposition 4.2 we conclude that
Nz € CL{_,y(M, E) NEIJ(M, E),
Ty g,ff € CLE (M, E) NEI(M, E). (4.23)
A, € CLI(M, E)NE 12’1(M E), Qi€ CL_(M,E),
According to (4.23), to Remark 4.2, and to Corollary 4.3, the operator

(l g(’-’) ¢ ) (1 g(i') t) 0
Gy o= Q — € [ M E
! : ( 211 + ‘)12 211 ¢ (1 I, )

is defined and it belongs to CLO__1 (M, E). By the equality (4.19) and by Remark 4.5

we have

log F'(A, B) / (lt/ resy o (G) = 0.
M
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Thus det(z(AB) = det(z)(A) det7(5B). Theorem 4.1 is proved. O

4.1. Dirac operators. An important example of odd class elliptic operators is a
family of the Dirac operators D = D(M, E, g,h) on a spinor odd-dimensional closed
manifold M (with a given spinor structure). The Dirac operator D acts on the space
of global smooth sections I'(S @ F)

D=>eV,,. (4.24)

Here, S is a spinor bundle on M, (E, 1) is a Hermitian vector bundle on M, {e;}
is a local orthonormal basis in T, M (with respect to a Riemannian metric ¢), V =
1@ VA4 VE®L, VR is the Riemannian connection (for g), V¥ is a unitary connection
on (£, h), e; (V. f) is the Clifford multiplication. The family {D} of Dirac operators
is parametrized by ¢ and by VZ.

The operator D, ge is a formally self-adjoint (with respect to the natural scalar
product on I'(S ® E) defined by ¢ and by k) elliptic differential operator of the first
order. Its spectrum Spec(D) is discrete. All the eigenvalues A of D, g are real.
However Spec(D) has infinite number of points from Ry as well as points from R_.

For the sake of simplicity suppose that D, and D are invertible Dirac operators
corresponding to the same Riemannian metric ¢ and to sufficiently close (VF, h.l),
(Vf, 112).37 Then the operator 1,1, € ElIZ(M,E) C CL{_1)(M, E) is an invertible
elliptic operator with positive real parts of all the eigenvalues of its principal symbol

a2(D1D,). Hence for any pairs (Dy, D) and (D}, D}) of sufficiently close elements
of the family D, vz Theorem 4.1 claims that

det(z)(D1.D2)det(z)( D} Dy) = det(zy (D1 D Dy Dy). (4.25)
Let all four Dirac operators (Dy, Dy, D, D}) be sufficiently close. Then we have
det(ﬁ)(D1D2)det(ﬁ)(D!1 D’z) = det(;,)(DlD;)det(,-r)(DgD;). (4.26)

Indeed, according to (4.25) we have
det(,-r)(Dng)det(;,)(D;D'z) = det(ﬂ(DngD'lD'g) = det(ﬁ)(D;DlDzD;) =
The equality (4.26) can be written in the form

(clet(D;Dz) det(DlDé)) B

4.28
det(Dy D7) det(D]Dy) (4.28)

37If a Riemannian metric g on M varies, then the spinor bundles S(g) on M also varies, i.e., to
identify the spaces I'(S(y,) ® E) and I'(S(,,) ® £) we have to use a connection in the directions {g}

on the total vector bundle Sy4) over M x {g}. Here, {g} is the space of smooth Riemannian metrics
on M.
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Hence, if all the Dirac operators parametrized by a set U C {(VE, h)} are sufficiently
close one to another, we see that the matrix

Ay = (A ) = (detqz) (Do, Duy))
is a rank one matrix. Hence there are scalar functions f(u) on U such that

det(zy (Duy Duy) = Auy iy = f(ur) f(u2). (4.29)

For instance, for u; = u; € U we have
det(zy (D2,) = det(r) (D2,) = flw)?,

flu) = ¢e(u) (det(,) (Dil))lm, g(u) = £1.

The operator D2 is a positive definite elliptic operator from CL%_I)(M, E). (It can
have a nontrivial kernel Ker D? = Ker Dy, dimKer D, < 00.) The sign e(u) has
to be a definite number for Ker D, = 0. Hence det(y (Dﬁl) € Ry U0 (because the
spectrum of D? is real and discrete). This determinant belongs to Ry if Ker D, = 0.

(4.30)

Corollary 4.4. For any pair of Dirac operators Dy, D,,, u; € U, we have
det(,}) (DulDuz) € R.
Let besides D,,; be invertible. Then det(z) (Dy, Dy;) € R* and we have

det(sy (Duy Duy) = €(ur)e(ua) (detyr) (1)31))” : (det(r) (Dﬁq))” t 43
The determinants on the right belongs to R..

Remark 4.9. The function e(u) = +£1 is constant on the connected components of
U\ {u € U,Ker D, #0}.

If in a smooth one-parameter family Dy (¢ is a local parameter near 0 € R) only
one eigenvalue A(t) for Dygy (of multiplicity one) crosses the origin 0 € R 3 X at
t = to transversally (i.e., 0A,(t)]i=, # 0), then the sign e(u(t)) = £1 changes at
t = i to an opposite one.

Remark 4.10. It follows from (4.30) that

1/2
|f(u)l = (det(,r) (Di)) (4.32)
is a globally defined function of u € {g, (VE, h)}. The sign e(u) = £1 can be

defined as a locally constant continuous function on the set u € {g, (VE,!L)} such
that Ker D, = 0. The last assertion follows from Remark 4.9 and from the equality
to zero of the corresponding spectral flow [APS3].
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Lemma 4.1. The spectral flow SF (D{u(w)}) is equal to zero for a family Dy, of
the Dirac operators parametrized by a smooth map p: §' — {g, (VE, h)}.

Proof. Theorem 7.4 from [APS3] (p. 94) computes the spectral flow SF (D{y}) for a
family Dy,y of Dirac operators parametrized by a circle. Namely for Dirac operators
D, = D, (M,,,E|My) on the fibers of a smooth fibration 7: P — S with closed
spinor, odd-dimensional and oriented fibers M, := #~'(y). These Dirac operators act
in T (Fy ® E|,\,;y), where Fy is the spinor bundle on M, and £ — P is a Hermitian

vector bundle with a unitary connection V#. This theorem claims that SF (D{y}) =
—ind Dy, where D, : I'(F. @ E) — TI'(F. & F) is the Dirac operator on an even-
dimensional spinor manifold P (with orientation (8,,e), where e is an orientation
basis in T, M,). Hence by the Atiyah-Singer index theorem we have

SF (Dgy) = — (A(T(P)) ch(E)) [P], (4.33)

where A is the A-genus, T'(P) is the tangent bundle. In our case P = M, x S! is
a canonical direct product and £ = n3Ey, (for the projection mp: P — M,,). Hence
the right side in (4.33) is equal to zero. O

Thus we obtain the following result.

Theorem 4.2. Let Dy, be a family of Dirac operators D, = D, (M, Vf) on an odd-
dimensional closed spinor manifold (M, g) corresponding to a Hermitian structure h,
on a vector bundle E — M and to unitary connections VE on (E,h). Then there
exists a function €(u) = £1 defined for u such that Ker D, # 0, continuous and
locally constant for these u, and such that

1/2

det(z) (Du, Du,) = €(ur)e(u) (clet(,r) (Df‘l))ll2 (det(,) (Din)) (4.34)

Jor all pairs wy, uy of sufficiently close paramelers in the family Dy . (The square
roots on the right in (4.34) are arithmelical.)

Remark 4.11. For a family of Dirac operators D, on an odd-dimensional closed spinor
manifold M the expression on the right in (4.31) makes sense for all pairs (u;,us;),

u; € {g, (VE, h)} according to Remarks 4.9, 4.10, and to Lemma 4.1. However we

don’t claim that the expression on the left in {4.31) also makes sense. The expression
on the right in (4.31) may be proposed as one of possible definitions of det (D, Dy, )

for a pair (Duj) of Dirac operators corresponding to (M, E, g;, k;).
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4.2. Determinants of products of odd class elliptic operators. Note that the
assertion (4.31) can be generalized as follows.

Proposition 4.4. Let D,, v € U, be a smooth family of elliptic differential operators
acting on the sections U'(F) of a smooth vector bundle E over a closed odd-dimensional
manifold M. Let D, be (formally) self-adjoint with respect to a scalar product on
['(E) defined by a smooth positive density p(u) on M and by a Hermitian structure
h(w) on E. Lel for any pair uy,uy € U the principal symbol oy (D, Dy, ) (z,§) be
sufficiently close to a positive definite self-adjoint symbol. Then the equality (4.31)
with e(u;) = £1 holds for det(zy (Dy, Dy,). The elliptic operator Dy, D,, for general
(w1, uz) s not a self-adjoint but (according to (4.31)) its determinant is a real number
for sufficiently close uq, uy. Remark 4.9 is also true for the family D,, u € U.

Proposition 4.5. The equality analogous to (4.31) is also valid for a smooth family
Dy, u € U, of (formally) self-adjoint elliptic PDOs from EI” ,y(M, E):=EI™(M, E)N
CL7 \(M,E), m € Zy. Then the principal symbols oym (Dy, Dy,) are sufficiently
close to positive definite ones for (uy,us) in a neighborhood of the diagonal in U x U.
So in particular for such (uy,uz) we have det(z) (Dy, Dy,) € R. (But Dy, Dy, s not
self-adjoint in general.) However, in this case (as well as for families D, from Propo-
sition 4.4), the assertion of Lemma 4.1 is not valid in general. So in these cases the

appropriate spectral flows are not identity zeroes. Hence in general the factors e(u)
in (4.31) are not globally defined for such families.

Proposition 4.6. Let D,, v € U, be a smooth family of PDOs from Ell?‘_l)(M;E,F),
m € Zy. (This class consists of elliptic PDOs acting from T'(E) to I'(F') and such that
their symbols possess the property analogous to (4.1).) Suppose that a smooth positive
density on M and Hermitian structures on E, F are given. Then a family V, := D,
(adjoint to the family D,) is defined, V, is a smooth family from EI(M; F, E).
The assertion analogous to (4.31) is valid in the form
1/2 1/2

det(s) (Vay Duy) = € (u1) € (u2) (detisy (Viy D)) (detiny (Vig D))~ (4.35)
for any sufficiently close uy,uq € U. The factors e (u;) in (4.35) are &1. However,
they are not globally defined on U for a generval family D, .

Proof of Proposition 4.6. Set A, ., := det() (V,, Dy, ) for uy, uy from a sufficiently
close neighborhood of the diagonal in U x U. (For such (u;,uy) the principal symbol
of V,, D, is sufliciently close to positive definite definite ones.) Then the matrix
(Ay, u;) (for such pairs (uy,uq)) has the rank one. Indeed, for any four sufficiently
close {(wq, ug, us, 1y) such that DuJ, Vi, are invertible we have by (4.25)

Auy g Ay, = clet(,-,) (Viy Dy Vi D)= det(i) (Du‘ Vi, D Vi) =
= cIeL(;.) (Du‘ Vul ) det(i) (Du,J Vu:,) = Ay u Aua.uz'
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Hence we have
detery (Vi Dy ) =1 k (w1) k(2),  det(zy (Vi Dy,) = k(u)?.
The proposition is proved. O

Remark 4.12. A geometrical origin of Dirac operators manifests itself in the struc-
ture of the determinants of their products (Theorem 4.2, (4.34)). (Here, M is odd-
dimensional.) Namely the structure of the expression for such determinants of prod-
ucts of odd class elliptic PDOs on M (Proposition 4.6, (4.35)). However the factors
€ (u;) in (4.35) cannot in general be globally defined. Indeed, in general the spectral
flow for a family of odd class elliptic PDOs on M (parametrized by a circle S') is
nonzero. So for such a family the multiple € (u;) cannot be defined as a locally con-
stant function of ¢ € S! such that the corresponding operators are invertible. The
corresponding spectral flow for a family of Dirac operators on M (parametrized by
S1) is zero (Lemma 4.1). This fact is connected with the geometrical origin of Dirac
operators.

4.3. Determinants of multiplication operators. Let M be an odd-dimensional
closed manifold. Let £ be a finite-dimensional smooth vector bundle over M. Let
@ € End £ be a smooth fiberwise endomorphism of £ such that for any = € M all
the eigenvalues A\;(Q:) possess the property

IIm X(Q:)| < 7 —¢e,e > 0. (4.36)
Then for all the eigenvalues A; (exp(1Q:)) for 0 <t < 1 we have
larg A; (exp(t@;))| < 7 — €.
The determinant det(r)(exp @) is defined according to (4.6) by
det(r)(exp @) := det(r)(Aexp Q)/det(,)(A), (4.37)

where A := A + 1d.® Here, A is the Laplacian A := A, ge on I'(E) corresponding
to a Riemannian metric ¢ on M and to a unitary connection V¥ on (E, k). Then we
have

det(n)(exp Q) 1= detr) (exp Q- (A +1d)) /det(r)(A + Id). (4.38)
For 0 <t <1 we have an analogous definition
det(r) (exp(tQ)) := det(r) (exp(tQ)A) [det(n(A) =: F(Q,1). (4.39)

3We use the fact that a principal symbol of the Laplacian is scalar. Namely

oa(A)(2,8) = o2(Ap)(z,€) @ ldg,

where Ajps is the Laplacian for scalar functions on (M, g). Hence oo(exp(¢Q) - A) possesses a cut
Lipyfor0 <t < 1.
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Thus we have F(Q,0) =1,
8, log F(Q, 1) = —0,0, Tr ((exp(1Q) - (A + 1d)) ™)
= (14 8,) Tr (Q (exp(1Q) - (A + 1d))™°)

8=0
:thr(Q(m)f\t,,(m,m))L:O, (4.40)
where Ky,(z,z) is an analytic continuation in s from the domain Res > dim M/2

of the restriction to the diagonal the kernel of (A +Id)™°. Set Ay, := exp(tQ) - A;.
Then we have ([Se], [Gr])

=0

I\)t,a(m’ 'E)

= (to(:ﬂ, Al‘):

s=

where ag is the 7% coefficient in the asymptotic expansion as 7 — +0 for the kernel
on the diagonal P;,(z,z) of the operator exp(—7A,). Since A, is an elliptic DO of
the second order and since all the real parts of all the eigenvalues A; (g3(A:)(z,€))
are positive (for £ # 0), there is ([Gr]) an asymptotic expansion as T — +0

Pra(2,2) ~ acn(z, AT 4 acpuogy (2, A)T T 4 4
+a_i(z, A)T7 V2 4 ay(z, ATV 4 ... (4.41)
Hence we have
ao(z, A¢) = 0, dlog F(Q,1) =0, (4.42)
det () exp(@Q) = 1. (4.43)
Thus we obtain the following.

Proposition 4.7. The determinant of a multiplication operator on an odd-dimensio-
nal closed manifold is equal to one.

Remark 4.13. To see that the coefficients of 7=(1—M/2 7=(-n)/2 iy (4.41) are zero,
it is enough to note that the coefficient of 7=U="/2 is defined by a noncommutative
residue density res, of the symbol o (At-(j_”)fz) ([Sh], Ch. 11, (12.5)). If n — 5/2 =
k € Z,, then we have

7oanes (A7) @0 = 5o [ 5 Homa (4= 17 (@.0)

Since A; € CL%_U(JW, E), we obtain (as in the proof of Theorem 4.1)

o_ake; (ATF) (2,-€) = (=1) 0_2—j (A7¥) (2, 6).
Hence res, o (At_k) =0.
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4.4. Absolute value determinants. Let A be an invertible elliptic differential
operator on an odd-dimensional closed manifold M, A € Ell4(M, E) C CLYM, E),
d € Z4+. Then we can define

|det |A := (det(A*A))/? € Ry, (4.44)

where A” is adjoint to A with respect to a scalar product on ['( ') defined by a smooth
positive density p on M and by a Hermitian structure h on £.

Remark 4.14. The determinant on the right in (4.44) is independent of p and of /.
Indeed, let a pair (pq, k1) be changed by (p2, h2). Then

;mhz = Q_]Af:l.hl Q’ (445)

where Q € Aut (F @ A"T"M), n = dim M, is defined by (f1, f2)pa.0a = (f1, @ F2) .11+
The operator @ belongs to CL?_I)(M, E) and for (p2, ko) close to (py, k1) this operator
is close to Id. Hence for {ps, ko) close to (p1, 1) we have by Theorem 4.1 and by
Proposition 4.7

det(n) (A5, 1,4) = det(r) (@743, ,Q4) =
= det(ﬂ) (A;x,thA) = det(ﬂ-) (QAA;“}H) =
= det(r) (A4} ) = detir) (45, A) . (4.46)

The equality (4.46) was obtained in [Sch].
Proposition 4.8. The funcltional A — |det|A is multiplicative, i.e., for a pair

(A, B) of elliptic differential operators in ['(E) on an odd-dimensional closed M we
have

|det [(AB) = | det |A - | det | B. (4.47)

Proof. By Theorem 4.1 we have the following expression for (| det |(AB))*
det(z) (B"A"AB) = det(r) (BB"A"A) = det(n) (A" A) det(r) (BB™) =
= (|det |A - |det|B)*. (4.48)
a

Remark 4.15. All the assertions about absolute value determinants given above are
true also for elliptic PDOs [rom CL{ (M, E), m € Z, on a closed odd-dimensional
manifold M.
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. For m = 0 the operator A~A, where A € CL?_U(M,E), is a self-adjoint positive
definite PDO from CL{_,,(M, E). Hence its determinant is defined by (4.6) as

(| det|A)? := det(x)(A"A) := det() (A"A (Ag + 1d)) /clet(ﬂ.) (Ag + 1), (4.49)

where Ag is the Laplacian for (M, ¢, E,Vg,h) (Vg is an h-unitary connection on
(E,h) and ¢ is a Riemannian metric on ).
Thus absolute value determinants are defined for all elliptic PDOs A of odd class
‘Lt (M, EYNEN*(M, E) on a closed odd-dimensional M. All the assertions about
" |det A given above are true for such PDOs A.

Let A be an invertible elliptic PDO from EIIfL,(M; £, F), m € Z4. (This class is
introduced in Proposition 4.6.) Let a smooth positive density p on M and Hermitian
structures hg, hp on £, F be defined. Then the operator A* is defined, and the
absolute value determinant of A is defined by

|det |A := (det (A" A4))"/? € R..

Remark 4.16. This absolute value determinant is independent of p, hg, hr. Indeed,
under small deformations of p, hg, kg, the operator A* transforms to @ A*Q)2, where
Q); are the automorphism operators of the appropriate vector bundles and ¢; are
sufficiently close to Id. So by Proposition 4.7 and by Theorem 4.1 we can produce
equalities similar to (4.46). Hence det (A"A) is independent of (p, hg, hr). (Note
that the set of (p, kg, hF) is convex and so it is a connected set.)

Proposition 4.9. An absolute value determinant is multiplicative, i.e., for invertible

elliptic PDOs of the odd class A € EI”) (M) E, Iy), B € BN, (M; Fy, I2) we have

|det |AB = |det |A - |det | B. (4.50)

Proof. The equalities (4.48) are applicable in this case. O

Remark 4.17. The absolute value determinant | det |A is canonically defined for A €
ENfL,,(M; E, F) for any m € Z. Indeed, this determinant is defined for m € Z\ 0.
For m = 0 it is defined by (4.49). The multiplicative property (4.50) holds for
absolute value determinants of the odd class elliptic PDOs on an odd-dimensional
closed manifold having arbitrary orders.
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4.5. A holomorphic on the space of PDOs determinant and its mon-
odromy.

Proposition 4.10. The function (|det |A)? on the space EN™(M, EYNC L,y (M, E),
m € Z, on an odd-dimensional closed manifold M is equal to | f(A)|?, where f is a

multi-valued analylic function on the space of elliptic pseudo-differential operators
from CL\(M, E), i.e., on EW™(M,E)NCL (M, E).

Proposition 4.11. The assertion (|det |A)* = |f(A)|® of Proposition 4.10 holds for
A € Ell_yy(M; E, F). (This class is introduced in Proposition 4.6.) Here, f(A) is a
holomorphic in A multi-valued funclion on the space EI_\(M; E, F').

The proofs of these propositions are in the end of this subsection.

Remark 4.18. A natural complex structure on the space B (M, E):= C LT, (M, E)"
EN™(M, E) =: X is defined as follows. Note that X is a fiber bundle over the space
of principal symbols SEII?‘_U(J\J,E)/CS(”:)I(M,E) 1= ps(Ly)(M, E). Its fiber is the
space Ell?d|(_1)(M, Ey:=1d +CL(_1])(M,E') of zero order elliptic operators with the
principal symbol 1d. The fiber has a natural structure of an affine linear space
over C. Let the order m be even. Then the complex structure on ps?‘_l)(M, E) =
Aut (7" Elp«ps)® is induced by complex linear structures of fibers n*E|p-ps. Let
s € ps’(“_l)(lw, E). Then T, Aut (7" E|p+psr) = End (7" E|p+as) has a natural structure
of an infinite-dimensional space C. (Any v € End (7*E|p.p) defines the tangent
vector vs € Ty Aut (7™ E|p+ar).) This complex structure on the tangent bundle to the
group Aut (m*E|p.pr) =: G is invariant under right multiplications vs — vss; and
under left multiplications vs — Ad,, v- 515 on elements s; € G. So Aut (7*E|pepr) is
an infinite-dimensional complex manifold.

Let X* be the space of invertible elliptic operators from X. Then the group
H* = Ell?&i_l)(ﬂJ,E) of invertible operators from EH?C‘:(_])(M, F) acts on X* from
the right, Ry: ¢ — zh for h € H*, 2 € X*. This action defines a principal fibration
g: X* — G with the fiber H*. The group H* acts from the left on Ell?d'(_l)(M, E),
Ly:y — h™'y, and X is canonically the total space of the bundle associated with the
principal bundle ¢. The complex structure on Ell?d'(_l)(M,E) (defined by a natural
C-structure on CL(__II)(M',E)) is invariant under this action of H*.

The natural complex structure on T'(X*) is defined by the natural Cstructure
on CLY ,(M,E) = TiaXg' (where Xg' corresponds to the case m = 0) under the
identification Ty X* — T X, 64 € T4X* — 6A- A~ € Ty X{. (Here, A € X*\)

The complex structure on Tig X is invariant under the adjoint action of the X
on TiaX{. Hence X is an analytic infinite-dimensional manifold. The complex

Here, P*M := Ass (T"M, RP"~1), and m: P*M — M is a natural projection.
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structure on T (XD") (induced from Xg') is invariant under the natural left and right

actions of the elements of X on X*. So X* possesses a natural structure of an
infinite-dimensional complex manifold. This complex structure together with the
complex structure on the fibers Ell?dl(_l)(M,E) of the associated vector bundle de-
fines a natural structure of an infinite-dimensional complex manifold on X. This
structure is in accordance with the complex structures on the base G and on the
fibers Ell?d|(_1)(ﬂl, E) of the natural fibration X' — G.

Let m € Z be odd. Then any invertible elliptic operator A € X, gives us the

r

isomorphism A~!: X,, — X, # — A~'z. The complex structure on Xy defines a

complex structure on X,,. The induced complex structure on X, is independent of
an invertible operator A from X,,.
A natural complex structure on EIlIf%,,(M; [, F) is induced by the identification

BUF (M, E) — BN\ (M; E, F) (4.51)

given by multiplying by an invertible operator A € E]I?_l)(M; EF).

Proposition 4.12. Let a- branch of the holomorphic determinant f(A), Proposi-
tion 4.10, be equal to det(z) (AR + 1d) at the point Ag:= AZ +1d € Ellfi",)"o(M, E).
(This can be done because the operator AT + 1d is self-adjoint and positive definite.)
Then for any element A of Ell(zf‘])‘o(ﬁ/[, E) sufficiently close to positive definite self-
adjoint ones (with respect to a given smooth positive density on M and a Hermilian
structure on I2) we have

det(z)(A) = f(A). (4.52)
(Here, detzy is defined by an admissible for A cut.)

Corollary 4.5. The equality (4.52) holds for PDOs A sufficiently close to a positive
definite self-adjoint PDQO (with respect to any smooth densily and any Hermilian
st-ructm‘e).

Proof. For A} defined by any smooth density and any Hermitian structure we have
|det | (AE + Id) = det(z (A + 1d).

The set D of these operators is connected in Ell(z'_"l)vo(M,E). A branch of f(A) and
det(z) (A% + Id) are restrictions to this set of holomorphic functions which are equal
in a neighborhood of a point Ag € D. Hence these functions are equal on D. Then
we can apply Proposition 4.12 for any Riemannian and Hermitian structures. O

The statement of Proposition 4.12 follows immediately from Theorem 4.1, Re-
mark 4.13, (4.47), Corollary 4.2, (4.7), Remark 4.4, (4.9), or from Lemma 4.4 (and
from its proof (4.53)) below.
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Lemma 4.2. The monodromy of the functions f(A) defined in Propositions 4.10,
4.11 is given by a homomorphism

o: K (Ass (T"M, RP™)) [n"K(M) — C¥,

where K = K° is the topological K -functor, w: Ass(T*M,RP™™') — M is a fiber
bundle with its fiber RP"™! associated with T*M™ (n := dim M ).

Proof of Lemma 4.2. First we prove this assertion for f(A) defined on EI,, (M, E).
By the multiplicative property (4.47) of the absolute value determinants, it is enough
to investigate monodromy of f(A) over a closed loop A; in Ell?ﬁ,)(M,E) (k € Z,
is fixed). Let E; be a smooth bundle over M such that ' @ E, is isomorphic to

a trivial N-dimensional complex vector bundle 15, where N € Z, is large enough.
Then the monodromy of f(A) over a loop (A;) € 2! Ell(?fl)(M, E) is the same as the

monodromy of f(A) for (M, 1) over a loop (A, @ (Ag, + 1d)¥) € O BIZE (M, 1y).

(Indeed, f (At & (Ag, + Id)k) = ¢f (A¢), where ¢ # 0 is independent of t € [0,1]
and is defined up to a constant complex factor of absolute value one. We can set
¢ = dety ((AE1 + Id)k).)

The group K' (Ass(T*M, RP™')) is in one-to-one correspondence with the con-
nected components of the space EIlI’;)(M, 1x) of elliptic PDOs from C L7 (M, 1n)
(m is fixed). The fundamental group m (EUE,) (M,1x)) = m (BN, (M,1y))
can be interpreted as follows. Let P € CL?_I) (M,1n) be a PDO-projector, i.e.,
P? = P € CL® and its symbol o(P) belong to an odd class (4.1). (To remind, for
o(P) to be of this odd class, it is enough for all the homogeneous components of o(P)
to satisfy (4.1) in some local cover of M by coordinate charts.) The one-parametric
cyclic subgroups exp(2mitP), 0 < t < 1, (exp(2#x7P) = 1d) are the generators of
m (B, (M, 1w)).

Indeed, it follows from the Bott periodicity that K° (Ass(7"M, RP""1)) is canon-
ically identified with 7y (GLN(C(X))) for X := Ass(T"M,RP"') and for N € Z,
large enough ({Co], I1.1). Here, C(X) is an algebra of continuous functions. Any
continuous map ¢: X x S' — GLn(C) such that p(X x a) = Id, a € S is
fixed, is homotopic to a C*-map in this class of continuous maps. So K°(X) (for
X = Ass(T"M, RP™')) is the fundamental group of the space of principal symbols
for operators from Ell?_l) (M, 1n). Finite type projective modules over C(X) =: A
correspond canonically to finite rank vector bundles over X. For every such a module
€ there exists a projector e € My(A), €* = e, such that £ = {f € My(A),ef = [}
(as a right A-module, A := C(X)). Such a projector corresponds to a projection
p € End (7*1xn) from 7*1y onto a finite rank vector bundle over X. Every such projec-
tion p is homotopic to a C*-projection. The space of elliptic operators Ell?_l) (M,1n)
is homotopic to the space of their principal symbols. For every smooth projection
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p € End (7*1x) there exists a zero order PDO-projector f € C’L‘()_l) (M, 1n) with the
principal symbol p. (For projectors P from CL°(M,1x) this assertion is proved in
[Wo3].)

The principal symbol a¢(£) =: p defines a fiber-wise projector p € End (7*15) of
a trivial vector bundle #*1y over Ass(T"M,RP™'), p* = p. The image Im(p)
of p is a smooth vector subbundle of 71y and Im(p) represents an element of
K°(Ass(T"M, RP™')) and any element of this K-functor can be represented as
Im(p) for a projector p € End (7*1y), p* = p, under the condition that N € Z is
large enough.

For any projector p € End (r*1x) there is a PDO-projector P € CL?_U (M, 1n)
with og(P) = p. (An analogous result is obtained in [Wo3].) If Im(p) and Im (p1)
represent the same element of K (Ass (T*M, RP™"')), then these projectors are ho-
motopic (under the condition that N € Z., is large enough with respect to dim M and
to rk(Im(p))). If the principal symbols p and p; of PDO-projectors P and P (from
C'L‘(]_l) (M,1n)) are homotopic, then exp(27itP) and exp (2mitP,) define the same

element of m (Ell?__l) (M, IN)). Hence the monodromy of f(A) on Ell%fl) (M, 1n)
(k € Z) defines 2 homomorphism

wo: K° (Ass ("M, RP™")) — C*. (4.53)

Indeed, the value of wo[Im p] for an element [Imp] € K° (Ass ("M, RP*')) =: K,
p = ao(P) (for a PDO-projector P from CL{_,)(M,1n) and for N € Z, large
enough), is defined as the ratio

exp(2mitP) o fO(A)/fg(A)| =t po([Im p]) € C*. (4.54)

i=

Here, fo(A) is a branch of a multi-valued function f(A) near Ag and exp(27itP) o
fo(A)|e=1 is the analytic continuation of fo(A) along a closed curve Sp := exp(27it P)-
Ag, 0 <t < 1. This ratio is independent of a branch fo(A) of f(A) since for
any two branches fo(A) and fi(A) of f(A) (defined for A close to Ap) their ratio
fo(A)/ f6(A) is a complex constant (with the absolute value equals one) and so the
analytic continuation of fo(A)/fi(A) along Sp is the same constant,.

We suppose from now on that N € Z is large enough. The homomorphism ¢y is
defined since the elements [Im p] span the group K = K° and since if Imp; @ Imp, =
Imps, then the curve exp (2mitFP3), 0 < ¢t < 1, represents the sum in the com-
mutative group 7y (EIY_y) (M, 1y),1d) (= m (SENY_,) (M, 1y),1d)) of the elements
represented by the curves exp (27itFP;), 0 <t < 1. (Here, 0o (F}) = p;.)

Let Im(p) belong to a subgroup ©=*K°(M) of K := K°(Ass(T"M,RP"!)) (i.e.,
there is a smooth vector bundle V over M such that 7*V represents the same el-
ement of K as lm(p) does). We can suppose that Im(p) = 7*V. Indeed, let
Imp @ 71y, = 7"V & n*1n,. Then this equality holds with Ny € Z, bounded
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by a constant depending on dim M. We suppose that N € Z is large enough.
Then for a projector py € End(n*1ln,) such that Imp, = Imp @ 7*ly, C 7*ln
we can conclude that Imp; and = (V @ 1n,) are smoothly isotopic as subbundles
of m*1n. (Here, V @ 1n, is a subbundle of 15.) Hence the monodromies coincide
o ([Impy]) = o (7" (V @ 1n,)).

The assertion of Lemma 4.2 follows from (4.53) and from Lemma 4.3 below. The
identification of monodromies f(A) over EIIf* ,,(M, E) and over EIli’,,(M; E, FF) is
given by the identification (4.51) of these spaces and by the multiplicative property
of absolute value determinants (Proposition 4.9, (4.50)). O

Lemma 4.3. The monodromy o([Imp]) (defined by (4.54)) of the multi-valued holo-
morphic function f(A) on EML,\(M, E) is equal to 1 for [Imp] € 7> K°(M) on an
odd-dimensional manifold M.

Proof of Lemma 4.3. We can suppose that Im p = 7*V (as it is shown above). Then
there is a smooth homotopy of p = go(P) (in the class of projectors from End {(7*1x)
with the rank equal to rk V) to a projector pp constant along the fibers of 7, i.e., to
po = m*pa for a projector pp; € End (1n) over M (where N € Z, is large enough).
Then exp(tpo) is the symbol of the multiplication operator exp (tpar) € Aut (1y) over
M (Jt| is small). It is shown in Proposition 4.7 that det (exp ({par)) is defined (for
such t) and that this determinant is equal to one. [

Lemma 4.4. For elliptic PDOs A from Ell'(i_,) (M, 1n) sufficiently close to positive
definite self-adjoint ones (where d is even and nonzero), the locally defined branch
fo(A) of a holomorphic in A function f(A) (from Proposition 4.10) is

fo(A) =C- det(,-r)(A), (455)

where ¢ € C is a constant such that {c| = 1. (Here, det(z(A) is the zeta-regularized
determinant of A defined by an admissible spectral cut Lg) with 0 close to =.)

Proof. By Theorem 4.1, Corollary 4.2, and Remark 4.4 we have for such A
det(z)(A™A) = det(z (A )det(z{A),
det(zy(A*) = (det(z)(A)), (4.56)

det(;r)(A*A) = fO(A)fO(A)s

where det(z(A) and fo(A) are holomorphic in A (and fo(A) is locally defined). Hence
locally we have fo(A) = cdet(z)(A) with a constant ¢ whose absolute value is equal
toone. O

Remark 4.19. The assertion of Lemma 4.4 is also true for A € Ellf_l)(M, E).
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Remark 4.20. It follows from (4.54) and from (4.55) that the monodromy @o({Im p})
is given by the equality

wo([Imp]) = det(zy(exp(2nitP) - A)/dct(,-,)(A)L___l. (4.57)

Here, A € Ell'(i_l) (M,15) is an invertible elliptic PDO close to a positive definite
self-adjoint one, d is even and nonzero, P is a PDO-projector from CL{_;, (M, 1x)
with the principal symbol oo(P) = p, and det(z(exp(2n2tP) - A) is the analytic
continuation in ¢ of the zeta-regularized determinant det(z) from small ¢ € [0, 1] to a
point ¢t = 1.

Remark 4.21. The analytic continuation of dets (exp(27itP)- A) to L =1 for a fixed
A = Ap depends on the homotopy class of [Imp] C 715 only. Indeed, it is equal (up
to a constant factor ¢, |c| = 1, locally independent of A) to the analytic continuation
of a holomorphic in A function fo(A)* along the closed curve exp(27itP) - Ap in the
space Ellf__l) (M,1n) (d € 2(Z\ 0)). Hence it depends on the homotopy class of a
closed curve in this space from a fixed point Ag. Such homotopy classes are defined
by homotopy classes of [Imp] C 7*1n.

Remark 4.22. By Theorem 4.1 and by Corollary 4.1 we have for small |t|, ¢t € C,
dets)(exp(tP)A) = det(zy(exp(tP))det(z)(A). (4.58)

Here, A € Ell'(i_l) (M, 1y) is sufficiently close to a positive definite self-adjoint PDO,
d € 2(Z\0), Pisa PDO-projector from CL‘()ﬂl) (M,1x). The determinant of the
zero order PDO exp(tP), det(z(exp(tP)), is defined by (4.6).

Remark 4.23. It is shown above that for Imp = 7*V, V C 1n, p = 0o(P), we have
det(zy(exp(2m2tP) - A)lizy = detzy (exp (2mitpar) - A) =1, (4.59)

where pys € End (1n) is a projector from 1y onto V (over M) and where exp (tpy) €
Aut (1y) is the multiplication operator. By (4.58) and by Proposition 4.7 we have
for small {¢|

det(z) (exp (2ritppr) - A) = det(z) (exp (2mitpas)) - det(z)(A) = det(z(A). (4.60)
Here, A € Ell‘(i_]) (M, 1x) is sufficiently close to a positive definite self-adjoint PDO,
d € 2(Z\ 0), and P is a PDO-projector from CL{_,, (M, 1n).

0 fo(A) is a branch of a holomorphicon EIfZ 1y (M, 1x) multi-valued function f{A) locally defined
near Ag. '
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Corollary 4.6. Under the conditions of Remark 4.23, we have by (4.58) and with
using the analytic continuation in t of the equality (4.60)

det(z)(exp(2mitP) - A)|i=1 = detz) (exp (2mitpar) - A) 1= = det(zy(A4). (4.61)

Hence @o([Imp]) = Id for [Imp] € " K°(M). Lemma 4.3 is proved. O

Lemma 4.5. Any element f of the abelian group K° (Ass (T*M, RP* 1)) /n*K°(M)
has as its order a power of two, fzk = Id. The number k € Z, is estimated from the
above by a constant depending on n := dim M only. (Here, n is odd.)

Proposition 4.18. For any closed loop in the space (Umez Ell’("_l)(ﬂ/I,E),Ao) the
monodromy of a multi-valued holomorphicin A € Ellz"_l)(M, E) function f(A) defined
by Proposition 4.10 is multiplying by €}, ex := exp(2mi/2*), ¢ € Z. The number k
is bounded by a constant depending on n := dim M only. (Here, the monodromy of
f(A) is defined by (4.54) and n is odd.)

This statement is an immediate consequence of Lemmas 4.2, 4.5 and of Theorem 4.1
Proof of Lemma 4.5. 1. For m € Z, the group K°(RP™) := K°®(RP™) [x*K°(pt)
is a finite cyclic group Zse of order 2¢, where e := [m/2)] is the integer part of m/2
([A1]; {Hu}, 15.12.5; {Kar], [V.6.47). The Atiyah-Hirzebruch spectral sequence ([AH],
2.1) for K9(RP™), m € Z,, implies K! (RP?™) = 0. Indeed, the term E}? of
this spectral sequence is E}? = HP (RP*™, K%(pt)). If ¢ is odd, then E}? = 0, if
q is even we have EY? = 0 for odd p, E¥? = Z, for even p, 0 < p < 2m, and
E3* = 0. The terms EP? for p + ¢ = 1 are the graded groups associated with
the filtration F?K1 (RP*™) = Ker (K' (RP*™) — K (RP?™)), where RP2™ is the
(p — 1)-skeleton of RP*™. So @piq=1 £3? =0 = GER? and K' (RP*™) = 0.

2. Let M be a compact closed smooth (2m + 1)-dimensional manifold. Then there
exists a smooth tangent vector field v(z) on M without zeroes. This vector field
(together with the identification of 7'M with T*M given by a Riemannian metric on
M) defines a section v: M — Ass (1M, RP?™). The composition of maps

K*(M) =5 K* (Ass (T*M, RP™)) 25 K*(M) (4.62)
is the identity map (since 7v: M — M is the identity map). Hence
K* (Ass (T°M, RP*™)) = K*(M) & Kerv™. (4.63)

Here, the subgroup Kerv* of K* (Ass (T*M, RP?™)) is independent of a tangent to M
vector field v without zeroes and is isomorphic to K* (Ass (T*M, RP*™)) [x* K*(M).
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There is a generalized Atiyah-Hirzebruch spectral sequence for the K-functor of
the fiber bundle of Ass(7"M, RP?™) over M ([AH], 2.2; [Do], 4, Theorem 3; [A2],
§ 12, pp. 167-177; {Hi], Ch. I1I; [Hu], 15.12.2). Its E3*-term is

By = H? (M, K}y (RP™)), (4.64)

where £k, (RP?™) is a local system with the fiber K% (RP?™) associated with the
fibration 7: Ass(T*M, RP*™) — M. (The fiber of = is RP*™.) lts EP?-terms with

p + q¢ =1 are groups associated with the fibration
P (K (Ass (1M, RP?™)) o= Ker (K (Ass (T"M, RP™)) — K* (7" (M,1))), (4.65)

where M,_y is the (p — 1)-skeleton of M.

The EP?-term of the Atiyah-Hirzebruch spectral sequence for K*(M) is equal to
H? (M, K%(pt)). The F?-filtration (4.65) in K* (Ass(7T*M, RP?")) (and in the spec-
tral sequence (4.63)) is in accordance with the FP-filtration in K*(M) (with respect

to the direct-sum decomposition (4.63)). The analogous direct-sum decomposition is
valid for H? (M, k}; (RP?™)) and for further terms £P?. Hence

K* (Ass (T*M,RP™)) = K*(M) @ K* (Ass ("M, RP*™)) [z (K*(M)),
G K (Ass (T"M, RP*™)) = EZP(r) = EL™"(M) & E%"(%), (4.66)

where EI*"?(x) := HP (M', kig® (RPQ’“)) and EP~P(x) are the further terms in the

corresponding spectral sequence. Here, l:f:’h, is the local system (analogous to kj,)
with the reduced K-functor K7 (RP*™) as its fiber. We have for 7 = 0

Ep~?(x) = H" (M, k3f (RP™)).

So £ = 0 for odd p and each element of H” (Mr, k7 (RPQ"‘)) is of a finite order

2 o e Z,0 < o < m. Hence only the terms E'gé"ﬂ('rr), leZ,0 <1< m, may
be unequal to zero. Thus every element of K°(Ass(T*M, RP*™)) /7" K%(M) has a
finite order 28 with 8 € Z,0 < B <m? 1= ((n —1)/2)}, n =dimM = 2m + 1. The

lemma is proved. 0O
Remark 4.24. The commutative diagram

Ko (r7'M) —— K* (77! (Mpo1)) —— K* (771 (M,_2))

K (M) ——  RK*(M,,) ——  K*(M,_)

is used in the derivation of (4.66).
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Remark 4.25. Theorem 1V.6.45 in [Kar| provides us with the exact sequence
— Ki(X) @ Ki(X) 20 Ki(P(V)) — K (£V81(X)) - K™1(X) @ K™+ (X).

Here, 7: P(V) — X is the projective bundle of a real vector bundle V over X,
0: E— E®rmE, £ is the canonical line bundle over P(V), £Y(X) is the category of
vector bundles over X with an action of the Clifford bundle C(V) ([Kar], IV.4.11).
Proof of Propositions 4.10 and 4.11. First we prove that the absolute value
determinant |det|A as a function on EIIf* ,(M, £) has the form |f(A)|, where f
is a multi-valued holomorphic function on EWZ, (M, £). Let X be the infinite-
dimensional analytic manifold

Ellf_,y(M, E) := EN*(M, ) N CL-y(M, E).

Let X’ be a manifold with the conjugate complex structure on it. An element A € X
corresponds to an operator A* as to an element of X’ (= X'). Then the function

f(A,B):= det(ﬁ)(AB)

is defined on a sufficiently close neighborhood of the diagonal X — X x X’ for an
admissible cut 7 (close to =) depending on AB. Here we suppose that m € Z,. Then
Cap,#)(s) is defined for Res > dim M/2m and its analytic continuation is regular at
zero. If m € Z_, the same is true for {(4p)-1 (#)(s), Res > dim M/2|m|. If m =0,
the function det(AA*) is defined by the multiplicative property

det(AA%) := det ((Ap + Id) AA" (Ag + 1d)) / (det (Ag + 1d))*.
Note that det(z(AB) is defined for (A, B) with m = 0 in a close neighborhood of the

diagonal.
For pairs (A, B) and (Ay, B1) of sufficiently close points of X x X’ in a close
neighborhood of the diagonal X we have by Theorem 4.1

det(ﬁ-) (ABAlBl) = det(*) (Bl A) det(,-,) (BAl) = (let(,}) (AB[) det(ﬁ-) (AlB) .

Hence the matrix with elements f(A, B) = det(z)(AB) for (A, B) from a close neigh-
borhood of a point (A, A*) € X — X x X' has the rank one. Hence there exist
locally defined functions fi{A) and fo(B) such that for sufficiently close A and B
(belonging to the domain of definition of f; and f;) we have

det((A- B) = J(A,B) = fi(A)fo(B).

The function f(A) is holomorphic in A since for invertible A, B € EIlIi’,,(M, E) we
have

badet(sy(A - B) =0, (.s Tr (5A - A7 (AB)(_;)) — res a(&AA'l)/Qsm)

§=0
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Here, the expression on the right has an analytic continuation in s to s = 0 and it
is regular at s = 0. The same is true for f(B) (with respect to the holomorphic
structure of X). '

The function fi(A)/f2(A*) is (locally) analytic in A and it is a real function.

(Indeed, det(AA*) = f1(A)fo(A*) and |f2(A*)|* = fo( A*) f2( A=) are real functions.)

Hence it is a real constant ¢. It is the ratio of two positive functions, det(z(AA*)

and |f2(A*))°. Hence ¢ € Ry. The function f(A) is defined as ¢'/2f;(A). Thus
f(A) is an analytic function of A. The assertion that |det|A as a function on
EIL,(M; E,F) 5 A has the form [f(A)| with a multi-valued holomorphic f is
obtained from the analogous assertion for |det{A on EII”, (M; E, F)) with using the
identification (4.51) of the spaces EI.,)(M, £) — EII’,,(M; E, F) and with using

the multiplicative property (4.50) of ahsolute value determinants (Proposition 4.9).
a
5. LIE ALGEBRA OF LOGARITHMIC SYMBOLS AND ITS CENTRAL EXTENSION

Symbols & (Afﬁ)) for complex powers Ag, of elliptic PDOs A € Elg(M, E) C

CLYM,E), d € R*, are defined by (2.6), (2.7). (Here we suppose that the principal
symbol a4(A) possesses a cut Lg of the spectral plane.) The symbol of logg A is

defined as
0y (Aly))

The equalities (2.11) hold for the components on the right in (5.1). Hence the
Lie algebra Si,g(M, E) of symbols o (logw} A) is spanned as a linear space by its

subalgebra CS%(M, E) of symbols for CL°(M, E) and by one element o (Iog(e) A).
Here, A is an elliptic operator from Ellg(M,E) C CLYM, E) admitting a cut L,
d € R*. For l:=(1/d)o (Iogw) A) every element B € Si(M, E) has a form

B = ¢l + By, (5.2)

where ¢ € C and By € CS%(M, E). The number ¢ in (5.2) is independent of A and
of §. Set »(B) :=q. In Siog(M, E) we have

[g11 + Bo, g2 + Co] = [I, 1Co — q280) + [Bo, Co € CSD(Mrs E), (5.3)
since [, Bo] € CS%M, E) according to (2.11). Note that CS%(M, E) is a Lic ideal

of codimension one in Sig(M, F). We call Sjog( M, £} a one-dimensional cocentral
extension of the Lie algebra CS%(M, E),

0 — CS°(M, E) — Sig(M, E)SC — 0. (5.4)

The left arrow of (5.4) is the natural inclusion.

=0 Z 3sb:d-j,e($a§)|3=o- (5.1)

JEZLUD
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Lemma 5.1. An element | defines a 2-cocycle for the Lie algebra g := Siog(M, E)
(with the coefficients in the trivial g-module)

Ki (@il + Bo, g2l + Co) := — ([{, Bo] , Co) s - (5.5)
The cocycles K, for different | € Siog( M, E) with r(I) = 1 are cohomologous (i.c., for
logarithmic symbols | of degree one; here, v 1s from (5.4)).
Proof. The linear form K(Bg, Co) is skew-symmetric in By, Cy as it follows from
(2.16). (Here, we substitute ¢ = ¢ (A(’B)), l:=¢ (log(g) A), a = By, b = Cp into
(2.16) and then take d,|,=0.)

Note that K’ 1s a cocycle because the antisymmetrization of the 3-linear form on

Slog(MaE)
K ([gol + Ao, il + Bo], g2l + Co) = Ki([qo! + Ao, 1l + Bo], Co)

1s equal to zero. Indeed, we have

1"1([‘401 BO]: CO) + JK’([BU’ CU]a AO) - K’f([AOa CO]’ BO) =
= ({1, Col, [Ao, Bol) ey = ([1;, Ao], [Bo, Co)),es + ({5 Bol, [Ao, Col),ee =
= ([[1: CU]:AO] 1BU) + ([[laAD]:CO] aBO) - ([[: [AU’CD]]sBU)res =0

by the Jacobi indentity in Siog(M, ). We have also

Ky ([q0!, Bo] + [Ao, ¢11], Co) = ([gol, Bo] + [Ao, ¢11], [1; Co}),e »
(lgol, Bo] + [Ao, 111, [{, Col),es — ([90, Col + [Ao, ¢21], {1, Bo)), ., +
+ ({1, Co] + [Bo, g2, [1, Ag)),es = 0.
Hence Ki is a 2-cocycle for g = Si4(M, E) (with the coeflicients in the trivial g-
module C). For l; € »='(1) we have I, =1 — Lo, Lo € CS°(M, E),
Ki, (A, B) = Ki(A, B) = ([Lo, A], B)res = (Lo, [A, B])res,
where A, B € CS°(M,E). If A, B € Sig(M, E), A = qol+ Ao, B = q1l + By, q; € C,
Ao, Bg € CS°(M, F), then we have
Ky, (A, B) — Ki(A, B) = — ([l, Ao + qoLo} , Bo + q1Lo)eq + ([I, Ad], Bo)pee =
= (Lo, [Ao + goLo, Bo + q1Lo)),., + (Lo, [Ao, 411]) s + (Lo, (90!, Bo + q1Lo)),., =
= (Lo, [A, B)),., -

res res

Hence K, and K are cohomologous 2-cocycles. [

Remark 5.1. The cocycle K defines a central extension of the Lie algebra g =
SlOS(MrE)
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The Lie algebra structure on gy is given by

[l + a1+ c1- 1L, gal + ag +co - 1] = [l + @, g2l + a2] + Ki(ay,a2) - 1. (5.7)

Here, ¢;l + a; € Sig(M, E) =: g, ¢; € C, 1 is the generator of the kernel C in the
extension (5.6).

Remark 5.2. The extension of the Lie algebra of classical PDO-symbols of integer
orders analogous to (5.6), (5.7) (in the case of PDOs acting on scalar functions and
where [ is the symbol of log S, S is an elliptic DO with a positive principal symbol) was
considered in [R], Section 3.4. The extension of the algebra of PDO-symbols of integer
orders on the circle defined by the cocycle Kiog(a/ar) (on this algebra) is considered in
[KrKh], [KhZ1], [KhZ2]. A canonical associative system of isomorphisms of the Lie
algebras g for [ € Siog(M, E), r(I) = 1 (for r as in (5.4)) is defined in Proposition 5.1
below. Thus the Lie algebra g, a one-dimensional canonical central extension of
Sig(M, ), is defined. A determinant line bundle over the connected component of
the space of elliptic symbols SEII; (M, E) is defined in Section 6 below. The nonzero
elements of the fibers of this line bundle form a Lie group G(M, E), Proposition 6.1.
(We call it a determinant Lie group.) The Lie algebra of G(M, E) is canonically
isomorphic to @ by Theorem 6.1 below. This connection of the extensions g, (5.6),
and the determinants of elliptic PDOs is a new fact.

Remark 5.3. The determinant group is defined in Section 6. 1t is the central exten-
sion of the group SEIIF (M, £) with the help of C*. By Theorem 6.1 its Lie algebra is
canonically isomorphic to the central extension g (defined with the help of the cocy-
cle }). Lemma 6.8 claims that (in the case of a trivial bundle F := 1y, where N € Z .
is large enough) over an orientable closed manifold M the determinant Lie group is
a nontrivial C*-extension of SEll; (M, E). Namely for any orientable closed M, the
assotiated line bundle L over SEIIY (M, E) has a non-trivial (in H? (SEH{’]‘ (M, F), Q))
the first Chern class ¢;(L). If the cocycle A} would be a coboudary of a continuous
one-cochain on Sig(M, E) =: g, then the Lie algebra splitting

ﬁ(;) =pg8C (5.8)

would give us a flat connection on the determinant Lie group over SEIll} (M, E). So in
this case ¢;(L) would be zero in /H? (SEHS(M', E),Q) Hence K is not a coboundary

of a continuous cochain.

The cocycles K, for different { € »~'(1) C g are cohomologous. We define a system
of isomorphisms of Lie algebras

Wi 81y — 8,) (5.9)
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which is associative, i.e., Wy, Wy, = Wii,. These isomorphisms W, transform
ql1 + a; into the same element gl + a] = gly + a; of Sig(M, E) = g, i.e., the following
diagram is commutative

0 vy C > ﬁ(h) » 9 » 0
HJWMQ ” (5.10)
0 y» C > ﬁ(b) y @ » 0

Proposition 5.1. The system of such isomorphisms Wy, I; € r=1(1), given by
Wiplgh+a+ce-1)=(gla+d + 1),
where gy +a+c-1 € gy, gla+ o+ -1 € Qqy), and
gh+a=gqly+d ing,
d =c+ Bp,(a)+ q¥,, (5.11)
Ppila) =L —1,a) e, Ynni=(L-—hl-101),./2

18 associalive.

Proof. We try to construct Wy,;, using conditions of compatibility with the Lie
brackets.
1. Compatibility with the Lie brackets. Let Wiy, (¢;0 + a5 +¢;- 1) = ¢;la+b;+ f5- 1,
7 =1,2. We want to prove that

[nhtater - Lghdate- 1z + (P, ([0, a2] + [h, qar — qai])) - 1 =

= [qila+ b+ f1 - 1, q2la+ bo+ fo - 1] (5.12)

E(h) !
Using the equality ¢;(i — l3) = b; — a; we can rewrite (5.12) as
Ki (b1, 6y) = Ky, (a1, a9) = ®uyy, ([ar, a2) + [, q1az — qaan]).

The left side of the last equality by the definitions of K3 (a1, az) and of Ky, (b1, b2)
and according to (2.16) and to the skew-symmetry of (5.5) is equal to

Ki,(by, b)) — Ky (a1, a2) =
= ([h = oy}, a2) , — ([, (B = 12)] a2) g — ([ @] s g2(ls — 12)),y =
= (= b, (a1, a2) + [l uag — qeaq]),, - (5.13)
We conclude comparing (5.13) and (5.12) that if we set
®p,1,(a) = (L — (2, @) g s
d—c=( —bha)  +q¥y,.
(for Wy, defined by (5.11)), then the condition (5.12) is satisfied.

(5.14)
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2. Associativily. We want to show that W,
(5.11)). We have

s Wiy = Wy, (for Wiy, defined by
= =(L—-1d)  +qVu,, (5.15)

where Wy, (qlz + ¢’ +¢' - 1) = gls + ¢" + ¢" - 1 € gi,). Thus we have to show that
qlphla = qwhh + qlplzla + (12 - 131 a' - a)res ’ (516)

where I; € 771(1), ' — a = ¢q(lh — I3). We can rewrite (5.16) in the form

Wity = Vi + Uiy + (I — 2, 1 = 1), - (5.17)
It is clear that Wy, := (I — {,la — i), /2 provides us with a solution of the
system (5.17). The proposition is proved. O
Proposition 5.2. A system of quadratic forms
Allgl+a+c 1) = (a,a)wes — 2¢c (5.18)

ongyy dgl+a+c-1,1€r7 (1), is invariant under the identifications Wy, .
Proof. For Wi ,(¢l+a+c-1) =i ¢li + a1 + ¢1 - 1 we have

ay —a=q(l=1),

e —e= (= l,a), + gl - L= 1), /2 (5:19)
Hence we have

Ay (i + e+ a - 1) =(a,a4),, —2¢a =
= (a,a)res + ¢ (h — L, = 1) .+ 2¢(a, 0 — 1)), — 20c + 2¢ (I = L,a), ., +
+ (=) (h =L =1 =Algl+a+c-1). (5.20)

The proposition is proved. O
Corollary 5.1. The cones Cy in @qy, | € v71(1), defined by null vectors for Ay, i.e.,
C:= {ql-{-a-{—o 1 €gy, Ailgl+a+c-1) :0},
are invariant under the identifications Wy,

"V:lgg Cgl = Cl’:-

Indeed, W,
under Wy,,.

Wi, = Id, Wi, Wy, = 1d and the quadratic forms A; are invariant
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Remark 5.4. Let go be a Lie algebra over C with a conjugate-invariant scalar product
(a,b)g,
(e, al,b)g + (a,[c,b])go =0  for a,b,c € go. (5.21)
Let g be a cocentral Lie algebra one-dimensional extension of gy,
0—sgo—g—=Co0, (5.22)

i.e., let go be a Lie ideal in g and let go be of codimension one in g (the left arrow in
(5.22) is the natural inclusion, [a,b] € go for a,b € g). Then the expression on the
left in (5.21) makes sense for ¢ € g.

Let the scalar product (, ), be also conjugate-invariant under g, i.e., let (5.21) hold
for a,b € go and for ¢ € g. (Note that this condition is satisfied for the scalar product
(, );es ©n the Lie algebra CS°(M, E) =: go for its central extension Sg(M, E) =: g.)
Then we define a central extension

0—)@—)5(1)£>g—)0 (5.23)
given by the 2-cocycle of g (with the coefficients in the trivial g-module)
Ki(ql + a1, @2l + a2) := — ([l, 1], 2) (5.24)

on g, where a; € go and [ € r~'(1) € g (r is from (5.22)). These Lie algebras §,

for [ € »1(1) are identified by an associative system of Lie algebra isomorphisms

Wi, 80 — @) defined by the same formulas as isomorphisms (5.11) (with chang-
2

8o

ing (, ), by the scalar product (,), ). This system of isomorphisms defines the
canonical central Lie algebra extension 0 =+ C = g — g — 0. The quadratic form

Allgl+a+c-1):=(a,a)g —2¢c (5.25)

is defined on @gy. This system of quadratic forms A;, I € r~'(1), is invariant under
identifications W ;,. The cones C; C gy of zero vectors for A; are identified under
Wi, 1,- So these quadratic forms define a canonical quadratic form A on g.

Remark 5.5. The previous construction can be reversed. Namely, let g’ be a Lie
algebra over C with an invariant scalar product, 1 € @ be a central element with
(1,1) = 0. We assume that the linear form f: z = (1,z) on @ is not zero. Denote by
g the quotient algebra g@'/C -1 and by go the subalgebra of g consisting of the kernel
of f. Then we have a scalar product on go invariant under the adjoint action of g,
e.1., the situation at the beginning of Remark 5.4.

We claim that ¢’ is canonically isomorphic to the central extension g constructed
from g.
- The idea is to use nullwvectors £, f{({)=1, of the quadratic form on g’ for the system of
splittings (as vector spaces)

g —ag0C- L
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Remark 5.6. The associative system of Lie algebra isomorphisms W) ;, defined by the
formulas (5.11) is the only associative system of Lie algebra isomorphisms which is
universal. This means that the system is functorial on the category of one-dimensional
cocentral extensions of Lie algebras with invariant scalar products. This is the cat-
egory of cocentral extensions (5.22) having as its morphisms the morphisms of the
diagrams (5.22) which are equal to identity on € and which save invariant scalar prod-
ucts on the components go. (This class of extensions is considered in Remark 5.4.)
The universality of the system Wy, (5.11) follows immediately from the proof of
Proposition 5.1.

Remark 5.7. Let g be a complex Lie algebra endowed with an invariant scalar product
B:g®g—C,

B(z,y) = B(y,z), B(z,[y,2])= B([=z,y],2).
We will construct a map
I: H*(g,0) — H**'(g,C)

for each integer k& > 0. Here we consider g as a g-module via the adjoint action.
First of all, we can associate with B an element B € H'!(g,g¥) (g¥ is the dual
space) as the cohomology class of 1-cochain

B(z)(y) := B(z,y), =zyeaq
The cup product (with coefficients) by B defines a map
UB: H*g,9) = H*"' (g,0@4¢").

The composition of this map with the map H*(g,a®¢") — H*(g,C) induced by
the morphism of g-modules

g®p" - C, Q¢ — ¢()

gives the desired map Ix. On the level of cochains, Iy is given by the formula
Ik(a) (.'.’31, Ty wk-i-l) = Alt (B (:L'la o (:B?a vy $k+1))) .

Note that fo maps the center of g, Z(g) = H(g, @), into the “cocenter” (g/[g, g])" =
H(g, C).

Analogously, /; maps the space of derivations of g modulo interior derivations (=
H'(g,g)) into the space of equivalence classes of one-dimensional central extensions
(= H*(g,C)). The space H'(g,g) can also be viewed as the set of equivalence classes
of “cocentral extensions”

0—g—og—-C—0.
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Let us denote by H).,(g,9) the subspace of H'(g,g) represented by cocycles
a: g — g which are skew-symmetric with respect to B

B(az,y)+ B(z,ay) =0, z,y€ g.

Claim: for a non-degenerate scalar product B the maps Iy and /| w1, are isomor-
phisms.

It follows almost immediately from standard formulas for differentials in C*(g, @),
C*(g,C) and from the invariance of B.

In our concrete situation we see that the central extension of Sig(M, E) corre-
sponds to the homomorphism of degree

Sg(M, E) = C
and the noncommutative residue
res: CS°(M,E) = C
corresponds to the central element
Idg € CS°(M, E).

We can also change our Lie algebras in such a way that the scalar products are non-
degenerate. One way is to replace CS°(M, E) by the Lie algebra of integer orders
PDO-symbols. Another way is to consider the quotient algebra modulo the ideal
CS-dimM-1(pf B,

6. DETERMINANT LIE GROUPS AND DETERMINANT BUNDLES OVER SPACES OF
ELLIPTIC SYMBOLS. CANONICAL DETERMINANTS

Let ElIf (M, E) be the connected component of Id in the group of invertible elliptic
PDOs. The determinant line bundle det Ellj (M, E) is canonically defined over the
space SElly (M, E) of symbols for invertible elliptic operators with their principal
symbols homotopic to Id |¢[* (o € C) in Section 6.2. Its associated C*-bundle (with
a Lie group structure on it) is defined as follows.

The associated fiber bundle det, SEI; (M, E) (with its fiber C*) of nonzero ele-
ments in fibers of p: det Ellj (M, £) — SElj (M, F) is defined as Fp\ Ellg (M, E).
Here, Fp is a subgroup of the group F of invertible operators of the form Id +X,
where K is a smoothing operator. (i.e., an operator with a C*-kernel on M x M),
and Fp is the set of operators from F' such that

detp (Id4+K) =1 (6.1)

(detp, is the Fredholm determinant). The operator K is a trace class operator in
Lo(M, E) and hence the Fredholm determinant in (6.1) is defined.
We have

F\EIX(M, E) = SEIX (M, E). (6.2)
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Hence there is a natural projection
p: det. SEIS (M, E) — SEI} (M, E) (6.3)
with its fiber Fo\F = C*.
Proposition 6.1. The bundle det. SEI; (M, E) has a natural group structure.
Proof. For an arbitrary A € Elij (M, E) we have
IZA = AF,

since for 1 4 Ky € F there exists Ky € F such that (1 + K;)A = A(1 + K2). Indeed,
Ky := A-'K, A is a smoothing operator. We have

detp, (1 + Ky) = detr, (A(L+ K,)A™") = detr (1 + K1), (6.4)

Sol+ K; € Fy for 1 + Ky € Fy. Hence Iy is a normal subgroup in EllY (M, E)
and the quotient on the left in (6.2) has the group structure induced from the group
El(M,E). O

We call this group det. SEIJ (M, E) =: G(M, E) the determinant Lie group.

A fiber-product of the groups Ellg (M, £) and G(M, E) over their common quotient
SElly (M, E) is defined by

DEINS (M, E) := EIJ (M, E)SEII;‘)((M,E)FO\ Elj (M, E). (6.5)
This fiber-product consists of classes of equivalence for pairs

(A, B) € EIX(M, E) x ElIX (M, E)

with equal symbols o(A) = o(B), where the equivalence relation is (A, By) ~
(Ag, Bg) il A; = A and By B;' € Fy. There is a natural projection (A, B) — A,
pr: DEIS (M, E) — Elj (M, E). (6.6)
We have a commutative diagram
1 »y C* »  DEIS (M, E) — Ellg(M,E) —— 1
lpg }, (6.7)
1 , C~ » Fo\ EIX (M, E) —— SEIX(M,E) —— 1

where p;(A, B) = A, p2(A, B) is the class of B in G(M, E) (= F\Ely (M, E) =
det. SEl (M, E)), o is the symbol map. The horizontal lines in this diagram are
group extensions.

Proposition 6.2. The extension DEI; (M, £) of ENI} (M, E) is trivial, i.e., the pull-

back under o of the extension det, SEIJ (M, E) — SEI (M, E) to Ellj (M, E) is
isomorphic to the direct product of groups C* x EllJ (M, E).
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Proof. The fiber py'(A) (in the top line of (6.7)) is the set of B € EllY (M, E) with
o(B) = o(A) up to equivalence relation B ~ By if B € FyB,.

There is a canonical element FyA in py'(A) which is the equivalence class of A,
Thus we define a section of p;. It is obviously a group homomorphism. O

To any A € Ell} (M, F) corresponds a point d1(A) € det. SEIlS (M, E) = G(M, E).
Namely d,(A) is the image of A in Fo\ Ellj (M, E) = G(M, E). The group structure
on det., SEII} (M, E) comes from ElI (M, E). So we have

di(AB) = di(A)d:(B) (6.8)

for A, B € Ell (M, £).
Let A1 = QA, where ) € F. Then we have

di(Ar) = detp (Q) - di (A), (6.9)

where detr,(Q) is defined by the image of @ in Fo\F = C*.
The problem is to describe the Lie group

det. SELX (M, E) =: G(M, E) (6.10)

without the use of Iredholm determinants.

It occurs that the Lie algebra of this group is explicitly isomorphic to the Lie
algebra g. (This Lie algebra is defined by the associative system of identifications
Wit @1y — @qy) of the Lie algebras ;). These Lie algebras are defined by (5.6),
(5.7) and are identified by W, ;, given by Proposition 5.1.) We call g the determinant
Lie algebra.

The fiber bundle (6.3) has a partially defined canonical section. Let a symbol
S e SEllg(M, E) of an order d € R* elliptic operator admit a cut Ly of the spectral
plane. Let A € Ell§(M, E) be an elliptic operator with the symbol § = o(A) and
such that Spec(A)N Ls = 0. Then det(A) is defined by (2.15). An element d;(A)
of the fiber p~!(S) of (6.3), p: G(M, E) — SEIIJ (M, E), is also defined. This fiber
p~1(S) is a principal homogeneous C*-space. Hence the element

do(A) := d;(A) [det(g)(A) € p~'(5) (6.11)
is defined. We suppose from now on that ¢ = 7.
Proposition 6.3. The element do(A) is independent of A € p~(S5).
Proof. Let A, A; € p7'(S). Then A; = QA,, Q € F, di(Az) = detr, (Q) det(r)(A)).

According to Proposition 6.4 helow we have

det(n)(QA;) = detp,(Q)det(n(A1). (6.12)
(We suppose that Spec(QA;) N Ly =0.) O
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Remark 6.1. To define d,(A), we don’t need the order of A to be real. To defined
det(A) for an elliptic PDO A of a nonzero order, we need a holomorphic family
A7 only. (Such a family may exist even if A does not have an admissible cut ol the
spectral plane.) If such a family is given, then the element d,(A)/ det(A) € p~!(a(A))
is defined. (This element depends on a family A™* and not on A only.) We denote
the element d,(A)/ det(A) by do(log A). (Here, the family A= is defined by log A.)

For a zeta-regularized determinant det¢(A) of an elliptic operator A € Ellg (M, E)
to be defined, its complex powers A™* have to be defined. Hence a logarithm log A
of A has to be defined. However for (M, E) such that dim M > 2 and rk £ > 2 there
are not any continuous logarithms for a nonempty open set of the principal symbols
of elliptic operators from Ellj(M, E). Hence for operators A with such principal
symbols their log A and det;(A) are not defined.

Remark 6.2. The principal symbol a, of an elliptic operator A € Ellg(M, E) defines
the element aq|sepr € Aut(r*E), where n: §*M — M is the natural projection. For
rk £ > 3 there is an open nonempty set of the automorphisms as follows. There is a
point ¢ € S*M such that a,(g) has a form

Al
wwli) = () @),

where al(g) acts on an invariant (with respect to a.(¢)) complement to the two-
dimensional A-eigenspace of as(g) in (7"E),. (In general, multiple eigenvalues of
Aut(r*E) appear over a subset of codimension two in S*M, and dim §*M > 3 for
dim M > 2. In general, multiple eigenvalues appear in Jordan blocks.) Then there is
a smooth curve f: (S',pt) - (S*M,q), t — f(t), such that two eigenvalues A over
g = f(to) vary as Ay(2) and Ag(t), where A (2) # Ap(t) at ¢ € ST\ £o and Ay (2)/|A1(1)]
and A2(t)/|X2(t)] are the maps f;: (S, pt) — S, 1= 1,2, of different degrees. Hence
there is no continuous logarithm log ( f*a,) € End(f*7* E) of a,(f(t)) over the circle
of parameters ¢t € S'. (Here, we suppose that f*7*E is a trivial bundle over S'.)
Such a curve f({) can appear in a coordinate neighborhood of a point ¢ € S*M
(and #*F is a trivial bundle over this curve). To see this, it is enough to take A3(¢)
sufficiently close to (A;(2)A;(¢))™". Then the map from (S, pt) to G'L3(C) equal to
Aut (C*) @ A3(t) (where Aut (C?) has the eigenvalues A;(t), A2(2)) is homotopic to
a map to SL3(C). Hence the map S — GL3(C) is homotopic to a trivial map.
Let rk £ = 2 and let the degrees of f;: (S',pt) — S, 7 = 1,2, be the opposite
numbers (i.e., Y deg fi = 0). Then f: (S',pt) — G Ly(C) is homotopic to a trivial
map. Hence for tk £ > 2 and for dim M > 2, all the conditions are satisfied on an
open set in the space of principal elliptic symbols. This open set is nonempty in a
connected component of a trivial symbol (because these conditions can be satisfied
over a smooth closed curve in a coordinate neighborhood in 5™ M, and over this curve
a map f from S' to G'L,(C) is homotopic to a trivial map, n := rke E).
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Remark 6.3. Let us generalize the notion of a spectral cut to the case of operators
of complex orders. Let L € Sio(M, E) be a logarithmic symbol of a nonzero order
z € C*. Let {U;} be a finite cover of M by local coordinate charts (with local
trivializations Ely,). Let V; C U; be a cover of M by (closed) coordinate disks. Let

L= zlog €| + Lo(z,&) + Ly(z,€) + ...

be the components of this logarithmic symbol in U;. Set
a(L) := diamU; U, e40 Im (Spec (Lo(z,£)/2)) . (6.13)

Here, Spec Lg is the spectrum of a square matrix Lg (its size is vk £). The symbol
L can be represented as d, exp(sL)|,=0. Here, exp(sL) =: (exp L)® is a holomorphic
family of classical PDO-symbols. There is an explicit formula for changing of space
coordinates in PDO-symbols on a manifold, [Sh], Theorem 4.2. By this formula we
conclude that a(L), (6.13), is independent of local coordinates on M (for given L
and a smooth structure on M). We are sure that under the condition"!

|z|*a(L)/| Re z| < 2, (6.14)

any invertible elliptic PDO A € El§{(M, E) with its symbol o(A) := exp L has a
log A € ell(M, E). The symbol exp L is defined as a solution s;j;=; in SEHo(M, £) of

the equation
at-‘St = LS;, Sp = Id. (6]5)

Hypothesis. Let A be an invertible elliptic PDO of order z, Rez # 0. Let
o(A)=expL for L € Siou(M, E) (i.c., let o(A) be 3,|s=1 for the solution of (6.15)).
Then log A € ell(M, E) with o(log A) = L exists and is unique up to a change of
an operator log A on a finite-dimensional A-invariant linear subspace K in I'(E),
AKN = K. So a family A® of complez powers for A exisls and is unique up to «
redefinition of il on a finile-dimensional A-invariant subspace K.

To explain the condition (6.14) and the hypothesis on L := o(log A), let us choose
an element B € ell(M, E) with the symbol L, o(B) = L. Then the element exp B €
Ellg(M, E) is defined as b;|i=; for the solution of the equation d;b, = Bb,, by = Id, in
Ello(M, E). Then o(exp B) = o(A) and b, := exp B is invertible. Let A, be a smooth
curve in Ellj(M, £) such that Ag = exp B, A; = A, and ¢ (A,) = o(A) for ¢ € [0,1].
We want to prove that there exists a smooth curve B, in ell(M, E), ord B; = z, such
that exp B, = A,, i.e., to prove that there exists a smooth family of logarithms*?

By:=log A, € ell(M,E), o(B)=L fortel01]

"We suppose that z # 0 and that z ¢ i/R.

42This problem is connected with the problem of using a kind of the Campbell-HausdorfT formula
" outside the domain of its convergence.
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To find B;, we have to prove the existence of a solution ol an ordinary differential
equation

F™ (ad By) o (0A,- A7) = 0By,  Bo:= B. (6.16)

(Here we use Lemma 6.6 and Remark 6.17 below, F=1(t) := t/(expt — 1). We use
also that B = log Ag exists.) Under the condition (6.14), we claim that ad (B;) for
any B, with o (B,;) = L has only a finite number of eigenvalues from 27:Z \ 0, and all
these eigenvalues are of finite (algebraic) multiplicities. So the operator F~! (ad B;) is
defined on an ad By-invariant subspace of a finite codimension. However the equation
(6.16) is nonlinear, and it is difficult to prove the existence of its solution B;.

Suppose we can prove that a smooth family log A; exists. Then we can prove
(Proposition 6.5) that the following equality holds

det (A;) = det (Ao) detp, (4145") . (6.17)

(Here, A; are invertible, o (Ag) = o (4,), A1 A;' € F.) This equality is a generaliza-
tion of (6.12). We don’t suppose in (6.17) that A; and Ag possess spectral cuts. We
suppose only that a smooth in ¢ family (A;)*, 0 < t < 1, of complex powers exists
(i.e., that there is a smooth family of logarithms log A; € ell(M, E) of order z elliptic
PDOs A,).

Remark 6.4. A given elliptic symbol o(A) € ElJ(M, E), = € C*, can have different
logarithmic symbols o{log A). Let z ¢ iR. Then the condition (6.14) can be satisfied
for some o(log A) € Siog( M, E) and unsatisfied for another o(log A). This condition

cannot be formulated as a condition on o(A).

Proposition 6.4. The equality (6.12) holds for an invertible Q@ € {Id+K} =: F
(where K is a smoothing operator, i.e., it has a C* Schwartz kernel on M x M),
and for an invertible A € Ellg(M’,E), d € R*, such that A is sufficiently close to a
positive definite self-adjoint PDO.*

Proof. Let ) = Id +X be an operator from F' (K is a compact operator in Ly( M, E).
Hence its spectrum is discrete in €\ 0 with a unique possible accomulation point at
zero.) Let there be no eigenvalues of ¢ from R_. Then log,) @ is defined by the
integral analogous to (2.30)

i -
log(Q = 5 /Fm log(myA - (Q — A)™" d. (6.18)

Here, (Q — A)™" is the resolvent of the bounded linear operator Q in Ly(M, E). (The
contour ['p » is the same as in (2.30) with # = 7.) The operator log.,) @ =: C is an
operator with a C'™-kernel on M x M.

43Under this condition operators A and QA possess a cut. Lsy of the spectral plane for almost
all @ close to 7 (i.e., except a finite number of #’s).
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For any ¢ > 0 all the eigenvalues A of @ except a finite number of them are in
the spectral cone {A: —e¢ < argA < €}. So, il Spec @ does not contain 0, then in
an arbitrary small conical neighborhood of L,y there is a spectral cut L) such that
Spec QN Lgy = §. For 0 ¢ SpecQ the logarithm logy @ =: C is defined. It is defined
as logz @ by (6.18) with the integration contour I'p ;.

Set @ = exp(tC), 0 < t < 1, A; := (1A, Let ord A € Ry. We have for
Res > dimM/ord A

1

Can(m(s) :=Tr (— Aq (A — A7 dA) . (6.19)

27T I‘(,)

Here, ['(z) is the contour gy from (2.6) with an admissible 0 sufficiently close to
and A7) is defined as in (2.14). For such s we have

1 : -3 -1 -1
ICarm(s) =Tr (2—7; Ty A(i’) (_ (Ac= ) CA (A= A) ) d/\) B

1 —s -2 _
=Tr (E - AR (—CAt (A — A) ) d,\) =

T (L 2GS (o (CAA = NT)) d’\) -

27 1—‘(,})

= sy (;_w [ aac= (u) = s Te (CAT), (620)

since (A,—/\)_'CAt(At—/\)_l and (A,—)\)'ZCA, are trace class operators in LM, F)
whose trace norms are O (|/\|'1) for A € T'(z. So

ACacm(s) = —sTr (CA[(’,-,)) (6.21)

for Res > dim M/ ord A. The term Tr (CA;E’%)) on the right in (6.21) is a meromor-
phic function of s by Proposition 3.4 and Remark 3.4. It is a trace class operator

for all s € C. Hence Tr (CA{’) 15 holomorphic in s € C and it is equal to Tr C for
s=10.

Lemma 6.1. Under the conditions of Proposition 6.4 and for ord A € Ry, the equal-
ity holds

8 (0Cam(s)| ) =—TrC. (6.22)

Here, C :=log(; @ is a trace class operator defined by (6.18).
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Corollary 6.1. Under the conditions of Proposition 6.4, we have

dets)(QA) /det sy (4) = exp ( /0 " Tr(C)) = exp(Tr(C)) =
= detpr(expC) = detp, (@Q). (6.23)

Proposition 6.4 is proved. O
Proof of Lemma 6.1. The factor Tr (CA:(’ﬁ)) on the right in (6.21) is defined for
all s € C. (Indeed, CA;(; is a trace class operator since C' is of trace class and
A7y is a PDO from Elig**4(M, E).) Note that the value of Tr (CA*) at s = 0

is defined and is equal to Tr(C) (since Ai(yls=0 = 1d, A is invertible). Thus the
equality (6.22) follows from (6.21). O

Remark 6.5. The equality (6.12) may be also obtained from the assertions as follows.

1. Note that for A € EllZ(M, E), d € R*, sufficiently close to a positive self-adjoint
PDO, the ratio det(,-r)(QA)/det(i)(A) =: fa(Q) is independent of A € Ell3(M, E) and
of d € R¥. Indeed, let A € ElI®*(M, E) and C € El®(M, E), d; € R*, be two such

operators and let d; # dz. Set B := A~'C € Ell% (M, E). Then according to
(2.17) we have

f48(Q)/det(z)(AB) = det(s)(QAB) = F(QA, B)detz)(QA)det(z)(B) =
= fa(Q)F(QA, B)del(z)(A)det(#(B) =
= fa(Q)F(QA, B)/ (F(A, B) - det(s(AB)) . (6.24)

Here, F'(A, B) and F(QA, B) are defined by (2.17). By (2.20) F(A, B) depends on
symbols o(A), o(B) only, (A B) = F(QA, B). Thus f4(@) = fc(@Q). (For d; = d,
it is enough to take D € EUY(M, E) with d > d, sufﬁciently close to a positive
definite self-adjoint PDO. We have f4(Q) = fp(Q) = fe(@).) Hence f(Q) := fa(Q)
is independent of A. Note that det(z(AQ) = det(s(QA) = f(Q)det(z)(A), since the
operator AQ is adjoint to @A = A~'(AQ)A. The value f(Q) is defined for all ¢ € F
as det(z)(QA)/det(z)(A) and is independent of an admissible cut Lz by Remark 2.1.

2. The function f(Q) is multiplicative, i.e., f(Q1Q2) = f(Q1) f (Q2)-

Indeed, for PDOs A € ElIf' (M, E) and B € ElR(M, E), d; € Ry, sufficiently close

to positive definite self-adjoint PDOs we have

F(@1Q2) det(z)(AB) = det(z) (@1Q2AB) = det(z) (Q:ABQ)) =
= (A, B)dets) (Q2A) detz) (BQy) = f(Q1) f(Q2) detz(AB). (6.25)
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3. Let A € ElI3(M, E), d € Ry, be a positive self-adjoint PDO. Let {¢;}, 7 € Z., be
an orthonormal basis in the L;-completion of T'(M, E) consisting of the eigenvectors
of A. (Such a basis exists according to [Sh], Ch. I, § 8, Theorem 8.2.)

Let @ be an operator with its matrix elements with respect to the basis {e;},

Qei=((A—1)6;+1)e;, A € C*. Then Q € F and we have

log det(s)(QA) = —B:qu i (s)| _, = log A+ log CA»(*)(S)L:o' (6.26)

Hence for this @ we have f(A) = A. Since the K;-functor K;(C) is equal to C*
([Mi]) and since f(@) is multiplicative in @, we have f(Q) = det(Q) for ¢ such that
@ — Id is a finite size invertible square matrix. (In (6.26) @ — 1d is equal to A —1.)

4. For an arbitrary ) € F' and for any s € R, N € Z, there exists a sequence of
Q; = ld +K; € F with finite rank operators K; such that @); tends to ) as 7 — oo as
a sequence of operators from the Sobolev space H*(M, E) into H**N(M, E).

Let N be greater than ord A 4 dim M, ord A € R*. Then det(#(Q:A) tends to
det(r(QA) as 7 tends to infinity. So we have

det(s) (QiA) /det(zy(A) =: £(Q:) = detr, (Q:),
J(Q) := det(s)(QA) /detz)(A) = lim detrr (Q:) = detr(Q):

The convergence det(z) (QiA) — det#(QA) as i — oo follows from the Cauchy
integral formula for 0, ({ga(z) — (g;a(2)).

(6.27)

Proposition 6.5. Lel a smooth family of logarithms log A, € ell(M,E), 0 < ¢
exist for some smooth curve A, of invertible elliptic operators in Ell5(M, E), o
o(A), 0 <t < 1. Then the equality (6.17) holds.

<1,
(4) =

Proof. Set (4,(s):= TR (A[’) for sz # 0. Then by Proposition 3.4 Res,=o (4,(8) =
—resId = 0. Hence by this Proposition (4,(s) is regular at s = 0. For Re(sz) >
dim M, the operators A;* are of trace class. In view of Remark 3.4 we conclude
(analogous to (2.25), (2.26)) that for Re(sz) > dim M the equalities hold

Tr (A7*) = TR (A7") = (a(s),
Oia(s) = —s TR (AAT - A7) = —sTr (AAT" - A7)
Here, AgA[l =: C,, where C} is a trace class operator. Hence
00y (=Ca ()| _, =Tr (CoAT")

The expression on the right in (6.28) for all s are the traces of trace class operators.
Hence this expression is regular for all s, and we can set s = 0 on the right in (6.28),

80y (~Ca(s))] _, = Tr(C)-

(6.28)

=0
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Thus
det (A;) / det (Ao} = exp (Ll Tr (Ct)dt) = detp, (AIAEI) . (6.29)

The formula (6.17) is applicable to this case. O

Definition. Let A be an invertible elliptic PDO of a nonzero complex order
z € C*, A € Ellg(M, E), such that a logarithmic symbol o(log A) € Si (M, £)
exists (i.e., 0(A) = s;|i= for a solution s, of (6.13)). Let B be any element of
ell(M, E) with a(B) = L. Then the element b:= exp B € Ell§(M, £) is defined as a
solution b;|;=y of d,;b; = Bb,, by = Id. The canonical section of G(M, E) over exp L is
defined by

do(B) := dy(exp B)/det(exp B), det(exp B):=exp (—3., TR(exp(-—sB))Lﬂ) , (6.30)

det(exp B) € C*. By Proposition 6.6 below do(B) depends on o(B) =L € S51eg(M, E)

only. Thus we can define dyp(o(log A)) by the expression on the right in (6.30) for any
B € ell(M, E) with o(B) = a(log A).

Remark 6.6. We don’t suppose in the definition of do(o(log A)) that there exist a
log A € ell(M,E). We can take any B € ell(M,E) with ¢(B) = o(logA) in
Si0g(M, £) and define do(o(log A)) as the expression on the right in (6.30).

Remark 6.7. The definition of do(o{log A)) provides us with a canonical prolongation
of the zeta-regularized determinants to a domain where zeta-functions of elliptic oper-
ators do not exist. Namely let A € El5(M, E), z € C*, be an invertible elliptic PDO
such that o(log A) is defined. (However we do not suppose that a log A € ell(M, F)
exists. An element L € Siog(M, E) is a symbol o(log A), if o(A4) is equal to s;fu=
for a solution s; of (6.13).) Then det(A) (corresponding to a given L = o(log A)) is
defined by

det(A) := dy(A)/do(o(log A)). (6.31)

If o(log A) exists but log A does not exist, then det(A) can be canonically defined by
(6.31). However zeta-regularized determinants det.(A) are not defined in this case.
(Indeed, for any det¢(A) to be defined, an appropriate zeta-function (4(s) has to be
defined. But if a log A does not exist, then a family of complex powers A does not
exist.)

The formula (6.31) provides us with a definition of a canonical determinant of
elliptic PDOs in its naturel domain of definition. This determinant is a function
of A € Ellg(M,E), d € C*, and of o(log A). A simple sufficient condition for the
existence of o(log A) is given in Remark 6.9 below. For zero order elliptic PDOs of
the odd class on an odd-dimensional closed manifold, a definition of their canonical
determinant is given in Section 4, Corollary 4.1.
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Some clearing and explanation of the problem of the existence of a log A if o(log A)
exists, is contained in Remark 6.3. Let A be an invertible elliptic PDO such that
o(log A) exists and ord A € C* but such that the condition (6.14) for o(log A) is
not satisfied. Then we are sure that in general log A does not exist (though o(log A)
exists by our supposition).

Note also that if A is an elliptic operator of a real positive order d and if o4(A)
is sufficiently close to a positive definite self-adjoint symbol, the function {4(s) :=
(a,z(s) and log(z) A can be defined by an admissible cut Lz of the spectral plane
(sufficiently close to L(s)), Section 2. In this case, the determinant (6.31) coincides
with det¢(A). Namely in this case,

do(A) = do(o(logzy A)), det(A) = exp (—8y)smola7(5)|s=0) = det(A). (6.32)

Remark 6.8. With respect to the exponential maps in the determinant Lie group
G(M, E) and in the group Elif (M, E) of invertible elliptic PDOs of complex or-
ders the situations are different. Namely these groups are fiber bundles over their
quotients,

pc: G(M,E) — SElif (M, E), (6.33)
pi: ElNJ (M, E) — SEIS (M, E). (6.34)

The fiber of (6.33) is Fo\F = C and the fiber of (6.34) is F' (F and F} are defined at
the beginning of this section, (6.1)). The image of the exponential map in G(M, I),
(6.33), contains the whole fibers of pg. Indeed, if o(log A) € Sig( M, E) exists, then
{exp(c(log A) +c- 1) for c € C} in exp (ﬁ(;)) — G(M,E) is C* - d\(A) = pz' (a(A)).
(If a o(log A) does not exist, then there are no points in pz'(c(A)) belonging to
the image of exp in G(M, £).) But in Ellj (M, E), (6.34), the picture is completely
different. Namely let A € Ellj (M, £), ord A # 0, and let o(A) have a logarithm
o(log A). However let the condition (6.14) be not satisfied for o(log A). Then we
are sure that in general there are no log A with given o(log A). But it is clear that
there is an element B € ell(M, E) with o(B) = o(log A). So exp B € pg'(a(A)) C
ElIY (M, E) and the image of exp in ElI} (M, E) contains some points in pg'(c(A)).
However if the condition (6.14) is not satisfied for o(log A), then the differential of
the map B — exp B for B € ¢ll(M, E), o(B) = o(log A), is not a map onto fibers of

T (pg'(a(4))).

Remark 6.9. There is a rather simple sufficient condition for the existence of o(log A) €
Siog(M, E) for a given elliptic symbol o(A) € EllJ (M, E). It is enough that there is
a smooth field of cuts Lg(z,€) over points (z,£) of a cospherical bundle 5*M such
that L (z, £) is admissible for the principal symbol a4(A)(x, €) (i.e., that o4 A)(z, €)
has no eigenvalues on Lg)) and that there is a smooth function f: 5*M — R such
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that 8(z,£) = f(z,€) modulo 2xZ. Under these conditions, the symbol o (A?) is
defined by the formulas (2.3), (2.6) of Section 2. Here the existence of f(z,£) is used
in the definition of A* in (2.6) (since the branch of A* over (z,£) has to be changed
smoothly in (z,€) € S*M). The condition of the existence of f is equivalent to a
topological condition that the map 6: S*M — S! = R/2rZ is homotopic to a trivial
one.

Proposition 6.6. Let B, B, be elements ofe[[(ﬂ/I,E)}vith the same symbols, o( By) =
o (By), and such that ord B; € C*. Then dy (B,) = do (Bs) (where do (B) ts defined
by (6.30)), t.e.,

dy (exp By) [ det (exp By) = d, (exp Bz) / det (exp Bs) . (6.35)

Proof. Let By, 1 <t < 2, be a smooth curve in ell(M, I} from B; to B, such that
o (B;) =0 (B;) for t € [1,2]. Then d, (exp By) / det (exp B;) =: do (B,) is defined for
t € [1,2]. By the definition of G(M, F) we have

dy (exp B2) = di (exp Byexp(—By)) di (exp By) =
= detp, (exp By exp(—B1)) di (exp By)  (6.36)
(because exp Byexp(—By) € I and the identification Fo\F —— C* is given by the

Fredholm determinant).
By Proposition 6.5 we have

det (exp Bz) = detp, (exp Byexp(—B,)) det (exp By) . (6.37)

(Here, det (exp B;) are defined by (6.30).) So (6.35) follows immediately from (6.36),
(6.37). O

Corollary 6.2. The definition (6.30) of do(B) is correct.

We have a partially defined section S — do(S) € p~!(S) of the fibration (6.3).
Since

d](A)([](B) = dl(AB)
for A and B from Ellj (M, E), we have (using Remark 2.1)

det(s)(AB) /det(s)(A)det(s) (B) - do(o(A)o(B)) = do(o(A))do(a(B)), (6.38)

e, F(A,B)do(AB) = do(A)do(B), where F(A,B) = F(c(A),c(B)) is given by
(2.19). Here we suppose that the principal symbols of A and B are sufficiently close
to positive definite self-adjoint ones and that ord A,ord B € R*.
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Theorem 6.1. The Lie algebra g(M,L) of the Lie group G M, E) = det.SEII(M, E)
is canonically isomorphic to the Lie algebra g defined by the central extension (5.6)
of the Lie algebra g := S)oq( M, E).M

The identification of the Lie algebras g(M, E) and § is done by the identification
of the (local) cocycles for the Lie groups SEll (M, E) and exp (8) defined by partially
defined sections S — do(S) and by X — X (lhis section is given by (6.45) below) of
the C* -fiber bundles G(M, E) — SEllg (M, E) and exp (§) — SEII (M, E).

Remark 6.10. On the Lie algebras level we have a central extension
0= CHa(ME)Bgoo0 (6.39)
of g = Sieg(M, E) and a cocentral extension
0 CS*M,E) g5 C—0.
So we have a natural projection
rp: g(M,E) > C

to a trivial Lie algebra C. The central Lie subalgebra of g(M, E) is C, (6.39). (How-
ever rpi: C — C is the zero map.) On the Lie groups level we have the extension

15 C* - G(M, E) = SEIX (M, E) = 1. (6.40)

(Here, the central subgroup C* appears from a natural construction of the deter-
minant Lie group G(M, E) but not from the exponential map of the Lie algebras
extension (6.39).) The Lie group SEIIS (M, F) is a cocentral extension

1 — SEIS(M, E) — SEIY (M, E) 5 C — 1, (6.41)

where ¢ is the order of elliptic symbols.
Note that we have a similar situation in case of the subgroup SEllg(M, E) in (6.41).
Namely there is a central subgroup C* := C* - Id < SEIj(M, E).

Set GSS(M, E) := SEN3(M, E)/iC*. Then the multiplicative residue res*, (1.10),
defines a homomorphism

res®: GSJ(M,E) = C (6.42)

onto (additive} group C. We have to note that res* was initially introduced on
SENZ (M, E) ([Wo2]). However it defines a homomorphism to C, (1.9), (1.10), and
is equal to zero on the normal subgroup C* - Id — SEIj(M, E). So res* induces

#4Note that g(M, E) is also canonically isomorphic to the Lie algebra g defined by (5.6). Here,
I = o(log A) is the symbol of an operator A € Ellj(M, E) such that log A exists (i.e., some root
AY¥ of A, k € Z, possesses a cut L(#)). The canonical identifications Wi, : 8¢1,) = 8y, of Lie
algebras g(;;) define the Lie algebra @. The associative system Wj,;, of isomorphisms is given by
Proposition 5.1, (5.11).
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a homomorphism (6.42). We have to underline that res*(a) (for « € SEIJ(M, E))
depends on a only and not on a smooth curve a(t) from Id = a(0) to @ = ¢(1) used
in (1.10). This assertion is equivalent to the equality

resP =0 (6.43)

for any zero order PDO-projector P € CLY(M,E), P* = P. (Here, ves is the
noncommutative residue.) The equality (6.43) is equivalent to the independence of
¢4(0) (for invertible A € ElI&(M, E), d # 0, such that complex powers A® exist) of a
holomorphic family A%, i.e., to the fact that (4(0) depends on A only. (The equality
(6.43) is proved in [Wol}.)

However, “difficult” parts in the diagrams {(6.40), (6.41)}, and (6.42) are different.
In (6.40) it is not easy to see from the definition of g that the central subgroup of
G(M, E) is C*. (It is proved with the help of the direct definition of G(M, E) and
of Theorem 6.1.) The central subgroup of SEIg(M, E) is C* - Id (and it is an easy
part). But the existence of the homomorphism (6.42) is equivalent to the equalities
(6.43) for all zero order PDO-projectors P. This fact is equivalent to the existence
of #-invariants (and it is not so clear).

Proof of Theorem 6.1. Let X € SENY(M, E), where d = d(X) € R¥. Let log(qy X
exist. Set Ix := log(,) X/d(X). Then = Iy defines a central extension gy (5.6) of
the Lie algebra g := .%'108(111, E). We have the splitting of the linear space

gy = Seg(M,E)@ C- 1. (6.44)

(Here, 1 is the generator of the kernel C in (5.6). This splitting is defined by (5.7).)
Hence the element | € Sjg(M, ) defines an element [ € gy, 1 =14+0-1.
Set X be an element

X = exp ((I(X)ix) = exp (l@’) , (6.45)

where log (myA 15 the inclusion of log(,))\ € Sig(M, E) in gg,) with respect to the

splitting (6.44). From now on by logz\ we denote the image of log)\ in @ under the
identification®® Wi, : gy — @. The element X in (6.45) is defined as the solution

X := X,|1=; of the equation in G(M, E)

OX, = logmX - Xi, Xo:=1d. (6.46)

*5The identification W;: gy —— § is defined by the identifications Wy; of gy with gq;).
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For an arbitrary A € Sig(M, I) set I1;, (A) be the inclusion of A into gg,) with

respect to the splitting (6.44). Let Y € SEllg(Y)(ﬂd, E), d(Y) € R*, and let Iy :=
log Y € g be defined.*®

Remark 6.11. For any element X € SEllg(M,E') and for any its logarithm dl, [ €
Swg(M, ), (I} = 1, the element Xy := expy, (dIlil) in exp(g) is defined (I1;{ is
considered as an element of g).

Lemma 6.2. We have
W;X;,.I'IIX(A) = H[Y(A) + (A — (7(14)/2) (IA + [y) R ly — ly)rea -1, (647)
[HIX(A)s fo(B)] = I, ([A, B]) + K1, (A, B). (6.48)

Here, r(A) (defined by (5.2)) is the order of a PDO-symbol expA for A€ S1o4(M, ) =:
a and Ki(a,b) is the 2-cocycle of g = CSY(M, E) defined by (5.24) (Il € v7*(1) and
a,beg).

(The equality (6.47) means that under the identifications Wy, : gu,y — Q)

defined by Proposition 5.1 the elements I1;, (A) € gq,) are mapped lo the elements
HI-;(A) + (A - (T‘(A)/‘.Z) (11 + lg) ,12 — [1) | Of 6(12).)

Corollary 6.3. Under notations of Lemma 6.2, for A € Siog( M, E) with é6r(A) =0
we have

Wi, Tk (A)) = Wi, (TTx(8A)) — (A — r(A)ly, 6lx),., - L. (6.49)

Proof of Lemma 6.2. 1. For A := rly 4 ag € g, r := 7(A), and for II;, A :=
rly +ao+0-1€ gy, b :=1Ix, lp =1y, we have

I"VhIQHh(A) = Tlg + (L’O + {(11 — lg,ao)res +r (lg - 11, lz - ll)res /2} : 1,
where rly + ag = rl; + @, i.e.,

Wi (A) = M (A) = {(L — I, a0),0 + 7 (2 — Ll — 1), /2} - 1. (6.50)
The term on the right in (6.50) can be transformed as follows

(11 - [2,(50)":5 +r (12 - 11,12 - ll)rcs /2 =
= (A - 1‘[1,11 — lz)res —+ T'(lg bl 11,[2 —_ ll)rcs/2 = (A - (7'/2)(11 + 12) ,ll — l2)res'

The formula (6.47) is proved.

“8Under the latter condition, Y = Y{|;=; is the solution of the equation 8;¥ =log¥ -Y;, Yy := Id.
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2. For A=ril+ag, r:=r(A), a0 € go, | :=Ix, My (A) :i=rl+ag+0-1 € g,
and for B = ral + by, 79 := 7(B), B € go, we have

M, (A), L, (B)] :={rl4+a+0-1,ral + b+ 0 - 15, =
= [rl + a0, r2l + bo], + Ki(ao, bo) - 1 = [y ([A, B]) + K (ao,b0) - 1 € gqy-  (6.51)
The formula (6.48) is proved. O
Proposition 6.7. Let X € ElZ (M, E), Y € Elli*(M, E), and XY € ENS+2(M, E)

possess a cut L(,T) of the spectral plane. Let dy, dy, and dy + d, be from R*. Then the
elements X Y, and XY are defined and the following equality holds

Xy (XY)" = F(a,b) € C*. (6.52)
Here, a := o(X), b:=o(Y), and F(a,b) := F(X,Y) is defined by (2.19).
We have the fixed central extension .

1 = C* - exp(p) ~ SEll; (M, E) — 1. (6.53)

Since X € exp (@), Y and XY are the elements of the same group exp (§), and since

P (X ) (~) XY, the expression on the left in (6.52) is an element of the
kernel C* of (6.5

Remark 6.12. Proposition 6.7 claims that a partially defined cocycle
[X,Y) =XV (X7)”

coincides with the cocycle F(o(X),o(Y)) defined by (2.19). The cocycle f(X,Y) is
defined (in particular) for X and Y sufficiently close to symbols of positive self-adjoint
elliptic PDOs of positive real orders.

Remark 6.13. We use a non-standard and not completely rigorous notion of a “par-
tially defined 2-cocycle” of a Lie group G (in our setting a subgroup of SEll; (M, E)
consisting of real order symbols). We have in mind a function defined on an open
set of pairs of elements of G obeying the cocycle condition on a nonempty open set
of triples of group elements. The most close known to us notion is the cohomology
of semigroups or monoids (see [McL], Chapter X.5). Indeed, in formulas for one of
the standard cochain complexes computing the group cohomology one does not use
inversion of elements of G. Namely

(dc) (glv v agn+1) = Z(_l)ic(gla s Gifig1, - ')gn-i-l) -
i+l

Here ¢ denotes n-cochain of G 3 ¢; with the values in any trivial G-module, dc is the
coboundary of c.
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It is known in topology that under some mild conditions, the cohomology of a
semigroup coincides with the cohomology of the universal group generalized by this
semigroup (see [A3], § 3.2, pp. 92-93). Formulas (6.122)-(6.128) are applicable in a
more general situation than ours. These formulas show explicitly how to pass from
partially defined 2-cocycles to germs at identity of cohomologous group cocycles.
Moreover, arguments of Section 6.4 show that we have a canonical associative system
of isomorphisms between corresponding central extensions of local Lie groups. Hence
we obtain a canonical central extension of the local Lie group and of the corresponding
Lie algebra. We will not develop a general formalism of partially defined cocycles
here because in our situation we have made everything explicitly.

Proof of Proposition 6.7. The following lemmas hold.

Lemma 6.3. Let a logarithm log X € g of X € Elg(M, E), o # 0, exist. Set
l:=log X/a. Then for §X with éord X =0 we have

X5 68X = Mgy (X716X). (6.54)

Here, X=16X € g 1= Sig(M, E) and X(T)]&ir(,) € g (g is the Lie algebra oblained by
the identifications Wy, of the Lie algebras gy, 1 € r71(1)).

Lemma 6.4. Set f(X,Y) := XY (ﬁ)_l € C*. In the domain of definition for
F(X,Y) the equality holds for 6 X, §Y such that §ord X =0 =46ordY

(6x0) I g yy = (X78X L = by) 4 (YTIXT6X Yol = xy) - (655)

res res

Lemma 6.5. The expression on the right in (6.55) is equal to

(X78X,1x = tyx) = bxf - 7|

res (xX.yy (656)

Remark 6.14. According to (2.18), (2.19) for §X with §ord X = 0 we have
Sxlog F(X,Y) = (6X - X7 Ix —lxy) = (X7T"6X,1x —lyx) . (6.57)

Indeed, by conjugation with X we obtain according to (2.16) that
(6X - X1y —lgy) = (X7'6X,1x — lyx)

res Tes

Thus for such 6 X we have

bxlog F(X,Y) = bx f(X,Y). (6.58)
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Remark 6.15. For X = exp(ril), Y = exp(rol) (with { € v~}(1) C g, r; € R¥) we
have

F(X,Y) = f(X,Y) =0.

Hence Proposition 6.7 follows from Lemmas 6.3, 6.4, 6.5. O

Now we can finish the proof of Theorem 6.1.

The (local) section S — dg(S) of the C*-fiber bundle G(M, E) — SEIIJ (M, E)
is also defined by the cocycle F(A, B) = f(A, B). Thus we conclude that the real
subalgebras of real codimension 1 of our Lie algebras, consisting of elements of real
orders, are canonically isomorphic (by Remark 6.13 we have an isomorphism of lo-
cal Lie groups). Moreover, this isomorphism is complex linear on the subalgebras
consisting of elements of zero order. Hence the complexification of our isomorphism
along one real direction (of ord) gives us a canonical isomorphism of complex Lie
algebras. Theorem 6.1 is proved. O '

Remark 6.16. The local section X of the C*-fiber bundle exp (§) — SEIZ (M, E) is
the exponential of the cone C' C g of the null vectors for the invariant quadratic form
on g defined by Proposition 5.2. Indeed, log X = ord X - Ix (for ord X' # 0) is an
element of the cone Cp, C gy of the null vectors for the invariant quadratic form
Ar on gg,y (defined by (5.25)). These cones C; are canonically identified with the
cone C' C g (under the system of isomorphisms W, i,, Proposition 5.1).

In the proof of Theorem 6.1 we show that elements do(c(A)) € G(M, E) for elliptic
symbols o(A) with « := ord A € R* (and such that the principal symbols o,(A) are
sufficiently close to positive definite self-adjoint ones) belong to the exponential of
the canonical cone C C g. i

We define also the elements dp{o(log A)) for elliptic A with ord A € C* such
that o(log A) exists. It follows from the definition of do(c(log A)), (6.32), that such
elements form the exponential image of a C*-cone in the Lie algebra g(M, £) of
G(M, E), (M, E) is canonically identified with @ by Theorem 6.1.

Thus there are two C*-cones in g whose intersections with the hyperplane of log-
arithmic symbols of real orders coincide (in a neighborhood of 0 € g). So these two
cones coincide.

Proof of Lemma 6.3. Let X, be a solution in SEll; (M, £) of an ordinary diflerential
equation

BtXt = O.’l,\'A,t, XO =1d. (659)

(Under the conditions of Lemma 6.3, we have X = X,. The solution of (6.59) exists
for0<t<1.)
Let X; be a solution in G(M, £) (6.10) of the equation

8.X, =Ty (aly) - X,, Xo:=1d. (6.60)
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By Lemma 6.6 below, we have

1
§X . X' = f Ad(X0) - 6x (alx) dt,
1]

o _— (6.61)
5xX - X! = / Ad (X)) - 8x (ollxly) dt.
0
We have also
O (Ad (X)) - mo) = ad (aly) - my (6.62)
for mo € @ := Sieg(M, E), my := Ad (X)) - mo.
Under the conditions of this lemma, an element mgo := 6y (aly) belongs to
CS'(M,E) =: go € Siog(M, E) =: g and we have
Hx@tmt = 3,HX771¢ = ad (CYH,\'[X) . met. (663)
To prove (6.63), note that
Hx&mt = HX (EL(I (Q/Z'J\') . T?Ig) = ad (anxlx) . l'[,\'mg. (6.64)

The latter equality follows from (5.7) and from (5.5) since for an arbitrary C € go
we have

[]_[,\'lel,\’, HXC]E(JX) = Hl\' [C_Yl',\', C]g + I\,lx (IJ\’, ?'I?.g) . 1, (665)
and since K;(I,C) = 0 for C € go. Hence we have two dinamical systems

O oC =ad(alx)-C ongy3C,
O ix)Cr = ad (Ilx (elx)) - C1 on gy 3 Ch,

such that they are in accordance with a linear map [y : go — @py), i.e., we have
H,\-at‘UC = I—[,\' (ad (Q/l,\') - C) = ad(H,\- (Of,\' l}\)) . H,\'C = 8,|(13)HXC. (6.67)
The equality

(6.66)

Fd

ITym, = Ad (At) M xmg =: my (6.68)

follows from (6.67) and (6.63) since the equation (6.60) has a unique solution. From
(6.68) we have

m: € lxgo, (6.69)

since my 1= Ad(X};) - mg € go for mp € go.
It follows from (6.61), (6.63), (6.68) that

1 1 1 — .
My (6X - X~1) =1IIx 0 m,dt:/ﬂ H,\'mtdtzjo dt = 6X - X1, (6.70)
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To prove the equality (6.54), note that
r=1 ro_ r—1 - r—-1
* 6i_Ad(i\, )0(5‘1 o ) (6.71)
X~16X = Ad(X~) o (6X - X71),

X1 = X|4=— for the solution X, of (6.59), X-1 = :\7¢|¢=_1 for X, from (6.60).
We see from (6.70) and from (6.60) that

Mx (6X - X)) =6X X7, 6X-X7'e g,
- (6.72)
Mym; = Ad (Xt) My me
for mg € go, my 1= Ad (X) - mg. Hence we obtain
X1 6X = Ad (X)) (85 - X7') = Ad (Xee=ms) o Ty (6X - X71) =
=Tlx Ad (Xleemr) - Ty (6X - X71) =TTy (X76X) . (6.73)

‘The latter equality in (6.73) follows from (6.65), (6.64), and from (6.59) since Ad (X;)-
(X~'6X) € go. The lemma is proved. O

Lemma 6.6. Let A be a symbol from SENG(M, E) (o € C) or let A be an element
of the group G(M,E) (defined by (6.10)). Let there exist a logarithm L4 of A,
A:=exp(L4)."" Let A do not change an order of A. (For A € G(M, E) the order
of p(A) € SElly (M, E) is defined, p: G(M, E) — SEl; (M, E).) Then we have

§A- AV = F(ad (L)) 0 6La, (6.74)

where

F(ad(La)):= [ dtAd(A), Ai:=exp(tLa). (6.75)

Proof. According to Duhamel principle we have for A := exp (L4)
1
6A -:/ At(SLAAl_tdt.
0
Hence we have

1
§A- A1 :/ Ad(A) - 6L4. (6.76)
1]

7L is an element of g := Siog(M, E) for A € SEI (M, E) or of § for A € G(M, E). We have
A= Attt:ls where agA: = L:A . A;, Ao = Id
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Remark 6.17. According to the equality

/01 dtexp(tz) = (expz — 1)/2

the expression F'(ad (£4)) in (6.75) has formal properties of (expz — 1)/z|,zaa(c,,)-
Proof of Lemma 6.4. We have

6x [t 1=X"(8xf- )X

since f € C* -1 € Kerp (p is from (6.53)) and since 8y f - f~! is an element of the
kernel C in the central extension (5.6). Hence

7

Sxf- 7 1=X"16X - ¥ (XV) 7 8x (XV) V. (6.77)
According to Lemma 6.3 we have
X76X =Ty (X~16X),
(XV) 7 5x (XY) = Tyy ((XY)6x(XY)) = (6.78)
=Tixy (Ad (Y1) o (X~'6X))
because 6x ord(XY) = 0.
By Lemma 6.2 we have

My (X716X) = Tly (X7'6X) + (X7'6X, 1y — )

res

Mxy (XY)"'6(XY)) =Ty (Ad (Y1) o (X16X)) + (6.79)
+(Ad (V") o (X716X) ,ixy — Iy)

res

since X™16X € go. Hence we get
Sxfo 1= {1y (x76x) — ¥y (Ad (Y1) o (X716X)) 7'} +
+ (X716X, 1y — zy)m +(Ad(Y) o (X7'6X) 1y — Ixy) . (6.80)

res

The assertion of the lemma follows from (6.80) and from Lemma 6.7 below. The
latter lemma claims that the first term on the right in (6.80) is equal to zero. O

Lemma 6.7. Let Y be an element from SEl; (M, E) of nonzero order o and such
that logY = aly is defined. Then the linear operator Illy : go — @q,) commules with

Ad(Y) and with Ad ()7') 18 Namely we have
Ad (V) ollyZ = My (Ad(Y) 0 2) (6.81)

8To remind, ¥ := exp (Ily (aly)) lies in G(M, E).
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Jor Z € go (= Sia(M, ).
Proof. Let Y; be a solution of an ordinary differential equation in SEI} (M, E)
aY: = aly - Y, Yo :=1d.
Let Y, be a solution in G(A, E) of
oY, =y (aly)-¥,,  Yo:=1d.
Then we have ¥ = ?1, Y =Y, and
Ad (Y) Ny Z =Ty (Ad(Y)) 0 Z)

according to (6.68). The lemma is proved. O
Proof of Lemma 6.5. We have from (2.16) that

(Ad (Y1) o (X7'6X) by — Ixy) = (X7'6X,Ad(Y) o (Iy = Ixy)) =

TES -3}

= (X7'6X,ly —lyx) . (6.82)

Hence, from (6.55) and from (6.82) we see that
(6xf£7)] o py = (X716X,0x —Ivx) .

The lemma is proved. O

’(x,y)

Remark 6.18. The holomorphic structure on the determinant C*-bundle
p: G(M, F) — SElJ (M, E) (6.83)

is defined. The reason is that all Lie algebras in our situation have natural complex
structures and the isomorphism from Theorem 6.1 is defined over C.

Proposition 6.8. Let C be a positive definite elliptic PDO of order m > 0, C =
exp(mJ), J € ell(M, ), J := log(z C. Then the splitting (6.44) of gy with [ := o(J)

By =860C-1 (6.84)
is defined by a homomorphism f;: CLY(M,E) — C,
fi(L) := TR(Lexp(—sJ) —reso(L)/s)]|s=o0.
Namely for a curve exp(tL) € ENJ(M, E) we have
O log (dl(exp(tL))/exp (tTIU(J)a(L))) |t:0 = fi(L). (6.85)

Here, dy(exp(tL)) is the image of exp(tL) in G(M,E) and exp (tl]a(J)O'(L)) is a
solution in G(M, I2) of the equation

dyuy = (na(_])O'(L)) uy,  ug = 1d,
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I, yo(L) is the inclusion of o(L) C go C @ into Qo)) with respect to the splitting
(6.84).

Proof. The formula (6.85) follows from Proposition 7.1, (7.7), (7.8) below. O

6.1. Topological properties of determinant Lie groups as C*-bundles over
elliptic symbols. For the sake of simplicity the following lemma is written in the
case of a trivial C-vector bundle £ := 1y with N large enough.

Lemima 6.8. For a trivial vector bundle 1n =: E, where N is large enough, over an
orientable closed manifold M, dim M > 0, the C* -extension G(M, E) of SEIS (M, F)
is nontrivial,

Namely the Chern character of the associated linear bundle over SElNJ (M, E) is

nonirivial in H™ (SEllg (A/I,E),Q) .

Proof. 1. The principal symbols of a family of elliptic operators from Ell; (M, 1x)
(parametrized by a map of a smooth manifold A, ¢: A — EIJ (M,15)) define a
smooth map

Gogmp: A X S*M — U(N). (6.86)

If N is large enough, then the space of such maps is homotopy equivalent to the
space of maps from A into U(oo). The K-functor K~'(A x S*M) is defined as
the set of homotopy classes [A x S*M;U(co)] ([AH], 1.3). The Chern character
ch: K=Y (A x §*M) — H°*(A x §*M,Q) defines an isomorphism of K~' ® Q with
He% ([AH], 2.4).

2. The space Ellg (M, 1x) is a bundle over SEll§ (M,1y) with a contractable fiber
F = {ld +K} = #~'(1d), where K are operators with C*®-smooth kernels on M x M
(i.e., smoothing operators). The determinant of the index bundle over Ellp (M, 1n)
is isomorphic*? to the pull-back #*L to Ellg (M, 15) of the associated with G (M, 1x)
linear bundle L over SEll; (M, 15). The Chern character of 7* L restricted to a family
A of elliptic operators is given by the Atiyah-Singer index theorem for families®

ch (5, mpL) = ch(¢n"L) = /S ., T(87M) chus). (6.87)
Here, T(S*M) is the Todd class for T'(S*M) @ C, T corresponds to

H ( _yl . yl )
1—exp(y:) 1—exp(—y))’

49This isomorphism of linear bundles is not canonical. The existence of such an isomorphism is
proved in Section 6.2.

50The orientation of S*M differs from the orientation in [AS1], [AS2) and coincides with its
orientation in [P].
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where y; are basic characters of maximal torus of O(n) and the Pontrjagin classes
p;(TX) are the elementary symmetric functions o; of {y?}, 7 =1 —p; /12 +....
The u4 in (6.87) is an element of K ~'(A x S*M) corresponding to peyms (6.86). Its
Chern character ch(us) € H°*(A x §*M) corresponds to an element ch (6u,) €
H(A X S*"M, A x 5*M) in the exact sequence of the pair (B*M, S*M) ([AH], 1.10).
Here, B*M is the bundle of unit balls in 7*M and §: K~'(A x S*M) — K°(A x
B*M, A x §*M) is the natural homomorphism. By the Bott periodicity,

K Y AxSM)=K'(Ax S M).

3. The family ¢: A — Ellg (M, Lx) is a smooth map to the connected component
of the operators with their principal symbols homotopic to a trivial ones. Hence for
any a € A the map @gyms(a): @ x S*M — U(N) is homotopic to the map to a point
in U(N). Up to the multiplication of the element u(a) := [pyyms(a)] € K'(S*M) by
a number n € Z, the latter condition is equivalent to the equality ch(u(a)) = 0 in
Ho%(5* M, Q). (Here, we suppose that N is large enough. The torsion subgroup of
K'(S°M) is a finite group.)

Let A be an orientable closed even-dimensional manifold. Then there is a smooth
map Qaymp: A X S*M — U(N) (where N is large enough) such that

ch (@syms ) [A x S"M] # 0,

ch (@syms(a)) = 0. (6.88)

4. Let A = ¥ be an orientable compact surface. Let a smooth map p,,ms satisfy
(6.88). Then the integer multiple of ©syms

N Peymb: o X M — U(nN),

n € Z. 1s homotopic to a trivial one under the restriction to ¢ x S*M for any a € X.
So there is a smooth family ¢, of elliptic PDOs with their principal symbol map
N Qaymb, w11 5 — Elly (M, 1,n5). By (6.87) and (6.88) we have

ch(Ind ) [E] = ch(pin"L) [E] =

/S TS5 M) ch (ug) = ch (n@ums) [57M x ] #0.
*AMxEI
Then ch(L) is nontrivial in H°% (SEII(’)‘ (M, 1,n), Q) because
ch(L)[¢1Z] = ch(Ind py) [£] # 0.

The lemma is proved. O
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6.2. Determinant bundles over spaces of elliptic operators and of elliptic
symbols. The line bundle over SEIl} (M, E) associated with the determinant Lie
group G(M, E) can be defined as follows. The determinant line bundle over the group
ElJ (M, E) of invertible elliptic operators is canonically trivialized (as Ker A = 0 =
Coker A for A € ElIJ (M, E)). Any two operators Ay, A; € ElIJ (M, E) with the same
symbols differ by myltiplying by B = A;A7' € {Id4+K}, K are smoothing. The
identification of fibers C = L, (A1) 3 1 and L, (A2) 3 1 over A; and Aj is defined
as

€ € Liny (A1) — €/detp,(B) € Liny, (A2). (6.89)

Here, detp.(B) is the Fredholm determinant. These identifications define the line
bundle L over SEll; (M, £) canonically isomorphic to the linear bundle associated
with the principal C*-bundle G(M, E) over SEII} (M, E). The holomorphic structure
on the C*-bundle G(M, E) over SEIlj (M, E) (defined in Remark 6.18) gives us the
holomorphic structure on the associated line bundle L.

The group G(M, E) is the group of nonzero elements of L. The image d;(A) of
A € Ellg (M, E) in Fo\ Ell§ (M, E) = G(M, E) (satisfying the multiplicative property
(6.8)) corresponds to the unit 14 in C = L, (A). The definition (6.89) is compatible
with (6.8) because for £ € C* we have

€ 1a, =E-d(A) =€ d (A7) - d(Ay) = €/detp, (A2A7Y) 14,
Here we use for A; A7’ =: B the equality
detp,(B)=di(B) € F)\F =C* € F

(where F' are invertible operators of the form Id X, K is smoothing).

The determinant bundle detgy over the space of elliptic PDOs has the determinant
line det(Coker A)®(det(Ker A))™! = detgn(A) as its fiber over a point A € EIl{M, E).
Here, det(V) := A™®*V for a finite-dimensional vector space V over C and L' is the
dual space to a one-dimensional C-linear space L. (An elliptic PDO A € Ell*(M, E)
of any order ¢ defines the Fredholm operator between Sobolev spaces H, (M, E)
and H(,_m)(M, E), where m := Regq, and Ker A C C®(M, I7) is independent of s,
[H62], Theorem 19.2.1 and Theorem 18.1.13 also. The space Coker A is antidual to
Ker A* ¢ C(M, E* ® ), where E* is antidual to E and € is the line bundle of
densities on M.)

Let detOEu be the restirction of detgy to the connected component Ello(M, E) of 1d
of the space of elliptic PDOs. The natural fibration

7 Elly(M, E) — SEIZ (M, E) (6.90)

over the space of symbols of invertible elliptic PDOs has contractible fibers (Id +X)- A
(where A is an invertible elliptic PDO with a given symbol and K are smoothing
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operators, i.e., their Schwartz kernels are C* on M x M). Hence there are global
sections of this fibration.

Proposition 6.9. The linear bundle detgy over Elly(M, E) is isomorphic to n*L,
where L is the linear bundle over SEIIS (M, E) associated with the determinant Lie
group (and w 1s the projection (6.90)). This identificalion is not canonical. Any
global section s: SEllg (M, E) — Ello(M, E) defines a canonical identification of line
bundles s* dety, and L over SEIX (M, E).

This assertion is proved with the help of the following lemma.

Lemma 6.9. There is an associative system @, a,: detgpn (A1) — detgn (A2) of

canonical linear identifications for A; from the same fiber of . If A, and A, are
invertible elliptic PDOs, then detgy (A;) is canonically C and @4, a, is the multipli-
cation by the Fredholm determinant (detp,(B))™", B := Ay AT,

Proof. These identifications are defined as follows. Let Ag, A1, Az be elliptic PDOs
from the same fiber of = and let Ag be invertible. There are smoothing operators S,
3 =1,2, such that

A; = (Id +S;) Ao.

The determinant line L;n,(Ag) is canonically C. The PDO Aq defines (in a canon-
ical way) the identification of Ly, (Ao) with (det(£)) ® (det(Fo))™", where Ey C
['(M, E) is a finite-dimensional space of smooth sections, E, := AgFEp. Let Ey,
E; be finite-dimensional subspaces of I'(M, E) such that Ker A; C Ey and the im-
age of the natural map from E, into Coker A, is Coker A,. Then the determinant

line detgn (A1) 1s canonically isomorphic (by the action of the operator A;) with
. N
det (El) ® (det (Eo)) . In particular, it is canonically identified (by A;) with

det (Aofio) ® (det (o)™, Eo o= Eo (A1, Ao) = A3'K_1 (S1),  (6.91)

where K_; (51) is the (algebraic) eigenspace for Sy corresponding to S;-eigenvalue
(=1) (i.e., dimg K\_y is the algebraic multiplicity of (=1) for S;). The operator S is
a compact one in Ly(M, E). Hence dim Ey (A, Ag) = dim K_; (51) < oo. We have
the composition of canonical isomorphisms (for Ey 1= FEy(Ay, Ag)) defined by the
operators Ag and A,

Liny (A0) 22 det (Aofo) ® (det (£0)) ™ <2 detn (A1), (6.92)

The truncated Fredholm determinant det, (Id+5,) is defined as the Fredholm
determinant of the operator (Id +5,) restricted to the invariant subspace for (Id +.57)
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complementary to K_; (S1) in Ly(M, E). The identification of the lines
oA ¢ Liny (Ag) — detgy (A1)

is the composition of the identifications (6.92) multiplied by (det’, (Id +5;))™". (Note
that if Ay is invertible, then Ey = 0, det (£y) is canonically C, and detg, (Id +5,) =

det (AIAEI). So this definition is compatible with (6.89).) The identification of the
lines

VA, Ay - detpn (A ) — detgy (Ag) (6.93)

is defined as wa,,4, - (90,4, )_l

Lemma 6.10. The isomorphism (6.93) is independent of an invertible PDO Aq from
the same fiber.

Proof. Indeed, let A; be another invertible PDO with the same symbol as o (Ap).
Then we have
Ao, A1 = PAL AP AG,ALs (6.94)

where @4, 4 is the identification (6.89) of the lines Lin, (Ao) = detgn (Ao) and
detgy (AE])

To prove (6.94), we use the interpretation of the isomorphism ¢4, 4, as follows.
We have

© a0y (Lag) = detip, (A1A7Y) - (Aoeo A e5") (6.95)

where g € det (Eo), eo # 0, and Agep is the image of eg in det (E‘l) = det (AOEO).
(Here, £; are the same as in (6.91). The determinant line bundle det (El) ®
(det (ﬁ'g))_l is identified with detgy (A1) by ¥ (A;).) Let £, be a finite-dimensional

invariant subspace corresponding to a,lgelna,m eigenspaces for A, AO with eigenvalues

A € Spec (A Ay ) A\l < C,C € Ry So £y C Ey. Set Eo := A;'E;. Then we have

’ _ -1
Pao = (detp, (1= pe) 4145")) " @aga, (Ea), (6.96)
where @a,.4, (£,) is the composition of identifications (defined by Ay and A;)
Lin (A0) 22222 det (Ey) @ det (By') 22 deotgy (4), (6.97)

and pg, is the spectral projection of Ly(M, E) on the algebraic eigenspaces for
A1A7" = 1d +5; with eigenvalues A, |\} < C. The determinant lines det([,) :=
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(det (£1)) ® (det (Fo))™" and det(,) := (det (1)) ® (det (Eo))" in (6.97) and in
(6.91) are identified by Ag,

i, 5, (Ao) : det (E,) — det(E,). (6.98)

The elements in these determinant lines corresponding to the same element a €
det (A1), e # 0, are connected by the identification (6.98). (This assertion is compat-
ible with the ratio of Fredholm determinant factors in the expressions for 4, 4, with
the help of ¥4, 4,(F) and 4, 4, (f::].)) Hence @a,,4, (14,) can be interpreted as
an element of the system of determinant lines det(£,) identified by ¥, g, (Ag) with

det (E,) This assertion means that formally ¢4, 4, (14,) has the properties of the

expression Age A e”!, where e is a nonzero “volume element” from “det (Lo(M, E))”

and Ape is the image of e in “det (H(..m)(M, E'))”, m := Re(ord Ag). Here, e is de-
fined by a basis (e1,...,€y,...) from a class of admissible basises in Lo(M, E). This
class is defined as an orbit of a given orthonormal bhasis by the action on it of the
group F of invertible operators of the form Id +X, K are smoothing.

Let e be the volume element defined by an admissible basis (e;,...,e,,...) and
let f be the volume element defined by (fi,..., fa,...) = B(e1,...,€n,...), BE€ F.
Then we have

f=detr(B)-e,  Af =detp,(B)- Ae. (6.99)

(This interpretation has some analogy with the construction of the determinant bun-
dle over the Grassmanian of a Hilbert space in {SW], § 3.)

Let Ao be an invertible PDO with the same symbol as o (Ap). Hence we have by
(6.95), (6.99)

P aL.A (l%) = Age A e = det (ABAJI) (Aoe A e_l) = det (ABAE‘) Cag. A (Lag).

So the equality (6.93) is proved since

P Ao, Al (le) = (detp,- (AE,AEI))‘I . IA{J'

The lemma is proved. [J

Proof of Proposition 6.9. Let s be a section of the fibration (6.90), 7s = Id on
SEIZ (M, E). Then the line bundle s* detgy over SEll; (M, £} is isomorphic to the
line bundle L associated with the C*-fibration of the determinant Lie group over
SEl; (M, E). Namely the associative system ¢4, 4, identifies linearly the fibers of
detgy for Ay, A; from any fiber of 7 and defines a line bundle L; over SEll; (M, E)
isomorphic to L. The linear bundle detgy is isomorphic to 7*L; = 7™ L since 7 is a
fibration with constructible fibers. We have

L=s"1"L =s"7"L = s"det}y,
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The canonical identification L = L, follows immediately from the coincidence of the
identifications (6.89) with ¢4, 4, for invertible A;, A; and from the associativity of
¥A, .4, iven by Lemma 6.9. O

Remark 6.19. (A holomorphic structure on detgy,) A natural holomorphic structure
on Ello(M, E) is defined as follows. We have a natural projection

p: Ello(M, E) — SEllh(M, E) (6.100)

with an affine fiber {Id+K}, where K are smoothing. (Elements of this fiber may
have the zero Fredholim determinant.) A projection py: Ello(M, E) — ps(M, E) on
the space of principal elliptic symbols (of all complex orders) has as its fiber an affine
space [d+C L' (M, E). These fibers have a natural complex structure invariant
under the adjoint action of the group Ellj (M, E)-of invertible elliptic PDOs. The
base ps(M, E) has a natural complex structure (analogous to the one defined in
Remark 4.18. This structure induces complexes structures on all other connected
components of ElI(M, E) by (left or right) multiplying by representatives of these
components.

The line bundle detpy, over Elly(M, E) has a natural holomorphic structure. It is
the structure induced from a holomorphic structure on the determinant line bundle
L on SEllj (M, E) (associated with G(M, E)°!) under a (local) holomorphic section
rof p,r: U — p~'U. A holomorphic section of detgy, over r(U) defines a section of
dety over p~!(U) with the help of the canonical associative system of identifications
(defined in Lemma 6.9) of the fibers of det, over the fibers p~!(z), = € U. These
sections over p~!(U) define a natural holomorphic structure on detl;.

6.3. Odd class operators and the canonical determinant. The odd class PDOs
are introduced in Section 4. They are a generalization of DOs. Let Ell_ (M, E) C
Ell (M, E) be a subgroup of invertible elliptic PDOs of the odd class.’* Then the
subgroup of Ellf (M, E') generated by elliptic DOs is contained in Ell (M, E) and
every element of EIl_,)(M, E) has an integer order.

The multiplicative anomaly on an odd-dimensional closed manifold is zero for op-
erators A, B € Ell(x_l)(M,E) such that ord A,ord B,ord A+ord B € Z\0. Thus using
the multiplicative property, we can define unambiguously a determinant det(A) for
zero order A € Ell ) ((M, E) with go(A) close to a positive definite self-adjoint
one, Corollary 4.1. The canonical determinant det(_;)(A) for any odd class invert-
ible zero order elliptic PDO A (on an odd-dimensional M) with a given o(log A) €
CSP_y(M, E) is defined below, (6.111). These two determinants arc equal for odd

51The line bundle L over SELL} (M, E) is explicitly defined at the beginning of this subsection. A
natural holomorphic structure on it is defined with the help of Remark 6.18."
S2EIX (M, E) is the group of invertible elliptic PDOs of complex orders.
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class elliptic A of zero order sufficiently close to positive definite self-adjoint ones and
for an appropriate o(log A). (It is proved bhelow.)

Let G(_1)(M, E) be the determinant Lie group restricted to the odd class elliptic
PDOs, i.e., G(_1y(M, E) be the quotient Fo\ EIl",, (M, E).

Let EII?_I)IO(ﬂJ, E) 3 Id be a connected component of Elli_y(M, E) and let

GP_)(M, E) == Fo\ Ellf_;, o(M, E)

be an appropriate determinant Lie group. Then the Lie algebra c[{?_l)(M,E) of
Ell_y)o(M, E) is equal to CL{_y(M, E) by Proposition 4.2,

Let [; :=¢ (log(oj) AJ-) Jord A;, where A; € Ell;"_’l)‘o(M,E), m; are even, m; # 0,
and L) are admissible (for A;) cuts of the spectral plane. Let g(_y)u; be a one-

dimensional central extension of the Lie algebra CS?_I)(M, E) given by the cocycle
K,(M, E), Lemma 5.1, (5.5), Remark 5.1, (5.6), (5.7).

Remark 6.20. In the definition of logarithmic symbols o (log A;) it is enough to use
a smooth field of admissible for (4; — A)™" spectral cuts 0;: P"M — S!' = R/27Z as
in Remark 4.8. (This map has to be homotopic to a trivial one.) These fields of cuts
may depend on A;.

For such defined logarithmic symbols {; = o (log A;) / ord A;, Propositions 6.10,
6.11, Lemma 6.11 (and Corollary 6.4) are valid. The existence of such fields of
spectral culs is a property of a symbol o(A;) (but not of an even order PDO A;
itself). If these fields exist, then the Lie algebras (over Z) ﬁ(z_l)'(ll) — ﬁ(z—l).(lg)

(defined below) are canonically identified by W,,,, Proposition 6.11.

Proposition 6.10. The extensions g(_1y; of the Lic algebra C'S(O_l)(M,E) for a
closed odd-dimensional M are canonically identified by an associative system of iso-
morphisms Wi, : @c-1),,) — B(-1),(12) defined in Proposition 5.1, (5.11). These iso-
morphisms are Id with respect to the coordinates in (5.11).

Proof. By Corollary 4.3 and by Remark 4.7 I — I, belongs to C'SP_, (M, E). So the
identification (5.11), Wj,,,(a +¢-1) = a+¢ -1, for a € CS{_ (M, E) is given by

d=c+ (I —lz,a),,=c (6.101)

in view of Remark 4.5, i.e., W, ;, = 1d. O
However the logarithms of the odd class elliptic PDOs form a Lie subalgebra (over

Z) t[[(z__l)(M, E) C ell(M, E). Elements of e[[(z_”(ﬂlf, E) take the form mL + a, where
m € Z,a € CS(M,E), and 2L is a logarithm of an element of Ell?_l)'o(M, E)
(for example, of Ag + Id, Ag is the Laplacian of a unitary connection V¥ on E).

Analogous subgroups ﬁ(z_l)'(,j) of gq;) are defined.



DETERMINANTS OF ELLIPTIC PSEUDO-DIFFERENTIAL OPERATORS 107

Proposition 6.11. The identifications Wy, (5.11),

Wf[h: a(z—l).(h) p— ﬁ(z—l)-(b)

are Id (over Si_1y105(M, E), the Lie algebra over Z of SEUL ) (M, L)) on an odd-
dimensional closed M with respect to the coordinates (5.11) in the cenliral extensions.
(Here, I; are under the same condilions as in Proposition 6.10.)

Proof. An element gl + a+c¢c-1 € ﬁ(z_l)'(,j}, g € Z, is identified by W, with
gl +ad +c 1€ ﬁ{z_l)‘(h), where

qll +a= qlg + a € S(—l),log(ﬁ'fa E)?
C, =cC + (l'.l - [27 a)res + q (Il - 123 11 - 12):‘&5 /2

By Remark 4.5, ¢ = ¢ because Iy — I € CS{_},(M, E) by Corollary 4.3 and by
Remark 4.7. O

The associative system of identifications Wy, : ﬁ(z_l))(,]) — ﬁ(zﬂw?) defines a

(6.102)

canonical Lie algebra ﬁ(z_l) over Z which is a central extension of S_,)0g(M, E) with
the help of C.

Lemma 6.11. The cocycle K, (5.5), is trivial on Si_1)10g(M, E) for a closed odd-
dimensional M. Here, | satisfies the same conditions as l; in Proposition 6.10.

Proof. By Remark 4.5 it is enough to show that [/, a] € CSP_, (M, E) for some even

m. Then exp(ml) € SEI’,y,(M, E). There is an invertible A € EIi.,) o(M, E) with
o(A) = exp(ml). By (4.17) and by Remark 4.7 we have

0memi (A) (2,€) = (=1) 0-me—; (A7) (2, -6) (6.103)

for an admissible for A cut L. So we have

[0 (4%) s3], @0 = (1 [0 (435) a]_,,, (-0, (6104)

—ma—j

Taking Oy|s=0 of (6.104), we obtain m[l,a] € CSP_, (M, E). The lemma is proved.
O

Corollary 6.4. The central extension ﬁ(z._l)(ﬂ'f, E) of Si—iyjog(M, E) is canonically
trivial.

Indeed, by Proposition 6.11 the coordinates ¢ -1 in ﬁ(z_l)'(,j) with respect to the
splittings ﬁ(z_])'(,j) = S_)g{M, E) ®C -1 do not change under the identifications

Wii,- By Lemma Q.l.l the C-extensions ﬁ(z_l)'(,j) of S(<1)10g( M, E) are trivial with
respect to these splittings.
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The canonical splitting @1y = S(<1)105( M, £) @ C of this central extension gives
us a canonical connection on the C*-bundle G(_1)(M, E) — SEI,, (M, E). Hence
we can define locally a holomorphic function on the space of odd class elliptic PDOs
on an odd-dimensional closed M. (A natural complex structure on Ellf ) (M, E) is

defined in Remark 4.18.) Namely, if for A close to Ag we choose as dp(A) a locally
flat section over o(A) (with respect to the connection on G(-(M, E)), then

det(A) := di(A)/do(A) € C*

is holomorphic in A. Of course in general we cannot find a global flat section czg(A).
However we can define do(A4) as a multi-valued flat section of G(-1)(M, E) over zero
order symbols of the odd class such that dy(A) is an anlytic continuation of the flat
section do(A) near o (Ao) = Id, where do(Id) is the identity of Gen(M, E).

Let Ag be the Laplacian on (M, E) for (gM,VE), where gps is a Riemannian

structure and VE is a unitary connection. Then we define do(A) for ord A = 2m,
m € Z4 U0, as a multi-valued flat section of G(_1y(M, E) over SEH?TU'O(M, E) such

that do (AR 4 Id) = dy (AR + Id) / det(r) (AR + 1d).
Proposition 6.12. For such a section cfo(A) the determinani
det(A) := dy(A)/do(A) (6.105)

gives us @ (multi-valued) holomorphic determinant of A € E“E(-—l).o(Ma E) defined in
Section 4.5, Proposition 4.10.

Remark 6.21. This holomorphic determinant is a multi-valued function f(A) defined
up a constant factor ¢ € C*, |¢| = 1. Here we define a branch of f(A) equal to
det(z) (AR + Id) at the point Ag:= AR +1d € EH?T}),D(M, E). We can do this since

2
£ (A0 = (detgs) (AR + 1d))” = [detr) (AF + 1d) (6.106)

|2
Here we use that A% + 1d is sell-adjoint and positive definite.

Corollary 6.5. The monodromy of (Flgt(A) defined by (6.105) over closed loops in
E]l(x_l)’O(M, EY is given by multiplying by roots of order 2™ of 1, where m depends on
dim M only. (This assertion follows from Proposition 4.13.)

Let A € Ell?,l)’o(ﬁJ,E) be an elliptic PDO of odd class on an odd-dimensional

closed M with a fixed logarithmic symbol o(log A) € CS{_,,(M, E). Then A has a
canonical determinant defined with the help of the Tr(_y)-functional, Proposition 4.1,
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(4.2). This functional is defined for the odd class PDOs CL{_;)(M, £) on an odd-
dimensional closed M. Namely let B € ell_y)(M, E) be an operator with o(B) =
o(log A). Then the element

rf(_lm(a(log A)) = di(exp B)/det(_1)(exp B) (6.107)

is defined, where d,(exp B) is the image of exp B € Ell?_l)‘o(ﬁ/f, E) in Gpy(M, E),
Foexp B, and

det(_1y(exp B) := exp (—(9, Tr(_l)(exp(—sB)ﬂ,:D) e C*. (6.108)

For all s € C an elliptic operator exp(—sB) belongs to Ell?_l),o(M,E) CCL (M, E).
Hence Tr(_;)(exp(—s85)) is defined for all s € C and is regular in s.

Lemma 6.12. The element J(_l)'o(a(log A))€G~1)(M,FE) is independent of a choice
of B with o(B) = o(log A).

Proof. Let By € ell_)(M, E) and o(B) = o (By). Then
dy (exp By) = detp, (exp By exp(—B)) d1(exp B),

det(_1y (exp By) = exp (—8, Tri<1yexp(—sBy) L:o) =
= det(_py(exp B) exp (—8, Tri_1y (exp (—sB;) — exp(—sB))

,=o) . (6.109)

An operator exp (—sB;) — exp(—s13) is of trace class for all s € C. It is even a
smoothing operator. (An operator exp(—sB) is defined in L,(M, E) by (3.30), B is
bounded in Ly(M, E), and o (B;) = o(B).) Thus

sBy) — exp(—sB)) = Tr{exp(—sB;) —exp(—sB)). (6.110)

(_
Similarly to (2.25), (2.26), to Remark 3.4, and to Proposition 6.5, (6.29), we conclude
that

exp (—3, Tr_q) (exp (=3By) — exp(—sB))) =exp(Te(By — B)) =
= det g, (exp B; exp(—B)) .

Tl‘(_l) (exp

The lemma is proved. O

Definition. An (odd class) determinant A € Ell?_l)'O(M,E) with a given loga-
rithmic symbol o(log A) € CS{_,(M, E) is defined by

det(_1y(A) := dy(A)/d(_1y (o (log A)), (6.111)

where cz(_l},o(cr(log A)) € G_y(M, ) is defined by the expression on the right in
(6.107) with any operator B € ell_y(M,E) = CLY_,)(M, E) such that o(B) =
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o(log A). The expression on the right in (6.111) is independent of B with o(B) =
o(log A) by Lemma 6.12.

Proposition 6.13. Let A € Ell?ﬂl)‘o(ﬁ'f,E) (M is odd-dimensional) be sufficiently
close to positive definite self-adjoint PDQOs. Then

(let(_l)(/l) = det(A), (6.112)

where det(A) is defined with the help of the multiplicative property, Theorem 4.1,
Corollary4.1. In (6.112) we suppose that an appropriate o{log A), namely a(log(,-,)A),
is used in the definition of det(_1)(A). (This symbol is defined by (4.12).)

Proof. 1. Let L :=logA € ell(_1y(M,E) = CLY_ (M, E) exist. The det(-1)(A)
corresponding to o(L) € CS%(M, E) is given by

det(—1)(A) = exp (Tr(_]) L) . (6.113)

(This formula can be read as det(_;)(A) = exp (Tr(_l)(log A)) The functional Tr(_;)
is defined by Proposition 4.1, (4.2).)
To prove (6.113), note that for any A € CLP ,,(M,E) we have Tr_y(A) =

TR (AC(_;)') |s=o for any positive definite self-adjoint C € Ell?f']),o(ﬁf[, E), m € Z,.
In particular,

det(_1)(A) = exp (=0, (TR (exp(—sL)C™) lsy=0) ls=0) - (6.114)

The family exp(~sL)C ™! is a holomorphic family of elliptic PDOs. So the function
TR (exp(—sL)C™%) is regular at s; = 0 (since exp(—sL) is a PDO of the odd class
and since M is odd-dimensional) and then at s = 0. We can rewrite (6.114) as

det-1)(A) = exp (= (TR (= Lexp(=sL)C™" ) |s,0) ls=0) =
= exp (— Tricy(—L exp(—sL))|,=0) = exp (Tr(_l) L) .

2. The determinant det(A) of A :=exp L, L € elli_y)(M, E), (defined by Corol-
lary 4.1) for L sufficiently small is

det(A) = det(z)((exp L)C)/det(#(C).
For all sufficiently small ¢ we have
det(exp(tL)) = exp (19, log det(exp(sL)C)|s=0) ,

" | (6.115)
95 log det(exp(sL)C)|s=0= TR (LC“’) la=0 = Tr(-qy L.
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The equality @ in (6.115) follows from the variation formulas (2.28), (2.29), (7.24)
for élogdet (C,), C, := exp(sL)C,

=Tr (LC;’ —reso(L)/zord Cs) o
= Tr (LC,) |:=0. (6.116)

(By Remark 4.5 res 0(L) = 0 since L is an odd class PDO and M is odd-dimensional).
The expression Tr (LC;?) is equal to TR(LC;®) for ordC - Rez > dimM. So
Tr (LC;*)|.=0 = Tr(-1y L. Then we conclude that

d,logdet (C,)= ((1-!-232) Tr (LC;Z)) |

z=

det(_1)(A) = exp (Tl‘(_l)(f.L)) = det(A)

for A = exptl, where ¢ is sufficiently small. The functions det(z)(A) and det(A) are
analytic in A (in their domains of definition). If log;) A is defined, then det(A) is
also defined. The domain of definition of det(z){A) is connected. The proposition is
proved. O .
Proof of Proposition 6.12. 1. First we prove that det(A) = det(A) for PDOs A
from Ell?_l).D(M,E) sufficiently close to Id. (Here, det(A) := f(A) is a branch of a
holomorphic determinant, Proposition 4.10, f(I1d) = 1.)

Let A:=exp(tL), L € CL-y(M,E), C € EII%TI)‘O(A/I, E), m € Z,, be a positive
definite self-adjoint PDO, J := log(zy C. Then by Proposition 6.8, (6.85), we have

dy log (d](exp(tL))/exp (tHU(J)o(L))) ’::0 = TR(Lexp(—sJ) —reso(L)/s) o
= TR(Lexp(—sJ))|s=0 = Tr(_yy L. (6.117)

Here we use that reso(L) = 0 for L € CLY_,,(M, £) by Remark 4.5 and by the
definition (4.2), Proposition 4.1, of Tr(_y) L (M is odd-dimensional). In view of

(6.113) we have det(_y)(exp(tL)) = exp (Tr(_l)(tL)),

Oy log det(_yy(exp(tL))i=0 = Tr(—yy L. (6.118)
We conclude from (6.117), (6.118) and from Proposition 6.13 that

O log aewt(exp(tL))| 0 = d log (d, (exp(tL))/ exp (t]’la(J}a(L))) |

t= t4+0 =
= Tr_yy L = 9, log det(_y)(exp(tL))]i=0 = O;log det(exp(tL))]i=o. (6.119)
Thus we have two equal characters of the Lie algebra efl(_1)(M, E) = CL{_,(M, E) 3
L. Hence the corresponding characters of exp (e[[(_l)(ﬂff, E)) are also equal. The

exponential map is a map onto a neighborhood of 1d in Ell?_l)_O(M,E) (and even in
EIS(M, E)). Indeed, for any A € ElIj(M, E) close to Id we can take log(zy A, and
it belongs to ell_y(M, E) for A € Ell?_l).o(M, E) by Proposition 4.2, (4.12). So the
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branches of the analytic functions det(4) and f(A) coincide in a neighborhood of
Id € EIll_,)o(M, E).

We know that according to Corollary 4.2 and to Proposition 4.12, det(A) =
det(){A) in a neighborhood of Id in Ell?_l),g(M,E) and that det(A) is a (local)
character of Ell?_l),o(M,E). We have only to prove that El.a'.(A) defines a (local)
character of Ell?_l)’o(ﬂ'f,E). [t is enough to prove that for L, L, € CL?_])(JP"{{,E)
and for sufficiently small ¢;,¢, € C we have

exp (tlﬂg(.;)a (Ll)) exp (tgl'l,,“)cr (L2)) =

= exp (H,,(J) logz) (exp (tio (L1)) exp (t20 (Lg)))) . (6.120)

(For sufficiently small ¢4, ¢, this logarithm exists by the Campbell-Hausdorff for-
mula.) The equality (6.120) follows from the equality K,y (¢1,a2) = 0 for Ay, ay €
CS{_1)(M, E), Lemma 6.11, Corollary 6.4.

2. Let 2m = ord A, m € Z,. We prove the equality E&(A) = det(A) in a
neighborhood of Ag := A% + Id. From Theorem 4.1, Corollary 4.2 we know that
det(z) (Ay)det(z) (Az) = det(z) (A1A42) for odd class elliptic PDOs close to positive
definite self-adjoint PDOs. Thus by Proposition 4.12, det(A) = det(B) det (Ag) for
B:=AA;' ¢ Ell?_l),o(ﬂff,E) in a neighborhood of Ag.

Let us prove that det(A) = det(B)det (Ag). Note that dy(A) = dy(B)d; (Ao) in
G—1){M, E) and that the local section do(A) of G(-1)(M, E) over SEII }, o(M, E) is

defined as a solution of the equation
997" € W8, do(Ao) = di (Ao) /dets) (AR 4 1d).
So the assertion of Proposition 6.12, (6.105), for ord A = 2m follows from the same

assertion for m=0. O

6.4. Coherent systems of determinant cocycles on the group of elliptic
symbols. Let a, b be the symbols of elliptic PDOs A, B of positive orders such that
A and B are sufficiently close to positive definite self-adjoint PDOs (with respect to a
smooth positive density on M and to a Hermitian structure on £). Then the cocycle

fla,b) == log F(A, B) (6.121)

is defined on the group SEll; (M, E) of elliptic symbols by (2.19) (and it depends on
a = o(A) and on b= o(B) only).
Then the (partially defined) cocycle f(a,b) can be replaced by a cohomological one

fey(a,0) = flza,by) + f(z,y) — f(za,y) — f(=z,by), (6.122)

where = and y are the symbols of positive definite self-adjoint elliptic PDOs of positive
orders. Note that the terms on the right in (6.122) are defined also in the case when
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the symbols « and b are rather close to Id. (They are defined also for orda > —ord =,
ordb > —ordy if the symbols a, za, b, and by are sufficiently close to the symbols
of positive definite self-adjoint PDOs. Under these conditions, the formula (2.19) for
the terms on the right in (6.122), (6.121) is derived.) We have
foy(a,b) = f(a,b) = drgy(a,b),
Brey(@,8) 1= Ty (0) = 10y (@) = T (B), (6.123)
Tz '= f(y:c, (")'

Note that

det(z) (X ABY )det(#)(XY)
det(;\.)(A’AY)(]Ct(ﬁ)(/\fBY) ’
i _ det(ﬁ»)(XAY)
7I'y(a) - log(%) (det(ﬁ)(A)det(ﬁ)(ArY)
under the conditions that the determinants on the right in (6.124) are defined and
that fs,(a,b) and f(a,b) are defined. (Here, Lzy = L) is an admissible cut of the

spectral plane with 8 sufficiently close to 7, A and B are elliptic PDOs with the
symbols a := o(A) and b := o(B).)

(6.124)

Remark 6.22. Let z, y, «/, and y’ be the symbols of positive definite self-adjoint
elliptic PDOs X, Y, X'/, and Y’ of positive orders. Then the cochain

Puyizty (@) = roy(a) — rory(a) (6.125)

is smooth in « in a neighborhood of Id € SElIf (M, E).
Indeed, we have by (6.124)

detr) (X AY )det( (X ’Y’)) _ (6.126)

det(ﬁ)(XY)(let(;r)(X’AY')
We have also by (2.32) and by (2.19) for variations éa such that forda =0

| 0 (logAY X)) ~ o (log sy (AY'X"))
"ordA+ordX +ordY  ordA+ordX'+ordY’] ™

Pr.y;x‘;y‘(a) = log(i) (

6Pz (@) =— (5‘I a”

The term on the right depends on the symbols o(A), o(X), o(Y), ¢(X"), and o(Y")
only. It is equal to the integral over M of a density locally defined by the homogeneous
components of these symbols.

We have by (6.126)

pz,y;xr'yl(a) + Pa:’,y';a:“,y”(a) -+ pzn'yﬂ;x.y(a) =0 (6127)

for the symbols z, 2/, =", y, ¥, and y" of self-adjoint positive definite elliptic PDOs
of positive orders.
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By (6.125), (6.124) we have
Sopla,8) = foryp(a,b) = (dpzywr ) (a, ). (6.128)

Hence we have a natural functorial system of (partially defined) cocycles f; ,(a,b)
on the group SEllj (M, E). All of them are cohomologous to the cocycle f(a,b)
defined by the multiplicative anomaly (2.19) of the zeta-regularized determinants.
The cocycle f(a,b) is symmetric, f(a,b) = f(b,e) (as it is the logarithm of the
multiplicative anomaly). However this cocycle induces a cohomological to it skew-
symmetric cocycle®® Ki(a, 8) (defined by (5.5)) on the Lie algebra Si(M, E) of the
group SEIS (M, E) as follows.

Note that f;,(«a,b) is defined for ord za and ord & close to zero if ord by > 0 and
ordy > 0 (and if za, by are sufficiently close to the symbols of positive definite
self-adjoint PDOs). Indeed,

fryla,b) = logs) (

det(#( X ABY )detz (XY)) (6.129)

det(m (X AY )det () (X BY)

(where a = o(A) and so on). Hence fi,(a,b) is defined for ordy > 0 and for a, b
close to Id.

If ordy > 0, bis close to Id, and o € (rp)~'(0) = CS% (M, E) C Sig(M, E), we
have by (2.19)

o (log(,-,)(BY)) o (log(,-,)(Y))
O fryexp(ta), b)|e=o = — (a, odbtordy ~ ordy . (6.130)

Let b:= exp(y8), B € CSY (M, E), and let v be close to 0 € R. Then by (6.130),
0y (Buf1(exp(ta), exp(v8))lizo) | _ = — (e varg (logsv)) _,  (6.131)

where varg (log(i) y) = 0y0 (log(,-r)(exp(t[;’))’)) L=0 for Y € Ellj (M, E) with o(Y) =

y, B € CL%M, E), is an operator with J(B) equal to 3.
Let R,(a,B) be the bilinear form given by the left side of (6.131). Then the
antisymmetrization AR, (e, 8) of the form R, (a, ) is given by (6.131) as

AR, (e, B) = (ﬁ, var, (log(ﬁ) y))m /2 - (a,va,l'g (log(i) y))m /2. (6.132)
Here, o and § are symbols from CS%(M, E).
3The cocycle K7 defines the central extension gy (defined by (5.6), (5.7)) of the Lie algebra

g := Siog(M, E). By Theorem 6.1, the Lie algebra (s is canonically isomorphic to the Lie algebra
a(M, F) of the determinant Lie group G(M, E).
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Let us compute the right part of (6.132) for ordy = € up to o(€) (for ¢ — 0). By
Campbell-Hausdorff formula we see that for o(&) = o, o(f) = 8

var, (log(,-,) y) = o (log(i)(exp(&t)}’)) L=0 =
=0, (o (logs) ) + ot + ¢ [erlog(y Y]) | _, + O ((ord ¥)?) =
=a+ [a, o (log(,-,) Y)] /240 ((ord Y)z) , (6.133)
varg (logsyy) = B+ 8,0 (logz ¥)] /2 + O ((ord ¥)?).

Here, O ((ord Y)?) is considered with respect to a Fréchet structure on CS°(M, )
defined by natural semi-norms (8.20) (with respect to a finite cover {U;} of M).
Hence we have

ARy(a, B) = (B, o, 10g Y])ees /2 — (@, [B, 10g ¥])ses /2, (6.134)
where logy := 0o (log(ﬁ) Y). For logy =1 € (rp)™'(1) C Sieg(M, E) we conclude that
ARexp((O', ﬁ) = ]\’1(0, ﬂ) (6135)

for o, 8 € CS%(M, E). The cocycle K| has a trivial continuation (5.5) from CSYM, E)
to Sieg( M, E') under the splitting (5.2). Hence the partially defined symmetric cocycle
f(a,b) on SEIIJ (M, E) produces a skew-symmetric cocycle Kj(a, ) on its Lie algebra
g(M,E). (Namely on the Lie algebra gq) canonically isomorphic to g(M, E) by
Theorem 6.1.)

Remark 6.23. Note that R,(o, 8) has a singularity of order 1/ord y if ordy ~ 0.

6.5. Multiplicative anomaly cocycle for Lie algebras. We want to produce
the multiplicative anomaly formula without using the determinants of elliptic PDOs.
This approach is more general than in Section 2. We begin with the variation formula
(2.19) (or (6.136) below). This makes sense for central (and cocentral) extensions of
Lie algebras go with conjugate-invariant scalar products, Remark 5.4, (5.21)-(5.24).
In computations below it is enough to replace (, ), by an invariant scalar product on

go and o (log(,-r) YX) (and so on) is defined as logarithms of elements of a formal group

corresponding to the Lie algebra g, (5.22). Then Proposition 6.14 and Corollary 6.6
below provide us with a definition (by integrating of differential forms) of a (partial
defined) multiplicative anomaly cocycle in a general situation of Remark 5.4.

The proof of Theorem 6.1 provides us with a partially defined cocycle. It is given by
the exponential (6.47) of the quadratic cone in g, Proposition 5.2. This cone is defined
in the situation of Remark 5.4 also. Here we obtain the results on the multiplicative
anomaly for Lie algebras without using this quadratic cone. Propositions 6.14, 6.15
and Corollary 6.6 below, as well as their proofs, are valid for central extensions of
Lie algebras (Remark 5.4) after trivial changing of notations.
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For elliptic PDOs X and Y of positive orders sufficiently close to positive defi-
nite self-adjoint elliptic PDOs, let variations §X, §Y be such that §(ordY) = 0 =
8(ord X). Then by (2.19) we have

8x,y log (det(s)(XY)/dets) (X )detz(Y)) =

_ (53; - c (log(,-,)(YX)) e (log(,-,) Y)) B

ordz + ord y ordy

lo XY logz X
— |6z, 7 (loggn )) 7 (logis X) . (6.136)
ordz + ord y ord z

where z = (X)), y = o(Y). The teuns on the right depend on z and on y only.

Hence we have a differential 1-form w; , on the domain in SENI§' (M, E)xSEIG (M, E),
where ¢; ;= ord X, ¢y :=ordY, ¢; € ]R , ¢1 + ¢z € R*.

Proposition 6.14. The form w, , is closed in the directions of the components of
the direct product SEIIS (M, E) x SEIZ (M, E).

Corollary 6.6. The function log F(A, B) in the formula of the multiplicative anomaly
(2.19) is defined by the integration of the 1-form w, , on x and then on y (since

log(x) F (S S(,)) = 0 for powers of a positive definite self-adjoint S € Ellj(M, E)).

Proposition 6.15. The form w}, is a (pariially defined) 2-cocycle on SEIIR(M, E),
i.e., on the group of elliptic symbols of real orders. This assertion means that

(dCOChﬂfﬂw ) ("ana Z) =w (y': Z)—wl(.'l:'l ’ Z)+wl($: yz)_w (.’C, y) :03 (6137)
if the terms on the right are defined.
Proof. By (6.136) and by (6.137) the terms with dz - 27" in deoehainw’ (2, ¥, 2) are

(dz - o™ log(zyz) _ log(zy) log(zyz)
"ordz +ordy+ordz ordz+ordy ordz+ordy+ordz

log 2 log(zy) log =
— =0. (6.1
+ ordz  ordz+ordy ord 'L‘) (6.138)
(Here, log(zyz) :== 0 (log{,-r)(XYZ)) and soon.) O
Proof of Proposition 6.14. Set a := dz - 27!, Then we have
! log(zy) log
dotzy = ([a ]/“’01d:1,+ordy ord:r) t
( dy log(zy) d;logz
a

" ord z + ord Yy T ordz

) . (6.139)
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where log(zy) :== ¢ (log(i) (XY)). We have by Lemma 6.6

d log(zy) = (ad(log(vy)) (exp(ad(log(zy))) ~ 1)™" ) (dx(wy)-(zy)™") . (6.140)

y)
The term on the right is defined as (F(ad(log(zy))))~" for F' (ad (L£4)) given by (6.75),
where A = exp(L4) belongs to Ell; (M, E). Note that d.(zy)-(zy)~! = a. The series
z[(exp z — 1) on the right in (6.140) is of the form

z/(expz—1)=1—-2/2+ Zczkz%,
k1 (6.141)
con = —C(1— 2k)/(2k — 1)L, cpens = C(—2K)/(2k)! = 0,

where ((s) is the zeta-function of Riemann.
Since a is a one-form, we have for k € Z, U0

(a, ad*(log(zy)) o a) = (—l)k (adk(log(my)) o a,ad*(log(zy)) o a,)r =0.

re €3

In the second term on the right in (6.139) the term —z/2 in (6.141) (for z =
ad(log(zy)) and for z = ad(log(z))) correspond to

_(0/2’ [log(zy), a] _[log:c,a]) =([a,a]/2’ log(zy) _logm) |

ordz +ordy ord z ordz +ordy ordz

Hence dzw;'y = 0. The equality dywé'y = 0 is proved similarly. 0O

Remark 6.24. In (6.136) and in the proofs of Propositions 6.14, 6.15 we do not use
that o (log(i)XY), o (log(i) X) ,... are logarithmic symbols with respect to the
same cut or that they are defined by cuts close to L(y). We use here only that these
expressions are some logarithmic symbols for o(XY), o(X),... . This assertion
makes sense in the case of a formal Lie group corresponding to a Lie algebra g in the
situation of Remark 5.4.

6.6. Canonical trace and determinant Lie algebra. It is proved in Theorem 3.1
that the derivatives at zero of the zeta-functions for elliptic PDOs of order one are
the restriction of the quadratic form —Ty(c! + Bp) (defined by (3.64)) on the linear
space {cl + B} :=logEll; (M, E) to the hyperplane ¢ = 1. (Here, { is a logarithm of
an elliptic PDO A of order one.)

In this section we deduce the structure of the determinant Lie algebra g(M, F)
(corresponding to the Lie group G(M, E) defined by (6.10)) from Theorem 3.1 and
Proposition 3.6. Their statements are consequences of the existence of the introduced
in Section 3 canonical trace TR defined on PDOs of noninteger orders.

The text of this subsection can be considered as an alternative proof of Theo-
rem 6.1.
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First of all, as a Lie algebra, g(M, E) is equal to the quotient of ¢ll(M, F) modulo
the ideal fo = { K|/ is smoothing and Tr K = 0}. We claim that f, belongs to the
kernel of the bilinear form associate with 15, (3.64), i.e.,

Ty(z+ f)=Ta(z) for f €fo,z €cll(M,E).

In fact, recall that 7, gives values of the zeta-regularized determinants and in the
proof of Proposition 6.5 we established the formula relating variations of determinants
and traces for deformations of PDOs by smoothing operators. Hence T, induces
an invariant bilinear form on g(M, £). 1t is easy to see that the image under the
exponential map of the cone of null-vectors {{|T3(!) = 0} in G(M, E) is exactly the
section dop(o(log A)), (6.30).

Algebraically, we have a situation studied in Section 3:

1) a Lie algebra g’ := g(M, £) endowed with an invariant scalar product (,) (ob-
tained by the polarization from 75),

2) a nonzero isotropic central element

leg, (1,1)=0,
3) a nonzero homomorphism (order)
r:g = C
given by the formula m(z) = (z,1).

The quotient algebra g@'/C-1 is equal to Siog(M, E). The scalar product (, ) induces
a scalar product on the codimension one ideal C'S°(M, E) invariant under the adjoint
action. By Proposition 3.9 this scalar product coincides (up to a nonzero constant
factor) with the pairing induced by the noncommutative residue.

Using Remark 5.5 we see that @ is canonically isomorphic to g constructed in
Section 5. Thus we proved the coincidence of g(M, E) and the canonical extension
without variational formulas.

7. GENERALIZED SPECTRAL ASYMMETRY AND A GLOBAL STRUCTURE OF
DETERMINANT LIE GROUPS

The global structure of the determinant Lie group G(M, E) (i.e., of the central
C*-extension [\ Ellf (M, E) of the group of elliptic symbols SEIS (M, F)) is defined
with the help of a certain kind of global spectral invariants generalizing spectral
asymmetry as follows.

The fundamental group m, (SEllg(M, E)) is spanned by loops exp(2nitp), where p is
the symbol of a PDO-projector of order zero and 0 < ¢ < 1. Indeed, the fundamental
group of SENY(M, E) is the same as the fundamental group of the principal symbols
m(Aut 7*E), where m: S*M — M is the natural projection of the co-spherical bun-
dle. For the vector bundle 1y on M it is proved in the proof of Lemma 4.2 that
m (Aut 7*1x) is spanned by the loops exp(2nita), 0 <t < 1, where a € End (7*1x)
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is a projection ¢* = a. For any such a there exists a zero order PDO-projector

A € CL°(M,1y) with the principal symbol a ([Wo3]). The same assertions are also
true for E instead of 1n. A closed one-parameter subgroup exp(tq) 0<t<1,of
CS%M, E) is of the form

q=2m1Y m;p;, : : (7.1)
where m; € Z and {p;} is a finite set of pairwise commuting zero order PDO-
projectors from C'S°(M, E)

Pi=pi,  PiPk = Pkpj- (7.2)

For A € CL%(M, E) the section® d;(exp(tA)) gives us a trivialization of the C*-
bundle

p: G(M, E) = SEIX (M, E) (7.3)

over a curve o(exp(tA)) C SEIY(M, E).

Let X be an elliptic PDO of a real positive order d := ord X. Let X be sufficiently
close to a positive self-adjoint PDO. Then its complex powers Xz are defined. A
generalized zeta-function

x)(A;s) = Tr (AXG)) (7.4)

for Res > dim M/d has a meromorphlc continuation to the whole complex plane.
Its singularities are simple poles at the points of an arithmetic progression and its
residue at zero is equal to

Res,=o (x (7)(A; ) = res(a(A))/d, (7.5)

Remark 3.17. Here res is the noncommutative residue [Wo2|, [Kas]. For a PDO-
projector A = P € CL° M, E) of order zero its noncommutative residue is equal to
zero [Wol]. (Hence (x (#)(P;s) is nonsingular at zero.)

Such an operator X € Eli¢(M, E) defines another trivialization of the bundle (7.3)
over the curve o(exp(tA)) in SEIS(M, E). Namely

exp (TLxo(4)) € p~" (o(exp(tA)), (7.6)

where IIxo(A) is the inclusion of o(A) into g, Ix 1= 0 (log(,-r) X) /d, with respect
to the splitting (6.44). The element [Iyo(A) depends on the symbols o(X) and o(A4)
only. The Lie algebra @) is canonically identified with the Lie algebra a(AM, E)
of G(M,E) by Theorem 6.1. Under this identification, the quadratic C*-cone®®
log S C 8(M, E) corresponds to the zero-cone C;, for the quadratic form A, given

4The operator exp(tA) is defined by the integral [, exptA- (A = A)7'dA, where [ is defined
as in the integral (2.30). )
83The partially defined section S — dp(S) := S of the C*-fibration (7.3) is defined by (6.11).
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by (5.18). Quadratic forms A; and cones C; are invariant under identifications W,
by Proposition 5.2 and Corollary 5.1. (Note that exp (1ITx A) belongs to a Lie group
exp (@), where g is the Lie algebra defined by identifications Wy, of §uy.) The
Lie group exp (@) is canonically local isomorphic to G(M, E). For ¢ € C with [¢]
small enough, we denote by exp (tIlx A) an element of G(M, E) corresponding to the
element of exp (g) defined by this expression.

Hence we have two trivializations d (exp(tA)) and exp (11 xo(A)) of the C*-bundle
(7.3) restricted to o(exp(tA)) for t € C with |¢| small enough.

Proposition 7.1. The equality holds for such A, X, and t
di(exp(tA)) [ exp (¢ (TIxa(A))) = exp(Lf(A, X)), (7.7)
F(AX) == (Cx ) (A5 8) — res(a(A))/sd)
Here, d :=ord X € R,.

=0’

Note that f(A, X) is a spectral invariant of a pair (4, X'} of PDOs, where A4 €
CL°(M, E) and where X € Ell5(M, E) is sufficiently close to a self-adjoint positive
definite PDO.

Remark 7.1. For a PDO-projector P of zero order, P € CL°(M, E), we have

f(P,X) = (x#(P;0). (7.9)

Lemma 7.1. For a PDO-projector P of zero order, the spectral invariant of the pair
(P, X) with its values in C/Z

Jo(P, X) := f(P,X)( mod Z) (7.10)
depends on the symbols o( P) and o(X) only.

Remark 7.2. For a general PDO-projector P of zero order, fo( P, X) cannot be uni-
versal expressed as an integral over M of a density locally defined by homogeneous
components of symbols o(P) and o(X) in local coordinate charts on M.

Definition. A generalized speciral asymmetry of a pair (P, X) of PDOs is defined as
fola(P),0(X)) = Tr (PX3))

Here, P € CL%(M, E) is a PDO-projector of order zero and X € ENi(M, E) (with
d € R*) is sufficiently close to a self-adjoint positive definite PDO.

( mod Z). (7.11)

=0
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Remark 7.3. Let X € ElE(M, E) with d € Ry be self-adjoint.?® Let P := (X +
|X1)/2|X] be the PDO—projector to the subspace spanned by eigenvectors of P with
(Xz)l'/2 ) The spectral asymmetry of X ([APS1]-
[APS3]) is defined as the value at s = O of the analytic continuation from Res >

dim M/d of
nx(s Z sign A -

where the sum is over the eigenva.lues of X mcludmg thelr multiplicities. The spectral
asymmetry of X is connected with f(P, X') as follows

nx(s) = Te (P(X*)/7) = Te (1= PY(X®))
=2Tr (P(X))%) = T (X)),
nx(0) = 2f(P, X*) = Cx2,(m)(0),
fo (a(P),0(X?) = (Ex2,m(0) + 1x(0)) /2( mod Z).
This example explains the name of the invariant fo (a(P),o(X?)).

Remark 7.4. For A = 2miP, where P € CL%(M, E) is a PDO-projector of zero order,
we have

di(expA)=1d € G(M,E), exp(2nmillxo(P)) = exp(-2mifo(P,X)). (7.13)

Hence the invariant fo(P, X} (= f(o(P),o(X)) by Lemma 7.1) defines the element
exp (2millyo(P)) € C< -1 = p~'(Id) (where 1 = CX = G(M, E) — SElIf (M, E) —
r

1 is the central extension). Hence foP, X) defines the structure of the subgroup
p~exp(2mita(P))) C G(M, E) over a one-parametric closed subgroup exp(2rnita(P))
in the base SEIIF (M, E) of this central extension. Invariants fo(P, X) define the
group structure of this central extension over any one-parametric closed subgroup in
SEllg (M, E). Suppose that we can compute invariants fo(P, X). Then we know the
Lie algebra g(M, E) of the group G(M, ) (canonically isomorphic to the Lie algebra
gy by Theorem 6.1), the group structure of SEIIF (M, E), and the group structure
of G(M, E) over closed one-parametric subgroups in SEIL] (M, I). These data define
the global structure of the determinant Lie group G(M, E). Hence the problem of the
algebraic definition of G(M, F) reduces to the problem of computing the invariants
fo(P,X) e C/Z. :

Remark 7.5. The element Hxo(P) € gy, is the element o(P) + 0 - 1 with respect
to the splitting (5.7). Under the identification W, of Proposition 5.1 (where {y :=

positive eigenvalues. (Here,

(7.12)

o (log(,-r) X) [ord X and ly is analogous), this element transforms to
H}'O'(P)-%-(L\' —fy,O'(P))res‘l € ﬁ(iy) (714)

56For the sake of simplicity we suppose here that X has no zero eigenvalues.
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with respect to the splitting (5.7) for g;,). Hence we have
exp (2millxo(P)) [/ exp (2rillyo(P)) = exp(27i (Ix — Iy, 0(P)),.,). (7.15)

The term on the right ({x — Iy, o(P)),, is the integral over M of the density locally
defined by symbols o(log X), o(log V), and ¢(P). We have

dlog (exp (2riox(P))) = 2ni (dlx,a(P))

where dly := d(o(log X)/ord X) is an exact one-form on the complement to the
hyperplane C'S°(M, E) in the Lie algebra Siog(M, E) of logarithms of elliptic symbols
(and CS°(M, E) is its Lie subalgebra corresponding to the symbols of order zero,
Section 5). Hence according to (7.13) it is enough to compute fo( P, X) for an elliptic
operator X € EllZ(M, E) with d € R* such that log(z) X exists.

Remark 7.6. A variation P =: L of a zero order PDO-projector P € CLY(M, E)
(e, A = P+el+ O(e?), e = 0, is a family of zero order PDO-projectors) is
connected with P by the equations

res ?

LP=(1~P)L, L{1-P)=PL (7.16)
Hence L maps Im P into Im(1 — P) and Im(1 — P) into Im P. Any L of the form
L:=[PY] (7.17)

with Y € CL%(M, E) gives us a solution of (7.16). (Note also that res[P,Y] = 0.)
For a family of PDO-projectors of zero order we have

§P = [[§P, P, P]. (7.18)

Hence the equality (7.17) holds with Y = [§P, P] € CL%(M, E). For L of the type
(7.17) we have

ép log (exp (2mill xo(P))) = 2midp fo( P, X),
fo(P,X) = fo (APA™, AXA™Y) € C/Z
for any A € ElI*(M, E). Hence for A, = exp(eY) € Ellg(M, E), ¢ = 0, we have
§p log (exp (2niTlxo(P))) = 8y log (exp (2xillxo( P))) |M=[Y‘X} =

= 2mi (§o(log X)/ ord X, o(P))... (7.19)

sx=(v,x]’

(Here, §ord X = 0.) By Lemma 6.6 we have
So(log X) = (ad(o(log X)) (exp(ad(a(log X))) = 1)") o (¥, X] X‘l') .
(7.20)

Hence the variation of fo(P, X) in a smooth family of zero order PDO-projectors can
be transformed to the variation of an elliptic operator X given by (7.19), (7.20).

§X=[Y,X]
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Remark 7.7. The generalized spectral asymmetry fo(P, X) € C/Z is independent of
a zero order PDO-projector F; in a smooth family of such projectors, if variations
8P, in this family are PDOs from CL~4mM-1(Af E). This assertion follows from
(7.18), (7.19), and (7.20) since

ord (50(log X)|6X=[Y,X],Y=[5P,P]) <ordY <ord(6P)

and since the noncommutative residue res(a) for a symbol a € CS~4mM-1(M EY) is
zero.

The analogous assertion is valid for smooth families of bounded projectors in a
separable Hilbert space. Namely,-let P; be such a family and let é, P be from trace
classes. Then the formula (7.18) for §,P holds. So

Tr (6,P) = Tr([[6.P, P], P]) = 0 (7.21)

because [6;P, P] is a trace class operator and F; is bounded. Hence P, — P, is a
trace class operator and

T[‘(P;l - Pi:) = 0 (722)

for any projectors from this family.

Problem. To compute the generalized spectral asymmetry invariants fo(P, X) €
C/Z in algebraic terms (i.e., without using the analytic continuation and the Fred-
holm determinants).

Proof of Proposition 7.1. We have
d, (exp(tA))/exp (tTIxo(A)) = di(exp(tA) - X)d\(X) ' exp (=tllxa(A)) =
= ai,’((exp(t/l)-)\’)a!'o(X)_'e:-(p(~—tf[,\-a(A))clet(,,)(exp(tA)-)\’)(det(,,)(X))_l . (7.23)

Here, do(5) =: S is defined by (6.11) with 8 = 7 for S sufficiently close to a positive
definite self-adjoint PDO of a nonzero real order. The parameter ¢t € C in (7.23) is
such that jt| is small enough. In this case, the PDO exp(tA) - X is sufficiently close
to a positive definite self-adjoint PDO. For the scalar factor on the right in (7.23),
we have the equality analogous to (2.27)

O¢log (det(,,)(exp(tA) . X)/clet(,)(X)) =

s o A
=0, (~sme (4 x - 22))

(where X, := exp(tA) - X) because §,X; - X;' = A. On the right in (7.24) we
take the restriction at s = 0 of an analytic continuation (for the trace) from Res >

dim M/ ord X. The expression on the right in (7.24) is regular at s = 0 according to
(7.5). (Note also that 9,(s(reso(A)/sord X)) =0 and it is used in (7.24).)

= f(A, X)) (7.24)

=0 o
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The nonscalar factor on the right in (7.23)

Ky = do (X,) do (X) " exp (—tllyo(A)) (7.25)
belongs to the connected component C* of the central subgroup in the group exp (g).
Hence log K; € C is defined. We have to compute 0;log K; lor ¢ € C with [¢]
small enough. To do this, note first that under the canonical identification of the
Lie algebras g and g(M, £) (given by Theorem 6.1) the invariant quadratic C*-cone

log S C g(M, E) corresponds to a C*-cone log X in g, where
X =exp (Hxa (log(,-r) X)) (7.26)

for a PDO X of a nonzero real order sufficiently close to a self-adjoint positive definite
PDO. Hence

Ky =X (X) exp (~tllxo(4)), (7.27)
where X, := exp (H,\'J (log(ﬁ) Xt)) and [t| is small enough. We have

S log K, = K, - K[! = —K, - (Nxa(A)) K" +9,X,- X' =
= —Tlxa(A) + aX, - X' (7.28)
According to (6.70) we have
OX, X7t =Tix, (X X7') = My,0(A).
By Lemma 6.2 and by (7.28), we have
Ix,0(A) = llxa(A) + (0(A), Iy, = Ix),e - 1 € 8,

S (7.29)
8: log [\/3 = atXf . Xt_ - HXO'(A) = (O'(A),lxt - [X)

.1,

res

where Iy := ¢ (Iog(,—r) X) /ord X (and the same is true for lx,). Hence

log (di (exp(tA)) / exp (tTlxa(A))) = [ (A, X0) + (0(A), Lx, = Lx)y - (7:30)
By Proposition 2.2 we have
f(A,X) = f(A,X)=—(0(A),0(log X;) /ord X — o(log X}/ ord X)__.(7.31)
Proposition 7.1 follows from (7.30), (7.31), and from (7.29). O

Proof of Lemma 7.1. Let X; be a PDO of a real nonzero order sufficiently close
to a positive definite self-adjoint PDO. Then by Proposition 2.2 we have

log 5 X log s X
J(AX0) = f(A4,X) = - (o(m,"(f& ) —“(f({/{, )) (XS
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In particular, for o(X) = o(X;) we have f(A, X) = f (A, X1). It is true even more
strong statement. Namely, if X| = X € CLordX-dimM-1(ar [} then the term on the
right in (7.32) is equal to zero because o(A) € CL°(M, E) and because under this
condition,

o (log(zy X1) — o (logs) X) € CS™9™M-1(M, E).

Hence the dependence f(A, X) on X can be expressed with the help of its dependence
on the image o(X) in CS°¥ (M, E)/CSordX-dimM-1(pr B,
Let P, and P be PDO-projectors belonging to CL*(M, E) such that

P, —PeCLomM-l(\ E).
Then (P — P)X % for Res > —1/ord X is a trace class operator. We have
F(P1, X) = J(P,X) = Te(P, = P). (7.33)
The assertion Tr (P, — P) € Z immediately follows from Proposition 7.2 below. O
7.1. PDO-projectors and a relative index.

Proposition 7.2. I. Let P, and P, be PDO-projectors from CL°(M, E) such that
P, — P, e CL-9mM=Y(M E). Consider the operator Py := Py|ump,,

Py: ImP, = Im P,. (7.34)

Then Ker P, and Coker P; are finite-dimentional. For the index of P, the equality
holds

ind P, = Tr (P, — Py). (7.35)

2. The same equalily holds for a pair Py, P, of (bounded) projectors acting in a
separable Hilbert space H and such that Py — P is of trace class. Namely

ind P, = Tr (P, — P,) = —ind P,. (7.36)

Corollary 7.1. Under the conditions of Proposition 7.2, we have

Proof of Proposition 7.2. Set P, — P, =: §.
1. The operator P := P,|imp, has a finite-dimensional kernel because

P,=P -8, (7.38)
Py =1d on ImP, C Ly(M, E), and S: Lo(M, E) = Hi_ gimpr—1y(M, E) < Ly(M, E)

is a compact operator. (Here, H,) is the Sobolev space.) Hence the space of solutions
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for the equation Se =€, e € Ly(M, E), is finite-dimensional.

2. The operator P; has a finite-dimensional cokernel because from (7.38) we have
Pom = PyPim — P,Sm. (7.39)

The operator K = P2S|imp,: Im P, = Im P, is a compact operator on the Hilbert
space L = ImP,. (L is a closed subspace of Ly(M, ) because P} = P, and be-
cause P, € CL°(M, E) is a bounded linear operator on Lz(M, E).) For m € L we
have m = m; + K'm, where m; := Pym. Let the operator P;|i,p, have an infinite-
dimensional cokernel. (The operator Pa|imp, : Im Py = Im P; is closed since it is the
restriction of the closed operator Py: Lo(M, E) — Lo(M, E) to a Hilbert subspace
Im Py C Lo(M, E}.) Then the space of m € L such that ||[KXm]| > ||m]|/2 (with re-
spect to the scalar product llz||* := (z,2) in Lo(M, E)) is infinite-dimensional. Hence
codim P < oo.

3. Note that Tr(F; — P;) depends (if P, — P, is a trace class operator) on the
images Im P; C L:(M, E) only. The equivalent assertion is the following.
Let P and P, be bounded projectors with Im P, = Im P. Then

Te(P - P) = 0. (7.40)

Let Hy, :=Im P, H; := Ker P, and let Lo(M, E) := H = Hy @ H, be the direct
sum decomposition. Then the projector P is conjugate to Py, i.e., P = gPg~! with

]dﬂ'; L —1 IdHl - L
9= g = )
0 IdH2 0 [dH2

where L is of trace class and (Idg, +L) : H; — Ker P. For a family of bounded
projectors P(t),

Idy, tL
P(t) = gtplgz_IJ gt = ( : ) 3

0 idgy,

arin= |01 )]

Here, L is a trace class operator. So d;P(t) is of trace class. By Remark 7.7, (7.22), we
conclude that Tr (P (1) — P (¢2)) = 0. The equality (7.40) is proved since P =: P(1),
P1 = P(O)

4. The decomposition of Lo(M, E) in the direct sum of Hy (F,) := Im P, and
Hy (£2) := Ker P, can be produced ([SW], § 3) by the action of an invertible operator

we have
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¢ in H written in a block form with respect to the decomposition H = H, & H, with
H; = H; (P)

(22) (i) = 0 (e o, (1.1

where operators b and ¢ are of trace class and P, := gP,g~!. Here, the operators a
and d are automatically Fredholm and the index of a: H, — H, is well-defined. We
have

Ind P, = inda, (7.42)
where P,: Im P; = Im Py is Pilimp,. We have the analogous equality for ind }52,
ind 2, = ind o, (7.43)
where
-1 [a ﬂ 1 III (PQ) _
q = (")’ IR q H2 (Pg) = (Hl,Hg) . (744)

(Here, the operator ¢g7': H — H is written in the block form with respect to the
decomposition H = H, (P2) ® Hy (P2).)

Lemma 7.2. Let g: H — H be an invertible operator in a separable Hilbert space H
under the same conditions as in (7.41). Then the equality holds

inda + ind e = 0. (7.45)
(Here, a and « are defined by (7.41) and by (7.44).)
This lemma. is proved in the end of this section.

Remark 7.8. By (7.43), (7.42), (7.45) we have
ind P, = —ind P,. (7.46)

By (7.31) the index ind P, depends on P; and on Im P; only. The analogous statement
is true for ind P,. So by (7.46) ind P, depends on Im P, Im P, only. Hence the both
sides of (7.32) depend on Im P, and on Im P, only. (Here, we suppose that P, — P,
is a trace class operator.)

Let us continue our proof of Proposition 7.2. N

5. We can suppose that ind P, = 0 = ind P,. Indeed, let ind P, = m € Z_ (i.e.,
inde = —m € Z,). Then there is a (bounded) projector P* in Ly(M, E) such that
Im P} O Im Py

Tr (P} — P)=—m, (7.47)
ind Py|tmpp = —m +ind P,. (7.48)
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(In particular, P/ — P; is a trace class operator.) 1t follows from (7.47) that
Te (PP = P)=-m+Te(P,— P), indP"=0.

To produce such a projector P, it is enough to take a finite rank projector p in
L2(M, E) such that

tkp=—-m, ImpCKerP, ImP CKerp.

Then P := P, + p is a (bounded) projector in Li(M, E) satisfying (7.47). The
equality (7.48) holds for P! since Im P C Im P} is a closed subspace in Im P} of
codimension m.

6. Let ind P, = 0 = ind £,. The numbers Tr (P — ) and ind 15]- depend on Im P,
and on Im P, only. The operators ¢ and d in the transformation ¢ (7.41) are of the
form (since inda = 0 = ind d)

a= (IdH1 +ll) Qaad = (Ing +£2) T
where ¢,, ¢, are invertible operators in H,, H; and {; are trace class operators in H;.
Transformations
qaZHl—)Hl, Qd!HQ—:*HQ, C—>CQ’;1, b—)bq;l

do not change H; and H; (P,). Hence we can suppose (in the case ind P, = 0 = ind P,)
that the operator g in (7.41) has a block form (with respect to i = H; @ H;) where
a — Idy,, d — Idy,, b, ¢ are trace class operators. So the following lemma gives us a
proof of Proposition 7.2.

Lemma 7.3. Let P be a (bounded) projector in a separable Hilbert space H with
infinite-dimensional Ker P := Hy and with ImP = H, (H = H, & Hy). Let g =

(ac Z) be a bounded linear operator in H written in a block form with respect to the

decomposition H, & H, and such that a — Idy,, d — Idg,, b, and ¢ are trace class
operators. Then S := P — gPg™! is a lrace class operator in H and Tr S = 0.

Proof. 1. Let G be the group of invertible operators g in H where a —1dy,, d —Idg,,
b, and c are of trace class. Then the equality Tr S = 0 follows from the assertion
that G is connected. Indeed, in this case, for any g € G there is a smooth curve ¢(t)
in G from Id € G to ¢ = g(1). Then §(t) = 0,9(¢) is of trace class in H and for
P, := g(t)Pg(t)~! we see that

P = [g(t), Pi]

is of trace class. Hence by Remark 7.7, (7.21), we have
TeP+t=0, Te(P-gPg™")=0,

because gPg~! =: P,.
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2. For any g € G set g—1d =: A = A(g). Then A is of trace class. So A is
compact and for any nonzero eigenvalue A of A the corresponding algebraic eigenspace
Ly = Ly(A) is finite-dimensional.

Set L := @L, over A-eigenvalues A with |A| > ¢. Then L is a finite-dimensional
invariant subspace with respect to A. Let ¢ be A-invariant subspace complementary
to L, H = L&®@Q. Then @ is a separable Hilbert space (with the induced Hilbert norm)
and A = A @ Ag with respect to L ® (). The group GL(L) = Autc L is connected.
Let g.(t) be a smooth curve in Autg L from Idy, to Idy +AL. The operator norm of
Ag in @ is less than 1/2 (for € small enough). Then g(t) := gr(¢) & (Idg +tAg) for
0 <t <1isasmooth curve in G from Idy to g = Idy +A (written with respect to
H=L®Q). Indeed, Idg +tAg, |t| <1, is invertible in @ since the Lo-operator norm
of Ag, ||Agllz, is less than 1/2. For the trace norm of (Idg +1Ag)™" — Idg =: Bg(?)
the estimate holds (for [t] < 1)

1Bo(®)llr < Al + |(tAQ)], + - + 1t AQ)" l + - <

< [[tAgllee (1 + [lEAqllz + ... + (It Aall)™™ +...) < 2]l Ag]ler-

So g(t) € G. Hence the group G is connected. The lemma is proved. O
Proof of Lemma 7.2. By (7.42) and (7.43) we have

inda +inda = ind P, + ind P, (7.49)
xyhgre P = Pilimp,: Im P, = Im Py and Py = Plimp,. Operators 1'31, 152, and
P P;: ImP, = Im P, are Fredholm. So

ind P]pg =ind 161 +1nd }32. (750)

However, PP, = PiPyPi|mp, and Py PyPi|imp, = ldimp, +A, where A: In P, —
Im P, is of trace class. Hence

ind P, P, = 0. (7.51)
The lemma is proved. O

8. DETERMINANTS OF GENERAL ELLIPTIC OPERATORS

[n (6.31) we extended the definition of the zeta-regularized determinant det¢(A)
to elliptic operators A, ord A # 0, with a choice of the logarithm of their symbols
o(log A). (In (6.31) we suppose that some o(log A) exists but do not suppose that
log A exists.)

Later on we will call them canonical determinants and denote by det(A) for an
operator A. We try to generalize these determinants to the case of general elliptic
PDOs (i.e., without of the supposition that their logarithmic symbols exist).

Let a;,, 0 < t < 1, be a smooth curve in the Lie algebra ell{M, E) of loga-
rithms for classical elliptic PDOs such that a; € (rp)~'(¢), ¢ € C*. (To remind,
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p: ell(M, E) — Siog(M, E) is the natural projection and r: Sig(M, E) = C is the
order homomorphism from the extension (5.4).) Let A;, 0 < ¢ < 1, be the solution
of an ordinary differential equation

atz‘h = atAt, A[) = Id N (81)

Then A, is the elliptic operator from Ellf)t(M, E). The symbol of the operator A, ;4. :=
Aite A7 has a canonical logarithm in Sieg(M, E) close to zero (if € > 0 is sufficiently

small). Indeed, in this case, the principal symbol o, (AH.EAJI) on $*M is sufficiently

close to Id. Hence the logarithmic symbol of & (AH_,A;“') exists by Remark 6.9°7 Thus
det (At,H—c) 1s defined.

Let A € Ellg(M, E), ¢ € C*, and a smooth curve ¢, 0 < ¢t < 1, in (rp)~'(c) C
ell(M, E) be such that A = A,|,=1, where A, is the solution of (8.1). Then the
determinant of the pair (A, a;) is defined by

det(4,a) = T Tlidet (Awiin) (8.2)
where {¢;} are finite sets of &; > 0 such that Y- e; = 1. Here, tp =0,t; = cg+...+€i4
for:>1,t;,4+¢; = tis1-

Remark 8.1. Let a; = a be independent of ¢ € [0,1]. Then the map from a €
Siog(M, ) to the value A; at ¢ = 1 of the solution of (8.1) with a; = a is the
exponential map of Sz (M, F) into Ell; (M, E) since A, = expa.

Let « € (rp)~!(c) C ell(M, E), c € C*. Then the determinant (8.2) for A = A,(a)

is the zeta-regularized (and canonical) determinant
det(A) = det(A4,a). (8.3)

In this case, the canonical determinant coincides with the zeta-regularized determi-
nant det?R(A) = exp (—&C}ﬁ(sﬂpo). Here, the zeta-function of A is defined as
(ix(s) := TR(exp(—sa)), TR is the canonical trace, (4,4(s) is regular at s = 0 by
Proposition 3.6.

Hence the determinant (8.2) is an extension of a zeta-regularized determinant cor-
responding to the case a; = a in (8.2) (where a € (rp)~' (C*) C ell(M, E)).5®

S"Here it is enough to use a spectral cut Liyy.
58There is an unsolved problem. The determinant of an elliptic operator A € Ell§(f, E), c € C*,
has to be defined as a (multiplicative) functional integral

Det(A) := /clet.(A,at)Da;
over the space of curves a; in (rp)~!(c) C cll(M, E) such that A; = A for the solution A, of (8.1)

(with @, as the coefficient on the right in (8.1)). The problem is how to define such an integral and
what are the properties of Det{A).
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Remark 8.2. Let S be a positive definite self-adjoint elliptic operator from Elly (M, E).
Then the solution A, of (8.1) defines a solution B, = S'(‘,f)tAt of the equation

BtBt = bgBt, Bo = I(l, (84)
and b; is a curve in (rp)~1(0) = CLb(M, E),

b; = S(',f)tafS(cfr) - ClOg(ﬂ.) S. (85)
The operator A = A;};=; is defined by S and by a smooth curve b, in C LM, E).

Remark 8.3. A smooth curve a;, 0 < ¢ < 1, in (rp)~!(c) is defined by a smooth curve
o from the origin in ell((M, E) such that a; € (rp)~'(ct) and

¢
8;0’; = g, oy 1= L (l-rdT. (8.6)

The class of solutions of the equation (8.1) for smooth curves a; in (rp)~'(c) C
ell(M, E) coincides with smooth curves A;, 0 < ¢t < 1, in Ellf (M, E) such that
Ay = 1d and ord A; = ct.

Proposition 8.1. An inverlible elliptic PDO A € Ellf)(ﬁrf, ) with ¢ € C* can be
represented as the value at t = 1 of a solution A, of (8.1) with some smooth curve a,

in (rp)~(c) C ell(M, E).

Theorem 8.1. The determinanl det(A,«,) (where A, a, are as in (8.2)) is defined,
i.e., the limit on the right in (8.2) ezists.

Corollary 8.1. The determinant det (A, a4 ts invariant under smooth reparametriza-
tions of a curve (a;).

Remark 8.4. Let A be a product A = A4, of elliptic PDOs from Ellj (M, E). Let
At 7 = 1,2, 0 <t <1, be smooth curves in Elij (M, E) such that ord A;, are
monotonic in ¢ and Ajo = Id, A;; = A;. Then det(A,aq;) is also defined for a
piecewise-smooth curve a; in ell(M, E),

a; = (BTAL,. . 4;',)
ay i= (BTAQ'T . AQ"IT)

oy = for 0 <t<1/2,

=1 a2t for 1/2 S 1 S 1.

T=2t—1
(In general, this curve is disconnected at ¢t = 1/2.) We have
det (Az, (Lz';) det (Al, al,t) = det (A2A1, Cl.t) .

Here, the orders of PDOs A; have to be nonzero. However we don’t suppose that
AzA, is an elliptic PDO of a nonzero order.
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Proof of Proposition 8.1. For an arbitrary A € El§(M, E), ¢ € C*, there exists
a smooth curve A(t) in EllJ (M, E) such that A(0) = [d, A(¢) € EUS (M, E), and
A(1) = A. Then 3,A(t) = a/A(t), where a; € (rp)~!(c) C eli(M, E). Hence for
A € Elig(M, E), c € C*, there exists a curve a; which satisfies the same conditions
asin (8.2). O

Proof of Theorem 8.1. The product of determinants on the right in (8.2) can be
written in the form

Mg ety (Auey, ) = 25" (d (Aesy) /do (Auey)) - (8.7)

Here, o =0 <t < ... <1, = 1 and g; := t;3 —t; are supposed to be small enough.
The element d,{A) € G(M, E) for A € Ellj (M, E) is defined in Section 6 as the image
of A in I\ Ellj(M, E) =: G(M, E) (the normal subgroup Fy is defined by (6.1)).
The elements do( A) are defined for elliptic PDOs A of real nonzero orders sufficiently
close to positive definite ones as d;(A)/det(z(A) € G(M, E). By Proposition 6.3 the
element do(A) € G(M, E) depends on the symbol o(A) of A only. The local section
do{A) is defined by Theorem 6.1 as the exponential of the C*-cone of null-vectors in
a(M, E) = g for the invariant quadratic form (5.18) on g.
The extension of the Lie groups

1 = C* = G(M,E) — SEIIX (M, E) - 1

is central. Hence the product of determinants on the left in (8.7) can be represented
in the form

dy (Atpyitm) i (At ) -+ 41 (Argy) o (Atyiytm) - do (Atgy) . (8.8)

By (6.8) the numerator of (8.8) is equal to d;{A). (To remind, A := A;|;=.) The
denominator in (8.8) depends on symbols o (Ati_,..“), 0 <7< m—1,only. Hence it
is enough to prove the assertion as follows.

Proposition 8.2. The limit exists

lim do (Agym) -+~ do (Ao, - (8.9)

sup{e; }=0
Here, {e;} are finite sets (€o,...,Em—-1), M € Ly, of & > 0 such that eg+ &1+ ... +
Emor =1L, to=0<ti <. ... <tm=1tin—ti=¢; for0 <i:<m—1 andg; are
supposed to be small enough (when dy (At.-,t.-+1) are defined).

Proof. Set I, := o(a,)/c (where a; € (rp)7'(c) C ell(M, E)). Let a PDO B €
ElS(M, E), d # 0, be sufficiently close to a positive definite self-adjoint PDO.5

59Here we use only that o4(B)|s«ar is sufficiently close to a positive definite and self-adjoint PDO.
In this case, o (log(i) B) are defined on $* M. So o (B?) can be defined on T* M\ M by multiplying

appropriate terms of this symbol by t*=* ¢ € Ry.
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Then under the canonical local identification G(M, E) = exp (@) of Theorem 6.1,
do(B) corresponds to the element exp(d - II;{) of exp (@ ) exp (g(l)), where [ :=

(log B) /d and TI;: g < @) is the inclusion of g : Sieg(M, E) into gy under

the spl1tt1ng (5.8), (6.44). (To remind, the Lie algebras gy and gg,) are canomcally
identified by an associative system of the Lie algebras isomorphisms Wj;, given by
Proposition 5.1. Hence this system of isomorphisms defines the canonical Lie algebra
g.) Let Wi: guy — @ be the canonical isomorphism of Lie algebras (defined by the

system Wy, of isomorphisms). Let F; € exp (@) be a solution of the equation
atFt =cC- ]‘V(t (thf) ‘ F‘t, FO = Id . (810)

(Here, ¢ € C* is the constant such that a, € (rp)~'(c).) This equation can be solved
by the substitution

Fy = exp (c-totj - Ky(D), (8.11)

where [ := W, (I)l), { € 7='(1) (for instance, { := ), and K,({) € exp (@) is a solution
of the equation

aK=crexp(—c-t- 1) Wi(TLfe+ (fi fi)ea /2 1) -exp (e - 1) K¢ (8.12)

for Ko(l) :=1d, fi:= 1, -l € CS°(M,E). Indeed, let F; be the solution of (8.10}.
Then by (6.47) we have

Wi, () = Wi (Tl + (L= (L + 1) /2, = 1), - 1) =
= L+ Wi(fy + (fo f)ea /121 (5.13)
O F, =c-IF, +exp (c -t i) O KL (1).
Hence 8, K,(l) is given by (8.12) (and Ko(!) := Id).
The factor
u(t) 1= exp (—c -t f) Wi(ILife + (fey fi)res /2 1) exp (c -t f) ’ (8.14)
on the right in (8.12) is a smooth curve
u:t€[0,1] = u(t) € (rg)""(0) = ¢ g0 C B

(Here, q: @ — @ 1= Siog( M, E) is the natural projection, r is the order homomorphism
from (5.4), and go := CS°(M, E).) Hence the equations (8.12), (8.10) have unique
solutions. (This assertion is proved in Lemma 8.2.)

The approximation similar to Euler polygon line for the ordinary differential equa-
tion (8.10) on the determinant Lie group G(M, E) is defined for any given finite set
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{e:} with &; > 0, 3", = 1, as the solution of the equation®®

drep (ts {51'}) =cC- fO (ta {Ei}) * €o (ta {6,‘}), €0 (0? {5%'}) = Id,

. . 8.15
fO (t, {Eg}) = tt‘- for ¢ € (t,’, ti-{-l) ’ lt = ]’i/h (tht) - ( )

The product of dy (Agi',m) in (8.9) is equal to the value at ¢ = 1 of the solution of
the equation

ey (t,{ei}) = c- fi(t,{e}) -er (t,{e:}), e (0,{es}) = Id,
h (t, {{:‘,,‘}) = f:' for t € (t,',t,'_H) Ji=o0 (log (At.',t.'+1)) /CE,'.
(Here, it is supposed that ¢; = ¢4y — t; are small enough for logo ((Atht,.ﬂ)) to

exist. )
The difference ; — {;; € CS°(M, E) can be estimated as follows. Set B(t) :=

o (AtA;ll), B(t) =o (log (AtA;:il)). Here, ¢ is real and close to t;4;. By (8.1),
(8.16), and by (6.75), we have
b(t)]i=t, = exp (—c-&i - 1),
Ab(t)|e=tb ()" = cly,
Oib(t)] =1, ()™ = B (A)) -0 (A7") lems =
= F(ad (—ceil;)) 0 3B(t) =y, = F (ad (—c£ili)) o (cli — e£:0ry(8)|i=1,)

where F'(ad () is defined by (6.75) and by Remark 6.17. Here, ¥(t) := B(¢)/c(t — tiy1),
v (t:) = i, v (tiq1) := Ui, So we have

((J‘tb(t)h,_,t,.b(m)_I = cli + cF (ad (—ceili)) o (—€:0v(t) 1=y, ) - (8.18)
We conclude that

(8.16)

(8.17)

(i = 1) = &I (ad (—ceils)) 0 (= By () ims) (8.19)

The space CS%(M, E) is a Fréchet space with semi-norms defined as follows. Let
{U;} be a finite cover of M by coordinate charts and let {V;}, V; C U;, be a subor-
dinate finite cover of M such that V; are compact. The semi-norms are labeled by
k € Z4U0 and by multi-indexes & = (a1,...,0,), w = (wy,...,w,) (qjw; € Z,.U0).
For « € CS°(M, E) the corresponding semi-norm is

lell g, = maxsup (16 |ogaras(=,0)|) (8.20)

60T his solution is a piecewise-smooth continuous curve eg: [0, 1] = G(M, E), eg is smooth ex-
cept points eg ({5, {£;}). To remind, locally G(M, E) and exp (g) are canonically isomorphic by
TFheorem 6.1.
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where a_j is a positive homogeneous component of a in coordinates U; 3 z. This
Fréchet structure is independent (up to equivalence) of a finite cover of M by coor-
dindte charts.

The proof of Proposition 8.2 uses the following lemmas.

Lemma 8.1. The difference I, — l; is O (&;) (as &; lends to zero) with respect to any
finite set of semi-norms (8.20). Namely for any finite set (k,o,w);, j=1;...,N, of
indezes in (8.12) there are constants C; >0, ¢, 1 > £ > 0, such that

Il = li”(.l;,a,w)j < Chg;
fm"a‘nyi,0<t;<i,-+1 =t+e <, 0<e<e, 1 <5< N,

Corollary 8.2. The difference of the coefficients f1 (t,{e:})— fo (¢, {e:}) in the linear
equations (8.16) and (8.15) is O (&;) (as ¢; tends to zero) with respect to any finite
set of semi-norms (8.20) uniformly int € (4, t:41) and int;, 0 <t; <1—¢;. Namely
the logarithmic symbols l; and l;, are of order one, I;,1;, € r 1(‘ ). By (6.47) and
(8.13) we have

~ ~

Ly =L+ Wi (T (L = L)+ (L — Ll — 1) /20 1) (8.21)
By Lemma 8.1, I;, — O( i) (as €; tends to zero) with respect to any semi-norm
(8.20). Hence ({;; — l,,lt_ li)es = O (€2) and l,, — I; is O (&;).
Lemma 8.2. There is a unique solution Fy of the equation (8.10). We have
lim e (t,{e:})=F

sup{e;}—0
uniformly int € [0, 1], sup; {&;}.
Remark 8.5. The convergence in G(M, E) is defined as follows.

1. A sequence {gn} C G(M, E), m € Z,, is convergent to a point ¢ € G(M, E), if
there is g € Z ., such that for m > my

g "'gm € exp (Wtﬁu))

(for some fixed [ € r=(1) C Sig(M, E)) and if W log (g7 gm) =t um € g are
convergent to zero in gq). The points u, € gy are written in the form

Uy = Gl + U0 4 C - 1 (8.22)

with respect to the splitting (6.44) defined by [. (Here, gm,cm € C, u8, € CSYM, E),
and 1 is the central element in ﬁ(,).) The assertion um — 0in @y (as m — co) means
that g, — 0, ¢, — 0, and any semi-norm (8.20) of w2, ||u tends to zero.

m”kau'}
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2. Let fe:t € (0,1} — f.(t) € G(M, E) be a family of curves in G(M, E). We say
that f. tends to a curve fy in G(M, ) uniformly in ¢ (as € tends to zero), if
1) there is g9 > 0 such that for 0 < & < €

Jo(8) ™ fe(t) =2 exp (Wio(2)) € exp (Wid)) ,
2) for the components of the elements
we(1) 1= o0l + u2(0) + (1) - 1 € gy

written with respect to the splitting (6.44) (similarly to (8.22)), it holds uniformly in
t and with respect to any semi-norm (8.20)

— 0.

Ge(t) = 0, c.(t) =0,

uS(1)

(These conditions are independent of I € 771(1) C Siog(M, E) by Proposition 5.1 and
by Theorem 6.1.)

3. The extension gy of Sieg(M, E) D go := CS°(M, E) is defined by a cocycle
Ki, (5.5). The restriction to go of this cocycle, K; (B, Co), depends only on images
of symbols By, Cp in CS°(M, E)/CS™ (M, E) (n := dim M). By Proposition 5.1,
the identifications Wy, 1,1 §(,) — 9,y with [y — I, € CS™71(M, F) do not change

ko w

the coordinate c of the central elements ¢ 1 in g,y and in g,).

A sequence {gn} C G(M, E) is convergent to g € G(M, [2), if the following condi-
tions hold.

1) The symbols s, := p(gm) are convergent in SEIl} (M, E) to s := p(g). It
means that the orders ¢, := ord s,, € C are convergent to ¢ := ord s and that the
restrictions of s, to S*M are covergent to s|g«ps. Namely let {U;} be a finite cover
of M by coordinate charts and let {¥;}, V; C U;, be a subordinate finite cover of
M such that V; are compact (as in (8.20)). Then the restrictions to S*M of the
positive homogeneous components (sm), _i (2,€), k¥ € Z, U0, (defined by s, and by

a cover {U;}) are convergent over all V; to (s),_x(z, £)|s+as together with their partial
derivatives with respect to (z,£). (This is a condition of convergence with respect to
semi-norms similar to (8.20). Here, the factors with powers of €] in these semi-norms
can be replaced by 1 since £ € S"M.) If such a convergence holds with respect to
some finite cover of M by coordinate charts, then it holds with respect to any finite
cover of M by coordinate charts.

2) The images ¢ (um) of elements u, € Fuy, exp(Wium) := g~ 'gm, under the
natural projection

a: g — 8p/a=C (8.23)

are convergent (as m — oo) to zero. Here, g := Sjoz( M, £) is imbedded (as a linear
space) into gy with respect to the splitting (6.44) defined by I. The projection
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ci depends on the image of ! in g/CS~""}(M, E) only (n := dimM). Namely for
li,l5 € r7'(1) C g such that {, = l, € CS™™ (M, E) we have

Ci, I’Vh J =€ (824)

The group structure of G(M, E) is induced by the group structure of EllS (M, E).
This structure is in accordance with the convergence in G(M, E).

Lemma 8.3. The estimate

do (cr (Atm A;l)) exp (—ce,-fti) =exp (cs;it..) exp (—cs,-it..) =Id+0 (5?) (8.25)
holds in G(M, E) uniformly in 1, t; (as €; tends to zero).
Remark 8.6. The estimate (8.25) means that its left side has a form exp (Wju), where
u € gy (for some [ € #7'(1) C Siog(M, £)) and that u is O (¢?) in gy (uniformly in

¢, 1;). The latter condition means that with respect to the splitting (6.44) (defined
by 1) we have
u=0-l+up-+c-1€ggy

(because r (i) = r(l;) = 1 and so r¢(u) = 0), where ¢ is O (e?) and up is O (£?) in
CS°(M, E) with respect to any semi-norm (8.20) (as ¢; tends to zero). This condition
is independent of [ € »~*(1) by Proposition 5.1 and by Theorem 6.1.

Now we return to the proof of Proposition 8.2, We have to prove the convergence
of the product

do({At.,,e,-}):=d0(Atm_ltm) ...(IO(Atotl)=:exp(c€m_1fm_.) . .6X|)(C€0ig) (8.26)

as sup; {¢;} tends to zero. By Lemma 8.2, the solution e, (¢, {¢;}) of (8.15) tends (in
G(M, E)) to Fy as sup; {e;} — 0. (Here, [ is the solution of (8.10).) In particular,

e1 (1, {e:}) :=exp (cam_litm_l) ...exp (ceoito) (8.27)

tends to J5. So the product e; (1, {;}) converges (as sup; {&;} — 0).
By Lemma 8.3 we have

exp (cs.-f,-) = exp (Wju;) exp (ce;itl.) (8.28)

with u; = O (e?) in @y uniformly in 7, {;. By Lemma 8.2 we conclude that for any
{e;} with sup; {€;} small enough, the products

Pi({e;}) :==exp (ce,-ftl.) exp (c&;_lfti_l) ...Eexp (C&'(]Eto) (8.29)

belong to a bounded set B in G(M, E) for any €;, t;. Indeed, (8.29) tends to Fj,
uniformly in ¢, ¢; as sup; {¢;} tends to zero. There is an open set 0 € U C gy
such that the products (8.29) belong to I, exp (W,U) for all ¢; (if sup; {e;} is small
enough) and U is bounded in g). (The latter condition means that the direct sum
components of elements of U in gy = C- 1 ®CS°(M, £)®C- 1 splitted by (6.44) are
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bounded. A set By C CS°%(M, E) is bounded, if it is bounded with respect to all semi-
norms (8.20).) So Qi := P ({&;})™" exp (W) P: ({£5}) is Id +0 (¢?) uniformly in 3,
{t;}, if sup; {e;} is small enough. (The latter condition means that Q; = exp (Wik;),
where k; is O (e?) in du). Note that Q; depends not on P;({e;}) but only on its
symbol p (P; ({¢;})) € SEl (M, E).) We have

do ({As;,€5}) = exp (Witm—1) exp (Cem—litm_l) ...exp (W) exp (ceol:o) =
ZCXP( l'Vlum—l) exp (csm—lztm_1) - €XPp (H/iui-i-l) exp (Cel'-f-lit.'q.)) ])! ({SJ}) QI' L Q0=
= Pt ({651 @m-1 .. Qo = €1 (1,{€;}) @m-1.-. Qo (8.30)

We see also that the product Qm-1 ... Qo tends to 1d € G(M, E) as sup; {e;} — 0.
Indeed, @; is 1d +0O (E?) uniformly in 7 and the product

IT; (1 + Ce?) <exp (C 253) < exp (C " sup {53‘})
J

tends to zero as sup{e;} — 0. (Here, C' > 0, {¢;} is a finite set, ¢; =1, ¢; > 0.)
Proposition 8.2 is proved. [

Theorem 8.1 follows from (8.8) and from Proposition 8.2. 0

Hence the definition (8.2) of the determinant det (A, ¢;) is correct.
Proof of Lemma 8.1. By (8.19), it is enough to prove that for sufficiently small
g; > 0,

L(ei, Ay) == F(ad (—cgili)) 0 0y ()=, 15 O(1) (8.31)

uniformly in ¢;. Here, y(t) = & (log (AtA,'.__:_l)) Je(t —tip1) € 7H(1) C Sie(M, E),
Vi (1) = (1) Let [ € »7'(1) C Sig(M, E) be fixed. Then 4 (1) := 7, (1) — [ €
CS% M, E) is defined for any point (¢1,¢) of I%, I = [0,1], sufficiently close to the
diagonal in I?. The derivative 0yy(t)|e=s; in (8.31) (where ¥(2) := 7., () is equal to
ey, ()li=¢; and so it is an element of CS(M, E). The assertion (8.31) means that
for sufficiently small ¢; an element L (g, A;) € CS%M, E) is defined and that any
semi-norm (8.20) || £|jx,ow of £ with respect to a finite cover {U;} of M by coordinate
charts is bounded by C(k,a,w) uniformly in t;, ¢;. The derivative dyy;, (t) (for ¢

sufficiently close to ;) exists, if all the homogeneous components (7?1 ")-.k (z,8) of

the symbol 7, (t) € CS%(M, E) written in local coordinates U; are smooth in ¢, z, &,

£#0
Let us prove that Jyy; (t) is O(1) in CS°(M, E) uniformly in (t1,t) from some

neighborhood of the diagonal in /2. The symbol s,,(¢) := & (A,A;') is a solution of
the equation

Oesy, (1) = o (ar) 84, (t), sy, (81)=1d. (8.32)



DETERMINANTS OF ELLIPTIC PSEUDO-DIFFERENTIAL OPERATORS 139

Here, s, (t) € SEllg(t_tl)(M, E) is a smooth curve in SEl (M, E) (i.e., the curve
exp (—c(t —t1)1) s, (t) is smooth in SENJ(M, E)). This assertion follows from the
Peano differentiability theorem for ordinary differential equations ([Ha], V. 3). For
equations equivalent to (8.32) its proof is contained in the proof of Lemma 8.2.

For small |t — t;| the symbol s,,(t) is close to Id on S*M and ¢ (log (AtAt_ll)) €
Siog(M, E) is defined. The curve G, (t) := o (log (AgAt“ll)) is smooth in Sieg(M, E)
for small [t —t, B (1) = B, (t) — c(t — t1) | is a smooth curve in CS°(M, E), i.e., in
local coordinates on M all the homogeneous components of 5;,(¢) are smooth in ¢, ¢,,
z, £ for small |t —¢,| and € # 0. We have 9,87 (t)|1=1, = c(ly, — I} € CS°(M, E) and
c(ly, — 1) = ar, — ¢l is a smooth curve in CS°(M, E) (under the conditions of (8.1)).
So v, (t) =1 = B, (t)/c(t — t1) — [ is bounded with respect to any semi-norm (8.20)
176, ()3, o, uniformly in (¢1,¢) from some small neighborhood of the diagonal in /2.
(Here, ¥, (t)|t=¢, is defined as [;,.)

[t is enough to prove that F'(— ad (g;/;)) transforms a bounded set B in CS°(M, E)
into a bounded set By in CS°(M, £) for all sufficiently small &; uniformly in ¢, {;. The
operator ad (g;;) acts on B C CS°(M, E) as ¢; [l;,b]. (It is proved above that {; — [
are uniformly bounded in CS°(M, E).) Let {U;} be a finite cover of M by coordinate
charts and let {V;}, V; C Uj, be a subordinate cover with V; compact in U;. Then
Lilw; = log [¢] - 1d + fily,, where { corresponds to local coordinates of a chart U; and

fi belongs to the restriction to V; of a bounded set B C C'S° (UJ‘, E|Uj) uniformly in
l;. So we have

by, = X {z—aﬂlogm Dgb_x(w,€) +

Qlez'fUO |C!'|>1

+ 3 (98 (file,€)_y D2bs(w,€) = bon(, )DZ (il ), Y, (8:33)

a>0

The symbol [I;, b] belongs to CS°(M, E) and by (8.33) its homogeneous components
[li,8]_,., m € Zj, can be estimated as follows. Let the semi-norm ||-|| 5 in CS°(M, E)
be defined as the sum 3_||-|[, , , over (k,a,w) with 0 < &k + |af + |w] < N. Then
the Fréchet structure given by the semi-norms |||y, N € Z4 U0, on CS°(M, E) is
equivalent to the one given by the semi-norms 3 ||-|[, ., We have by (8.33)

[lf: b] t‘»_/]‘

N <C (N’ BUi) "ble N

(8.34)
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Indeed, by (8.33) and by Leibniz’ formula, the estimate holds

> s (o022 )] ) <

m+|Bl+HwI SN =€V £#£0

scN( sup |0f log [¢]| + sup B8 DY (Ji(w,6))_, | *
€|#0,1<al<N =€V J1#0,0< |+ |al+a< N,g€Z 40
% Sup ( Eb"‘” ' |€|k+|ﬂ|) < Cn (1 + ’f"IVJ‘ N) ||b|VJ' y (8:35)

zeV}&¢0
oL y[+|al+ k<N

and | fi|V,- “N <Cn (Buj) for f; from a bounded set By, in CS°(M, E)|y;. So the op-
erator norm of ad (£;) in CS°(M, E) with respect to the semi-norm ||-|| 5 in C'S%(M, E)
is bounded by C(N, L), where L C CS°(M, E) is a bounded set such that all the
elements {; belong to { + L for all {e;}.

The action of F(ad(—ceil;)) on an element b € CS°(M, E) is defined by Re-
mark 6.17 as

zn-l

F(z) o] blz:—ce,- ad(l;) = Z nT 0 b|zz—ce; ad(ly)- (836)

n>1

The operator norm of z := —cg;ad (4) in CS°(M, E) with respect to the semi-norm
|I-|| v is bounded by ce;C(N, L). Hence the operator norm of F(z) in (CS°(M, E), |Hlx)
is bounded by ¥ (ce;C(V, L))"~ /nl. This series is convergent uniformly in &;, 0 <
g; < 1. (Note that this convergence is not uniform with respect to N € Z, UD0.)
So F(z) is a bounded operator with respect to all semi-norms ||-||,. It is proved
above that 9;y(t)|¢=:; belongs to a bounded in CS%(M, E) set uniformly in 1, t;, €;.
So F(z) - 0ry(t)}i=y, is bounded in CS®(M, E) uniformly in i, ¢;, €;. Lemma 8.1 is
proved. O

Proof of Lemma 8.3. For sufficiently small ¢;, the product on the left in (8.25)
belongs to exp (g ) by the Campbell-Hausdorfl formula. In our case this formula
takes the form

log (exp (cs,-ft..) exp (uca,f,-)) = cg; (f, - f) -+ c?e2 [L‘. - l,, f,} /2 +
+ e ([l [l = I =B)] + [T [0 B = B]]) 124 ... (8.37)

By Lemma 8.1 {;, — {; is O (&) in CS%(M, E) uniformly in ¢, t;, €, Le., (i, — ) /&
belongs to a bounded set B in CS°(M, E). Tt is proved in Lemma 8.1 that ad () is
a bounded operator in (CS%(M, E),||-|ly) for any N € Z L U0.

Note that I, — I; belongs to fio = (rp)~'(0) C §. The identifications Wi, 1,: g,y =
f(,) transform the Lie subalgebra go C @) into itself by Proposition 5.1, (5.11).
However these identifications for general I, € r='(1) do not act as Id on go. By
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(8.21), I, — I; is also O (e;) in Fo with respect to the natural extension of the semi-
norm ||-||y to go for any N > n := dim M. The operator ad ([;) is also bounded in

go C gy with respect to |||, N > n. Note that by Proposition 5.1, (5.11), the semi-
norm ||-|l; on go C @y is transformed to an equivalent semi-norm |||| y on §o C @y
under the identification Wi : gy — @q,) when N > n. So it is enough to show

that ad (l:) is bounded in (g, ||-|x), §o C 8@). The element W, (Z,) = Wy, (I1;,1;) is
given by
Wit (B) = Wb+ (L= L= 1), /21 € ). (8.38)
Any element of gy C g is of the form Ilja + ¢- 1, where a € §o = CS%(M, E) and
c € C. So we have by (8.38), (6.48), (5.7)
ad (W' (5)) (Wa+c- 1) = I (L, a]) + Ky (ki = La) - 1,
Ki(li=lLa):==(l,Li = 1},a) o = ([li1], @) 4 -

We know that ad (/;) is a bounded operator in go := (C'S°(M, E),||-|5)- The
operator ([I;,1],a),, is a bounded linear operator from (go 3 a, ||||y) to Cfor N > n.

Hence ad (I,) is bounded in go C g

(8.39)

So the first term in (8.37) is estimated in the semi-norm |||y by Ce?, the second
term is estimated by Cn - Ce?/2, the third one is estimated by C% - Ce?/6. Hence for
sufficiently small ¢; > 0 the series (8.37) is convergent with respect to the semi-norm
|y on @0 C @y (because this series is convergent in a neighborhood of zero in a
normed Lie algebra). Its ||-||y semi-norm is estimated by Cye? uniformly in &; for
small €;.

However it is difficult to prove the simultaneous convergence of the series (8.37)
with respect to all semi-norms ||| (for a fixed small &;).*" But the existence of a
logarithm for a given element ¢ € G(M, I/) (i.e., the existence of an element & € @
such that exp(h) = ¢) depends on the properties of the principal symbol (pg)ordg lor
the image pg € SEIIJ (M, E) of g, Remark 6.8. (The order of the expression on the
left in (8.24) is zero.) The convergence of the Campbell-Hausdor(f series (8.37) with
respect to semi-norms ||:|[5, N < Ny, means that in our case (for sufficiently small
¢; > 0) the first homogeneous terms (log(pg))_, (z,€), k = 0,1,..., Ny, exist and that
D2 g (log(pg))_; (,€) exist for |a| +|w|+4k < Ni. Hence log g € @ exists in our case
for sufficiently small ¢; > 0. To obtain the estimate of log g by O (e2) with respect to
all semi-norms ||-|| v (as €; tends to zero), note that in our case logg € go C @ = Wigq
is defined for small ¢;. So the semi-norms ||log g|| 5 are defined for all N € Z, U0,
For a fixed N > n := dim M the series (8.37) is convergent with respect to ||-||y on

61Tt may be so that there are no €; > 0 such that the series (8.37) is convergent with respect to
all semi-norms ||-{| y, N € Z4 U 0, simultaneously.
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go for 0 <g; < e(N), e(N) > 0.5? So by the written above estimates of the terms on
the right in (8.37) with respect to ||-|| 5, we see that the ||-||, semi-norm of the series
(8.37) is O (€?) for 0 < ¢; < (N).

The same estimate can be also produced with the help of ordinary differential
equations. Namely set v(?) := exp (titi) exp (—tl:-). Then we have v(0) = Id €
G(M, E),

-~ -

dv(t)=exp (tl}i) (l}l.—l,') exp (—tl,-) =v(t)exp (tf,-) (fu —z,-) exp (—tf,-) . (8.40)
We claim that

lo(cer) = Tdlly = O (ef)  inGo (8.41)

for all N € Z, U0 as ¢; tends to zero. Here, |||l is the operator norm in (go, ||'||x),
Le, AN fliv = |Af||~v for any f € @o and ||A||n; is the infinum of numbers with
such a property. If ||Af||x #Z 0 on g, then ||A||x > 0.

Set

q(t) 1= exp (t[,-) (l}i — i,) exp (—tl:-) =: Adexp(zi.-) (ft{ — Z,) € go,

diq(t) = ad (1) 0 q(t), q(0):= 1l ~ L.
It is shown in the proof of Lemma 8.1 that the operator ad (};) in (CSYM, E), ||-|I5)
is bounded (since {; belongs to a bounded set in (CS°(M, E), ||-|| ) for any N € Z,U0
uniformly in ¢, t;, ;). The operator ad (f.) is also bounded in g with respect to the
natural prolongation of ||-||y from CS(M, E) to §o := (rp)~1(0) C §q,). (Here, we

suppose that N > n :=dimM.) So by Lemma 8.1 and by (8.42), (8.21) we have for
all N >n,0<e <e(N)

(8.42)

ol < O~
By (8.40), (8.43) we have®

O flv®lly < 19w ()lly < Cwlle@linlla(t)]»- (8.44)

Here, we use that ||a-b||xy < Cw||alin-||6]|n for a,b € CS®(M, E). We use also that the
analogous estimates hold for « € exp (@) C exp (ﬁ(h)), b€ fo:= (rp)~"(0) C Gqy)-
(In that case ||¢||n is the operator norm in (go, ||| y). We have |la||n < exp (||efln)

N S C;VE.'. (843)

82Note that ||a||5, > ||lalln, for Ny > Ny > 0. So this series is convergent with respect to ||||
foral NeZ,U0.

63We denote the constants in (8.43), (8.44), and below depending only on N by the same symbols
Cn, Cy, etc..
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for @ = exp a, & € @o.) So the following estimates for the operator norms in (go, ||-|| ;)
hold by (8.44), (8.43)

lo(®)lly < (0}l exp (ChCireit)
10:0(1)lly < CnClesexp (CnCireit) [o(0)y

o) = 2(@)lly < [ 100(r)lldr < [0}y (exp (CrCheit) ~ 1),
I (cei) — 1dly < Che?

(8.45)

for 0 < g; < ¢(0), i.e., the estimate (8.41) is proved. Thus Lemma 8.3 is proved. O
Proof of Lemma 8.2. The equation (8.10) is equivalent to (8.12) with Ky := Id,
fii=l—1e CS%(M,E),ie.,

K, = cu(t)Ky,  u(t) = exﬁ (—ctl) (Wi (T fu + (for fe)yea /2 - 1)) exp (ctd) .
(8.46)

Here, K; € G*(M, E) .= p~! (SEllg(ﬂfI, E)), u(t) € go := W, (p,_ICSO(JW, E)), where
P By — Sig(M,E) and p: G(M, E) = SEI3(M, E) are the natural projections.
(The Lie subalgebra @o C @ is independent of [ € 7=1(1) C Sig(M, £).)

The extension p: G(M, E) — SEIIS (M, E) is central. So for k; := pK; we have the
equation in SENY(M, E)

Btk, = ul(t)kt, ko = Id, Ul(t) =cC pu(t) (847)
The coeflicient u,(¢) belongs to CS%(M, E),
wi(t) = qolt; 2,8 + a1 (e, ) + ..+ gem(Biz, ) + ..

in local coordinates = on M. (Here, q_; is positive homogeneous of degree (—7) in
£.) The symbol k; belongs to SEI(M, E) and

k't = ko(t;:ﬂ,f) + k_](t;.’c,f) +...

in local coordinates. The symbol is a local notion. So (8.47) is equivalent to the
system of ordinary equations

8lk0 = QOkO,
Oik-y = qok—1 + g-1ko + Y, O¢;go D, K,

....................................... (8.48)
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(Here, 7, j € Z+U0 and the sum on the right for dik_,, is over (r, 7, &) with r+j+|a| =
m, la|+7 > 0, and D, := i7'9,.) This system has a triangle form. Its first equation
(written with respect to a smooth local trivialization of E) for fixed (z,€) is a linear
equation

Oiko(t; 2, &) = qot; 7, Eko(t; 2, €),  ko(052,8) =1d (8.49)

on GLy(C), N :=rk¢ E. lts coefficient qo(t; =, £) is smooth in ¢, z, £ (for £ # 0),
0 <t < 1. So its solution kp is unique and smooth in such ¢, «, £&. The second
equation is a linear equation on My(C) with £_-(0; z,¢) = 0 and with known smooth
in (t,z,&) for £ # 0 coefficients qo(t; 2, &) and (g-1ko + X 0¢;q0 Dz ko) (85 T, €). So its
solution k_;(t;z,€) is unique and smooth in (¢,z,€) for £ # 0, 0 < ¢ < 1. The
equation for k_,, (in (8.48)) is also linear in My(C) with k_,,(0;z,€) = 0 and with
known smooth in (¢, z,&) (£ # 0) coefficients. So k_n,(¢; %, €) is unique and smooth in
such t, z, . Hence the solution &, of (8.47) exists and is unique, and k, € SEIg(M, E).

Therefore we know k; := pK; and have to find K, € G°(M, E). Let K2,0<¢<1,
be a smooth curve in G°(M, E) with K§ = Id and pK? = k;. Set K; := K?v;. Then
v; € p~H(Id) ~ C* C G(M, E), where C* is a central subgroup of G(M, E). (The
Lie algebra C -1 of C* is W) (p,‘l(O)). Note that the identifications Wy, restricted
to p;'(0) = C- 1 act as Id on C.) The equation (8.46) is equivalent to

Byv, = (_ (k)™ auk? + (K°)™ cu(t)[(f’) v, w=1€C*.  (8.50)

The coefficient of this linear equation is a smooth function ¢: [0,1] —» C-1 :=
W (p[’l(O)). Indeed, the image of (t) in Sig(M, E) is

—k.'t—l (0;kt + 'Ell(t)kt) = 0,

and so p(t) € C-1 C g@o C @ The curve K? is a smooth curve in G°(M, E).
So — (K%' 9,K? and Adyo)-1 cu(t) are smooth curves in @o (because u(t) is a
smooth curve in o). So ¢(t) € C-1 C go is smooth. The solution of (8.50) is
vy 1= exp (fé t,o(t)dt). Hence the equation (8.46) has a unique solution K, and the
equation (8.10) (equivalent to (8.46)) has a unique solution F}.

We have to prove that the solution eq(¢,{e:}) of (8.15) converges to the solu-
tion F, of (8.10) uniformly in ¢t € [0,1], as sup; {e;} tends to zero. Set eo(t,!) :=
exp (—ctf) eo(t,{e:}). (Here, I € r71(1) C Sig(M, E) is the same as in (8.11),
(8.46).) Then eg(t,!) := €; is the solution of the equation

ey = cx(t)e, eo = 1d,

. 8.
(1) = exp (=etl) (Wi (Liy + (i fuhs /2 D) exp (e]) = i) )
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for t € (ti,tig1) = (i ti + €:). (Here, u(t) is defined by (8.46) and f, ;= {, — . Recall
that the analogous equation for K; = exp (—cti) Fis 0K, = cu(t)K,, Ko =1d.)

In (8.51) e is a curve in G°(M,E) and z(t) € go. The image €/ = pe, in
SElly (M, E) of the curve e, is the solution of the equation

e} = z((t)e], eg=1d, x(t)=c-pz(t) € C.S'O(ﬂ'[, E). (8.52)

Here, (%) for t € (4i,tiy1) is equal to wuy (¢;), where u;(¢) is the coefficient of the
equation (8.47). The symbol €7 belongs to SEI(M, E) and in local coordinates it
takes the form

e} =mo(t;z, &) + moa(t2,6) 4+ ...,
where m_; is positive homogeneous of degree (—j) in . The symbol is a local
notion. So the equation (8.52) is equivalent to the system of the form (8.48) with k_;
changed by m_; and with ¢_;({;2,€), t € (4,%i41), changed by ¢°; := q_; (L;;2,£).
Here, k_;(0;z,€) = q—;(0;z,€) = §;01d. The first equations of these systems

ko = qoko, Oymo = gimy (8.53)

for fixed (z,£), & # 0, are linear equations on GLy(C), N := tkg¢ E. So ky'mg =:
ro € GLN(C) is the solution of the equation

Oro(t) = (k(;l (25 — ) ’»‘o) ro(t) =: so(t)ro(t), 70(0) = 1d. (8.54)
Here, the coefficients g and ¢f are

QO(t) = Adexp(—ctl) Ofta qs(t) = Adexp(—ctl) oft.-

for ¢ € (titi+1). The symbol exp(—ctl) belongs to SEllg¥(M, E) and it can be
locally expressed by the symbol [ (as in Section 2). So for sup; {e;} small enough,
the difference go(t) — ¢5(¢) is small uniformly in ¢ € [0,1], z, £ (€ # 0). The same
assertion is true for any finite number of partial derivatives ¢ DY (qo(t) — g§(1)), i-e.,
llgo(?) — g§(2)|ly for 0 < N < N, and any fixed N; € Z; is uniformly small in ¢ as
sup; {&:} tends to zero. (Here, ||-||y is the same semi-norm over a local coordinate
chart V; as in (8.34), (8.35).)

The principal symbol ko(t) := ko(t;z,€) in (8.54) is a fixed smooth curve in
SENY(M, E)/CS~Y(M, E). So Adi=gy (g5 — qo) (¢) is small uniformly in ¢, z, £ (¢ # 0)
with respect to semi-norms ||-||y over V; for 0 < N < N; as sup; {e;} tends to zero.
Hence by (8.54) we claim that for any € > 0, Ny € Z, there is § > 0 such that for
0NN,

lro(t) — M|y < ¢ (8.55)
uniformly in ¢ € [0,1] as sup; {&;} < 6.
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The second equations of (8.48) and of the analogous system for m_; are

Oek_1 = qoky + (Q—lko + Zae;(IoDx;ko) )

& (4 " 856
Om_, = qom_y + (q_1m0 -+ Z aequD,..mo) , ( )

m-y(0;2,€) = k_1(0;z,€) = 0.

For fixed (z,€), £ # 0, these equations are linear with known coefficients such that
the estimates ||qo — q§i|y < € and

<€
N

” (Q—nko + Z 3&.—‘10Da:.-k0) - (Qi1m0 + g5 Dr;mo)

hold uniformly in ¢ € [0,1] for 0 < N < Nj as sup; {€;} < 4. (This assertion is true
for any given ¢ > 0, Ny € Zy, if § is sufficiently small.) From (8.56) we conclude
that ||k_y —m_|| is small umformly int€[0,1] for 0 < N < Ny, if sup,; {&} is
sufﬁcncntly small

—m_jlly, 0 £ N < Ny (with any Ny, € Z), if
0<j<a-1(a€Zy). Then with the help of the linear equations for k_, from
the system (8.48) and with the help of the analogous equations for m_, we conclude
that the same assertion is true for ||k_s — m_s||, uniformly in ¢ € {0,1] as sup; {e:}
tends to zero. Therefore, the solutions €f(t) € SENg(M, E) of (8.52) (for different
{e:}) tend to the solution k(t) of (8.47) uniformly in ¢t € {0,1] with respect to all
semi-norms |||y as sup, {€;} tends to zero.

Set 7, := K 'e; € GO(M, E), 0 <t < 1. (We know already that pr, € SEIJ(M, E)
tends to Id uniformly in ¢ € [0, 1] with respect to ||-||y as sup; {e;} — 0.) The curve
¢ is the solution of the equation

e = (cAdg=1((t) —u(t)) 1o, 7o =1d. (8.57)

(The coefficient in (8.57) belongs to fio. The semi-norms |||y on go := CS°(M, E)
have natural continuations to the semi-norms ||:||y on go C 5(1) ) The coefficient in
(8.57) is small with respect to |||y, 0 £ N < Ny, uniformly in ¢ € [0,1] as sup, {e;}
tends to zero. The projection pr, € SElG(M, E) is close to 1d with respect to ||-||x
uniformly in ¢ € {0,1] under the same conditions. An element g € G°(M, F) has a
logarithm in @y, if pg € SENG(M, E) has a logarithm in §o := CS°(M, E). Note that
log pr¢ exists because pry is close to Id in |||y, 1 £ N < N;. So the equation (8.57)
for r¢ can be written as the equation for p, :=logr, € go C gy (by Lemma 6.6).
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Namely, by (6.74), (6.141), the equation (8.57) is equivalent to the equation for
pi € o
Oipy = cF~" (ad (p1)) Adg (z(t) —u(t)), ro=0,

P 0 00) = =12 T S B

k21

(8.58)

exp z — 1 lz2=ad(p) z=ad(p)’

(The series /~!(z) is convergent for |z| < 27n.) Taking into account (8.58) we conclude
that '

Oulledly < M0l < c|F7 ad ()], [[Adir(=0) =y, - (8:59)

One can try to prove that ||p|y is small for ¢ € [0,1], 0 < N < N; using the
estimates analogous to (8.59) and the Picard approximations. However we prefer to
use the structure of (8.58) and the information about |[pp,|| -

Note that ad (a;) = ad (as) in @o (for a; € @o), if a1 — a; belongs to the central Lie
subalgebra C - 1 of go. So ad (p;) (as an operator in go) depends on pp; € go only.
Set ad (pp:) := ad (p}) for any p} with pp, = pp:. We know the solution pp; of the
equation in go which is the projection of (8.58) to go. Namely pp; is the solution of
the equation

8 (ppe) = cF~" (ad (pp:)) p (Ad o (a(t) — u(t))) =
= F~! (ad (pp1)) Adg=r (z1(1) —wi(t)),  (8.60)

and we know that ||pp:||y is small uniformly in ¢ € [0,1], N for 0 < N < N; as
sup, {&;} is small enough. Let { € r~'(1) C Sig(M, E) be fixed. Then the equation
(8.58) in gy written with respect to the splitting (6.44) is

dpe = F7* (ad (pp2)) (p (Adgemr (2(2) —u(t)) @ f(2) 1)), (8.61)

where f: {0,1] = C is a smooth function and |f(¢)] is small uniformly in ¢ € [0,1] as
sup; {&;} is small enough. We know that [Jad (pp)||y is small in go for N < N;. So
it is small also in go for n ;= dimM < N < N,. Set p; = pps ® w; - 1, w; € C, with
respect to the splitting (6.44). Then in view of (8.60), (8.61) we conclude that w, is
the solution of an ordinary differential equation

Oyw, = f(£) + (ppt, [z, (1 —z/2=-% -C(ST'_zl—l;!)z%-') z=nd(pp,)“‘Dm‘ (8.62)

Here, u, := Adj—1 (z1(t) - u1(t)) and ad (pp;) in (8.62) acts on go := CS°(M, E).

To prove that p, is small in (go, ||-||y) for 0 < N < Ny, it is enough to prove that
|wy| is small for ¢ € [0,1], if sup; {&;} is small enough. We know that pp; and u, are
small in (go, ||]|y) for 0 < N < Ny, It is proved in (8.34) that ad(/) is a bounded
operator in go with respect to ||-||. The operator ad (pp¢) in (go, ||-|| ;) has the norm
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|lad (ppe )|l 5 not greater than Cy |[pp:||y by (8.35). So the series on the right in (8.62)
is convergent and the estimate

(- i)

is valid for sup; {&;} small enough. We have by (8.62), by the estimate |(a,b)es| <
la]|~i|bl|x for a,b € go, N > n, and by (8.63)

t , t
I < [ 1S+ v [ porlly sl dr

for any N > n. So |w(t)] is small for ¢ € [0,1], if sup; {&;} is small enough. Hence for
such {e;} the logarithm p; of r; is small in (o, ||||) for all ¢ € [0,1],0 < N < Ny.
Thus r, € G°(M, E) is uniformly in ¢ € [0, 1] close to Id € G°(M, E) with respect to
all ||-||y as sup; {e;} tends to zero. Lemma 8.2 is proved. O

<Cludly — (563)
N

iy

z=ad(ppt)

8.1. Connections on determinant bundles given by logarithmic symbols.
Another determinant for general elliptic PDOs. Let ! be the symbol of log gy A,
where A € Ellg(M, E) and L, is an admissible (for A) cut of the spectral plane.
Then the central C*-extension g of the Lie algebra Sig(M, E) =: g is defined and
[ also defines the splitting (6.44)

gn=00C- 1. (8.64)

Theorem 6.1 provides us with a canonical isomorphism between g and the Lie
algebra g(M, E) of the determinant Lie group G(M, E). Hence the splitting (8.64)
defines a connection on the C*-bundle p: G(M, £) — SEl; (M, E). Namely a local
smooth curve g; € G(M, E), t € [—¢, €], is horizontal with respect to this connection,
if g - g7'' belongs to the subspace g of g(M, E) = gy with respect to the splitting
(8.64).

Let an operator B € ElI (M, E) be fixed.®* There exists a smooth curve b, €
Sieg(M, E), t € [0,1], such that the symbol o(B) is equal to the value at ¢ = 1 of the
solution s, of the equation in SEIlIJ (M, £)

8;3: = ngt, Sg = 1d. (865)

Let b; be such a curve in SElIS (M, E). Then for a fixed { (= ¢ (log(g) A), Ace

EllJ(M, E)) the connection on G(M, E) defined by ! gives us a canonical pull-back of
the curve s, C SEl; (M, E) to the curve §; C G(M, E). This curve §, is the solution
of the equation in G(M, F)

atét = (H(;)bt) M gg, §t = Id, (866)

641n this subsection we don’t suppose that B has a real or a nonzero order.
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where Iy: g = gg) = g(M, E) is the inclusion with respect to the splitting (8.64)
(and to the canonical identification given by Theorem 6.1).

Definition. Let the operator B € ElIJ (M, E), the logarithmic symbol { of a first-
order elliptic PDO A € Ellg(M, E), and a curve b, in Siog(M, ) such that the solution
s; of (8.64) is equal to o(B) at t = 1, be fixed. Then the determinant of B is defined
by

det (B, (1,b,)) := dy(B) /3. | (8.67)

Here, d\(B) is the image of B € Ellj (M, E) in the quotient G(M, E):= F\Ellf (M, E),
where the normal subgroup Fg of Ellg (M, E) is defined by (6.1). The term 3, in (8.67)
is the value at ¢ = 1 of the solution §; for (8.66) with the coeflicient &;.

Remark 8.7. This determinant is invariant under smooth reparametrizations of a
curve b,. This determinant is defined for any smooth curve s, 0 < ¢t < 1, in

SEUY (M, E) such that sy = Id, sy = o(B). (Here, b} := d;s, - s7".)

Remark 8.8. We have p3, = s;, where p: G(M, E) — SEIIJ (M, E) is the natural
projection. Hence 3; € p~'(c(B)). We have det (B,(l,b;)) € C* since the fibers of
p are principal homogeneous C*-spaces because Fy\F = C* and because F, Fy are
normal subgroups in Ellf (M, E) (defined in Section 6).

Remark 8.9. The determinant det (B, (/,b;)) depends on a curve b, in the space of log-
arithmic symbols (in contrast with a curve a, from the definition (8.2), a; C ell(M, E),
i.e., it is a curve in the space of logarithms for classical elliptic PDOs). The deter-
minant det (B, ({,b;)) is defined for all classical elliptic PDOs, not only for PDOs of
real nonzero orders. In contrast, the determinant (8.2) is defined for PDOs of real
nonzero orders.

Remark 8.10. Let a logarithmic symbol [; = ¢ (log(gl)/h) be fixed. (Here, A, €

Ellg(M, E) and L, is an admissible for A, cut of the spectral plane.) Then by
(6.47), we have

5i(0)/50) = exp ([ dt (b= Tghe) ) =

— exp (/01 At (b =7 (b) (1 +1) /2,0 = D)) =150 [ (b 1) (8.68)

Note that f (b;l,{;) is the integral over M x [0,1] of a density locally defined by the
symbols of b, {, and of {;. By (8.68) we have

det (B, (1,0:)) / det (B, (i, b)) = exp f (b5 1, 11). (8.69)
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Remark 8.11. By (6.48) we have the formula for a curvature of the connection defined
by | = o(log A), A € Ellg(M, F), on the C*-bundle p: G(M, E) — SEIX(M, E).
Namely, if g1, € T, (SEIIS‘ (M, E')) are two tangent vectors, then the value of the
curvature form is given by

Ri(gn,62) = Ki (g™, 207") (8.70)

where K is the 2-cocycle on Siog(M, E) defined by (5.5) (and by Lemma 5.1), g;¢7" €
Sg(M, E) =: g. Let b, and b}, t € [0,1], be two curves in g such that the solutions
of (8.65) with the coefficients b, and b, have o(B) as their values at { = 1 and are
homotopic curves in SEIJ (M, £) from Id to ¢(B). Then we have

51 (8) /5 (b) = exp (/D (,o*m) , (8.71)

where R; is defined by (8.70) and ¢: D* = SElIJ (M, E) is a smooth homotopy
between s (b)) and s(b¢) in SEIJ (M, E). Note that R; is a 2-form on SElif (M, E)
with the values on (g1,42) € T, (SEI]S‘(M, E)) given by an integral over M of a
density locally defined by the symbols g, g;, {. We have by (8.67), (8.71)

det (B, (1,b)) / det (B, (1, b)) = exp (/m go"R;) (8.72)

with the same meaning of ¢ as in (8.71). By Remarks 8.10, 8.11, we can control the
dependence of the integral (8.67) on ! and on curves s, s} in SEII (M, E) from 1d to
o(B) from the same homotopy class.

Remark 8.12. Let By, B, € EllJ (M, E) and let s,(t) and s3(1) be smooth curves from
Id to o (B;) and to o (B;) in SEIIJ (M, E). Set b;; := Ois;(t). Let the logarithmic

symbol [ = o(log A), A € Elly(M, ), be fixed. Then we have
dl (BQB]) = d1 (BQ) dl (Bl) s
S‘;?L: §2.§1.

(8.73)

The latter equality follows from (8.65), (8.66). Hence in view of d;/3§; € C*, we have

det (BQB], (l, (bg‘t U b[yz))) = det (Bl, (l, bl,t)) det (Bz, (l, bg’t)) ) (874)

Here, by ¢ U by, corresponds to a piecewise-smooth curve s, U s; from Id to o (B, By)

through o (B;) which coincides with s;(2¢) for ¢ € [0,1/2] and with s3(2¢ — 1) for
te(1/2,1).

It follows from Remarks 8.11, 8.12 that to investigate the dependence of the de-

terminant det (B, ({,5;)) on the homotopy class of a smooth curve s, from Id to o(B)
in SEllg (M, E), it is enough to compute

det(1d, (I, 2mip)) =: k(p,{) (8.75)
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for projectors p € CS3(M, E), p* =p, in the algebra CS3 of classical PDO-symbols of
order zero. Each of these projectors corresponds to a cyclic subgroup exp2mitp), 0 <

t <1, in SEI(M, E). Such subgroups span the fundamental group m (S ENS(M, 1), Icl).
This staterhent is proved in the proof of Lemma 4.2 in Section 4.5.

Remark 8.13. To compute (8.75), we use Proposition 7.1). Namely we have

det(1d, (,2mip)) := Id - exp (—ZNiHmp) = dy(exp(2miP)) exp(— f(2miP, A)) =
= exp(—2mif(P, A)). (8.76)

Here, P is a PDO-projector P € CL*M, E), P? = P, with o(P) = p. (Such a
projector P exists by [Wo3].) The operator A in (8.76) is an invertible elliptic PDO,
A € Tl (M, E), with its symbol o(A) equal to expl. The spectral f(P, A) of a pair
(P, A) is defined by (7.9). Hence

det(1d, ({, 2rip)) = exp(—2ni fo(p, expl)),
Jolmexpl) € CJZ, fo(pexpl) = F(P, A)( mod Z).

By Lemma 7.1 the generalized spectral asymmetry f(P, A)( mod Z) depends on
symbols o(P) = p, 7(A) = exp! only.
Remarks 8.11, 8.12, 8.13 express the dependence of the determinant det(B,(1,b,)
on b, and on [ through generalized spectral asymmetries fo(p,exp!)), p* = p, p €
CS°(M, E), and through the integrals (8.68), (8.72) of densities locally canonically
defined by homogeneous terms of symbols in arbitrary coordinate charts.

(8.77)

8.2. The determinant defined by a logarithmic symbol as an extension of
the zeta-regularized determinant.

Remark 8.14. For A € Ellj(M, E), for | € Siog(M, E) such that expl = o(A), and
for by = 1, we have s; = g(A) (where s; is the solution of (8.65)). Hence

det(A, (1,1)) := di(A)/ exp (Tyl) =: di(A)/ 4, (8.78)

where A is defined by (6.45).
We suppose that there exists [ € Sioz(M, E) such that exp! = o(A). Hence the
symbol exp(el) for ¢ € Ry small enough is sufficiently close to a positive definite

symbol. Hence B := A® possesses a spectral cut Lz close to Ly and (g s(s) is
defined. Set

det(z)(A) :=exp (—6_183(:5!(5)(5“,:0) . (8.79)
By Proposition 6.3 the element
do(A) := di(A)/det(z)(A) € p~' (exp ) (8.80)
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depends on o(A) := exp! only. Here, p: G(M,E) = SEIIJ (M, E)} is the natural
projection. Hence by (8.78), (8.80) we have

det(A, (1,1)) = det(z)(A) - do(expl)/ exp (Ipl) . (8.81)

The elements do(exp [) and exp (ﬂ(z)l) correspond one to another under the local iden-

tification of the Lie groups G(M, F) and exp(g) = exp (ﬁ(;)) given by Theorem 6.1.
Hence we obtain the assertion as follows.

Proposition 8.3. Let A € Ellg(M, E) have a logarithmic symbol | € Sig(M, E),
i.e., o(A) = expl, where expl is defined as the value al 7 = 1 of the solution of the
equation in SEll (M, E)

0. A; = lA;, Ao=1d.

Then the equality holds

det(#)(A) = det(A, ({,1)), (8.82)

where the zeta-regularized determinant det(zy(A) is defined by (8.79) for B := A*
with € € Ry such that A® possesses a spectral cut Lzy close to L(yy). The determinant
on the right in (8.82) is the determinant (8.67) with by =1 fort € [0,1], where A is
substituted instead of B.

Remark 8.15. Let A € EIG(M, E) be an elliptic operator of a real nonzero order d( A)
such that there exists a logarithmic symbol d(A)! € Si,g(M, E) of A, exp(d(A)!) =
o(A). Then detgz(A) in the sense of (8.79) is defined (and it is independent of a
sufficiently small ¢ € Ry. The term det(A, ({,d(A)!)) (i.e., the determinant (8.67)
with b, = d(A)!) is also defined. The equalities hold (analogous to (8.81))

det(A, (1, d(A)1)) = det(s)(A)do(exp(d(A))) fexp(Myd(A)l) = det(zy(A), (8.83)

since dp(exp(d(A)l)) corresponds to exp (H“)d(A)l) under the local identification
G(M, E) = exp (@) given by Theorem 6.1. Hence the determinant det(A, (!, d(A)!))
given by (8.67) for an elliptic PDO A of a real nonzero order d(A) (and such that a
logarithmic symbol d(A) - [ of A exists) is equal to the zeta-regularized determinant
det(,-r)(A).

Thus the determinant (8.67) gives us an extension of the zeta-regularized determi-
nant det;(A) to the class of general elliptic PDOs Ell (M, E) of all complex orders
from the connected component of the operator Id € ElJ(M, E). Note that the de-
terminant (8.67) depends not only on A and on [ but also on an appropriate curve
b;, t € [0,1], in the Lie algebra Siog(M, E) of logarithmic symbols.
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8.3. Determinants near the domain where logarithms of symbols do not
exist. Let A(z) € ElIS¥) (M, E) be a holomorphic family of elliptic PDOs of order
o(z). We suppose that a(z) € C*. Here, z belongs to a one-connected neighborhood
UofI:=1[0,1] CC > =2 Letforz€[0,2) a logarithm of o(A(z)) exist. We are
interested in the asymptotic behavior as z = zy of determinants of A(z) We claim
that there is a locally defined by the symbols o(A(z)), o(log A(z)) object which
controls det(A(z)) as z — zp along /.

Namely let I € 771(1) C Sio( M, E) be a logarithmic symbol of order one (r is from
(5.4)). Then [ defines the splitting (8.64) of @ := Wid(). Hence a connection on the
C*-bundle G(M, E) over SEllj (M, E) is defined by {. A vector §(t) € TyyyG(M, E)
belongs to a horizontal subspace, if §(t)g~'(t) € Wig. (Here, g := Sie(M, E) is
identified with the image of g in gy under the splitting (8.64).)

The section U — G(M,E), U 35 z = di(A(z)) € G(M,E), over U 3 z —
o(A(2)) € SElIS (M, E) is defined.®® It is holomorphicin z € U. Let fo(2): U 32 =
G(M, E} be another section of p: G(M, E) — SEIIS (M, £) which is a holomorphic
curve in G(M, F) horizontal with respect to the connection defined by ! and such
that fo(A(0)) = di(A(0)), 0 € U. (Note that this connection is holomorphic. Thus
such a holomorphic curve exists and is unique.)

Then d,(2)/ fo(z) € Cis a holomorphic function of z € U and fo(z) is locally defined
by the symbols o(A(z)) of our family. (We suppose here that d;(A(0)) is known. For
example, if A(0) =1d € Ell5 (M, E), then d,(A(0)) =Id € G(M, E).)

Let a log A(z) € ell(M, E) exist. Then by Remark 3.4 and by Propositions 3.4, 3.5
we have®®

detc(A(z)) :=exp (—3, TR exp(—slog A(z))

,=o) . (8.84)

Let o(log A(z)) = a(z)!+ao(z), where [ is a logarithmic symbol of an order one elliptic
PDO, ap(z) C CS%(M, E) is holomorphic in z for z € [0, z0), and ao(2) diverges as
zZ — Zp.

By Proposition 6.6, by Corollary 6.2, and by (6.30) we have a section

S = do(e(log A(2)))

of the C*-bundle G(M, E) over § = 5(z) := 0o(A(2)), z € [0,2), depending on
o(log A(z)) only. 1 log A(z) exists, then by the definition of do(o(log A(2))) the
zeta-regularized determinant (8.84) is equal to

det(A(z)) = di(A(2))/do(o(log A(2))). (8.85)

85The element d;(A) is the image of A € Ellf (M, E) in G(M, E) := Fo\ Ell§ (M, E}, Section 5.

86Tt is the canonical trace for PDOs of noninteger orders defined in Section 3. By Proposition 3.4
the residue of the zeta-function on the right in (8.84) at s = 0 is —res(ld) = 0. Hence the expression
on the right in (8.84) is defined.
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Here, d;(A) is defined as the class FyA in the determinant Lie group G(M, E) =
Fo\ EllJ (M, E).

However the canonical determinant det(A) is defined for more wide class of elliptic
PDOs than the class of PDOs A such that log A exists, Remark 6.7, (6.31). Namely
if o(log A) € Sieg(M, E) is defined, then

det(A).:= dy(A)/do(c(log A)). (8.86)

This determinant can be defined even if the zeta-regularized determinant det;(A) is
not defined, Remark 6.7. (The definition (8.86) does not use log A. However log A is
defined, if (4(s) exists.)

Proposition 8.4. There is a scalar function

B(2) = do(o(log A(2)))/ fo(o(A(2))

holomorphic in z € [0,2) and defined by symbols (and by logarithmic symbols) of
our holomorphic family and such that the divergence of the canonical determinant
det(A(z)) as z — zo along I is defined by the behavior of B(z) as z — zy along
[O)ZO)'

Proof. By (8.85) and by the definition of fo(2) we have

det(A(2)) = (di(A(2))/ fo(2)) / B(2).
The factor di1{A(z))/ fo(2) is holomorphic in z for z € U. O
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