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ALGEBRAIC INDEPENDENCE FOR VALUES OF INTEGRAL CURVES

TIAGO J. FONSECA

Abstract. We prove a transcendence theorem concerning values of holomorphic maps from a disk
to a quasi-projective variety over Q that are integral curves of some algebraic vector field (defined

over Q). These maps are required to satisfy some integrality property, besides a growth condition
and a strong form of Zariski-density that are natural for integral curves of algebraic vector fields.

This result generalizes a theorem of Nesterenko concerning algebraic independence of values of
the Eisenstein series E2, E4, E6. The main technical improvement in our approach is the replacement
of a rather restrictive hypothesis of polynomial growth on Taylor coefficients by a geometric notion
of moderate growth formulated in terms of Value Distribution Theory.
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1. Introduction

1.1. A theorem of Nesterenko. This work was motivated by questions related to the following
algebraic independence result.
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2 ALGEBRAIC INDEPENDENCE FOR VALUES OF INTEGRAL CURVES

Let E2, E4, and E6 be the classical Eisenstein series, seen as holomorphic functions on the
complex unit disk D := {q ∈ C | |q| < 1}, explicitly defined by

E2(q) = 1− 24
∞∑
j=1

σ1(j)qj , E4(q) = 1 + 240
∞∑
j=1

σ3(j)qj , E6(q) = 1− 504
∞∑
j=1

σ5(j)qj

for every q ∈ D, where σk(j) :=
∑

d|j d
k ∈ Z. Let us also consider the q-expansion of the j-invariant

J(q) = 1728
E4(q)3

E4(q)3 − E6(q)2
=

1

q
+ 744 +

∞∑
j=1

c(j)qj .

Theorem 1.1 (Nesterenko [27]). For every z ∈ D \ {0}, we have

trdegQQ(z, E2(z), E4(z), E6(z)) ≥ 3.

This result is an improvement of Barré-Sirieix’s, Diaz’s, Gramain’s, and Philibert’s breakthrough
[1] concerning the solution of a conjecture of Mahler: for every algebraic z ∈ D \ {0}, J(z) is
transcendental.

In order to fully motivate our contributions, we next sketch the main steps of Nesterenko’s
original proof.

In view of an algebraic independence criterion due to Philippon ([31] Théorème 2.11; see also
[27] Lemma 2.5), it suffices to construct a sequence of polynomials with integral coefficients Qn ∈
Z[X0, X1, X2, X3], for n � 0, such that degQn = O(n log n), log ‖Qn‖∞ = O(n log2 n) — here,
‖Qn‖∞ denotes the maximum of the absolute values of all the coefficients of Qn —, and

−an4 ≤ log |Qn(z, E2(z), E4(z), E6(z))| ≤ −bn4

for some real constants a > b > 0.
For this, Nesterenko implemented a method benefiting from the fact that E2, E4, and E6 have

integral Taylor coefficients in their q-expansion and satisfy the so-called Ramanujan equations:

q
dE2

dq
=
E2

2 − E4

12
, q

dE4

dq
=
E2E4 − E6

3
, q

dE6

dq
=
E2E6 − E2

4

2
.

It is also essential in his construction that

(i) [Growth condition] for each k ∈ {1, 2, 3}, the sequence of Taylor coefficients (E
(j)
2k (0)/j!)j≥0

grows polynomialy in j, and
(ii) [Zero Lemma]1 there exists a constant C > 0 such that

ordq=0P (q, E2(q), E4(q), E6(q)) ≤ C(degP )4

for every non-zero polynomial P ∈ C[X0, X1, X2, X3] \ {0}.
The first condition can be easily deduced from the explicit description of the Taylor coefficients of
E2k given above. The second, which may be regarded as a strong form of algebraic independence

1In Diophantine Approximation and Transcendental Number Theory, “Zero Lemma” is an umbrella term cov-
ering several auxiliary results involving estimates of number of zeros in a certain region, or zeros multiplicities, of
polynomials composed with analytic functions.
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between the functions q, E2(q), E4(q), and E6(q), is a non-trivial consequence of Nesterenko’s D-
property (Definition B.1 below; cf. [27] Paragraph 6), an algebraic property concerning the global
behavior of the foliation in C4 induced by the vector field

v := x0
∂

∂x0
+

(x2
1 − x2)

12

∂

∂x1
+

(x1x2 − x3)

3

∂

∂x2
+

(x1x3 − x2
2)

2

∂

∂x3
.(1.1)

A considerable part of [27] is devoted to a proof of a stronger form of the estimate in (ii).
Nesterenko’s method goes as follows.

(1) Using that the Taylor coefficients of E2, E4, and E6 are integers of polynomial growth
(property (i) above), we may apply Siegel’s Lemma ([24] I.1 Lemma 1) to obtain auxiliary
polynomials with integral coefficients Pn ∈ Z[X0, X1, X2, X3] \ {0} such that degPn = n,
log ‖Pn‖∞ = O(n log n), and

ordq=0Pn(q, E2(q), E4(q), E6(q)) ≥ cn4

for some constant c > 0.
(2) For a fixed z ∈ D \ {0}, the next step consists in proving the existence of a sequence

jn = O(n log n) and of constants α > β > 0 such that the composed function fn(q) :=
Pn(q, E2(q), E4(q), E6(q)) satisfies

−αn4 ≤ log |f (jn)
n (z)| ≤ −βn4

for n � 0. The main point for obtaining the above lower bound is that, if all the Taylor
coefficients of fn at q = z up to a sufficiently large order are too small, then its first non-zero
Taylor coefficient at q = 0 will have absolute value < 1, thereby contradicting its integrality.
Here, we also make essential use of property (ii) above. This is the most delicate part of
the argument.

(3) Finally, for n� 0, if we consider the differential operator

v[jn] := 12jnv ◦ (v − 1) ◦ · · · ◦ (v − (jn − 1)),

then the Ramanujan equations imply that Qn := v[jd](Pn) ∈ Z[X0, X1, X2, X3] satisfies

(12q)jnf (jn)
n (q) = Qn(q, E2(q), E4(q), E6(q))

for every q ∈ D. The required properties for Qn are now easily deducible from (1) and (2).

1.2. A puzzling remark. One of the most striking features of the above method is its generality.
Indeed, a close inspection of the previous arguments suggests that, if f1, . . . , fm are holomorphic

functions on the unit disk D with integral Taylor coefficients at q = 0, satisfying some algebraic
differential equations with rational coefficients, and verifying conditions akin to (i) and (ii) above,
then, mutatis mutandis, the above method applied to the system (f1, . . . , fm) in place of (E2, E4, E6)
would produce another transcendence result.

This was certainly known to specialists; see, for instance, [28] Section 3, where the pertinent
properties satisfied by E2, E4, and E6 were axiomatized as above — more generally, see Philip-
pon’s notion of K-functions, introduced in [32]. Clearly, one may produce examples of such fi ad
libitum by algebraically manipulating Eisenstein series, but this procedure does not lead to new
transcendence results. The problem on the existence of functions f1, . . . , fm satisfying the above
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properties, but not “related” to classical modular forms (in some imprecise sense), was explicitly
stated by Zudilin in [38].

Since the publication of [9] and [26], it became apparent that the phenomenon of Mirror Sym-
metry provides a large class of functions with integral Taylor coefficients with respect to some
canonical coordinate and which satisfy natural algebraic differential equations — see [25], [37], [21],
[22], [11] for integrality issues. In [36], Zudilin studies some candidates within Mirror Symmetry
for playing the role of (f1, . . . , fm), but the few cases where he is able to prove all the required
properties of Nesterenko’s method — those linked to elliptic curves and K3 surfaces — are all of
modular nature.

It becomes clear in Zudilin’s work that one of the main obstructions in applying this method
for such functions is condition (i) (and, in particular, that the radius of convergence is equal to 1),
which is not verified in general. In a more basic level, computing radii of convergence or getting
global information on the domain of definition of such functions pertaining to Mirror Symmetry is
a current research problem; see [23] for results on certain families of mirror maps.

The following phenomenon provides further evidence that condition (i) is overly restrictive. Let
f be the holomorphic function on D given by f(q) = qJ(q) and set θ := q ddq . Since Q(J, θJ, θ2J) =

Q(E2, E4, E6) (see, for instance, the explicit formulas in [27] Paragraph 1), it follows from Theorem
1.1 that

trdegQQ(z, f(z), θf(z), θ2f(z)) ≥ 3

for any z ∈ D \ {0}. However, Nesterenko’s method cannot be directly applied to the system
(f, θf, θ2f) since the sequence c(j) does not grows polynomialy in j.2 All the other good properties
are nevertheless satisfied: f , θf , and θ2f have integral Taylor coefficients, the Ramanujan equations
imply that f satisfies a third order algebraic differential equation with rational coefficients, and a
condition similar to (ii) also holds.

This paper grew from an observation of J.-B. Bost and H. Randriambololona that the growth
condition (i) in Nesterenko’s method could be replaced by a geometric notion of moderate growth
formulated in terms of characteristic functions à la Nevanlinna Theory. Besides being weaker than
the growth condition in (i), which in principle enlarges the domain of application of Nesterenko’s
method, this geometric growth condition is preserved under some algebraic manipulations on the
input functions, thereby eliminating the odd phenomenon explained in last paragraph.

We next explain our main results. Further directions and open problems are indicated below.

1.3. Our main results: a geometric approach. Our main theorem is a general geometric
formulation of Nesterenko’s method valid for arbitrary rings of algebraic integers and more general
quasi-projective ambient spaces.

Let us first informally introduce the geometric notions which will replace conditions (i) and (ii)
above.

1.3.1. Moderate growth. Let X be a smooth projective variety over C, and h be a C∞ Hermitian
metric on the complex manifold X(C). Let ω := − Imh be the positive real (1,1)-form on X(C)

2Actually, c(j) ∼ e4π
√
j

√
2j3/4

; see [30] or [33].
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associated to h. To fix ideas, the reader may consider the example X = Pn
C endowed with the

Fubini-Study metric, for which ω is given in homogeneous coordinates z = (z0 : · · · : zn) by

ω =
i

2π
∂∂ log |z|2 =

i

2π

(∑n
j=0 dzj ∧ dzj
|z|2

−
∑n

j,k=0 zjzkdzj ∧ dzk
|z|4

)
,

where |z|2 =
∑n

j=0 |zj |2.

Let R > 0 be a real number and denote by DR := {z ∈ C | |z| < R} the complex disk of radius
R centered at the origin. One may measure the growth of an analytic map ϕ : DR −→ X(C) as
follows. For each t ∈ (0, R), the area of the “disk” ϕ(Dt) in X(C) with respect to the metric h is
given by

Aϕ(t) :=

∫
Dt

ϕ∗ω.

We may then form the characteristic function

Tϕ : (0, R) −→ R≥0

r 7−→ Tϕ(r) :=

∫ r

0
Aϕ(t)d log t,

and we say that ϕ has moderate growth in X if

lim sup
r−→R−

Tϕ(r)

log 1
1− r

R

< +∞

By the compactness of X(C), moderate growth does not depend on the choice of Hermitian metric.
When R = 1, any analytic map ϕ : D −→ Cn ⊂ Pn(C) whose coordinates have Taylor co-

efficients of polynomial growth has moderate growth in Pn
C (see Example 4.5 below). Therefore,

moderate growth generalizes the growth condition (i) in Nesterenko’s method.
Moderate growth is nonetheless more flexible than polynomial growth on Taylor coefficients. For

instance, as long as the image of ϕ : DR −→ X(C) is Zariski-dense in X, moderate growth is a
birational invariant in the following sense: if f : X −→ Y is a birational morphism between smooth
projective varieties over C, then ϕ has moderate growth in X if and only if f ◦ ϕ has moderate
growth in Y (see Theorem 4.11 and Corollary 4.12 below). In particular, this allows us to define, via
compactifications, an unambiguous notion of moderate growth in smooth quasi-projective varieties.

1.3.2. ZL-density. Let k be a field, X a projective variety over k of dimension n, and L an ample
line bundle on X. Consider a parametrized formal curve ϕ̂ : Spf k[[q]] −→ X in X, i.e., ϕ̂ is a
morphism of formal k-schemes.

We say that ϕ̂ is ZL-dense in X if there exists a constant C > 0 such that, for every integer
d ≥ 1 and every non-zero global section s ∈ Γ(X,L⊗d) \ {0}, we have

ordq=0ϕ̂
∗s ≤ Cdn.

The exponent n = dimX in the above polynomial bound is the smallest possible (see Proposition
2.6 below). Moreover, since L is ample, a ZL-dense formal curve has Zariski-dense image. Thus,
ZL-density may be regarded as a strong form of Zariski-density.
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For a formal curve ϕ̂ : Spf k[[q]] −→ An
k ⊂ Pn

k the above notion boils down to a classical Zero
Lemma property — here, L = OPnk

(1). For instance, taking k = C, n = 4, and ϕ̂ defined by the

system of formal series (q, E2(q), E4(q), E6(q)), the Zero Lemma in condition (ii) above amounts to
asserting that ϕ̂ is ZL-dense in P4

C.
We shall prove that ZL-density does not depend on the choice of L (see Proposition 2.9 below).

Actually, if X is only quasi-projective and the closed point ϕ̂(0) in the image of ϕ̂ is a regular
point of X, then we shall prove that ZL-density does not depend on the choice of a projective
compactification of X (see Corollary 2.16 below).

1.3.3. Statement of our main theorem and proof method. Let K be a number field and OK be its
ring of integers. By an arithmetic scheme over OK we mean an integral scheme X endowed with
a separated and flat morphism of finite type X −→ SpecOK .

The following theorem formalizes and generalizes Nesterenko’s method.

Theorem 1.2. Let X be a quasi-projective arithmetic scheme over OK of relative dimension n ≥ 2,
with smooth generic fiber XK , and let ϕ̂ : Spf OK [[q]] −→ X be a morphism of formal OK-schemes
such that, for every field embedding σ : K ↪→ C, the formal curve ϕ̂σ : Spf C[[q]] −→ Xσ, obtained
from ϕ̂ by base change, lifts to an analytic curve ϕσ : DRσ ⊂ C −→ X an

σ defined on a disk of radius
Rσ > 0 centered at the origin.

Assume that ∏
σ:K↪→C

Rσ = 1

and that there exists a vector field v ∈ Γ(XK , TXK/K) \ {0} on the generic fiber of X such that
ϕ̂K : Spf K[[q]] −→ XK satisfies the differential equation

q
dϕ̂K
dq

= v ◦ ϕ̂K .

If, moreover,

(1) the formal curve ϕ̂K is ZL-dense in XK , and
(2) for each field embedding σ : K ↪→ C, the analytic curve ϕσ : DRσ −→ X an

σ has moderate
growth,

then, for every σ : K ↪→ C, and every z ∈ DRσ r {0}, the field of definition K(ϕσ(z)) of the
complex point ϕσ(z) in XK satisfies

trdegQK(ϕσ(z)) ≥ n− 1.

Let us remark that the conditions of ZL-density and of moderate growth, corresponding to con-
ditions (i) and (ii) in Nesterenko’s method, are actually very mild hypotheses.

For instance, ZL-density is automatic whenever ϕ̂ is a smooth integral curve of some vector
field satisfying Nesterenko’s D-property. When the ambient space is an affine space, this is also a
theorem of Nesterenko ([27] Theorem 6), which was recently extended to a geometric framework by
Binyamini [2]. In Appendix B we explain how to slightly modify Binyamini’s arguments to prove
a similar statement for any smooth quasi-projective variety.

Moderate growth, in turn, is satisfied for curves having uniformly bounded derivative on the
disk (endowed with the Poincaré metric; see Example 4.3 for a precise statement). In particular,
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a theorem of Brunella ([14] Theorem 16; see also [14] Theorem 15) implies that, for a generic
one dimensional holomorphic foliation (with singularities) F on Pn(C), any integral curve to F
parametrized by a disk has moderate growth.

In the broader context of Transcendental Number Theory, our result may be regarded as com-
plementary to the Siegel-Shidlovsky and Schneider-Lang theories, which also deal with algebraic
independence or transcendence of values of integral curves of algebraic vector fields (see [17], [16],
and [20] for general geometric formulations). Indeed, while the Siegel-Shidlovsky and Schneider-
Lang criteria handle curves parametrized by parabolic Riemann surfaces, our theorem deals with
the hyperbolic case.

Our proof of Theorem 1.2 bears the same general structure of Nesterenko’s method. We also
start by reducing it to a diophantine approximation statement: Theorem 7.1 below. This is done
via the same algebraic independence criterion of Philippon; we explain in Appendix A how to
generalize it to arbitrary quasi-projective varieties. The first step in the method, concerning the
construction of “auxiliary polynomials”, is replaced in our geometric framework by a construction
of “auxiliary sections” given by Theorem 5.1 below, the proof of which makes essential use of Bost’s
method of slopes in Arakelov Theory ([3]; cf. [4], [6]). The second step also involves estimating
some higher order derivative — here, our main tool is a general result comparing, for a section
of a Hermitian line bundle on a disk, norms of jets at two distinct points; see Proposition 3.13
below and its corollaries. The third and last step is essentially the same trick using the differential
equation as explained above.

1.4. Further directions and open problems. With Theorem 1.2 in hand, we may turn the
puzzling remark explained above into a precise mathematical question: is there any example of
application of Theorem 1.2 whose resulting transcendence statement is not contained in Theorem
1.1? As promising as the potential candidates from the theory of Mirror Symmetry may seem,
one must face, given our current state of knowledge, the logical possibility of a negative answer;
however, a proof of this fact would also be remarkable, since it would imply that modular functions
are the only ones satisfying the (quite general) hypotheses of Theorem 1.2, which make no reference
to the geometric nature of modular functions in terms of moduli of elliptic curves.

It is also natural to wonder if Theorem 1.2 admits a generalization in several variables; that
is, one wishes to replace a disk by a domain in a higher dimensional complex euclidean space.
This conjectural higher dimensional statement has actually good candidates of application: for any
integer g ≥ 1, there exists a higher dimensional analog of the Ramanujan equations which lives in
some smooth quasi-projective variety of dimension 2g2 + g and admits a solution ϕg sharing many
of the relevant properties of ϕ1 = (E2, E4, E6) (see [12], [13]). In [13] Section 5, we show that the
fields of definition of values of ϕg are fields of periods of abelian varieties. Thus, conjecturally, a
generalization in several variables of Theorem 1.2 applied to ϕg or some other variant of it, would
lead to transcendence degree lower bounds in the direction of Grothendieck’s Period Conjecture for
abelian varieties. In this sense, Theorem 1.2 might be seen as a first step in this program.

1.5. Organization of this article. A great effort has been done to isolate all the different tech-
niques intervening in Nesterenko’s method and to place them in their natural generality. This
distillation process is aimed not only at improving the readability of our paper, but also at making
these techniques suitable for other applications in Diophantine Approximation.
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Section 2 contains the definition of ZL-density and some of its basic properties; here we use
elementary Intersection Theory. Section 3 defines characteristic functions and moderate growth for
2-forms on a disk and contains basic versions of the jet estimates we shall need later; our main
result here is Proposition 3.13 (see also Corollary 3.16). Both Sections 2 and 3 are self-contained
and are of independent interest.

Section 4 treats the special case of moderate growth for analytic curves (as explained in this
introduction) and it depends only on the beginning of Section 3. Its main objective is to prove
that, under a non-degeneracy hypothesis, this concept is a birational invariant of the target space
(Theorem 4.11); this is essentially classical material on Nevanlinna Theory.

Section 5 is devoted to the construction of “auxiliary sections” in a geometric context. Here, we
combine the concepts of moderate growth developed in Sections 3 and 4 with Bost’s slope inequality
to obtain Theorem 5.1. This section contains a review of the prerequisites in Arakelov Theory.

In Section 6 we explain how vector fields induce derivations on global sections of line bundles
and we provide some L∞ estimates. This section is also self-contained and of independent interest.

Section 7 contains a proof of Theorem 1.2. The reader will recognize, in Lemmas 7.2, 7.3, and
7.4, natural generalizations of the three steps of Nesterenko’s method explained above.

Finally, Appendices A and B concern geometric generalizations of results of Philippon and
Binyamini originally stated only for affine (or projective) spaces, as explained above. In Appendix
B we make use of the basic constructions of Section 6.

1.6. Acknowledgments. This work was supported by a public grant as part of the FMJH project,
and is part of my PhD thesis at Université Paris-Sud, Orsay, under the supervision of Jean-Benôıt
Bost. I thank him and Hugues Randriam for allowing me to use their preliminary non-published
notes on moderate growth as a starting point for this paper. I am also grateful to Dinh Tuan
Huynh for a fruitful discussion on Nevanlinna Theory and to Daniel Bertrand for pointing me out a
missing reference. Finally, I thank the Max-Planck-Institut für Mathematik, Bonn, for the excellent
working conditions in which this paper was finished.

1.7. Terminology and notations.

1.7.1. By an (algebraic) variety over a field k we mean a separated integral scheme of finite type
over k.

1.7.2. Recall that a line bundle L on a scheme X is semiample if there exists an integer m ≥ 1
such that L⊗m is generated by its global sections. Observe that ample line bundles are semiample,
and that semiampleness is preserved under pullbacks.

1.7.3. A real (1,1)-form ω on a complex manifold M can always be written, in local coordinates
(z1, . . . , zn) on M , as

ω =
i

2

n∑
k,l=1

hkldzk ∧ dzl

where H := (hkl)1≤k,l≤n is a Hermitian matrix. We say that ω is positive (resp. semipositive) if
the matrix H is positive-definite (resp. positive-semidefinite). Note that semipositive (1,1)-forms
are stable under pullbacks.



ALGEBRAIC INDEPENDENCE FOR VALUES OF INTEGRAL CURVES 9

1.7.4. By a Hermitian line bundle L = (L, ‖ ‖) on a complex manifold M , we mean a holomorphic
line bundle L on M endowed with a C∞ Hermitian metric ‖ ‖. If Θ denotes the curvature of the
Chern connection on L associated to ‖ ‖ (locally, Θ = −∂∂ log ‖e‖2 where e is some trivialization
of L), then we define the Chern curvature of L by

c1(L) =
i

2π
Θ.

This is a closed real C∞ (1, 1)-form on M whose class in H2(M,R) coincides with the first Chern
class c1(L). We say that L is positive (resp. semipositive) if c1(L) is positive (resp. semipositive).

1.7.5. We use the standard notation

dc =
i

4π
(∂ − ∂) =

1

4π

(
r
∂

∂r
⊗ dθ − 1

r

∂

∂θ
⊗ dr

)
,

so that ddc = i
2π∂∂.

1.7.6. The continuous function log+ : R −→ R is defined by

log+ x =

{
log x if x ≥ 1

0 otherwhise.

2. ZL-dense formal curves in quasi-projective varieties

In this section we introduce the purely algebraic concept of ZL-dense formal curves, and we prove
some of its basic properties. This notion refines the property of being Zariski-dense and isolates
the content of the Zero Lemma necessary in Nesterenko’s method; that is, a formal curve satisfies
the Zero Lemma if and only if it is ZL-dense.

2.1. Degree of a divisor with respect to a line bundle. Let k be a field and X be a variety
over k.

Recall from [15] 2.5 that (the isomorphism class of) a line bundle L on X defines an additive
operator

α 7−→ c1(L) ∩ α

on the abelian group of algebraic cycles in X modulo rational equivalence; if α is the class of a
subvariety V of X, then c1(L) ∩ α is by definition the class of the cycle in V associated to any
Cartier divisor D of V for which L|V ∼= OV (D). The r-fold composition of this operator with itself
is denoted by α 7−→ c1(L)r ∩ α.

We say that a cycle class α in X is semipositive if there exists an integer m ≥ 1 such that mα
can be represented by a non-negative cycle in X (i.e., a cycle of the form

∑
imi[Vi] with each

mi ≥ 0). For instance, the cycle class of a Cartier divisor D is semipositive if and only if some
positive multiple of D is linearly equivalent to an effective divisor.

Lemma 2.1. Let L be a semiample line bundle on X (see 1.7.2 for a definition). Then, for any
semipositive cycle class α in X, c1(L) ∩ α is semipositive.
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Proof. Let m ≥ 1 be an integer such that mα is represented by the cycle
∑

imi[Vi], with each
mi ≥ 0.

As L is semiample, there exists an integer n ≥ 1 such that L⊗n is generated by global sections.
In particular, for any subvariety V of X, the line bundle L⊗n|V on V admits a non-zero global
section sV .

For every i, c1(L⊗n)∩ [Vi] is the cycle class induced by the effective Cartier divisor div(sVi) on Vi,
so that nmc1(L)∩α = c1(L⊗n)∩mα is represented by the non-negative cycle

∑
imi[div(sVi)]. �

Still following the terminology of [15], for any line bundle L on X, and any r-cycle class α in X,
the L-degree of α is defined by

degL α = deg(c1(L)r ∩ α),

where deg denotes the degree function on zero-cycle classes. If D is a Cartier divisor on X, then
we denote by

degLD = deg(c1(L)dimX−1 ∩ [D])

the L-degree of the cycle class [D] induced by D.
Observe that the degree of a semipositive zero-cycle class is non-negative. In the next result, we

use the following easy consequence of Lemma 2.1: if L is semiample and α is semipositive, then
degL α ≥ 0 (cf. [15] Lemma 12.1).

Proposition 2.2. Let X be a projective variety over a field k and L (resp. M) be an ample (resp.
semiample) line bundle on X. Then, there exists an integer m ≥ 1 such that, for any semipositive
r-cycle class α in X, we have

0 ≤ degM α ≤ mr degL α.

Proof. Let m ≥ 1 be an integer such that N := L⊗m ⊗M∨ is semiample. For any r-cycle class α
in X, we have

mr degL α = degL⊗m α = degN⊗M α =

r∑
s=0

(
r

s

)
degM (c1(N)s ∩ α).

Since N is semiample and α is semipositive, it follows from Lemma 2.1 that each c1(N)s ∩ α is
semipositive. As M is also semiample, we conclude that each term in the right-hand side of the
above equation is non-negative, so that mr degL α ≥ degM α ≥ 0. �

Remark 2.3. By combining the above proposition with an induction argument in r, one can
actually prove the following generalization. Let X be a projective variety over a field k, L be an
ample line bundle on X, and M be any line bundle on X. Then there exists a constant C > 0 such
that |degM α| ≤ C degL α for every semipositive cycle class α in X.

Corollary 2.4. Let X be a projective variety over a field k. If L and M are ample line bundles
on X, then there exist constants C1, C2 > 0 such that

C1 degM D ≤ degLD ≤ C2 degM D

for any effective Cartier divisor D in X. �
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2.2. ZL-dense formal curves in projective varieties. Let X be an algebraic variety over a
field k and consider the ring of formal power series k[[q]]. By a formal curve in X we mean a
morphism of k-schemes ϕ̂ : Spec k[[q]] −→ X, or, equivalently, a morphism of formal k-schemes
ϕ̂ : Spf k[[q]] −→ X. The k-point of X obtained by composing the k-point of Spec k[[q]] given by the
ideal (q) ⊂ k[[q]] with ϕ̂ is denoted by ϕ̂(0).

Let ϕ̂ : Spec k[[q]] −→ X be a formal curve in X, and D be an effective Cartier divisor in X. We
define the intersection multiplicity of D with ϕ̂ (at ϕ̂(0)) by

multϕ̂D := ord0ϕ̂
∗f ,

where f ∈ OX,ϕ̂(0) is any local equation for D around ϕ̂(0). This clearly does not depend on the
choice of f . The multiplicity function multϕ̂ is additive and takes values in N ∪ {+∞}.

Definition 2.5. Let X be a projective variety of dimension n over a field k and let L be any ample
line bundle on X. We say that a formal curve ϕ̂ : Spec k[[q]] −→ X in X is ZL-dense if there exists
a constant C > 0 such that

multϕ̂D ≤ C(degLD)n(2.1)

for every effective Cartier divisor D in X.

Observe that the choice of L in the above definition is irrelevant by Corollary 2.4.
Let us remark that the exponent n = dimX intervening in the polynomial bound (2.1) is the

smallest possible one:

Proposition 2.6. Let X be a projective variety of dimension n over k endowed with an ample line
bundle L, and ϕ̂ be a formal curve in X. Then there exists ε > 0 and sequence of effective Cartier
divisors (Di)i≥1 on X satisfying

lim
i→+∞

degLDi = +∞ and multϕ̂Di ≥ ε(degLDi)
n for every i ≥ 1.

In the above statement we allow the possibility that multϕ̂Di = +∞ (i.e. the divisor Di vanishes
identically along the formal curve ϕ̂) by adopting the standard convention that +∞ ≥ t for every
t ∈ R.

Proof. Assume first that X = Pn
k and L = O(1). Consider the natural projection An

k \ {0} −→ Pn
k

and lift ϕ̂ to some ψ̂ : Spec k[[q]] −→ An
k \ {0}. Let i ≥ 1 be an integer. If P =

∑
|I|=i aIX

I ∈
k[X0, . . . , Xn] is a homogeneous polynomial of degree i, seen as a regular function on An

k \ {0},
then we may write

ψ̂∗P =
∞∑
j=0

∑
|I|=i

aIbI,j

 qj ∈ k[[q]],

for some bI,j ∈ k depending on the coefficients of the n+ 1 formal series defining ψ̂. Since

card{I ∈ Nn+1 | |I| = i} =

(
i+ n

n

)
>

1

n!
in,



12 ALGEBRAIC INDEPENDENCE FOR VALUES OF INTEGRAL CURVES

it follows from elementary linear algebra that there exists a non-zero homogeneous polynomial Pi
of degree i such that ord0ψ̂

∗Pi ≥ 1
n! i

n. By considering the Cartier divisors Di on Pn
k induced by

Pi, we see that we may take ε = 1/n! in this case.
The general case follows from the above one by considering a finite surjective morphism f :

X −→ Pn
k satisfying f∗O(1) ∼= Lm for some m ≥ 1. �

Remark 2.7. It follows from the above proof that the Cartier divisors Di can actually be taken
in the linear system |L⊗mi| for some fixed integer m ≥ 1.

Any ZL-dense formal curve ϕ̂ in a projective variety X has a dense image in the Zariski topology.
Indeed, since X is projective, any Zariski-closed subset of X is contained in the support of some
effective Cartier divisor of X; then, one simply remarks that ZL-density implies that multϕ̂D < +∞
for any effective Cartier divisor D in X, so that the image of ϕ̂ is not contained in the support of D.

The following example shows that the converse is not true in general.

Example 2.8 (Lacunary series). Let k be a field and (ni)i≥0 be an increasing sequence of natural
numbers satisfying limi→+∞

ni+1

n2
i

= +∞. If h ∈ k[[q]] is any formal series of the form

h(q) =
∑
i≥0

aiq
ni , ai 6= 0

then the formal curve ϕ̂ : Spec k[[q]] −→ P2
k, given in homogeneous coordinates by ϕ̂(q) = (1 : q : h(q)),

is not ZL-dense. Indeed, for any integer d ≥ 0, we may consider the homogeneous polynomial of
degree nd

Pd = Xnd−1
0 X2 −

d∑
i=0

aiX
nd−ni
0 Xni

1

so that

multϕ̂ div(Pd)

n2
d

=
nd+1

n2
d

−→ +∞

as d→ +∞.
Observe that the image of ϕ̂ is indeed Zariski-dense. By contradiction, if C ⊂ P2

k is an irreducible
curve containing the image of ϕ̂, then, for any effective Cartier divisor D in P2

k whose support does
not contains C, we have multϕ̂D = i(ϕ̂(0), C ·D) ≤ degC · degD. By construction, this is absurd
for D = div(Pd) and d sufficiently large.

For natural examples of ZL-dense formal curves we refer to Appendix B.

2.3. Reformulation in terms of sections of an ample line bundle. Let X be an algebraic
variety over a field k and ϕ̂ : Spec k[[q]] −→ X be a formal curve. If L is any line bundle on
X, and s is a section of L on a neighborhood of ϕ̂(0), we may consider the vanishing order of
ϕ̂∗s ∈ Γ(Spec k[[q]], ϕ̂∗L) at q = 0, which coincides with the intersection multiplicity of the effective
Cartier divisor div(s) with ϕ̂:

ord0ϕ̂
∗s = multϕ̂ div(s).
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The next proposition shows that ZL-density is a condition that has to be checked only for Cartier
divisors arising from sections of powers of some fixed ample line bundle.

Proposition 2.9. Let X be a projective variety of dimension n over a field k and L be an ample
line bundle on X. A formal curve ϕ̂ : Spec k[[q]] −→ X is ZL-dense if and only if there exists a
constant C > 0 such that

ord0ϕ̂
∗s ≤ Cdn

for any integer d ≥ 1, and any s ∈ Γ(X,L⊗d) \ {0}.

Proof. The necessity follows from the fact that, for any s ∈ Γ(X,L⊗d) \ {0}, degL div(s) =
(degLX)d.

To prove the sufficiency, fix any finite surjective morphism f : X −→ Pn
k such that f∗O(1) is

isomorphic to L⊗m for some m ≥ 1. If E is an effective Cartier divisor in Pn
k , then there exists a

section s ∈ Γ(Pn
k ,O(degO(1)E)) satisfying E = div(s), so that

multf◦ϕ̂E = ord0(f ◦ ϕ̂)∗s = ord0ϕ̂
∗(f∗s) ≤ C(mdegO(1)E)n = Cmn(degO(1)E)n.(2.2)

Let D be an effective Cartier divisor in X. Since f is finite and Pn
k is normal, we may define the

pushforward f∗D by taking norms: there is an open affine covering (Ui)i of Pn
k such that D admits

a local equation hi on each f−1(Ui), and we define f∗D = [(Normf (hi), Ui)i]. As f∗f∗D − D is
effective, we obtain

multϕ̂D ≤ multϕ̂f
∗f∗D = multf◦ϕ̂f∗D.

Note that the Weil divisor associated to f∗D coincides with the pushforward (of cycles) of the Weil
divisor associated to D (cf. [15] Proposition 1.4). In particular, the projection formula gives

degO(1) f∗D = degL⊗m D = mn−1 degLD

so that, by (2.2),

multϕ̂D ≤ Cmn(degO(1) f∗D)n = Cmn2
(degLD)n.

�

An advantage of considering the above equivalent form of ZL-density stems from the vector space
structure of the sets Γ(X,L⊗d), d ≥ 1. In general, a formal curve ϕ̂ : Spec k[[q]] −→ X induces,
for every integer d ≥ 1, a decreasing filtration by linear subspaces (Eid)i≥0 on the k-vector space

Ed := Γ(X,L⊗d) defined by Eid := {s ∈ Ed | ord0ϕ̂
∗s ≥ i}.

Remark 2.10. Since Ed is finite dimensional, there exists id ≥ 1 such that Eidd =
⋂
i≥0E

i
d = {s ∈

Ed | ϕ̂∗s = 0}. In other words, for every s ∈ Ed such that ϕ̂∗s 6= 0, we have ord0ϕ̂
∗s < id. In

particular, this shows that one may replace in Proposition 2.9 the condition “for any integer d ≥ 1”
by the weaker “for any sufficiently large integer d”.

As a first application of Proposition 2.9, we use the filtration (Eid)i≥0 to show that ZL-density is
a geometric property.
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Proposition 2.11. Let X be a geometrically integral projective variety over a field k and
ϕ̂ : Spf k[[q]] −→ X be a formal curve. Then, for any field extension K of k, the formal curve
ϕ̂K : Spf K[[q]] −→ XK , obtained from ϕ̂ by base change, is ZL-dense in XK if and only if ϕ̂ is
ZL-dense in X.

Proof. Let d ≥ 1 and i ≥ 0 be integers. Note that Ed ⊗k K may be canonically identified with
Γ(XK , L

⊗d
K ). Moreover, since Eid is the kernel of the k-linear map

Ed −→ Γ(Spec k[[q]], ϕ̂∗L⊗d)⊗k k[[q]]/(qi)

s 7−→ ϕ̂∗s mod qi,

we conclude that Eid ⊗k K = {t ∈ Ed ⊗k K | ord0ϕ̂
∗
Kt ≥ i}.

In particular, for every integer d ≥ 1, and any real number κ > 0, ord0ϕ̂
∗s ≤ κ for every

s ∈ Γ(X,L⊗d) \ {0} if and only if ord0ϕ̂
∗
Kt ≤ κ for every t ∈ Γ(XK , L

⊗d
K ) \ {0}. �

As another application of Proposition 2.9, we prove the following result which will be used in
our proof of Proposition 2.15.

Proposition 2.12. Let f : X −→ Y be a surjective morphism between projective varieties of
dimension n over a field k and let ϕ̂ : Spec k[[q]] −→ X be a formal curve in X. If ϕ̂ is ZL-dense
in X, then f ◦ ϕ̂ is ZL-dense in Y .

Proof. Let L be an ample line bundle on X admitting a global section s ∈ Γ(X,L)\{0}, and M be
any ample line bundle on Y . Since f∗M is semiample, N := L ⊗ f∗M is ample ([19] Proposition
4.5.6 (ii)).

Let d ≥ 1 be an integer, and t ∈ Γ(Y,M⊗d) \ {0}. Since f is surjective, f∗t 6= 0. Thus s⊗d ⊗ f∗t
is a non-zero global section of N⊗d and, since ϕ̂ is ZL-dense in X, there exists a constant C > 0
independent of d such that

ord0ϕ̂
∗(s⊗d ⊗ f∗t) ≤ Cdn.

To complete the proof, it is sufficient to remark that

ord0(f ◦ ϕ̂)∗(t) = ord0ϕ̂
∗(f∗t) ≤ ord0ϕ̂

∗(s⊗d ⊗ f∗t).
�

Remark 2.13. The above proposition, combined with the arguments in the proof of Proposition
2.9, actually shows that for any finite surjective morphism f : X −→ Y between projective varieties
over a field k, with Y normal, a formal curve ϕ̂ : Spec k[[q]] −→ X is ZL-dense in X if and only if
f ◦ ϕ̂ is ZL-dense in Y .

2.4. ZL-density in quasi-projective varieties. We defined a notion of ZL-density for formal
curves in projective varieties. In this paragraph, under a mild technical condition, we extend this
notion, via compactification, to formal curves in quasi-projective varieties. To assure that we obtain
a well defined notion, we must show that this does not depend on the choice of compactification.

We start by reformulating ZL-density in terms of Weil divisors in place of Cartier divisors. Let
X be an algebraic variety over a field k, and ϕ̂ : Spec k[[q]] −→ X be a formal curve. If ϕ̂(0) is a
regular point of X, then we may define the intersection multiplicity of a Weil divisor with ϕ̂: if U
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is a regular open neighborhood of ϕ̂(0) and Z is a Weil divisor on X, then Z ∩ U is induced by
some Cartier divisor D on U , and we define

multϕ̂Z = multϕ̂D.

We may thus mimic the proof of Proposition 2.9 to obtain the following result.

Proposition 2.14. Let X be a projective variety of dimension n over a field k, L be an ample line
bundle on X, and ϕ̂ : Spec k[[q]] −→ X be a formal curve such that ϕ̂(0) is a regular point of X.
Then, ϕ̂ is ZL-dense in X if and only if there exists a constant C > 0 such that, for every effective
Weil divisor Z on X,

multϕ̂Z ≤ C(degL Z)n

We are now in position to prove that a modification away from ϕ̂ does not affect ZL-density.

Proposition 2.15. Let f : X −→ Y be a proper morphism between projective varieties over a
field k, and U be an open subset of Y such that f induces an isomorphism f−1(U)

∼−→ U . If
ϕ̂ : Spec k[[q]] −→ f−1(U) ⊂ X is a formal curve such that ϕ̂(0) is a regular point of X, then ϕ̂ is
ZL-dense in X if and only if f ◦ ϕ̂ is ZL-dense in Y .

Proof. Since f : X −→ Y is a proper birational morphism, and Y is irreducible, f is surjective. By
Proposition 2.12, if ϕ̂ is ZL-dense in X, then f ◦ ϕ̂ is ZL-dense in Y .

Conversely, suppose that f ◦ ϕ̂ is ZL-dense in Y . Fix an ample line bundle L (resp. M) on X
(resp. Y ), and let Z be an effective Weil divisor on X. Since f is an isomorphism over U and ϕ̂
factors through f−1(U), we have

multϕ̂Z = multf◦ϕ̂f∗Z.

As f ◦ ϕ̂ is ZL-dense in Y , there is a constant C1 > 0 (not depending on Z) such that

multf◦ϕ̂f∗Z ≤ C1(degM f∗Z)n,

where n = dimY = dimX. By the projection formula, degM f∗Z = degf∗M Z. Since f∗M is
semiample, it follows from Proposition 2.2 that there exists a constant C2 > 0 such that degf∗M Z ≤
C2 degL Z. We conclude that

multϕ̂Z ≤ C1C
n
2 (degL Z)n.

�

Let us remark that it is essential in our proof above to consider the pushforward of a Weil divisor
on X under the proper morphism f . This explains why we reformulated ZL-density in terms of
Weil divisors as the pushforward of a Cartier divisor under a proper morphism is not well defined
in general.

Corollary 2.16. Let X be a quasi-projective variety over a field k, and ϕ̂ : Spec k[[q]] −→ X be a
formal curve such that ϕ̂(0) is a regular point of X. If ji : X ↪→ Xi, i = 1, 2, are two projective
compactifications of X, then j1 ◦ ϕ̂ is ZL-dense in X1 if and only if j2 ◦ ϕ̂ is ZL-dense in X2.

Proof. Consider the scheme theoretic image X of (j1, j2) : X −→ X1 ×k X2 and apply Proposition
2.15 to the natural projections X −→ Xi, i = 1, 2. �
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This enables us to define a good notion of ZL-density in a quasi-projective variety.

Definition 2.17. Let X be a quasi-projective variety over a field k, and ϕ̂ : Spec k[[q]] −→ X be a
formal curve such that ϕ̂(0) is a regular point of X. We say that ϕ̂ is ZL-dense in X if there exists
a projective compactification j : X ↪→ X of X such that j ◦ ϕ̂ is ZL-dense in X.

3. Moderate growth and jet estimates on complex disks

In this section we introduce characteristic functions and moderate growth of certain 2-forms on a
complex disk; these are purely analytic notions. We then proceed to establishing natural estimates
on jets of sections of holomorphic line bundles on disks. In a sense, our exposition is more basic
than the usual accounts on Value Distribution Theory, since characteristic functions of analytic
curves will be a special case of our construction.

The kind of jet estimates we consider here play a central role in Diophantine Approximation
and transcendence proofs. They notably appear in such proofs using the formalism of Arakelov
Geometry, to estimate the height of evaluation maps, when applying Bost’s method of slopes (see,
for instance, [3], [4], [18], [16], [17], [20]).

3.1. Characteristic functions. Let r > 0 be a real number, and p ∈ Dr := {z ∈ C | |z| < r}.
Recall that the Green’s function of Dr at p is defined by

gDr,p : C −→ (−∞,+∞]

z 7−→ log+

∣∣∣∣ r2 − pz
r(z − p)

∣∣∣∣ .
This is a superharmonic (thus locally integrable) function on C, real-valued and continuous on
C\{p}, strictly positive and harmonic (thus C∞) on Dr \{p}, and vanishing identically on C\Dr.

For any locally bounded 2-form α defined on an open neighborhood of Dr, we denote

Tα,p(r) :=

∫
C
gDr,pα.

Remark 3.1. An integration by parts with u(t) =
∫
Dt
α and v(t) = log t shows that

Tα,0(r) =

∫ r

0

(∫
Dt

α

)
dt

t
.

Since gDr,p is the composition of gDr,0 with the automorphism of Dr given by

σr,p(z) =
r2(z − p)
r2 − pz

,

we obtain

Tα,p(r) =

∫ r

0

(∫
Dt

(σ−1
r,p )∗α

)
dt

t
.
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Let R > 0 be a real number, and α be a locally bounded semipositive (1, 1)-form on the disk
DR. The non-decreasing function

Tα : (0, R) −→ R≥0

r 7−→ Tα,0(r)

is the characteristic function of α in DR.
We shall be particularly interested in the following special case. Let L = (L, ‖ ‖) be a semipositive

Hermitian line bundle on DR. The characteristic function of L in DR is defined by

TL := Tc1(L).

We also denote TL,p(r) = Tc1(L),p(r) for p ∈ Dr ⊂ DR.

Remark 3.2. Let d ≥ 1 be an integer. As c1(L
⊗d

) = d · c1(L), we have T
L
⊗d
,p

(r) = d · TL,p(r).

3.2. Forms of moderate growth. Let R > 0 be a real number, and α be a locally bounded
semipositive (1,1)-form on DR.

Definition 3.3. We say that α has moderate growth if there exist constants a, b > 0 such that

Tα(r) ≤ a+ b log
1

1− r
R

for any r ∈ (0, R). When α = c1(L) for some semipositive Hermitian line bundle L on DR, we
rather say that L has moderate growth.

The motivating example of a form of moderate growth is the following one.

Example 3.4 (Poincaré form). Let

dµR :=
i

2

(
R

R2 − |z|2

)2

dz ∧ dz

be the 2-form associated to the surface element of the Poincaré metric R
R2−|z|2 |dz| on DR. A direct

computation shows that, for any r ∈ (0, R),

TdµR(r) =
π

2
log

1

1 + r
R

+
π

2
log

1

1− r
R

.

Thus, the 2-form dµR on DR has moderate growth.

We have defined moderate growth for a form α as a growth condition on Tα,0(r) with respect to
r. Our next result shows that a similar growth condition for Tα,p(r) holds uniformly for p varying
in a fixed compact subset.

Lemma 3.5. Let 0 < r0 < r1 < R1 < R be real numbers. Then there exists a constant C > 0 such
that, for every p ∈ Dr0, and every r ∈ [R1, R), we have

gDr,p ≤ gDr1 ,p + CgDr,0.
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Proof. Let r ∈ [R1, R) and p ∈ Dr0 . We set

Cr,p := max
z∈∂Dr1

gDr,p(z)

gDr,0(z)

and

fr,p := gDr,p − gDr1 ,p − Cr,pgDr,0.

By definition of Cr,p, we see that fr,p ≤ 0 over ∂Dr1 . Moreover, fr,p vanishes identically on ∂Dr.

Since fr,p is subharmonic over the domains Dr1 and Dr \ Dr1 , by the Maximum Principle, we
conclude that fr,p ≤ 0 everywhere.

To finish the proof, it is sufficient to remark that Cr,p is uniformly bounded for r ∈ [R1, R) and
p ∈ Dr0 . Indeed, for z ∈ ∂Dr1 , we have

gDr,p(z)

gDr,0(z)
=

log
∣∣∣ r2−pzr(z−p)

∣∣∣
log
∣∣ r
z

∣∣ ≤
log R2+r0r1

R1(r1−r0)

log R1
r1

.

�

Proposition 3.6. Let R > 0 be a real number, K ⊂ DR be a compact subset, and α be a locally
bounded semipositive (1,1)-form on DR. Fix R1 ∈ (0, R) such that K ⊂ DR1. If α has moderate
growth, then there exist real numbers a, b > 0 such that

supp∈KTα,p(r) ≤ a+ b log
1

1− r
R

for every r ∈ [R1, R).

Proof. Let 0 < r0 < r1 be real numbers such that K ⊂ Dr0 and r1 < R1. By Lemma 3.5, there
exists a constant C > 0 such that

gDr,p ≤ gDr1 ,p + CgDr,0

for every r ∈ [R1, R) and every p ∈ K, so that

Tα,p(r) ≤ Tα,p(r1) + CTα,0(r).

Since α has moderate growth, to conclude it is sufficient to remark that the function p 7−→ Tα,p(r1)
is continuous, thus bounded on the compact K. �

3.3. Jets and characteristic functions. Let r > 0 be a real number and p ∈ Dr. We define a
probability measure πr,p supported on ∂Dr by∫

ψπr,p =
1

2π

∫ 2π

0
ψ(σ−1

r,p (reiθ))dθ,

where σr,p is the function defined in Remark 3.1. For the next proposition, we shall need the
following classical result.

Lemma 3.7. As an equality of distributions on C, we have

−2ddcgDr,p = δp − πr,p.
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Proof. Apply Remark 3.1 and Stokes’ Theorem (see also 1.7.5). �

Let U be an open subset of C and L = (L, ‖ ‖) be a Hermitian line bundle over U . If s ∈ Γ(U,L)
and z ∈ U , the mth jet of s at z is denoted by jmz s. When s has vanishing order at least m at z,
jmz s is simply an element of the fiber of L⊗ (Ω1

U )⊗m at z. In this case, if r is a real number strictly
greater than |z|, we denote by

‖jmz s‖r
the norm of jmz s with respect to the metric ‖ ‖ on L and the norm on Ω1

Dr,z
given by the dual of

the Poincaré metric r
r2−|z|2 |dz| on Dr.

The following result, relating jets of sections with characteristic functions, is a basic tool in
Nevanlinna Theory (see, for instance, [29] Section 2.3); variants of it were used in the context of
Diophantine Approximation in [4] Proposition 4.14, [5] Section 3, and [16] Theorem 5.13.

Proposition 3.8. Let R > 0 be a real number, L = (L, ‖ ‖) be a semipositive Hermitian line bundle
on DR, and p ∈ DR. For every real number r ∈ (|p|, R) and every global section s ∈ Γ(DR, L)\{0},
if m := ordps denotes the vanishing order of s at p, we have

log ‖jmp s‖r = TL,p(r) +

∫
log ‖s‖πr,p −

∫
gDr,pδdiv(s)−m[p].(3.1)

We start with a lemma that follows immediately from the explicit formula for the Green’s func-
tions on disks (cf. Paragraph 3.1).

Lemma 3.9. With the above notation, if E ⊂ DR denotes the support of the divisor div(s), then
the distribution log ‖s‖+mgDr,p on DR defines a C∞ function over (Dr \E)∪{p} and a continuous
function over ∂Dr \ E. Moreover,

lim
z→p

(log ‖s(z)‖+mgDr,p(z)) = log ‖jmp s‖r.

�

Observe now that, for a fixed s, both sides in formula (3.1) are continuous with respect to r.
Since E is discrete, we may thus assume that ∂Dr ∩ E = ∅.

Proof of Proposition 3.8. The Poincaré-Lelong formula yields the identity of currents

ddc log ‖s‖2 = δdiv(s) − c1(L).

Thus, by Lemma 3.7,

c1(L) = −2ddc(log ‖s‖+mgDr,p) + δdiv(s)−m[p] +mπr,p.

Since πr,p is supported on ∂Dr, and gDr,p vanishes identically on ∂Dr, we obtain

TL,p(r) =

∫
gDr,p · (−2ddc(log ‖s‖+mgDr,p)) +

∫
gDr,pδdiv(s)−m[p].

Note that, by our choice of r and by Lemma 3.9, the above products of distributions are well-defined.
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By another application of Lemma 3.7,

TL,p(r) =

∫
(log ‖s‖+mgDr,p)(δp − πr,p) +

∫
gDr,pδdiv(s)−m[p]

=

∫
(log ‖s‖+mgDr,p)δp −

∫
log ‖s‖πr,p +

∫
gDr,pδdiv(s)−m[p]

where in the second equality we used once again that gDr,p vanishes identically on ∂Dr. To conclude,
we apply once more Lemma 3.9, which ensures that the function log ‖s‖+mgDr,p tends to log ‖jmp s‖r
at p. �

Corollary 3.10. Let us keep the notation of Proposition 3.8. Then,

(3.2) log ‖jmp s‖r ≤ TL,p(r) + log ‖s‖L∞(∂Dr).

If, moreover, p′ is another point of Dr, and m′ denotes the vanishing order of s at p′, then

(3.3) log ‖jmp s‖r ≤ TL,p(r) + log ‖s‖L∞(∂Dr) −m
′gDr,p(p

′).

Proof. Since πr,p is a probability measure over ∂Dr, we have
∫

log ‖s‖πr,p ≤ log ‖s‖L∞(∂Dr). Thus,
the estimate (3.2) (resp. (3.3)) follows immediately from the non-negativity both of the function
gDr,p and of the distribution δdiv(s)−m[p] (resp. δdiv(s)−m[p]−m′[p′]). �

3.4. A first application of moderate growth. We shall need the following elementary inequal-
ity.

Lemma 3.11. Let A, B, and R be positive real numbers. Set

r := R
B

A+B
.

If log(B/A) ≥ 2, then

A log

(
1

1− r
R

)
−B log r ≤ 2A log

(
B

A

)
−B logR.

Proof. By homogeneity, we may assume that A = R = 1, so that r = B/(1 +B) and our statement
is equivalent to:

log(1 +B)−B log(B/(1 +B)) ≤ 2 logB

when logB ≥ 2. By subtracting logB from both sides, we see that this is yet equivalent to:

(1 +B) log(1 + 1/B) ≤ logB

when logB ≥ 2. Now, this last inequality follows trivially from the fact that log(1+1/B) ≤ 1/B. �

Note that r as above is the minimum of the real function t 7−→ A log
(

1
1− t

R

)
−B log t defined on

the open interval (0, R).

Proposition 3.12. Let R > 0 be a real number and L = (L, ‖ ‖) be a semipositive Hermitian line
bundle on DR. If L has moderate growth, then there exist constants κ1, κ2 > 0 such that for every
integer d ≥ 1 and every bounded global section s ∈ Γ(DR, L

⊗d) \ {0}, if we denote m := ord0s, then

log ‖jm0 s‖R ≤ κ1d+ κ2d log+m+ log ‖s‖L∞(DR).
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Proof. Since L has moderate growth, there exist real numbers a, b > 0 such that

TL(r) ≤ a+ b log

(
1

1− r
R

)
for any r ∈ (0, R). We may assume that b > 1. By the jet estimate (3.2), for any r ∈ (0, R), we
have

log ‖jm0 s‖r ≤ d · TL(r) + log ‖s‖L∞(∂Dr) ≤ d · TL(r) + log ‖s‖L∞(DR).

As

‖jm0 s‖r = ‖jm0 s‖R
( r
R

)m
,

we obtain

log ‖jm0 s‖R ≤ ad+ bd log

(
1

1− r
R

)
−m log r +m logR+ log ‖s‖L∞(DR).(3.4)

The result being trivial for m = 0, we may assume that m > 0. We now consider two cases. If
log(m/bd) < 2, then we may take r := R/2 in (3.4) to obtain

log ‖jm0 s‖R ≤ (a+ (1 + e2)b log 2)d+ log ‖s‖L∞(DR).

If log(m/bd) ≥ 2, we apply Lemma 3.11 for A = bd and B = m:

log ‖jm0 s‖R ≤ ad+ 2bd log
(m
bd

)
+ log ‖s‖L∞(DR) ≤ ad+ 2bd logm+ log ‖s‖L∞(DR).

�

3.5. Bounding jets via Taylor coefficients at another point. In this paragraph, we compare
Taylor coefficients at different points. We start with a general result, and next we explain how
moderate growth improves the estimate.

Proposition 3.13. Let R > 0 be a real number, L = (L, ‖ ‖) be a semipositive Hermitian line
bundle on DR, and q ∈ DR \ {0}. Fix a real number R0 satisfying |q| < R0 < R, and a global
holomorphic section s0 ∈ Γ(DR, L) such that s0(q) 6= 0. Then there exists a real number κ > 1 such
that, for every integer J ≥ 1, every integer d ≥ 1, and every global section s ∈ Γ(DR, L

⊗d) \ {0}, if

f denotes the germ of holomorphic function at q such that s = fs⊗d0 in a neighborhood of q, and if
m := ord0s, then

log ‖jm0 s‖R ≤ log

((
R0

|q|

)−J ( R

R0

)m
‖s‖L∞(∂DR0

) + κd+m+J max
0≤j<J

|f (j)(q)|
j!

)
+ d · TL(R0)

Let us first remark that if such a constant κ > 0 exists for s0 ∈ Γ(DR, L) trivializing L at q,
then an analogous constant κ̄ > 0 will exist for any other trivialization s̄0 of L in a neighborhood
of q — we do not require s̄0 to be a global section. Indeed, if we write s = f̄ s̄⊗d0 and s̄0 = us0 in a
neighborhood of q, then f = f̄ud and

max
0≤j<J

|f (j)(q)|
j!

≤ max
0≤j<J

∑
k+l=j

|f̄ (k)(q)|
k!

|(ud)(l)(q)|
l!

≤

(
J max

0≤j<J

|(ud)(j)(q)|
j!

)
max

0≤j<J

|f̄ (j)(q)|
j!

.
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We conclude by the Cauchy inequalities, which ensure that max0≤j<J
|(ud)(j)(q)|

j! grows at most

exponentially in d+ J .

Proof. By the above remark, up to replacing s0 by z−ord0(s0)s0, we can assume that s0 trivializes
L both at q and at 0. Let aj ∈ C be defined by the expansion

f(z) = zm
∞∑
j=0

aj(z − q)j

in a neighborhood of q, and set

g(z) := zm
J−1∑
j=0

aj(z − q)j .

Note that g extends uniquely to a holomorphic function on DR. Let s1, s2 ∈ Γ(DR, L
⊗d) be given

by s1 := gs⊗d0 and s2 := s− s1. Observe that both s1 and s2 have vanishing order at least m at 0.
Next, we estimate ‖jm0 si‖R0 , i = 1, 2; for this, we shall first assume that each jm0 si 6= 0. By the

jet estimate (3.2) for p = 0, we have

log ‖jm0 s1‖R0 ≤ d · TL(R0) + log ‖s1‖L∞(∂DR0
).

Since ordqs2 ≥ J , by the jet estimate (3.3) for p = 0 and p′ = q, we have

log ‖jm0 s2‖R0 ≤ d · TL(R0) + log ‖s2‖L∞(∂DR0
) − log

(
R0

|q|

)
J .

Thus

‖jm0 s‖R = ‖jm0 s‖R0

(
R

R0

)m
≤ (‖jm0 s1‖R0 + ‖jm0 s2‖R0)

(
R

R0

)m
≤

((
R

R0

)m
‖s1‖L∞(∂DR0

) +

(
R0

|q|

)−J ( R

R0

)m
‖s2‖L∞(∂DR0

)

)
exp(d · TL(R0)).

Using that ‖s2‖L∞(∂DR0
) ≤ ‖s1‖L∞(∂DR0

) + ‖s‖L∞(∂DR0
), we get

‖jm0 s‖R ≤

((
R0

|q|

)−J ( R

R0

)m
‖s‖L∞(∂DR0

) +

(
1 +

(
R0

|q|

)−J)( R

R0

)m
‖s1‖L∞(∂DR0

)

)
exp(d · TL(R0)).

It should be clear at this point that the same estimate holds if jm0 s1 = 0 or jm0 s2 = 0.
We now estimate ‖s1‖L∞(∂DR0

). For any z ∈ ∂DR0 , we have

|g(z)| = Rm0

∣∣∣∣∣∣
J−1∑
j=0

aj(z − q)j
∣∣∣∣∣∣ ≤ Rm0

J−1∑
j=0

(2R0)j

 max
0≤j<J

|aj | ≤ JRm0 max{1, (2R0)J} max
0≤j<J

|aj |,

so that

‖s1‖L∞(∂DR0
) = sup

z∈∂DR0

|g(z)|‖s0(z)‖d ≤ ‖s0‖dL∞(∂DR0
)JR

m
0 max{1, (2R0)J} max

0≤j<J
|aj |.
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To finish, we must bound the coefficients aj . By definition, for any j ∈ N,

aj =
1

j!

dj

dzj

∣∣∣∣
z=q

(
f(z)

zm

)
=

j∑
k=0

(
(−1)k

qm+k

(
k +m− 1

k

)
f (j−k)(q)

(j − k)!

)
.

If j < J , then, for any 0 ≤ k ≤ j, we have the (crude but sufficient) estimate(
k +m− 1

k

)
<

(
J +m− 1

J

)
< 2m+J−1 < 2m+J ,

so that

|aj | ≤

(
j∑

k=0

1

|q|m+k

)
2m+J max

0≤k≤j

|f (k)(q)|
k!

.

Thus,

max
0≤j<J

|aj | ≤ J(2 max{1, |q|−1})m+J max
0≤j<J

|f (j)(q)|
j!

.

�

Proposition 3.14. Let R > 0 be a real number, L = (L, ‖ ‖) be a semipositive Hermitian line
bundle over DR, and let K ⊂ DR be a compact subset. If L has moderate growth, then there exist
real numbers κ0, κ1 > 1 and an integer d0 ≥ 1 such that, for any integer d ≥ d0 and any bounded
section s ∈ Γ(DR, L

⊗d) \ {0} for which m := ord0s satisfies m ≥ κ0d, we have

‖s(z)‖ ≤ mκ1d

(
|z|
R

)m
‖s‖L∞(DR)

for every z ∈ K \ {0}.

Proof. Fix any R1 ∈ (0, R) such that K ⊂ DR1 . By Proposition 3.6, there exist real numbers
a, b > 0 such that

TL,z(r) ≤ a+ b log
1

1− r
R

for any z ∈ K and every r ∈ [R1, R).
Let s ∈ Γ(DR, L

⊗d)\{0} be a bounded section, and z ∈ K \{0}. We may assume that ordzs = 0.
By the jet estimate (3.3) for p = z and p′ = 0, we have, for every r ∈ [R1, R),

log ‖s(z)‖ ≤ d · TL,z(r) + log ‖s‖L∞(∂Dr) −m log
r

|z|

≤ ad+ bd log
1

1− r
R

−m log r +m log |z|+ log ‖s‖L∞(DR).

Assume that m ≥ e2bd (i.e. log(m/bd) ≥ 2). It follows from Lemma 3.11 for A = bd and B = m
that, if

r := R
m

bd+m
,
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then

bd log
1

1− r
R

−m log r ≤ 2bd log
m

bd
−m logR.

If we also require that m ≥ b R1
R−R1

d, then r ≥ R1, so that

log ‖s(z)‖ ≤ 2bd logm+ (ad− 2bd log bd) +m log
|z|
R

+ log ‖s‖L∞(DR).

Now, for every integer d ≥ e
a
b /b, we have ad− 2bd log bd ≤ 0, and we get

log ‖s(z)‖ ≤ 2bd logm+m log
|z|
R

+ log ‖s‖L∞(DR).

We may thus take κ0 := bmax
{
e2, R1

R−R1

}
, κ1 := 2b, and d0 := de

a
b /be. �

The following result is a combination of Proposition 3.13 together with the existence of a non-
zero global section of L (see the remark following the statement; actually, L is holomorphically
trivial on DR) and Proposition 3.14.

Corollary 3.15. Let R > 0 be a real number, L = (L, ‖ ‖) be a semipositive Hermitian line bundle
on DR, q ∈ DR \ {0}, and s0 be a holomorphic trivialization of L in a neighborhood of q. Assume
moreover that L has moderate growth. Then there exist real numbers κi > 1, i = 0, . . . , 4, and an
integer d0 ≥ 1, such that, for any integer J ≥ 1, any integer d ≥ d0, and every bounded section
s ∈ Γ(DR, L

⊗d)\{0} for which m := ord0s satisfies m ≥ κ0d, if f denotes the germ of holomorphic

function at q such that s = fs⊗d0 in a neighborhood of q, we have

log ‖jm0 s‖R ≤ log

(
mκ1d

κJ2
‖s‖L∞(DR) + κd+m+J

3 max
0≤j<J

|f (j)(q)|
j!

)
+ κ4d.

Proof. Fix any real number R0 ∈ (|q|, R). We take κ2 := R0/|q|, κ3 := κ given by Proposition 3.13,
and κ4 := TL(R0). Since L has moderate growth, we may apply Proposition 3.14 to the compact
K = ∂DR0 to obtain real numbers κ0, κ1 > 0 and an integer d0 ≥ 1 such that

‖s‖L∞(∂DR0
) ≤ mκ1d

(
R0

R

)m
‖s‖L∞(DR)

for any integer d ≥ d0 and any bounded section s ∈ Γ(DR, L
⊗d) \ {0} such that m := ord0s ≥ κ0d.

We conclude by combining this bound with the estimate given by Proposition 3.13. �

In practice, we shall be concerned with the following particular situation.

Corollary 3.16. Let R > 0 be a real number, L = (L, ‖ ‖) be a semipositive Hermitian line
bundle of moderate growth on DR, and q ∈ DR \ {0}. Fix a holomorphic trivialization s0 of L in
a neighborhood of q, real constants c0, c1, c2 > 0, with c0 < c1, and an integer n ≥ 2. For any real
number C > 0, there exist real numbers γ0, γ1 > 0 such that, for any sufficiently large integer d,
and any bounded section s ∈ Γ(DR, L

⊗d) satisfying

c0d
n ≤ m := ord0s ≤ c1d

n, log ‖s‖L∞(DR) ≤ c2d log d,



ALGEBRAIC INDEPENDENCE FOR VALUES OF INTEGRAL CURVES 25

and

max
0≤j<dγ0d log de

log
|f (j)(q)|

j!
≤ −γ1d

n,

where s = fs⊗d0 on a neighborhood of q, we have

log ‖jm0 s‖R ≤ −Cd log d.

Proof. Let κi > 1, i = 0, . . . , 4, be the constants given by Corollary 3.15. We claim that it suffices
to take γ0 > (log κ2)−1(nκ1 + c2 + C) and γ1 > c1 log κ3.

Indeed, let s ∈ Γ(DR, L
⊗d) be as in the statement. Since n ≥ 2 and m ≥ c0d

n, if d is sufficiently
large, we have m ≥ κ0d, so that the conclusion of Corollary 3.15 for J := dγ0d log de applies:

log ‖jm0 s‖R ≤ log

(
mκ1d

κJ2
‖s‖L∞(DR) + κd+m+J

3 max
0≤j<J

|f (j)(q)|
j!

)
+ κ4d.(3.5)

Since m ≤ c1d
n, log ‖s‖L∞(DR) ≤ c2d log d, and J ≥ γ0d log d, we obtain

log

(
mκ1d

κJ2
‖s‖L∞(DR)

)
≤ (nκ1 + c2 − (log κ2)γ0)d log d+ κ1(log c1)d.

Thus, by our choice of γ0, if d is sufficiently large, we get

log

(
mκ1d

κJ2
‖s‖L∞(DR)

)
≤ −(C + ε1)d log d,(3.6)

for some ε1 > 0.

Since m ≤ c1d
n, J ≤ γ0d log d+ 1, and max0≤j<J log |f

(j)(q)|
j! ≤ −γ1d

n, we have

log

(
κd+m+J

3 max
0≤j<J

|f (j)(q)|
j!

)
≤ (c1 log κ3 − γ1)dn + γ0(log κ3)d log d+ (log κ3)(d+ 1).

Thus, as n ≥ 2, and by our choice of γ1, if d is sufficiently large, we obtain

log

(
κd+m+J

3 max
0≤j<J

|f (j)(q)|
j!

)
≤ −ε2d

n(3.7)

for some ε2 > 0.
We conclude by applying (3.6) and (3.7) in (3.5), and by taking d to be sufficiently large. �

4. Analytic curves of moderate growth in quasi-projective varieties

This section contains mostly well-known techniques and results in Nevanlinna Theory. These
are nevertheless written in the literature in a form not suitable for our purposes. Although our
proofs may vary, many of the theory concerning growth of entire analytic maps (“parabolic case”)
easily translate into our hyperbolic situation; we refer the reader to the recent monograph [29] for
a thorough exposition of the general parabolic theory (in several variables).
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4.1. Analytic curves of moderate growth in compact complex manifolds. Let R > 0 be a
real number, M be a compact complex manifold, and ϕ : DR −→M be an analytic map. Fix any
Hermitian metric h on M , and let ω := − Imh be the positive (1, 1)-form associated to h; in other
words, if h =

∑n
k,l=1 hkldzk ⊗ dz̄l in a local chart (z1, . . . , zn) of M , then ω = i

2

∑n
k,l=1 hkldzk ∧ dz̄l.

Definition 4.1. We say that ϕ : DR −→ M has moderate growth if the semipositive (1,1)-form
ϕ∗ω on DR has moderate growth (see Definition 3.3).

This notion does not depend on the choice of the Hermitian metric h. Indeed, since M is compact,
any two Hermitian metrics on M are “comparable”: if h0 is another Hermitian metric on M , then
there exist real numbers α, β > 0 such that α‖ ‖h0 ≤ ‖ ‖h ≤ β‖ ‖h0 .

Remark 4.2. It follows from Remark 3.1 that Tϕ∗ω(r) =
∫ r

0

(∫
Dt
ϕ∗ω

)
d log t can be thought of as

a logarithmic integral of the areas of the disks ϕ(Dt) in M for 0 < t < r.

We next consider a simple example of curves of moderate growth.

Example 4.3 (Bounded derivative). Let ϕ : DR −→M be an analytic map, and h be a Hermitian
metric on M . Then we can write

ϕ∗ω = ‖ϕ′(z)‖2R,hdµR,

where dµR is the Poincaré form defined in Example 3.4, and ‖ϕ′(z)‖R,h denotes the norm of the
tangent mapDzϕ : TzDR −→ Tϕ(z)M with respect to the Poincaré metric onDR, and the Hermitian
metric h on M . Since dµR has moderate growth, the analytic curve ϕ has moderate growth in M
whenever the function z 7−→ ‖ϕ′(z)‖R,h is bounded onDR (e.g., ϕ extends continuously toDR ⊂ C).

4.2. Nevanlinna’s characteristic function. Let M be a complex manifold, L = (L, ‖ ‖) be a
semipositive Hermitian line bundle on M , and s0 ∈ Γ(M,L) \ {0} be a non-zero global section.

Let R > 0 be a real number and ϕ : DR −→M be an analytic map whose image is not contained
in the support of div(s0). We define, for every r ∈ (0, R),

mϕ,L,s0
(r) :=

1

2π

∫ 2π

0
log

1

‖s0(ϕ(reiθ))‖
dθ

and

Nϕ,L,s0
(r) := (ord0ϕ

∗s0) log r +
∑

0<|z|<r

(ordzϕ
∗s0) log

r

|z|
.

Then we can form the Nevanlinna characteristic function on the interval (0, R)

Tϕ,L,s0 := mϕ,L,s0
+Nϕ,L,s0

.

For the next proposition, we introduce a temporary notation. If s is a global section of ϕ∗L
and m = ord0s, we denote by `(s) the unique element of the fiber of ϕ∗L at 0 ∈ DR such that
jm0 s = `(s)⊗ dz⊗m (the “leading coefficient” of s).

The following classical identity (cf. [29] Theorem 2.3.31) is an immediate corollary of Proposition
3.8 applied to the section s = ϕ∗s0 and the point p = 0.
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Proposition 4.4 (Nevanlinna’s First Fundamental Theorem). For every r ∈ (0, R), we have

Tϕ∗L(r) = Tϕ,L,s0(r) + log ‖`(ϕ∗s0)‖.

�

As an application we show that, when R = 1, polynomial growth of Taylor coefficients implies
moderate growth.

Example 4.5. Let ϕ = (ϕ1, . . . , ϕn) : D −→ Cn be an analytic map with coordinates ϕi(z) =∑∞
j=0 aijz

j . Assume that there exist a real number C > 1 and an integer d ≥ 1 such that

|aij | ≤ Cjd

for every 1 ≤ i ≤ n and j ≥ 0. Then, when identifying Cn with the open affine subset
U0 = {(p0 : · · · : pn) ∈ Pn(C) | p0 6= 0} of Pn(C) via (z1, . . . , zn) 7−→ (1 : z1 : · · · : zn), the
analytic curve ϕ : D −→ Pn(C) has moderate growth.

Indeed, let O(1) denote the line bundle O(1) on Pn(C) endowed with the Fubini-Study metric;
that is,

‖Xi(p)‖ =
|pi|√

|p0|2 + · · ·+ |pn|2

for every 0 ≤ i ≤ n, and p = (p0 : · · · : pn) ∈ Pn(C). Since N
ϕ,O(1),X0

vanishes identically, by

Proposition 4.4, it is sufficient to prove that there exist a, b > 0 such that

m
ϕ,O(1),X0

(r) ≤ a+ b log
1

1− r
for every r ∈ (0, 1).

For any real numbers t1, . . . , tm ≥ 0, we have log+(
∑m

i=1 ti) ≤
∑m

i=1 log+ ti + logm, so that

log
1

‖X0(ϕ(reiθ))‖
= log

√√√√1 +

n∑
i=1

|ϕi(reiθ)|2 ≤
n∑
i=1

log+ |ϕi(reiθ)|+ log(
√

1 + n).

Since

|ϕi(reiθ)| ≤ C
∞∑
j=0

jdrj ≤ Cd!

(
1

1− r

)d+1

,

we may take a = log(
√

1 + n) + n log(Cd!) and b = n(d+ 1).

4.3. The field of moderate functions on a disk. In this paragraph we study more closely the
case M = P1(C). We refer to [34] Chapters V-VII for a survey on the classical work on this subject.

Let R > 0 be a real number and f be meromorphic function on DR, i.e., an analytic map
f : DR −→ P1(C) which is not constant equal to ∞ = (0 : 1).

Definition 4.6. We say that f is a moderate function on DR if the analytic map f : DR −→ P1(C)
has moderated growth.
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If O(1) denotes the line bundle O(1) on P1(C) endowed with the Fubini-Study metric (see
Example 4.5), we denote

Tf := T
f∗O(1)

.

By Proposition 4.4, we have

Tf = m
f,O(1),X0

+N
f,O(1),X0

+O(1),

where O(1) denotes a constant. To lighten the notation, we shall write mf = m
f,O(1),X0

(resp.

Nf = N
f,O(1),X0

).

Let KDR denote the field of meromorphic functions on DR. It is classical (and easy to prove)
that characteristic functions are compatible with the algebraic structure of KDR in the following
sense: for f, g ∈ KDR \ {0} and n ∈ Z \ {0}, we have

Tf+g ≤ Tf + Tg +O(1), Tfg ≤ Tf + Tg +O(1), Tfn = |n|Tf +O(1)(4.1)

It follows from the above relations that the subset KmDR of KDR consisting of moderate mero-
morphic functions is a field.

Proposition 4.7 (cf. [29] Lemma 2.5.15). Let f, f1, . . . , fn be meromorphic functions on DR. If
f is algebraic over the field C(f1, . . . , fn) ⊂ KDR , then there exist real numbers a, b > 0 such that

Tf ≤ a+ b
n∑
i=1

Tfi.

Proof. Let d be the degree of f over C(f1, . . . , fn). If d = 0, then the result follows immediately
from formulas (4.1). Assume that d ≥ 1, and let P = Xd− gd−1X

d−1− · · · − g0 ∈ C(f1, . . . , fn)[X]
be the minimal polynomial of f . Since each gi ∈ C(f1, . . . , fn), it suffices to prove that Tf ≤∑d−1

i=0 Tgi +O(1).
By formulas (4.1), we have

Tfd = T(gd−1fd−2+···+g1)f+g0 ≤ Tgd−1fd−2+···+g1 + Tf + Tg0 +O(1).

By descending induction, we get

Tfd ≤ (d− 1)Tf +
d−1∑
i=0

Tgi +O(1).

As Tfd = d · Tf +O(1), we obtain

Tf ≤
d−1∑
i=0

Tgi +O(1).

�

Corollary 4.8. The field of moderate functions KmDR is algebraically closed in KDR . �

In particular, since the inclusion DR −→ P1(C) is easily seen to be an analytic map of moderate
growth (see Example 4.3), the field KmDR contains the field of (univalued) algebraic meromorphic
functions on DR.
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4.4. Birational invariance and moderate growth in quasi-projective varieties. In this
paragraph, we establish the birational invariance of moderate growth under a non-degeneracy hy-
pothesis. Our arguments follow closely those of [29] 2.5; we claim no originality here.

In what follows, if f is a meromorphic function on DR, we denote the divisor of zeros (resp.
poles) of f by div0(f) (resp. div∞(f)), so that div(f) = div0(f)− div∞(f).

Lemma 4.9 (cf. [29] Theorem 2.5.7). Let M be a compact complex manifold endowed with a
semipositive Hermitian line bundle L = (L, ‖ ‖). Fix global sections s0, s1 ∈ Γ(M,L), with s0 6= 0.
Then, for any analytic map ϕ : DR −→M whose image is not contained in the support of div(s0),
if we denote by f the unique meromorphic function on DR such that fϕ∗s0 = ϕ∗s1, we have

Tf ≤ Tϕ,L,s0 +O(1).

Proof. Let H be the support of div(s0). For p ∈M \H, we have

log

√
1 +
‖s1(p)‖2
‖s0(p)‖2

= log
1

‖s0(p)‖
+ log

√
‖s0(p)‖2 + ‖s1(p)‖2.

Since M is compact, the functions ‖si‖ on M are bounded, so that

log

√
1 +
‖s1‖2
‖s0‖2

≤ log
1

‖s0‖
+O(1)

over M \H. In particular, we get

mf ≤ mϕ,L,s0
+O(1).

Since div∞(f) ≤ div(ϕ∗s0), the bound

Nf ≤ Nϕ,L,s0

is trivial. �

For the next lemma, we endow the line bundle O(1) over Pn(C) with the Fubini-Study metric
as in Example 4.5. Moreover, if E =

∑
z∈DR nz[z] is a divisor in DR, we denote i(z, E) := nz.

Lemma 4.10. Let ϕ : DR −→ Pn(C) be an analytic map whose image is not contained in the
support of div(X0). For 1 ≤ j ≤ n, let us denote by fj the unique meromorphic function on DR

such that fjϕ
∗X0 = ϕ∗Xj. Then

T
ϕ,O(1),X0

≤
n∑
j=1

Tfj +O(1).

Proof. We first prove that m
ϕ,O(1),X0

≤
∑n

j=1mfj . For any real numbers t1, . . . , tn ≥ 0, we have

log

1 +

n∑
j=1

tj

 ≤ n∑
j=1

log(1 + tj).
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Thus, for any r ∈ (0, R),

m
ϕ,O(1),X0

(r) =
1

2π

∫ 2π

0
log

√√√√1 +
n∑
j=1

|fj(reiθ)|2dθ

≤
n∑
j=1

1

2π

∫ 2π

0
log
√

1 + |fj(reiθ)|2dθ =

n∑
j=1

mfj (r)

Next, observe that to prove that N
ϕ,O(1),X0

≤
∑n

j=1Nfj it suffices to show that

div(ϕ∗X0) ≤
n∑
j=1

div∞(fj).

Since each div∞(fj) is an effective divisor, it is sufficient to prove that, for every z ∈ DR, there
exists 1 ≤ j ≤ n such that i(z, div(ϕ∗X0)) ≤ i(z,div∞(fj)). Now, for any 1 ≤ j ≤ n, since
fjϕ
∗X0 = ϕ∗Xj , we may write

div∞(fj) = div(ϕ∗X0) + div0(fj)− div(ϕ∗Xj).

Finally, we simply remark that for any z ∈ DR for which X0(ϕ(z)) = 0 (i.e., ordzϕ
∗X0 > 0 or,

equivalently, i(z, div(ϕ∗X0)) > 0), there exists 1 ≤ j ≤ n such that Xj(ϕ(z)) 6= 0 (i.e., ordzϕ
∗Xj =

0), so that i(z,div∞(fj)) = i(z, div(ϕ∗X0)) + i(z,div0(fj)) ≥ i(z, div(ϕ∗X0)). �

Let f, g : I −→ R be real functions defined on some interval I ⊂ R. We say that f and g are
comparable if there exist real numbers a, b, c, d > 0 such that

af − b ≤ g ≤ cf + d

everywhere on I.

Theorem 4.11 (cf. [29] Theorem 2.5.18). Let R > 0 be a real number, X be a smooth projective
variety of dimension n over C, and ϕ : DR −→ Xan be an analytic map whose image is Zariski-
dense in X. Then, for any positive (1, 1)-form ω on X, and any transcendence basis (f1, . . . , fn)
of the function field C(X) of X, the real functions Tϕ∗ω and

∑n
j=1 Tfj◦ϕ on (0, R) are comparable.

In particular, ϕ has moderate growth in X if and only if fj ◦ ϕ are moderate functions on DR for
every 1 ≤ j ≤ n.

Observe that the Zariski-density hypothesis above ensures that, for any rational function f on
X, the image of ϕ is not contained in the indeterminacy locus of f , so that f ◦ ϕ is a well-defined
meromorphic function on DR.

Proof. Let i : X −→ PN
C = Proj C[X0, . . . , XN ] be a closed immersion such that i ◦ ϕ(DR) is not

contained in the support of div(X0), and consider the rational functions gj ∈ C(X), 1 ≤ j ≤ N ,
given by restriction of Xj/X0 to X.

It follows from the compactness of Xan (cf. remark following Definition 4.1), and from Propo-
sition 4.4, that the functions Tϕ∗ω and T

i◦ϕ,O(1),X0
are comparable. By Lemmas 4.9 and 4.10, the

functions T
i◦ϕ,O(1),X0

and
∑N

j=1 Tgj◦ϕ are comparable. Furthermore, as C(X) = C(g1, . . . , gN ) is

an algebraic extension of C(f1, . . . , fn), we deduce from formulas (4.1) and from Proposition 4.7
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that
∑N

j=1 Tgj◦ϕ and
∑n

j=1 Tfj◦ϕ are comparable. Our statement follows by transitivity of compa-
rability. �

In particular, moderate growth in projective varieties is a birational invariant.

Corollary 4.12. Let f : X −→ Y be a birational morphism between smooth projective varieties
over C. If R > 0 is a real number, then an analytic map ϕ : DR −→ Xan with Zariski-dense image
has moderated growth if and only if f ◦ ϕ : DR −→ Y an has moderate growth. �

Combining the standard argument in the proof of Corollary 2.16 with a resolution of singularities
yields the following.

Corollary 4.13. Let X be a smooth quasi-projective variety over C, and let ji : X ↪→ Xi, i = 1, 2,
be smooth projective compactifications of X. If R > 0 is a real number and ϕ : DR −→ Xan is an
analytic map with Zariski-dense image, then j1 ◦ ϕ has moderate growth if and only if j2 ◦ ϕ has
moderate growth. �

We may thus define an unambiguous notion of moderate growth for Zariski-dense analytic curves
in smooth quasi-projective varieties.

Definition 4.14. Let X be a smooth quasi-projective variety, R > 0 be a real number, and
ϕ : DR −→ Xan be an analytic map with Zariski-dense image. We say that ϕ has moderate growth
if there exists a smooth projective compactification j : X ↪→ X of X such that j ◦ ϕ : DR −→ X

an

has moderate growth.

5. Construction of auxiliary sections

We prove in this section Theorem 5.1 below, generalizing the construction of auxiliary polyno-
mials in Nesterenko’s method. Our approach, based on Bost’s method of slopes, differs from the
classical combinatorial one. However, the backbone of the argument remains the same: Minkowski’s
theorem on minima of lattices (see Proposition 5.7 below).

5.1. Notation and statement. Let K be a number field and OK be its ring of integers. Recall
that, if X is an arithmetic scheme over OK (i.e., an integral scheme X with a separated and flat
morphism of finite type X −→ SpecOK) with smooth generic fiber XK , a Hermitian line bundle
L = (L, (‖ ‖σ)σ:K↪→C) over X is the data of a line bundle L on X and a family of C∞ Hermitian
metrics ‖ ‖σ on the holomorphic line bundles Lσ over X an

σ deduced from L by the field embeddings
σ : K ↪→ C that is invariant under complex conjugation.

If d ≥ 1 is an integer, and s ∈ Γ(X , L⊗d) is a global section, we denote

‖s‖X := max
σ
‖s‖σ,L∞(X an

σ ).

This section is devoted to the proof of the following theorem.

Theorem 5.1. Let X be a projective arithmetic scheme of relative dimension n ≥ 1 over OK with
smooth generic fiber XK , and fix any Hermitian line bundle L = (L, (‖ ‖σ)σ:K↪→C) on X such that
LK is ample on XK . Let ϕ̂ : Spf OK [[q]] −→ X be a morphism of formal OK-schemes such that, for
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every field embedding σ : K ↪→ C, the formal curve ϕ̂σ : Spf C[[q]] −→ Xσ lifts to an analytic map
ϕσ : DRσ −→ X an

σ defined on some complex disk of radius Rσ > 0, and assume that∏
σ:K↪→C

Rσ = 1.

If, moreover,

(1) the image of ϕ̂K : Spf K[[q]] −→ XK is Zariski-dense, and
(2) for every field embedding σ : K ↪→ C, ϕσ has moderate growth in X an

σ ,

then, there are constants c1, c2, c3 > 0 such that, for every large enough positive integer d, there
exists s ∈ Γ(X , L⊗d) \ {0} such that

m := ord0ϕ̂
∗s > c1d

n

and

log ‖s‖X ≤ c2d+ c3d logm.

Remark 5.2. By Paragraph 4.4 one could also assume that X is only quasi-projective over
SpecOK , and then construct “auxiliary sections” on any projective compactification of X hav-
ing smooth generic fiber.

If we require the stronger condition of ZL-density of ϕ̂K instead of Zariski-density, we obtain the
following.

Corollary 5.3. With hypotheses and notation as in Theorem 5.1, if moreover ϕ̂K : Spf K[[q]] −→
XK is ZL-dense, then there exist constants c1, c2 > 0 such that, for every large enough positive
integer d, there exists s ∈ Γ(X , L⊗d) \ {0} such that

ord0ϕ̂
∗s > c1d

n

and

log ‖s‖X ≤ c2d log d.

5.2. Recollections of Arakelov theory; the slope inequality. For the convenience of the
reader, we recollect in this paragraph some fundamental notions and results concerning Hermitian
vector bundles over rings of algebraic integers. Proofs and further developments can be found in
[3] Appendix A, [4] Paragraphs 4.1-4.2, and [8] Paragraphs 3.1-3.3.

Let K be number field, OK be its ring of integers, and set S := SpecOK . Recall that a Hermitian
vector bundle over S is a couple E = (E, (‖ ‖σ)σ:K↪→C), where E is a projective OK-module of finite
type, and (‖ ‖σ)σ:K↪→C is a family of Hermitian norms over Eσ := E ⊗σ:OK ↪→C C, invariant under

complex conjugation. If rkE = 1, we say that E is a Hermitian line bundle over S.
The multilinear constructions in the category of projective modules over OK (e.g., tensor prod-

ucts, quotients, Hom) make sense in the category of Hermitian vector bundles over S.

Definition 5.4. Let E = (E, (‖ ‖σ)σ:K↪→C) be a Hermitian vector bundle over S, and fix s ∈
detE r {0}, where detE :=

∧rkE E. We define the Arakelov degree of E by

d̂eg(E) := log |(detE)/OKs| −
∑

σ:K↪→C

log ‖s‖σ ∈ R.
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This is easily seen not to depend on the choice of s. We define moreover the normalized Arakelov
degree of E by

d̂egn(E) :=
1

[K : Q]
d̂eg(E)

and the slope of E by

µ̂(E) :=
1

rkE
d̂egn(E)

when rkE > 0, and µ̂(E) := −∞ when rkE = 0.

Proposition 5.5 (cf. [4] 4.1.1). The following properties hold:

(1) If L and M are Hermitian line bundles over S, we have

d̂eg(L⊗M) = d̂eg(L) + d̂eg(M).

(2) Let E be a Hermitian vector bundle over S and

E = E0 ⊃ E1 ⊃ · · · ⊃ EN ⊃ {0}

be a filtration of E by saturated OK-submodules. Then

d̂eg(E) = d̂eg(EN ) +
N−1∑
i=0

d̂eg(Ei/Ei+1),

where EN (resp. Ei/Ei+1) denotes the Hermitian vector bundle with underlying module
EN (resp. Ei/Ei+1) and Hermitian structure induced by E.

(3) For every Hermitian vector bundle E over S, and every Hermitian line bundle L over S,
we have

µ̂(E ⊗ L) = µ̂(E) + d̂egn(L).

Let E and F be Hermitian vector bundles over S. For every maximal ideal p of OK , we denote
by Kp the completion of K at p and by ‖ ‖p the non-archimedean norm over HomKp(EKp , FKp)
associated to the OKp-lattice HomOKp

(EOKp
, FOKp

); explicitly, if ϕ ∈ HomKp(EKp , FKp)\{0}, then

‖ϕ‖p := |OK/p|−vp(ϕ), where vp(ϕ) = max{n ∈ Z | π−np ϕ ∈ HomOKp
(EOKp

, FOKp
)} and πp denotes

some uniformizer of OKp . For a field embedding σ : K ↪→ C, we consider the operator norm on
HomC(Eσ, Fσ):

‖ϕ‖σ = max
v∈Eσ\{0}

‖ϕ(v)‖σ
‖v‖σ

.

Then, the height of a non-zero K-linear map ϕ : EK −→ FK is defined by

hE,F (ϕ) =
1

[K : Q]

(∑
p

log ‖ϕ‖p +
∑
σ

log ‖ϕ‖σ

)
.

If ϕ = 0, our convention is that hE,F (ϕ) := −∞.
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Proposition 5.6 (Slope inequality; [4] Proposition 4.5). With the above notation, if ϕ : EK −→ FK
is injective, then

µ̂(E) ≤ µ̂max(F ) + hE,F (ϕ),

where µ̂max(F ) := sup{µ̂(F ′) | F ′ is an OK-submodule of F}.

Let us point out that µ̂max(F ) is attained by a saturated submodule of F (cf. [3] A.3). In
particular, if rkF = 1, then µ̂max(F ) = µ̂(F ).

5.3. Short vectors in filtered Hermitian vector bundles. Let K be a field, OK be its ring
of integers, and S = SpecOK . Let E = (E, (‖ ‖σ)σ:K↪→C) be a non-zero Hermitian vector bundle
over S; we denote its first successive minimum by

λ1(E) := inf
{

max
σ
‖s‖σ

∣∣∣ s ∈ E \ {0}} .

Since s 7−→ s ⊗ 1 identifies E with a lattice in the R-vector space E ⊗Z R, the first successive
minimum is attained by some element s ∈ E \ {0}.

Proposition 5.7 (Minkowski). Let E be a non-zero Hermitian vector bundle over S. Then

log λ1(E) ≤ −µ̂(E) +
1

2
log(rkE) +

log |∆K |
2[K : Q]

+
1

2
log[K : Q],

where ∆K denotes the discriminant of K over Q.

This statement might be obtained from [8] pp. 1027-1028 by considering the Hermitian vector
bundle over Spec Z given by the direct image of E via S −→ Spec Z.

Let (Ed)d≥1 be a family of Hermitian vector bundles over S such that

rd := rkEd −→ +∞
as d→ +∞. Assume that, for each d ≥ 1, we are given a separated filtration

E0
d = Ed ⊃ E1

d ⊃ E2
d ⊃ · · ·

by saturated OK-submodules. We endow each Emd with the Hermitian vector bundle structure

induced from Ed.

Proposition 5.8. With the above notation, assume that there exists an integer k ≥ 1 and a double
sequence (ad,m)d≥1,m≥0 of positive real numbers, non-decreasing in m for every d ≥ 1, such that

rk(Emd /E
m+1
d ) ≤ k(5.1)

and

µ̂(Emd /E
m+1
d ) ≤ ad,m(5.2)

for every d ≥ 1 and m ≥ 0. Then, for every d ≥ 1 such that rd 6= 0, there exists m ≥
⌊
rd
2k

⌋
and

s ∈ Emd \ E
m+1
d satisfying

max
σ

log ‖s‖σ ≤ max{0,−2µ̂(Ed)}+ ad,m +
1

2
log rd +

log |∆K |
2[K : Q]

+
1

2
log[K : Q].
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Proof. Let d ≥ 1 such that rd 6= 0 and set

m′ :=
⌊ rd

2k

⌋
,

so that, by (5.1),

rm
′

d := rkEm
′

d ≥ rd − km′ ≥
1

2
rd > 0.

By Proposition 5.5 (2), we have

µ̂(Ed) =
rm
′

d

rd
µ̂(Em

′
d ) +

1

rd

∑
0≤i<m′

rk(Eid/E
i+1
d )µ̂(Eid/E

i+1
d ).

(When Eid/E
i+1
d = 0, rk(Eid/E

i+1
d ) = 0 and µ̂(Eid/E

i+1
d ) = −∞, so that rk(Eid/E

i+1
d )µ̂(Eid/E

i+1
d ) =

0 by convention.) Using hypotheses (5.1) and (5.2), and that (ad,m) is non-decreasing in m for
every d, we obtain

µ̂(Ed) ≤
rm
′

d

rd
µ̂(Em

′
d ) +

m′kad,m′

rd
,

or, equivalently,

−µ̂(Em
′

d ) ≤ − rd

rm
′

d

µ̂(Ed) +
m′k

rm
′

d

ad,m′ .

Since rd ≤ 2rm
′

d and m′ ≤ rd
2k , we conclude that

−µ̂(Em
′

d ) ≤ max{0,−2µ̂(Ed)}+ ad,m′ .

Let s ∈ Em′d \ {0} be such that maxσ ‖s‖σ = λ1(Em
′

d ). Then Proposition 5.7 yields

max
σ

log ‖s‖σ ≤ −µ̂(Em
′

d ) +
1

2
log rm

′
d +

log |∆K |
2[K : Q]

+
1

2
log[K : Q]

≤ max{0,−2µ̂(Ed)}+ ad,m′ +
1

2
log rm

′
d +

log |∆K |
2[K : Q]

+
1

2
log[K : Q].

Thus m := max{i ∈ N | s ∈ Eid} ≥ m′ satisfies the conclusion of our statement. �

5.4. Proof of Theorem 5.1. Consider the notation and hypotheses of Theorem 5.1. Let us first
observe that if Theorem 5.1 holds for some particular choice of Hermitian metric (‖ ‖σ)σ:K↪→C on
L, then a similar statement holds for any other choice of metric, up to modifying the constant c2.
We may thus assume that each (Lσ, ‖ ‖σ) is a positive Hermitian line bundle on X an

σ .
For every integer d ≥ 1,

Ed := Γ(X , L⊗d)

is a projective OK-module of finite type. For each field embedding σ : K ↪→ C, we may consider
the uniform norm ‖ ‖L∞(X an

σ ) on Ed,σ induced by the Hermitian metric ‖ ‖σ on Lσ.
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Note that the norm ‖ ‖L∞(X an
σ ) is not Hermitian in general. We denote by ‖ ‖d,σ the John norm

on Ed,σ attached to ‖ ‖L∞(X an
σ ) (cf. [7] Appendix F); this is a Hermitian norm on Ed,σ satisfying

‖ ‖L∞(X an
σ ) ≤ ‖ ‖d,σ ≤ (2 rkEd)

1/2‖ ‖L∞(X an
σ ).(5.3)

We may thus consider the Hermitian vector bundle over SpecOK
Ed := (Ed, (‖ ‖d,σ)σ:K↪→C).

We define a decreasing filtration (Emd )m≥0 by saturated submodules on Ed via

Emd := {s ∈ Ed | ord0ϕ̂
∗s ≥ m}.

Since the image of ϕ̂K : Spf K[[q]] −→ XK is Zariski-dense, (Emd )m≥0 is a separated filtration. The

subquotients Emd /E
m+1
d bear Hermitian vector bundle structures Emd /E

m+1
d induced by Ed.

Let us denote by Ω the fiber of coherent sheaf Ω1
Spf OK [[q]]/OK at the point of Spf OK [[q]] given by

the ideal (q) ⊂ OK [[q]]. This is a trivial OK-module generated by dq. In what follows, we endow Ω
with a structure of Hermitian line bundle Ω, defined by

‖αdq‖σ = |σ(α)|

for any α ∈ OK and any embedding σ : K ↪→ C. Observe that Ω is isomorphic to the trivial

Hermitian line bundle, and therefore d̂eg Ω = 0.
Let ϕ̂(0) : SpecOK −→ X denote the reduction of ϕ̂ modulo q, i.e., the composition of ϕ̂ with

the closed immersion SpecOK −→ Spf OK [[q]] associated to the ideal (q). The Hermitian structure
on L endows ϕ̂(0)∗L with the structure of a Hermitian line bundle over SpecOK .

For every integers d ≥ 1 and m ≥ 0, we have an injective OK-linear map

γmd : Emd /E
m+1
d −→ ϕ̂(0)∗L⊗d ⊗OK Ω⊗m

defined by mapping the class [s] ∈ Emd /E
m+1
d of s ∈ Emd to jm0 ϕ̂

∗s (the jet of order m at q = 0 of
ϕ̂∗s).

Lemma 5.9. There exist constants κ1, κ2 > 0 such that for every integers d ≥ 1 and m ≥ 0 we
have

h(γmd,K) ≤ κ1d+ κ2d log+m,

where h denotes the height of γmd,K with respect to the Hermitian vector bundles Emd /E
m+1
d and

ϕ̂(0)∗L
⊗d ⊗OK Ω

⊗m
.

Proof. Let σ : K ↪→ C be a field embedding. Since ϕσ : DRσ −→ X an
σ has moderate growth, it

follows from Proposition 3.12 that there exist constants κ1,σ, κ2,σ > 0 such that, for any integers

d ≥ 1 and m ≥ 0 for which and Emd /E
m+1
d 6= 0, and any s ∈ Emd,σ \ E

m+1
d,σ , we have

log ‖jm0 ϕ∗σs‖Rσ − log ‖s‖L∞(X an
σ ) ≤ κ1,σd+ κ2,σd log+m.(5.4)

Here, the norm ‖ ‖Rσ is the norm ‖ ‖r, introduced before Proposition 3.8, in the special case where
r = Rσ and L is ϕ∗σLσ equipped with the pullback of ‖ ‖σ.
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Note that

‖jm0 ϕ̂∗s‖σ = R−mσ ‖jm0 ϕ∗σs‖Rσ ,

where ‖jm0 ϕ̂∗s‖σ denotes the norm of jm0 ϕ̂
∗s = γmd ([s]) with respect to the Hermitian structure of

ϕ̂(0)∗L
⊗d ⊗ Ω

⊗m
. The estimate (5.4), together with (5.3), shows that

log ‖γmd ‖σ +m logRσ ≤ κ1,σd+ κ2,σd log+m.

Since
∏
σ:K↪→CRσ = 1, we obtain

∑
σ

log ‖γmd ‖σ ≤

(∑
σ

κ1,σ

)
d+

(∑
σ

κ2,σ

)
d log+m.

Since γmd is defined over OK , we have ‖γmd,K‖p ≤ 1 for every maximal ideal p of OK , so that

h(γmd,K) ≤ 1

[K : Q]

∑
σ

log ‖γmd ‖σ ≤
1

[K : Q]

(∑
σ

κ1,σ

)
d+

1

[K : Q]

(∑
σ

κ2,σ

)
d log+m.

�

End of proof of Theorem 5.1. Let us first remark that, as LK is ample, we have

rd = rkEd = dim Γ(XK , L⊗dK ) ∼d→+∞
degLK XK

n!
dn.

In particular, log rd = O(d) as d → +∞. We shall apply Proposition 5.8 for (Emd )d≥1,m≥0 defined
as above. This suffices by the estimates (5.3).

Note that condition (5.1) is trivially verified for k = 1. Moreover, by the same argument of [4]
Proposition 4.4 (cf. [4] Lemma 4.1) and by the estimates (5.3), there exists a constant c > 0 such
that −µ̂(Ed) ≤ cd for every d ≥ 1. Thus, to finish our proof, it is sufficient to find constants a, b > 0
such that

µ̂(Emd /E
m+1
d ) ≤ ad,m := ad+ bd log+m

for every d ≥ 1 and m ≥ 0 (condition (5.2)).
By Lemma 5.9, there exist constants κ1, κ2 > 0 such that, for every d ≥ 1 and m ≥ 0 such that

Emd /E
m+1
d 6= 0, we have

h(γmd,K) ≤ κ1d+ κ2d log+m.

Thus, since γmd,K is injective, we may apply the Slope Inequality (Proposition 5.6) to obtain

µ̂(Emd /E
m+1
d ) ≤ µ̂(ϕ̂(0)∗L

⊗d ⊗OK Ω
⊗m

) + h(γmd,K) ≤ (κ1 + µ̂(ϕ̂(0)∗L))d+ κ2d log+m.

�
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6. Derivatives of sections of line bundles along vector fields

A crucial step in Nesterenko’s method involves applying a certain differential operator (deduced
from the Ramanujan equations) to auxiliary polynomials. It is also important to understand how
this differential operator affects the degree and the norm ‖ ‖∞ of a polynomial.

Our generalization of Nesterenko’s proof replaces polynomials of degree d by global sections of the
dth tensor power of some ample line bundle. In this section we explain how to differentiate global
sections of tensor powers of a line bundle L along a vector field v. Under a projectivity hypothesis,
we also explain how L∞ norms with respect to some Hermitian metric on L are affected by a
differential operator deduced from v.

6.1. The basic definition. Let M be a compact connected complex manifold, and L be a line
bundle over M endowed with a global holomorphic section s0 ∈ Γ(M,L) \ {0}. To L is associated
the graded ring R =

⊕
d≥0Rd, where Rd := Γ(M,L⊗d).

Let v be a meromorphic vector field on M , and assume that v is holomorphic on the open subset
Ms0 := {p ∈ M | s0(p) 6= 0}. Then there is a smallest integer k ≥ 0, the “order of pole of v at

div(s0)”, such that v ⊗ s⊗k0 defines a global holomorphic section of TM ⊗ L⊗k.
The vector field v induces a C-derivation of degree k + 1 of the graded ring R

∂v : R −→ R

given as follows. By definition, ∂v is the zero map on R0
∼= C. Let d ≥ 1 be an integer, s ∈ Rd, and

f : Ms0 −→ C be the holomorphic function for which s = fs⊗d0 over Ms0 . Then ∂vs ∈ Rd+k+1 is

defined as the unique global section of L⊗d+k+1 such that ∂vs = v(f)s⊗d+k+1
0 over Ms0 . The next

lemma guarantees that this is well defined.

Lemma 6.1. With the above notations, v(f)s⊗d+k+1
0 extends to a global holomorphic section of

L⊗d+k+1.

Proof. The couple (L, s0) corresponds canonically to an effective analytic Cartier divisor E on
M ; let (gi, Ui)i∈I be a family of local equations of E for some open covering M =

⋃
i∈I Ui. By

hypothesis, for every i ∈ I, gki v extends to a holomorphic vector field on Ui.

An element s ∈ Rd might be identified with a meromorphic function f = s/s⊗d0 on M having
pole of order at most d on E, i.e., such that gdi f defines a holomorphic function on Ui for every

i ∈ I. Under this identification, our statement is equivalent to the assertion that gd+k+1
i v(f) defines

a holomorphic function on Ui for every i ∈ I.
Now, for i ∈ I, we have

gk+1
i v(gdi f) = gk+1

i (d · gd−1
i v(gi)f + gdi v(f)) = d · gki v(gi)g

d
i f + gd+k+1

i v(f),

so that gd+k+1
i v(f) defines a holomorphic function on Ui. �

Finally, it is easy to see that the C-linear map ∂v : R −→ R satisfies Leibniz’s rule: if s ∈ Rd
and t ∈ Re, then

∂v(s⊗ t) = ∂vs⊗ t+ s⊗ ∂vt

in Rd+e+k+1.
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6.2. Estimates of uniform norms. Let us keep the notation of the last paragraph and fix once
and for all some t ∈ Rk+1 (recall that k denotes the “order of pole of v at div(s0)”).

For any integer j ≥ 1 and d ≥ 1, we define a differential operator of degree j(k + 1)

∂[j]
v : R −→ R

as the composition

∂[j]
v = ∂v ◦ (∂v − t) ◦ · · · ◦ (∂v − (j − 1)t).

Proposition 6.2. With the above notation, assume moreover that L = i∗O(1) for some projectively
normal embedding i : M ↪→ Pn(C). Let ‖ ‖ be a Hermitian metric on L. Then there exists a
constant C > 0 such that, for any integer j ≥ 1, any sufficiently large positive integer d, and any
s ∈ Rd, we have

‖∂[j]
v s‖L∞(M) ≤ Cj+d(j + d)j‖s‖L∞(M),

where ‖∂[j]
v (s)‖L∞(M) (resp. ‖s‖L∞(M)) denotes the uniform norm on M with respect to the Her-

mitian metric on L⊗d+j(k+1) (resp. L⊗d) induced by ‖ ‖.

Our proof is a reduction to the case M = Pn(C). Let ‖ ‖ denote the Fubini-Study metric
on the line bundle O(1) over Pn

C = Proj C[X0, . . . , Xn] (cf. Example 4.5), and let us identify
Γ(Pn

C,O(d)) with the C-vector space C[X0, . . . , Xn]d of homogeneous polynomials of degree d. If

P =
∑
|I|=d aIX

I , we consider the norms

‖P‖∞ := max
|I|=d

|aI | and ‖P‖1 :=
∑
|I|=d

|aI |.

The uniform norm of P , seen as an element of Γ(Pn(C),O(d)), with O(1) equipped with the
Fubini-Study metric, is given by

‖P‖L∞(Pn(C)) = sup
z∈Cn+1\{0}

|P (z)|

(
∑n

i=0 |zi|2)
d
2

.

Lemma 6.3. For any P ∈ Γ(Pn
C,O(d)), we have

(n+ 1)−
d
2 ‖P‖∞ ≤ ‖P‖L∞(Pn(C)) ≤ ‖P‖1 ≤

(
d+ n

n

)
‖P‖∞.

Proof. If we write P =
∑
|I|=d aIX

I , then Cauchy’s integral formula gives, for any multi-index I,

aI =
1

(2πi)n+1

∫
(∂D)n+1

P (z)

zI+1
dz0 · · · dzn,

where D denotes the unit disk in C and 1 the multi-index of order n+1 having 1 at each coordinate.
Thus, if [z] denotes the image in Pn(C) of a point z ∈ Cn+1 \ {0},

|aI | ≤ sup
z∈(∂D)n+1

|P (z)| = (n+ 1)
d
2 sup
z∈(∂D)n+1

‖P ([z])‖.

This proves that (n+ 1)−
d
2 ‖P‖∞ ≤ ‖P‖L∞(Pn(C)).
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For any z ∈ Cn+1 \ {0}, we have

‖P ([z])‖ =
|P (z)|

(
∑n

i=0 |zi|2)
d
2

≤
∑
|I|=d |aI ||zI |

(
∑n

i=0 |zi|2)
d
2

≤
max|I|=d |zI |

(
∑n

i=0 |zi|2)
d
2

‖P‖1.

Now, if I = (i0, . . . , in) is a multi-index satisfying |I| = d, then it is clear that

|zI |2 = (|z0|2)i0 · · · (|zn|2)in ≤

(
n∑
i=0

|zi|2
)d

.

We thus obtain ‖P‖L∞(Pn(C)) ≤ ‖P‖1.

The inequality ‖P‖1 ≤
(
n+d
n

)
‖P‖∞ is an immediate consequence of dim Γ(Pn(C),O(d)) =

(
n+d
n

)
.

�

Proof of Proposition 6.2. Since M is compact, if the conclusion of the statement holds for some
Hermitian metric ‖ ‖, then, up to replacing the constant C, it also holds for any other Hermitian
metric on L. We may thus assume that ‖ ‖ is induced by the Fubini-Study metric on O(1) via the
embedding i.

Let (X0, . . . , Xn) denote the projective coordinates of Pn(C), seen as global sections of O(1),
and let tj ∈ R1 be the restriction of Xj to M for every 0 ≤ j ≤ n. Since i : M ↪→ Pn(C) is
projectively normal, for any integer d ≥ 1, Rd is generated as a C-vector space by the monomials
of degree d in t0, . . . , tn.

We lift v to Pn(C) as follows. For every 0 ≤ j ≤ n, let Pj ∈ Γ(Pn(C),O(k+2)) = C[X0, . . . , Xn]k+2

be a lifting of ∂vtj ∈ Rk+2. Then there exists a unique C-derivation ∂ of
⊕

d≥0 Γ(Pn(C),O(d)) =

C[X0, . . . , Xn], of degree k + 1, such that ∂Xj = Pj for every 0 ≤ j ≤ n. It is easy to see that, for
every integer d ≥ 0, the diagram

C[X0, . . . , Xn]d C[X0, . . . , Xn]d+k+1

Rd Rd+k+1

∂

i∗ i∗

∂v

commutes. Moreover, if Q ∈ C[X0, . . . , Xn]k+1 is any lifting of t ∈ Rk+1, then it is clear that, for
any j ≥ 1,

∂[j] := ∂ ◦ (∂ −Q) ◦ · · · ◦ (∂ − (j − 1)Q)

makes the diagram

C[X0, . . . , Xn]d C[X0, . . . , Xn]d+j(k+1)

Rd Rd+j(k+1)

∂[j]

i∗ i∗

∂
[j]
v

commute.
For every multi-index I ∈ Nn+1, we have

‖∂XI‖∞ ≤ |I| max
0≤i≤n

‖Pi‖∞.
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This implies that, for any d ≥ 1 and any homogeneous polynomial P ∈ C[X0, . . . , Xn]d,

‖∂P‖∞ ≤ d
(

max
0≤i≤n

‖Pi‖∞
)
‖P‖∞.

Thus, if κ := ‖Q‖∞+(k+1) max0≤i≤n ‖Pi‖∞ and S ∈ C[X0, . . . , Xn] is a homogeneous polynomial
of degree d+m(k + 1) for some 0 ≤ m ≤ j − 1, we have

‖(∂ −mQ)S‖∞ ≤
(

(d+m(k + 1))

(
max

0≤i≤n
‖Pi‖∞

)
+m‖Q‖∞

)
‖S‖∞ ≤ κ(d+ j)‖S‖∞.

By induction, we conclude that, for any d ≥ 1 and any P ∈ C[X0, . . . , Xn]d, we have

‖∂[j]P‖∞ ≤ κj(d+ j)j‖P‖∞.(6.1)

To complete our proof, we apply a lifting argument. By [5] Proposition 3.5, there exists a
constant C0 > 0 such that, for every sufficiently large integer d and every s ∈ Γ(M,L⊗d), there
exists a lifting P ∈ Γ(Pn

C,O(d)) of s such that

‖P‖L∞(Pn(C)) ≤ Cd0‖s‖L∞(M).(6.2)

Thus, for any j ≥ 1,

‖∂[j]
v s‖L∞(M) ≤ ‖∂[j]P‖L∞(Pn(C)) ≤ ‖∂[j]P‖1 ≤

(
d+ j(k + 1)

j(k + 1)

)
‖∂[j]P‖∞ by Lemma 6.3

≤ 2d+j(k+1)‖∂[j]P‖∞
≤ 2d+j(k+1)κj(d+ j)j‖P‖∞ by (6.1)

≤ 2d+j(k+1)κj(d+ j)j(n+ 1)
d
2 ‖P‖L∞(Pn(C)) by Lemma 6.3

≤ 2d+j(k+1)κj(d+ j)j(n+ 1)
d
2Cd0‖s‖L∞(M) by (6.2).

�

6.3. The arithmetic case. We shall actually need an arithmetic variant of the above construc-
tions.

Consider the notation and terminology of Paragraph 5.1. Let K be a number field, X be a
projective arithmetic scheme over S = SpecOK with smooth generic fiber, and L be a line bundle
over X endowed with a global section s0 ∈ Γ(X , L) \ {0}. Arguing as above, we see that a section
w ∈ Γ(Xs0 ,DerOS (OX )) induces an OK-derivation ∂w of the ring

⊕
d≥0 Γ(X , L⊗d).

Let us fix t ∈ Γ(X , Lk+1), where k ≥ 0 is the “order of pole of w at div(s0)”, and consider the

differential operators ∂
[j]
w = ∂w ◦ (∂w − t) ◦ · · · ◦ (∂w − (j − 1)t), for j ≥ 0, as above.

By applying Proposition 6.2 for each projective embedding σ : K ↪→ C, we obtain the following
corollary.

Corollary 6.4. With the above notation, assume moreover that L = i∗O(1) for some closed im-
mersion i : X ↪→ Pn

OK over S such that iK : XK ↪→ Pn
K is projectively normal. Let (‖ ‖σ)σ:K↪→C be
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a Hermitian structure on L. Then, there exists a constant C > 0 such that, for any integer j ≥ 1,
any sufficiently large positive integer d, and any s ∈ Γ(X , L⊗d), we have

‖∂[j]
w s‖X ≤ Cj+d(j + d)j‖s‖X .

7. Proof of Theorem 1.2

Recall the notation and hypotheses of Theorem 1.2: X is a quasi-projective arithmetic scheme
over OK of relative dimension n ≥ 2 with smooth generic fiber, and ϕ̂ : Spf OK [[q]] −→ X is a
morphism of formal OK-schemes such that

(i) the formal curve ϕ̂K : Spf K[[q]] −→ XK is ZL-dense in XK and satisfies the differential
equation

q
dϕ̂K
dq

= v ◦ ϕ̂K ;

(ii) for any field embedding σ : K ↪→ C, the formal curve ϕ̂σ : Spf C[[q]] −→ Xσ lifts to
an analytic curve ϕσ : DRσ ⊂ C −→ X an

σ of moderate growth. We also assume that∏
σ:K↪→CRσ = 1.

Let X be some projective compactification with smooth generic fiber of the arithmetic variety
X over OK . Fix a Hermitian line bundle L = (L, (‖ ‖σ)σ:K↪→C) over X such that LK is ample and
(Lσ, ‖ ‖σ) over X an

σ is positive for every σ : K ↪→ C.
In view of Philippon’s algebraic independence criterion (Theorem A.1), Theorem 1.2 will be a

direct consequence of the following.

Theorem 7.1. With the above notation, for any field embedding σ : K ↪→ C, and any z ∈ DRσ\{0},
there exist real constants c0, c1, c2, c3 > 0 such that, for every sufficiently large positive integer d,
there exists a positive integer d′ ≤ c0d log d, and t ∈ Γ(X , L⊗d′) satisfying

log ‖t‖X ≤ c1d log2 d

and

−c2d
n ≤ log ‖t(ϕσ(z))‖σ ≤ −c3d

n.

We shall prove this theorem in three steps corresponding to the next three lemmas.

Lemma 7.2 (Auxiliary sections). There exist constants a, b, c > 0 such that, for every sufficiently
large positive integer d, there is a global section s ∈ Γ(X , L⊗d) such that

adn < ord0ϕ̂
∗s ≤ bdn(7.1)

and

log ‖s‖X ≤ cd log d.(7.2)

Proof. Since ϕ̂K is ZL-dense in XK , and ϕτ has moderate growth in X an
τ for every embedding

τ : K ↪→ C, our statement follows immediately from Corollary 5.3. �

Fix a field embedding σ : K ↪→ C and z ∈ DRσ \{0}. By the projective Prime Avoidance Lemma,
there is an integer k ≥ 1, and a global section s0 ∈ Γ(X , L⊗k) such that X s0 := (s0 6= 0) ⊂ X and

ϕσ(z) ∈ X an
s0,σ. Up to replacing L by L⊗k, we may assume that k = 1 (cf. Remark A.2).
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Lemma 7.3. There exist constants γ0, γ1, γ2 > 0 such that, for every sufficiently large positive
integer d, and every s ∈ Γ(X , L⊗d) as in Lemma 7.2, there exists j ≤ γ0d log d such that, if we

write s = fs⊗d0 over X s0, then

−γ1d
n ≤ log |(ϕ∗σf)(j)(z)| ≤ −γ2d

n.

Proof. Let d be a sufficiently large positive integer and s ∈ Γ(X , L⊗d) be as in Lemma 7.2. Set
m := ord0ϕ̂

∗s.
According to Proposition 3.12 and to the bounds (7.1) and (7.2), for every embedding τ 6= σ,

there is a constant κτ (not depending on d or s) such that

log ‖jm0 ϕ∗τs‖Rτ ≤ κτd log d.(7.3)

We recall that the norm ‖ ‖Rτ above is the norm ‖ ‖r, introduced before Proposition 3.8, in the
special case where r = Rτ and L is ϕ∗τLτ equipped with the pullback of ‖ ‖τ .

Fix any constant C >
∑

τ 6=σ κτ . Then Corollary 3.16 shows that there exist real numbers
γ0, γ1 > 0 such that, for sufficiently large d, if

max
0≤j≤bγ0d log dc

log
|(ϕ∗σf)(j)(z)|

j!
< −γ1d

n(7.4)

then

log ‖jm0 ϕ∗σs‖Rσ ≤ −Cd log d.(7.5)

By contradiction, assume that (7.4) holds. Observe that jm0 ϕ̂
∗s is an element of ϕ̂(0)∗L⊗d⊗Ω⊗m,

and the Hermitian structure on ϕ̂(0)∗L
⊗d ⊗ Ω

⊗m
allows us to consider its norms (‖jm0 ϕ̂∗s‖τ )τ :K↪→C.

For every field embedding τ : K ↪→ C, we have

‖jm0 ϕ̂∗s‖τ = R−mτ ‖jm0 ϕ∗τs‖Rτ .

Thus, since
∏
τ :K↪→CRτ = 1, we obtain from (7.3) and (7.5)

∑
τ :K↪→C

log ‖jm0 ϕ̂∗s‖τ ≤ −

C −∑
τ 6=σ

κτ

 d log d.

On the other hand, by definition of the Arakelov degree, we have∑
τ :K↪→C

log ‖jm0 ϕ̂∗s‖τ ≥ − d̂eg(ϕ̂(0)∗L
⊗d ⊗ Ω

⊗m
) = − d̂eg(ϕ̂(0)∗L)d.

This contradicts our choice of C for d� 0. We conclude that, for sufficiently large d, (7.4) cannot
hold, so that there exists an integer j ≤ γ0d log d for which

log |(ϕ∗σf)(j)(z)| ≥ log
|(ϕ∗σf)(j)(z)|

j!
≥ −γ1d

n.(7.6)

Next, we bound log |(ϕ∗σf)(j)(z)| from above. Let ∆ be a disk centered in z, of radius ε > 0 small
enough so that ∆ ⊂ ϕ−1

σ (X an
s0,σ). It follows from Proposition 3.14, and bounds (7.1) and (7.2), that
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there is a constant c′ > 0 such that

log max
ζ∈∂∆

|ϕ∗σf(ζ)| ≤ −c′dn.

By the Cauchy inequalities, we have

|(ϕ∗σf)(j)(z)|
j!

≤
maxζ∈∂∆ |ϕ∗σf(ζ)|

εj
,

so that

log |(ϕ∗σf)(j)(z)| ≤ −c′dn + log j!− j log ε.

Since j = O(d log d), we have log j! = O(d log2 d), and we conclude that there is a constant γ2 > 0
(not depending on d or s) such that

log |(ϕ∗σf)(j)(z)| ≤ −γ2d
n(7.7)

for every sufficiently large d. �

Again by Remark A.2, up to replacing L by a sufficiently large tensor power of itself, we may
assume that there exists a closed immersion i : X ↪→ Pn

OK over OK such that iK : XK ↪→ Pn
K is

projectively normal and L = i∗O(1).
Fix any α ∈ OK \ {0} that “clears the denominators of v”, i.e., such that w := αv defines a

non-zero global section of DerOK (OX ). Let k ≥ 0 be the smallest integer for which w⊗ s⊗k0 defines
a global section of DerOK (OX )⊗L⊗k, and let ∂w be the OK-derivation of degree k + 1 of the ring⊕

d≥0 Γ(X , L⊗d) defined in Section 6. For any integer j ≥ 1, set

∂[j]
w = ∂w ◦ (∂w − αs⊗k+1

0 ) ◦ · · · ◦ (∂w − (j − 1)αs⊗k+1
0 ).

Lemma 7.4. There exist constants c1, c2, c3 > 0 such that, for every sufficiently large positive
integer d, and every s ∈ Γ(X , L⊗d) as in Lemma 7.2, if j denotes the integer constructed in Lemma

7.3, then the section t := ∂
[j]
w (s) ∈ Γ(X , L⊗d+j(k+1)) satisfies

log ‖t‖X ≤ c1d log2 d

and

−c2d
n ≤ log ‖t(ϕσ(z))‖σ ≤ −c3d

n.

Proof. Since j grows at the order of d log d, by Corollary 6.4 and bound (7.2), there exists c1 > 0
such that

log ‖t‖X ≤ c1d log2 d.

In order to bound ‖t(ϕσ(z))‖σ, we first remark that the formal identity of differential operators

qj
dj

dqj
= q

d

dq

(
q
d

dq
− 1

)
· · ·
(
q
d

dq
− (j − 1)

)
and the differential equation

Dϕ̂K

(
q
d

dq

)
= ϕ̂∗Kv



ALGEBRAIC INDEPENDENCE FOR VALUES OF INTEGRAL CURVES 45

yield:

ϕ̂∗t = ϕ̂∗(∂w(∂w − αs⊗k+1
0 ) · · · (∂w − (j − 1)αs⊗k+1

0 )(s))

= αj
[
q
d

dq

(
q
d

dq
− 1

)
· · ·
(
q
d

dq
− (j − 1)

)
ϕ̂∗(f)

]
ϕ̂∗(s0)⊗d+j(k+1) = (αq)j

djϕ̂∗(f)

dqj
ϕ̂∗(s0)⊗d+j(k+1).

A similar formula holds for ϕσ. Thus

log ‖t(ϕσ(z))‖σ = log |(ϕ∗σf)(j)(z)|+ j log |αz|+ (d+ j(k + 1)) log ‖ϕ∗σs0(z)‖σ.

Since j grows at the order of d log d, we conclude from (7.6) and (7.7) that there exist real constants
c2 > c3 > 0 such that

−c2d
n ≤ log ‖t(ϕσ(z))‖σ ≤ −c3d

n

for sufficiently large d. �

To finish the proof, we simply remark that, if c0 is any real number satisfying c0 > (k + 1)γ0,
then the degree d′ := d+j(k+1) of t constructed above satisfies d′ ≤ d+(k+1)γ0d log d ≤ c0d log d,
for d sufficiently large.

Appendix A. Philippon’s algebraic independence criterion for projective varieties

Let K be a number field, X be a projective arithmetic scheme over OK of relative dimension
n ≥ 2 (cf. definition in Paragraph 5.1), and L = (L, (‖ ‖σ)σ:K↪→C) be a Hermitian line bundle over
X with L relatively ample over SpecOK . Recall that, if s ∈ Γ(X , L⊗d) for some integer d ≥ 1, then
we denote ‖s‖X = maxσ ‖s‖σ,L∞(X an

σ ), where σ runs through the set of field embeddings of K in C.
The proof of the main theorem of this article relies on the following generalized version of an

algebraic independence criterion of Philippon (cf. [31] Théorème 2.11 and [27] Lemma 2.5).

Theorem A.1. Let σ : K ↪→ C be a field embedding and p ∈ Xσ(C). Suppose that there exist an
integer m ∈ [2, n], a non-decreasing sequence of positive real numbers (`d)d≥1 satisfying `m−1

d = o(d)
as d→ +∞, and real constants a > b > 0 such that, for every sufficiently large positive integer d,
there exists an integer d′ ≤ d`d and a section s ∈ Γ(X , L⊗d′) satisfying

log ‖s‖X ≤ d`d
and

−adm ≤ log ‖sσ(p)‖σ ≤ −bdm.

Then the field of definition K(p) of the complex point p in XK satisfies

trdegQK(p) ≥ m− 1.

Remark A.2. For any integer k ≥ 1, the conditions in the above statement are verified for the

Hermitian line bundle L if and only if similar conditions hold for the tensor power L
⊗k

of L (up to
multiplying `d, a, and b by suitable constants).

Moreover, since X is proper over SpecOK , it is easy to see that if the above statement is true for
a particular choice of Hermitian structure on L, then it also holds for any other Hermitian structure
on L.
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In what follows, we explain how to deduce the above statement from Philippon’s original result
concerning X = Pn

OK . The main technical tool is the following “integral lifting lemma”.

Lemma A.3. Let X and Y be projective arithmetic schemes over OK , L be a Hermitian line bundle
over X , with L relatively ample over SpecOK , and Y −→ X be a closed immersion over SpecOK .
Endow L|Y with the induced Hermitian structure. Then, there exists a real number C > 0 such

that, for every sufficiently large positive integer d, any section s ∈ Γ(Y, L|⊗dY ) can be lifted to a

section s̃ ∈ Γ(X , L⊗d) satisfying

‖s̃‖X ≤ Cd‖s‖Y .

This type of result is well known in Arakelov Geometry and goes back to Zhang’s work on
arithmetic ampleness [35]. For lack of reference, we sketch a proof.

Sketch of the proof. If R is a ring, we denote Γ(X , L⊗d)R := Γ(X , L⊗d)⊗Z R.

Let d be large enough so that the restriction map ρd : Γ(X , L⊗d) −→ Γ(Y, L|⊗dY ) is surjective.

Since
⊕

σ Γ(Xσ, L⊗dσ ) ∼= Γ(X , L⊗d)C, we may apply [5] Proposition 3.5 to obtain a constant C0 > 0,

not depending on d or s, and an element t ∈ Γ(X , L⊗d)R ⊂ Γ(X , L⊗d)C lifting s (i.e. (ρd ⊗ 1)(t) =
s⊗ 1) and satisfying

‖t‖X ≤ Cd0‖s‖Y .

The idea now is to define s̃ as the element of ρ−1
d (s) minimizing the distance ‖t−s̃‖X in Γ(X , L⊗d)R.

To finish the proof, we must show that the diameter of the fundamental domain of the lattice
Γ(X , IY ⊗ L⊗d) = ker ρd in Γ(X , IY ⊗ L⊗d)R grows at most exponentially in d. We mimic the
argument in the proof of [10] Proposition 2.5. Since L is ample, there exists an integer n ≥ 1 such
that, for any sufficiently large integer r, and any positive integer q, the morphism

Γ(X , IY ⊗ L⊗r)⊗Z Γ(X , L⊗n)⊗q −→ Γ(X , IY ⊗ L⊗nq+r)

is surjective. Choose sufficiently large integers r1, . . . , rn forming a complete residue system modulo
n. Fixing bases of the finite free Z-modules Γ(X , L⊗n),Γ(X , IY⊗L⊗r1), . . . ,Γ(X , IY⊗L⊗rn), we see
that there exists a constant B > 1 such that any Γ(X , IY ⊗L⊗nq+ri) admits a full rank submodule
having a basis whose elements have norm bounded by Bq. By [35] Lemma 1.7, the Z-module
Γ(X , IY⊗L⊗nq+ri) admits a basis whose elements have norm bounded by rBq, where r denotes the
rank of Γ(X , IY ⊗L⊗nq+ri). Since r grows polynomialy in q, and r1, . . . , rn form a complete residue
system modulo n, we conclude that there exists a constant κ > 0 such that, for any sufficiently large
integer d, the Z-module Γ(X , IY ⊗ L⊗d) admits a basis consisting of elements with norm bounded
by κd. �

To handle the case X = Pn
OK , we compare the height h(P ) of a homogeneous polynomial P ∈

OK [X0, . . . , Xn] of degree d used in [31] with the Fubini-Study norm ‖s‖PnOK of the corresponding

section s ∈ Γ(Pn
OK ,O(d)). By definition,

h(P ) =
1

[K : Q]

∑
σ:K↪→C

log+Mσ(P ),
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where, for any field embedding σ : K ↪→ C, we set

Mσ(P ) := exp

(
1

(2π)n+1

∫ 2π

0
· · ·
∫ 2π

0
log |P σ(eiθ0 , . . . , eiθn)|dθ0 · · · dθn

)
.

Lemma A.4. Let (‖ ‖σ)σ:K↪→C denote the Fubini-Study Hermitian structure on the line bundle
O(1) over the arithmetic scheme Pn

OK . For any integer d ≥ 1, and any section s ∈ Γ(Pn
OK ,O(d)),

if P ∈ OK [X0, . . . , Xn] denotes the homogeneous polynomial of degree d corresponding to s, then

h(P ) ≤ log+ ‖s‖PnOK +
(n+ 1)

2
d.

Proof. For any field embedding σ : K ↪→ C, and any (θ0, . . . , θn) ∈ [0, 2π]n+1, we have

‖sσ(eiθ0 : · · · : eiθn)‖σ =
|P σ(eiθ0 , . . . , eiθn)|

(n+ 1)
d
2

,

so that

logMσ(P ) ≤ log ‖s‖σ,L∞(Pn(C)) +
(n+ 1)

2
d ≤ log ‖s‖PnOK +

(n+ 1)

2
d.

Clearly, a similar inequality holds with log+ in place of log. The result follows by taking the
arithmetic mean over all σ : K ↪→ C. �

Proof of Theorem A.1. The case where X = Pn
OK and L is given by O(1) endowed with the Fubini-

Study metric follows from Lemma A.4 and [31] Théorème 2.11 (cf. [27] Lemma 2.5).
The general case follows from this one by considering a closed immersion i : X −→ Pn

OK over

OK satisfying i∗O(1) = L⊗k for some k ≥ 1, and by applying Lemma A.3 and Remark A.2. �

Appendix B. D-property and ZL-density in quasi-projective varieties

Let k be a field, X be a smooth quasi-projective variety over k, and F be an OX -submodule
of rank one of the tangent bundle TX/k such that the quotient TX/k/F is torsion-free, i.e., a one
dimensional (possibly singular) foliation on X.

Let p ∈ X(k) be a k-point of X. We say that a formal curve ϕ̂ : Spf k[[q]] −→ X is an integral
curve of F at p if ϕ̂(0) = p and if the image of the tangent map

Dϕ̂ : TSpf k[[q]]/k −→ ϕ̂∗TX/k

factors through the subbundle ϕ̂∗F of ϕ̂∗TX/k. Moreover, if F(p) := Γ(Spec k, p∗F) denotes the

fiber of F at p, we say that ϕ̂ is smooth if ϕ̂′(0) := D0ϕ̂( ddq ) ∈ F(p) is non-zero.

From now on, we assume that k has characteristic 0. By a formal version of the Frobenius
Theorem, for every p ∈ X(k) such that F(p) 6= 0, there exists a unique smooth integral curve ϕ̂ of
F at p, up to composition by an automorphism of Spf k[[q]].

We say that a closed subscheme Y of X is F-invariant if the ideal of Y in OX is stable under
the derivations of F ⊂ TX/k = Derk(OX).
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Definition B.1. Let X be a smooth quasi-projective variety over the field k, let F be a one
dimensional foliation on X, and let ϕ̂ : Spf k[[q]] −→ X be a formal integral curve of F . We say that
ϕ̂ satisfies the D-property for F if there exists a constant C > 0 such that, for every F-invariant
closed subvariety Y of X, there exists a Cartier divisor D whose support contains Y satisfying

multϕ̂D ≤ C.

Observe that, if ϕ̂ satisfies the D-property, then its image is Zariski-dense in X. Indeed, the
Zariski-closure of the image of an integral curve of F is F-invariant.

Theorem B.2 (Nesterenko-Binyamini). Let X be a smooth quasi-projective variety over an al-
gebraically closed field k of characteristic 0, v ∈ Γ(X,TX/k) \ {0} be a vector field on X, and
ϕ̂ : Spf k[[q]] −→ X be a smooth formal curve satisfying the differential equation

q
dϕ̂

dq
= v ◦ ϕ̂.

If ϕ̂ satisfies the D-property for the foliation generated by v, then ϕ̂ is ZL-dense in X.

Note that ϕ̂(0) is a singular point of v. In the non-singular case, i.e., ϕ̂ satisfies the differential

equation dϕ̂
dq = v ◦ ϕ̂, stronger statements are true (cf. [2] Theorem 2), but an analogous of the

above result may be also obtained by virtually the same proof.
Binyamini’s original result ([2] Corollary 3) builds on ideas of Nesterenko and concerns the case

of an analytic integral curve of a polynomial vector field on some affine space over C. In what
follows, we merely indicate how a slight modification of the geometric methods of Binyamini may
be used to prove the Theorem B.2 above.

We start by recasting the D-property into a more workable form.

Proposition B.3. Let X be any projective compactification of X and L be an ample line bundle
on X. Then, a formal curve ϕ̂ : Spf k[[q]] −→ X satisfies the D-property for a one dimensional
foliation F on X if and only if there exists a constant C > 0 such that, for every F-invariant closed
subvariety Y of X, there exists an integer d ≥ 1, and a global section s ∈ Γ(X,L⊗d) vanishing
identically on Y such that ord0ϕ̂

∗s ≤ C.

Proof. The sufficiency is clear: consider the divisors div(s).
Conversely, suppose that ϕ̂ satisfies the D-property for F with constant C > 0 and let Y be

an F-invariant closed subvariety of X. Since L is ample, we may assume that Y contains ϕ̂(0);
otherwise, there exists an integer d ≥ 1 and a section s ∈ Γ(X,L⊗d) vanishing on Y such that
s(ϕ̂(0)) 6= 0, so that ord0ϕ̂

∗s = 0 ≤ C.
Let D be a divisor whose support contains Y such that multϕ̂D ≤ C, and let f be a local

equation for D on some open neighborhood U of ϕ̂(0). Since L is ample, there exists an integer
m ≥ 1 and a section s0 ∈ Γ(X,L⊗m) such that ϕ̂(0) ∈ Xs0 and Xs0 ⊂ U . Now, there exists an
integer n ≥ 1, and a global section s ∈ Γ(X,L⊗mn) such that s = fs⊗mn0 over Xs0 . It is clear that
s vanishes identically on Y and satisfies ord0ϕ̂

∗s = ord0ϕ̂
∗f = multϕ̂D ≤ C. �

Consider the hypotheses and notation of Theorem B.2. Fix a projective compactification X of X,
and an ample line bundle L on X endowed with a global section s0 ∈ Γ(X,L) satisfying Xs0 ⊂ X.
Recall from Section 6 that v defines a k-derivation ∂v on the ring

⊕
d≥0 Γ(X,L⊗d).
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Let p = ϕ̂(0). By a formal cycle of X at p, we mean a cycle in the scheme Spec ÔX,p, where

ÔX,p denotes the completion of the local ring OX,p with respect to its maximal ideal. Note that
every (global) cycle of X induces, by localization and formal completion, a formal cycle of X at p.

Let Y be a prime formal cycle of X at p corresponding to the prime ideal p of ÔX,p and denote

by Iϕ̂ the ideal of im ϕ̂ in ÔX,p. Assume that Iϕ̂ does not contain p (i.e., Y does not contain the

image of ϕ̂). Since ϕ̂ : Spf k[[q]] −→ X is smooth, the image of Iϕ̂ in the local ring ÔX,p/p contains
some power of the maximal ideal. We may thus consider the Samuel multiplicity

multϕ̂Y := eIϕ̂/Iϕ̂∩p(ÔX,p/p).

By additivity, we may extend this definition to every formal cycle of X at p whose components
do not contain the image of ϕ̂. By abuse of notation, if Z is a (global) cycle of X, we denote by

multϕ̂Z the multiplicity multϕ̂Ẑ of its completion at p.

Proposition B.4. The multiplicity function constructed above satisfies the following properties:

(1) If Z = div(f), for some f ∈ ÔX,p, then multϕ̂(Z) = ord0ϕ̂
∗f .

(2) If Z = p, then multϕ̂(Z) = 1.

(3) For any closed subvariety Y of X, any integer d ≥ 1, and any s ∈ Γ(X,L⊗d)\{0} vanishing
identically on Y , we have multϕ̂(Y ) ≤ ord0ϕ̂

∗s ·multp(Y ).

(4) For any closed subvariety Y of X, any integer d ≥ 1, and any s ∈ Γ(X,L⊗d)\{0} vanishing
identically on Y for which ∂vs does not vanish identically on Y , we have multϕ̂(Y ) ≤
multϕ̂(Y · div(∂vs)).

(5) There is an integer n0 ≥ 0 such that, for every closed subvariety Y of X not contained in a
v-invariant subvariety of X, if d ≥ 1 is the smallest integer for which there is s ∈ Γ(X,L⊗d)\
{0} vanishing identically on Y , then min{n | ∂nv s does not vanish identically on Y } ≤ n0.

Properties (1) and (2) are easy. For properties (3) and (4), see [2] Lemma 8 and Proposition 9.
Finally, property (5) follows by an adaptation of the arguments in [2] Section 3.

Once this is established, the proof Theorem B.2 becomes completely analogous to the proof of
[2] Theorem 3.
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[30] H. Petersson, Über die Entwicklungskoeffizienten der automorphen Formen. Acta Math. 58(1) (1932), pp.
169–215.
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