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Abstract

We present a new proof of Witten’s conjecture. The proof is based on the

analysis of the relationship between intersection indices on moduli spaces of

complex curves and Hurwitz numbers enumerating ramified coverings of the

2-sphere.

1 Introduction

Let Mg;n denote the Knudsen–Deligne–Mumford moduli space of genus g stable com-
plex curves with n marked points [2]. For each i ∈ {1, . . . , n}, consider the line bundle
Li over Mg;n whose fiber over a point (C; x1, . . . , xn) ∈ Mg;n is the cotangent line to
the curve C at the marked point xi. Let ψi ∈ H2(Mg;n) denote the first Chern class
of this line bundle, ψi = c1(Li). Consider the generating function

F (t0, t1, . . . ) =
∑

〈τd1
. . . τdn

〉
td1

. . . tdn

|Aut(d1, . . . , dn)|
(1)

for the intersection numbers of these classes,

〈τd1
. . . τdn

〉 =

∫

Mg;n

ψd1

1 . . . ψdn

n ,

where the genus g is uniquely determined from the identity

d1 + · · ·+ dn = dim Mg;n = 3g − 3 + n.

The first few terms of this function are

F =
1

24
t1 +

1

6
t30 +

1

48
t21 +

1

24
t0t2 +

1

6
t30t1 +

1

1152
t4 +

1

72
t31 +

1

12
t0t1t2 +

1

48
t20t3

+
1

6
t30t

2
1 +

1

24
t40t2 +

29

5760
t2t3 +

1

384
t1t4 +

1

1152
t0t5 + . . .
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The celebrated Witten conjecture states that
the second derivative U = ∂2F/∂t20 of the generating function F satisfies the KdV

equation
∂U

∂t1
= U

∂U

∂t0
+

1

12

∂3U

∂t30
. (2)

The motivation for this conjecture can be found in [21], and for a detailed expo-
sition suitable for a mathematically-minded reader see, e.g., [13]. Note that the KdV
equation can be interpreted as a reccurence formula allowing one to calculate all the
intersection indices provided “initial conditions” are given. Witten has shown that
the function F satisifes the so-called string and dilaton equations, which together with
the KdV equation generate the whole KdV hierarchy and provide necessary initial
conditions.

A number of proofs of the Witten conjecture are known, but all of them exploit
techniques that do not seem to be intrinsically related to the initial problem: Kontse-
vich’s proof [11] makes use of Jenkins–Strebel differentials and matrix integrals, the
proof due to Okounkov and Pandharipande [16], which starts with Hurwitz numbers,
also involves matrix integrals and graphs on surfaces study, as well as asymptotic
analysis, and, finally, Mirzakhani’s proof [14] is based on the Riemannian geometry
properties of moduli spaces. The goal of this paper is to present a new proof using
purely algebro-geometric techniques. Similarly to the proof due to Okounkov and
Pandharipande, we start with Hurwitz numbers, but then we follow a different line.

Hurwitz numbers enumerate ramified coverings of the 2-sphere with prescribed
ramification points and ramification types over these points. We deal only with
ramified coverings whose ramification type is simple over each ramification point
but one. Our proof is based on the following, now well-known, properties of these
numbers:

• the ELSV formula [3, 4] relating Hurwitz numbers to the intersection theory on
moduli spaces;

• the relationship between Hurwitz numbers and integrable hierarchies conjec-
tured by Pandharipande [17] and proved, in a stronger form, by Okounkov [15].

Using the ELSV formula we express the intersection indices of the ψ-classes in terms of
Hurwitz numbers. The partial differential equations governing the generating series
for Hurwitz numbers then lead to the KdV equation for the intersection indices.
Note that the existence of such a proof has been predicted in [6]. One of the main
features of the proof consists in the fact that known effective algorithms for computing
the Hurwitz numbers, which are relatively simple combinatorial objects, lead to an
independent tool for computing the intersection indices. We describe the properties
of the Hurwitz numbers in detail and deduce Witten’s conjecture from them in Sec. 2.
Section 3 is devoted to a discussion of the proof.

We express our gratitude to the participants of our seminar at the Indepen-
dent University of Moscow for useful discussions. Our personal gratitude is due to
S. Shadrin and D. Zvonkine, whose papers contain, in an implicit form, the idea of
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inverting the ELSV formula. Special thanks are due to D. Zvonkine for careful proof-
reading of the first versions of the paper and help in the proof of Lemma 2.3. The final
version of this paper has been written at the Max-Planck Institut für Mathematik,
Bonn, to whom we are grateful for hospitality.

2 Proof

2.1 Hurwitz numbers

Fix a sequence b1, . . . , bn of positive integers. Consider ramified coverings of the
sphere S2 by compact oriented two-dimensional surfaces of genus g with ramifica-
tion type (b1, . . . , bn) over one point, and the simplest possible ramification type
(2, 1, 1, . . . , 1) over all other points of ramification. According to the Riemann–
Hurwitz formula, the total number m of these points of simple ramification is

m = 2g − 2 + n+B, (3)

where B = b1+· · ·+bn is the degree of the covering. If we fix the ramification points in
the target sphere, then the number of topologically distinct ramified coverings of this
type becomes finite, and we denote by hg;b1,...,bn

the number of these coverings, with
marked preimages of the point of degenerate ramification, counted with the weight
inverse to the order of the automorphism group of the covering. These numbers are
called Hurwitz numbers.

The ELSV formula [3, 4] expresses the Hurwitz numbers in terms of Hodge inte-
grals over the moduli spaces of stable complex curves:

hg;b1,...,bn
= m!

n
∏

i=1

bbi

i

bi!

∫

Mg;n

1 − λ1 + λ2 − · · · ± λg

(1 − b1ψ1) . . . (1 − bnψn)
(4)

for g > 0, n ≥ 1 or g = 0, n ≥ 3. The numerator of the integrand is the total
Chern class of the vector bundle over Mg;n dual to the Hodge bundle (whose fiber
is the g-dimensional vector space of holomorphic differentials on the curve), λi ∈
H2i(Mg;n). The integral in (4) is understood as the result of expanding the fraction
as a power series, with further selection of monomials whose degree coincides with
the dimension of the base (there are finitely many of them) and integration of each
of these monomials.

The integral (4) is a sum of intersection indices of both ψ- and λ-classes. In [16],
the λ-classes are excluded by considering asymptotics of integrals of this kind. In
contrast, in the present paper, the exclusion of the λ-classes is based on simple com-
binatorial considerations originating in [20, 23], see Sec. 2.2 below.

Now consider the following exponential generating function for the Hurwitz num-
bers:

H(β; p1, p2, . . . ) =
∑

hg;b1,...,bn
pb1 . . . pbn

βm

m!
,

where the summation is taken over all finite sequences b1, . . . , bn of positive integers
and all nonnegative values of g, with m given by Eq. (3). According to Okounkov [15],
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the exponent eH of this generating function is a τ -function for the KP-hierarchy. In
fact, Okounkov proved a much stronger theorem stating that the generating function
for double Hurwitz numbers (those having degenerate ramification over two points
rather than one) satisfies the Toda lattice equations. We do not need this statement
in such generality, and in Sec. 3 we discuss a simple proof of the fact we really need.
(Various kinds of Hurwitz numbers have been since long known to lead to solutions
of integrable hierarchies, but we were unable to trace exact statements and origins.)
The function eH being a τ -function for the KP hierarchy means, in particular, that
the second partial derivative V = ∂2H/∂p2

1 satisfies the KP-equation

∂2V

∂p2
2

=
∂

∂p1

(

∂V

∂p3
− V

∂V

∂p1
−

1

12

∂3V

∂p3
1

)

. (5)

We use this equation below to deduce from it the KdV equation for the function F .

2.2 Expressing intersection indices of ψ-classes via Hurwitz
numbers

Obviously, for each nonegative integer d there exist constants cd
b , b = 1, . . . , d+1 such

that
d+1
∑

b=1

cdb
1 − bψ

= ψd +O(ψd+1), (6)

and these constants are uniquely determined by this requirement. They are given by
the formula

cdb =
(−1)d−b+1

(d− b + 1)!(b− 1)!
.

Indeed, we need to prove that the first d−1 derivatives in ψ of the linear combination

d+1
∑

b=1

cdb
1 − bψ

vanish at 0, while the d th derivative is d!. The i th derivative of this linear combi-
nation evaluated at ψ = 0 is

(−1)i+1 1

i!

((

d

0

)

1i −

(

d

1

)

2i +

(

d

2

)

3i − · · · ±

(

d

d

)

di

)

.

The expression in brackets coincides with the result of applying the i th iteration of
the operator xd/dx to the polynomial (1 − x)d and evaluating at x = 1, which is 0
for 0 ≤ i < d and (−1)dd! for i = d.

Multiplying identities (6) for different d we obtain the following equality:

d1+1
∑

b1=1

· · ·
dn+1
∑

bn=1

cd1

b1
. . . cdn

bn

(1 − b1 ψ1) . . . (1 − bn ψn)
=

n
∏

i=1

ψdi

i + . . . ,
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where dots on the right-hand side denote cohomology classes of degree greater than
d1 + · · ·+ dn. This means, in particular, that for d1 + · · ·+ dn = 3g− 3 + n the linear
combination

d1+1
∑

b1=1

· · ·
dn+1
∑

bn=1

cd1

b1
. . . cdn

bn

∫

Mg;n

1 − λ1 + · · · ± λg

(1 − b1ψ1) . . . (1 − bnψn)

is simply 〈τd1
. . . τdn

〉, because the integral of the terms of higher degree vanishes.
Taking into account the coefficient of the integral in Eq. (4), we obtain the following
explicit identity.

Theorem 2.1 For any sequence of non-negative integers d1, . . . , dn we have

〈τd1
. . . τdn

〉 =

d1+1
∑

b1=1

· · ·

dn+1
∑

bn=1

(

1

m!

n
∏

i=1

(−1)di+1−bi

(di + 1 − bi)!b
bi−1
i

)

hg;b1,...,bn
,

where g is determined by the left-hand side,
∑

di = 3g−3+n, and m = 2g−2+B+n.

It is convenient to reformulate the statement of the theorem in terms of generating
functions. Decompose the generating function H into the sum

H = H0;1 +H0;2 +Hst, (7)

where the stable part Hst contains all the monomials whose coefficients are given
by the ELSV formula (4), and H0;1 and H0;2 are the generating functions for the
numbers of ramified coverings of the sphere by the sphere with 1 (“polynomial”)
and 2 (“trigonometric polynomial”) preimages over the distinguished ramification
point, respectively. The latter generating functions are known since Hurwitz:

H0;1 =
∞
∑

b=1

h0;bpb
βb−1

(b− 1)!
=

∞
∑

b=1

bb−2

b!
pbβ

b−1

H0;2 =
∞
∑

b1,b2=1

h0;b1,b2pb1pb2

βb1+b2

(b1 + b2)!
=

∞
∑

b1,b2=1

bb11 b
b2
2

(b1 + b2)b1!b2!
pb1pb2β

b1+b2

(note that this case can also be considered as been covered by the ELSV formula, but
with the moduli spaces Mg;n replaced by the moduli stacks M0;1, M0;2). In fact, we
are going to use below not the precise formulas for H0;1, H0;2, but the fact that they
contain only terms of degree at most 2 in pi, which yields ∂2/∂p2

1(H0;1 +H0;2) = β2/2.
Denote by Gst = Gst(β; t0, t1, . . . ) the result of the following change of variables in
the series Hst:

pb =
∞
∑

d=b−1

(−1)d−b+1

(d− b + 1)!bb−1
β−b− 2d+1

3 td. (8)

The result of this substitution is a series in t0, t1, . . . whose coefficients are formal
Laurent expansions in β2/3. Indeed, the powers of β in the contribution of a monomial
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pb1 . . . pbn
to the expansion have the form

(b1 + · · · + bn + 2g − 2 + n) +
n
∑

i=1

(

−bi −
2di + 1

3

)

=
2

3

(

3g − 3 + n−
n
∑

i=1

di

)

,

hence become even integers when multiplied by 3. On the other hand, the powers
of β at each td are bounded from below, because td enters only the expansions for
p1, . . . , pd+1.

Theorem 2.2 1. The series Gst contains no terms with negative powers of β.

2. The free term in β, Gst|β = 0 (which is correctly defined due to the first

statement) coincides with the generating function F for the intersection numbers given

by Eq. (1),
F (t0, t1, . . . ) = Gst(0; t0, t1, . . . ).

Proof. Collect together the terms of the series Hst corresponding to given values
n, b1, . . . , bn, for all g, and set

Hb1,...,bn
=

∑

m=B+2g−2+n

hg;b1,...,bn

βm

m!
.

Then the ELSV formula (4) can be conveniently rewritten as

Hb1,...,bn
= βB+n/3

n
∏

i=1

bbi

i

bi!

〈

1 − β2/3λ1 + β4/3λ2 − β6/3λ3 + . . .

(1 − b1β2/3ψ1) · · · (1 − bnβ2/3ψn)

〉

,

where we understand the numerator as the formal sum and the angle brackets mean
integration of each monomial over the space Mg;n whose dimension coincides with
the degree of the monomial. Indeed, consider a summand containing the integral of
ψd1

1 . . . ψdn
n λj in the expansion on the right-hand side. The genus g corresponding to

the domain of integration Mg;n is computed from the equality

∑

di + j = 3g − 3 + n.

This summand contributes to a term of degree m in β iff the relation

m = B +
n

3
+

2

3

n
∑

i=1

di +
2

3
j = 2g − 2 + n+B,

which is exactly the relation between g and m in the definition of the series Hb1,...,bn
,

holds.
Now, the explicit form of the change of variables (8) implies that the coefficient
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Gd1,...,dn
of the monomial td1

. . . tdn
/|Aut(d1, . . . , dn)| in Gst is equal to

Gd1,...,dn
=

d1+1
∑

b1=1

· · ·
dn+1
∑

bn=1

(

n
∏

i=1

(−1)di−bi+1β−bi−
2di+1

3

(di−bi+1)!b
bi−1

i

)

Hb1,...,bn

= β− 2
3

P

di

d1+1
∑

b1=1

· · ·
dn+1
∑

bn=1

〈

cd1

b1
. . . cdn

bn
(1 − β2/3λ1 + β4/3λ2 − β6/3λ3 + . . . )

(1 − b1β2/3ψ1) · · · (1 − bnβ2/3ψn)

〉

= β− 2
3

P

di〈(
n
∏

i=1

(β2/3ψi)
di + . . . )(1 − β2/3λ1 + β4/3λ2 − . . . )〉

= 〈

n
∏

i=1

ψdi

i 〉 + . . . ,

where dots in the last two lines denote terms of higher degree in β.
Theorem 2.2 is proved.

2.3 Reduction to the KdV equation

Set W = ∂2Gst/∂t
2
0. By Theorem 2.2, this is a power series in β2/3, t0, t1, . . . whose

coefficient W |β=0 of β0 coincides with the function U = ∂2F/∂t20, for which we want
to verify the KdV equation. By definition, W is the result of the substitution (8) to
the series

∂2Gst

∂t20
= β−8/3∂

2Hst

∂p2
1

= β−8/3

(

∂2H

∂p2
1

−
1

2
β2

)

= β−8/3V −
1

2
β−2/3.

The change of variables (8) results in the following change of partial derivatives:

∂

∂p1
= β4/3 ∂

∂t0
;

∂

∂p2

= 2β9/3 ∂

∂t1
+ 2β7/3 ∂

∂t0
∂

∂p3
= 9β14/3 ∂

∂t2
+ 9β12/3 ∂

∂t1
+

9

2
β10/3 ∂

∂t0
.

After substituting this into the KP equation (5) and dividing the result by β24/3, we
rewrite it as

∂

∂t0

(

∂W

∂t1
−W

∂W

∂t0
−

1

12

∂3W

∂t30

)

+ β2/3

(

9
∂2W

∂t0∂t2
− 4

∂2W

∂t21

)

= 0. (9)

The coefficient of β0 in (9) has the form

∂

∂t0

(

∂U

∂t1
− U

∂U

∂t0
−

1

12

∂3U

∂t30

)

= 0

and it is the t0-derivative of the desired KdV equation (2). The proof of Witten’s
conjecture will be completed if we prove that the KdV equation holds at t0 = 0.
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Consider the t0-series expansion of the function U :

U = U0 + U1
t0
1!

+ U2
t20
2!

+ U3
t30
3!

+ . . . ,

where the functions Ui depend on the variables t1, t2, . . . . At t0 = 0, the KdV equa-
tion (2) becomes

∂U0

∂t1
− U0U1 −

1

12
U3 = 0. (10)

On the other hand, the coefficient of t0 in the t0-expansion of the KdV equation has
the form

∂U1

∂t1
− U0U2 − U1U1 −

1

12
U4 = 0. (11)

The following statement completes the proof.

Lemma 2.3 Equation (10) is a consequence of Eq. (11) and the string equation.

Recall that the string equation for the function U has the form

∂U

∂t0
= 1 + t1

∂U

∂t0
+
∑

i≥1

ti+1
∂U

∂ti
. (12)

When rewritten in terms of the functions Ui, the string equation reads

U1 = 1 + t1U1 +
∑

i≥1

ti+1
∂U0

∂ti
, Ui+1 = t1Ui+1 +

∑

i≥1

ti+1
∂Ui

∂ti
, for i ≥ 1.

Differentiating the first equation with respect to t1 yields

∂U1

∂t1
= U1 + t1

∂U1

∂t1
+
∑

i≥1

∂2U0

∂t1∂ti
.

Now substituting these expressions for ∂U1/∂t1, U2, the second occurence of U1, and
U4 in Eq. (11), we rewrite it in the following form:

(

U1 + t1
∂U1

∂t1
+
∑

i≥1

ti+1
∂2U0

∂t1∂ti

)

− U0

(

t1U2 +
∑

i≥1

ti+1
∂U1

∂t1

)

−U1

(

1 + t1U1 +
∑

i≥1

ti+1
∂U0

∂t1

)

−
1

12

(

t1U4 +
∑

i≥1

ti+1
∂U3

∂ti

)

= 0,

or, after cancelling U1 and rearranging the terms,

t1

(

∂U1

∂t1
− U0U2 − U2

1 −
1

12
U4

)

+
∑

i≥1

ti+1
∂

∂ti

(

∂U0

∂t1
− U0U1 −

1

12
U3

)

= 0. (13)

The first summand vanishes, thus the second summand also vanishes. Introduce
the lexicographic order on the set of monomials in variables t1, t2, . . . : a monomial
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ta1

1 t
a2

2 . . . is smaller than tb11 t
b2
2 . . . if either a1 + 2a2 + 3a3 + · · · < b1 + 2b2 + 3b3 + . . .

or these two quantities coincide and ai < bi for the smallest subscript i, where the
two sequences a and b are distinct. Suppose that Eq. (10) does not hold and take
the minimal nonzero monomial of ∂U0/∂t1 − U0U1 − U3/12. Let k be the maximal
subscript of t in this monomial. Then applying the operator tk+1∂/∂tk to it we obtain
a nonzero monomial of Eq.(13) and thus arrive at a contradiction. This completes
the proof of the lemma and of Witten’s conjecture.

3 Odds and ends

Trying to make the present paper more self-contained, we discuss in this section the
Hirota bilinear equations and the KP hierarchy, as well as an explicit presentation
of the function eH as a τ -function for the KP hierarchy. Although specialists in
integrable hierarchies are well aware of these facts, it is not an easy task to find
their compact and readable exposition. We refer the reader to [18], [1], and [19]
for a description of the relationship between integrable hierarchies and the geometry
of semi-infinite Grassmannian. The KP hierarchy is a system of partial differential
equations for the second derivative ∂2H/∂p2

1 of an unknown function H. The KP
equation (5) is the first equation in this system. Similarly to the case of the KdV
equation, the expansion of a solution to the KP equation can be reconstructed from
“initial conditions”. The exponent τ = eH of a solution H to the KdV hierarchy is
called a τ -function of the hierarchy. The equations of the KP hierarchy rewritten for
τ -functions also are partial differential equations; they are called the Hirota equations.
They possess a nice property of being quadratic with respect to τ .

3.1 Semi-infinite Grassmannian, Hirota–Plücker
bilinear equations, and integrable hierarchies

Define the charge zero Fock space as the completion of the infinite dimensional coor-
dinate vector space over C whose basic elements sλ are labeled by partitions,

F =
⊕

Csλ

Recall that a partition is a nonincreasing sequence of integers λ = (λ1, λ2, . . . ), λ1 ≥
λ2 ≥ · · · ≥ 0, having finitely many nonzero terms. Elements of F are infinite formal
linear combinations of the vectors sλ. We shall use the following two realizations of
the Fock space.

(1) The space F can be identified with the space F = C[[p1, p2, . . . ]] of formal
power series in infinitely many variables p1, p2, . . . by setting sλ to be the corre-
sponding Schur function. The Schur function corresponding to a one-part partition
is defined by the expansion

s0 + s1z + s2z
2 + s3z

3 + s4z
4 + · · · = ep1z+p2

z2

2
+p3

z3

3
+...,
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and for a general partition λ it is given by the determinant

sλ = det ||sλj−j+i||. (14)

The indices i, j here run over the set {1, 2, . . . , n} for n large enough, and since λi = 0
for i sufficiently large, the determinant, whence sλ, is independent of n. Here are a
few first Schur polynomials:

s0 = 1, s1 = p1, s2 =
1

2
(p2

1 + p2), s3 =
1

6
(p3

1 + 3p1p2 + 2p3),

s1,1 =
1

2
(p2

1 − p2), s2,1 =
1

3
(p3

1 − p3), s1,1,1 =
1

6
(p3

1 − 3p1p2 + 2p3).

(2) Let V = C[z, z−1] be the ring of Laurent polynomials in z, which we treat as
the vector space with the basis zi, i ∈ Z. Identify F with the semi-infinite wedge

space F = Λ∞/2V freely spanned by the formal infinite wedge products of the form

sλ = zk1 ∧ zk2 ∧ zk3 ∧ . . . , ki = i− λi,

for all partions λ. Sequences ki appearing on the right-hand side can be characterized
as arbitrary strictly increasing sequences of integers satisfying ki = i for i large
enough.

The theory of the KP hierarchy can be summarized as follows.
The projectivization PF = PΛ∞/2V is the ambient space of the standard Plücker

embedding Gr ↪→ PF , whereGr = Gr∞/2(V ) is the Grassmannian of “half-infinite di-
mensional subspaces”, often referred to as the Sato Grassmannian. By definition, the
elements of Gr are subspaces spanned by linearly independent vectors ϕ1, ϕ2, ϕ3, . . .
in (the formal completion of) V such that for i large enough we have ϕi = zi + . . . ,
where dots denote terms of lower order in z. Such a vector space can be interpreted
as the wedge product

τ = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ . . . (15)

Indeed, another choice of a basis does not affect this wedge product, up to a scalar
factor. If all the functions ϕi are Laurent polynomials and ϕi is simply the monomial
zi for all i sufficiently large, then the wedge product τ can be represented, after
expanding the brackets, as a finite linear combination τ =

∑

λ cλsλ, cλ ∈ C. If the
functions ϕi contain infinitely many terms, then the function τ is a formal linear
combination of sλ and can be obtained in the following way:

when expanding the brackets in the infinite wedge product (15) pick one monomial

summand in each ϕi in such a way that this summand is zi for all but finitely many

indices i and do this in all possible ways.

More explicitly, if ϕi =
∑

j∈Z
ai,jz

j, then

τ =
∑

λ

det ||ai,j−λi
||i,j≥1sλ = det ||

∑

k∈Z

ai,ksj−k||i,j≥1. (16)

Theorem 3.1 ([18, 1, 19]) A (non-zero) function τ is a τ -function for the KP hi-

erarchy iff the corresponding point [τ ] ∈ PF belongs to the Grassmannian Gr ⊂ PF .
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In particular, each Schur polynomial sλ and any linear combination of the Schur
functions si corresponding to one-part partitions produces a solution to the KP equa-
tion (5).

The Plücker equations for the Grassmannian are known as the bilinear Hirota

equations.

3.2 Formulas for the generating function for Hurwitz num-
bers

The exponent eH of the generating function for the Hurwitz numbers is nothing but
the generating function for the numbers of ramified coverings of the 2-sphere by all,
not necessarily connected, compact oriented surfaces of Euler characteristic 2 − 2g.
Take such a covering and let a point of simple ramification in the target sphere tend
to the point of degenerate ramification. Then one can express the number of such
coverings as a linear combination of the numbers of similar coverings with fewer points
of simple ramification. This reccurence relation (the “cut-and-join equation” of [5])
expressed in terms of generating functions reads as follows:

∂eH

∂β
=

1

2

∞
∑

i,j=1

(

(i + j)pipj
∂

∂pi+j
+ ijpi+j

∂2

∂pi∂pj

)

eH = AeH , (17)

where we denote by A the differential operator on the right-hand side. For an algebro-
geometric interpretation of the cut-and-join equation, see [20].

Equation (17) can be solved explicitly. The operator A acts linearly on the space of
weighted homogeneous polynomials in the variables p1, p2, . . . , with the weight of the
variable pi equal to i. Moreover, it preserves the weighted degree of the polynomials,
whence can be split into a direct sum of finite dimensional linear operators. The Schur
functions sλ are eigenvectors of A, and they form a complete set of eigenvectors.

Denote by f(λ) the eigenvalue of the eignevector sλ. It can be easily checked that

f(λ) =
1

2

∞
∑

i=1

λi(λi − 2i+ 1).

It follows that any solution of Eq. (17) can be represented as a sum

∑

λ

cλsλe
f(λ)β ,

over all partitions λ, for some coefficients cλ. For the solution eH , these coefficients
can be computed from the initial value H|β=0 = p1, which yields

eH =
∑

λ

sλ(1, 0, 0, . . . )sλe
f(λ)β . (18)

In [15] this form of the function eH was deduced from the representation theory of
symmetric groups. Note that cλ = (dim Rλ)/|λ|!, where |λ| = λ1 + λ2 + . . . and

11



Rλ is the irreducible representation of the symmetric group S|λ| corresponding to the
partition λ.

Taking the logarithm we obtain a few first terms in the expansion of H:

H = p1 +
1

4
(eβ − 2 + e−β)p2

1 +
1

4
(eβ − e−β)p2 +

1

36
(e3β − 9eβ + 16 − 9e−β + e−3β)p3

1

+
1

12
(e3β − 3eβ + 3e−β − e−3β)p1p2 +

1

18
(e3β − 2 + e−3β)p3 + . . .

3.3 The exponent of the generating function for Hurwitz
numbers as an element of the semi-infinite Grassman-
nian

In Sec. 2.2 the fact that the function eH is a τ -function for the KP hierarchy was
established by a reference to Okounkov’s paper [15]. Here we present a more direct
argument.

Theorem 3.2 The function eH is given by Eq. (16) with the following choice of the

matrix ||aij||:

aij =

{

δij j > 0,
(−1)i−1

(i−1)!(−j)!(i−j)
e(−(i−1/2)2+(j−1/2)2)β/2 j ≤ 0.

Here is the beginning of the matrix ||aij||:

i \ j . . . −4 −3 −2 −1 0 1 2 3 4 . . .

1 . . . 1
5!
e10β 1

4!
e6β 1

3!
e3β 1

2!
eβ 1 1 0 0 0 . . .

2 . . . − 5
6!
e9β − 4

5!
e5β − 3

4!
e2β − 2

3!
− 1

2!
e−β 0 1 0 0 . . .

3 . . . 15
7!
e7β 10

6!
e3β 6

5!
3
4!
e−2β 1

3!
e−3β 0 0 1 0 . . .

4 . . . −35
8!
e4β −20

7!
−10

6!
e−3β − 4

5!
e−5β − 1

4!
e−6β 0 0 0 1 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The proof follows from the expansion (18) and the identities

det ||ai,j−λj
|| = sλ(1, 0, 0, . . . )e

f(λ)β .

The latter can be verified as follows. Firstly, it is obvious that the coefficient of β in
the exponent is the same for all terms in the determinant expansion, because of the
constant gap in this coefficient between the matrix’ columns. For the diagonal, it is
f(λ), and we are done with the exponent. In order to obtain the factor, it suffices to
evaluate the determinant at β = 0, and it reduces easily by induction to the defining
determinant (14) of Schur functions evaluated at (p1, p2, p3, . . . ) = (1, 0, 0, . . . ). Here
we take into account that for single-part partitions we have sk(1, 0, 0, . . . ) = 1/k!.

This yields an independent proof of the following
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Corollary 3.3 The second derivative V = ∂2H/∂p2
1 of H satisfies the KP hierarchy,

in particular, it is a solution to the KP equation (5).

The KP hierarchy degenerates into the KdV hierarchy if we are looking for solu-
tions independent of variables with even indices (that is, the derivatives with respect
to these variables vanish identically). In the normalization of the present paper, the
variables ti are related to the variables pj by ti = 1

(2i−1)!!
p2i+1 which, in particular,

makes F independent of p2, p4, . . . . (Recall that (2i − 1)!! denotes the product of
odd numbers from 1 to 2i − 1, (−1)!! = 1.) Since the second derivative ∂2F/∂t20
of the function F given by Eq. (1) satisfies the KdV hierarchy, its exponent eF is
a τ -function for the KdV hierarchy whence admits a matrix presentation similar to
that of eH .

References

[1] E. Date, M. Kashivara, M. Jimbo, T. Miwa, Transformation groups for soliton

equations, in: Proc. of RIMS Symposium on Non-Linear Integrable Systems,
Singapore, World Science Publ. Co., 39–119 (1983)

[2] P. Deligne, D. Mumford, The irreducibility of the space of curves of given genus,
Inst. Hautes Études Sci. Publ. Math. No. 36, 75–109 (1969)

[3] T. Ekedahl, S. K. Lando, M. Shapiro, A. Vainshtein, On Hurwitz numbers and

Hodge integrals, C. R. Acad. Sci. Paris Sér I Math., 328, 1175–1180 (1999)

[4] T. Ekedahl, S. K. Lando, M. Shapiro, A. Vainshtein, Hurwitz numbers and in-

tersections on moduli spaces of curves, Invent. math., 146, 297–327 (2001)

[5] I. P. Goulden, D. M. Jackson, Transitive factorisation into transpositions and

holomorphic mappings on the sphere, Proc. Amer. Math. Soc., 125, no. 1, 51–
60 (1997)

[6] I. P. Goulden, D. M. Jackson, R. Vakil, The Gromov–Witten potential of a point,

Hurwitz numbers, and Hodge integrals, Proc. London Math. Soc. (3), 83, 563–
581 (2001)

[7] T. Graber, R. Vakil, Hodge integrals and Hurwitz numbers via virtual localization,
Compositio Math. 135, no. 1, 25–36 (2003)

[8] J. Harris, D. Mumford, On the Kodaira dimension of the moduli space of curves,
Invent. Math., 67, no. 1, 23-88 (1982)
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