Two-dimensional Dirac operator and surface
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Abstract

We give a survey on the Weierstrass representations of surfaces in
three- and four-dimensional spaces, their applications to the theory of the
Willmore functional and on related problems of spectral theory of the
two-dimensional Dirac operator with periodic coefficients.
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1 Introduction

In this paper we survey some results and problems related to global rep-
resentations of surfaces in three- and four-spaces by means of solutions to
the Dirac equation and application of these constructions to a study of
the Willmore functional and its generalizations.

This activity started ten years ago [116]. In this approach the Gauss
map of a surface is represented in terms of solutions v to the equation

D=0

where D is the Dirac operator with potentials

D:<_05 g)’L(lo] 3)

Such a representation for surfaces in R® has different forms and some
prehistory however in this explicit form involving the Dirac equation first
it was written down for inducing surfaces admitting soliton deformations
in [76] where these deformations were also introduced.

The appearance of an operator with a well-developed spectral theory
makes it possible to use this theory for study problems of global surface
theory. Moreover this approach explains an importance of the Willmore
functional since for surfaces in R? it is up to a multiple is the squared
Ly-norm of the potential U = V = U of the operator D [116].

The approach to proving the Willmore conjecture for tori proposed by
us in [116, 118] and based on the theory of spectral curves (on one energy
level) [33] led to a very interesting paper by Schmidt [110] where a sub-
stantial progress was achieved however the conjecture stayed unproved.

Therewith the spectral curve of D with double-periodic potentials gives
rise a notion of the spectral curve of a torus in R* [118], in which it is
encoded a lot of geometrical information on the surface.



Another approach to obtaining lower bounds for the Willmore func-
tional involved methods of the inverse spectral problem and algebraic ge-
ometry of curves and led to obtaining such estimates which are quadratic
in the dimension of the kernel of D. They were first obtained for spheres of
revolution and some their generalizations and conjectured for all spheres
in [119] by using the inverse spectral problem and proved in the full gen-
erality of surfaces of all genera in [43] where the theory of algebraic curves
was applied in a fabulous and unusual way to surface theory.

Later this representation was generalized for surfaces in R* [100, 77]
and three-dimensional Lie groups [122, 14]. In [28, 43] it was proposed
to consider the representations of surfaces in R® and R* in the conformal
setting from the beginning. However for non-commutative noncompact
three-dimensional groups the analogs of the Willmore functional appear
to be of the form

/(aH2+/6’f<+7) dp

where H is the mean curvature, K is the sectional curvature of the am-
bient space along the tangent pane to a surface and du is the induced
measure on a surface. We note that the functionals of the similar form

/(aH2+,6’K+7)du

for surfaces in R® are well-known in physics as the Helfrich functionals
[62] (see also, for instance, [16, 92]) and for generic values of a, 3,7 are not
conformally invariant even for surfaces in R®. For surfaces with boundary
which are interesting for physical applications the term containing the
Gauss curvature K is not reduced to a topological term.

Although until recently these representations were applied mostly to
the problems related to the Willmore functional and its generalizations
we think that they can be effectively used for study other problems of
global surface theory.

2 Representations of surfaces in three- and
four-spaces

2.1 The generalized Weierstrass formulas for sur-
faces in R?
The Grassmannians of oriented 2-planes in R™ are diffeomorphic to quadrics
in CP™ 1.

Indeed, take a 2-plane and choose a positively oriented orthonormal
basis u = (u1,...,un),v = (v1,...,0n), L.e. |u| = |v|, (u,v) = 0, for the
plane. It is defined by a vector y = u + iv € C" such that

y%+...+yi = [(u7u) — (uv)]—l—%(u,’u) =0.

The plane determines such a basis up to rotations of the plane by an angle
»,0 < ¢ < 27, which result in transformations y — re'¥y. Therefore the



Grassmannian G, 2 of oriented 2-planes in R” is diffeomorphic to the
quadric
Y+ tyr =0, (y1:...:yn) €ECP",
where (y1 : -+ - : yn) are homogeneous coordinates in CP™~*. The Grass-
mannian G2 of unoriented 2-planes in R" is the quotient of éng with
respect to a fixed-point free antiholomorphic involution y — 7.
Given an immersed surface

f:2—R"
with a (local) conformal parameter z, the Gauss map of this surface is
Y —Gna : P—(zl(P):...:a2(P))

where z!,..., 2" are the Euclidean coordinates in R” and P € X.
There are only two cases when the Grassmannian admits a rational
parameterization:

63,2:(CP17 64,2:(CP1X(CP1

and only in these cases we have the Weierstrass representations of sur-
faces.

First we consider surfaces in R3.

The Grassmannian G3 s is the quadric

yit+ys+vyi=0
admitting the following rational parameterization !
] 1

%(b2+a2), yo = =(b* —a®), y3=ab, (a:b)eCP.

Y1 = D)

We put -

wl =a, QZ)Q =b
and substitute these expressions into the formulas for z¥ =y, k = 1,2, 3.
Since z* € R for all k, we have

Imz". =0, k=1,2,3.

In terms of v this condition takes the form of the Dirac equation

e[ 8)(5 2N ()-0 vee

Moreover if for a complex-valued function f we have Im fz = 0 then
locally we have f = g. where g is a real-valued function of the form

g:/[Refdm—Imfdy].

We have the following theorem.

11t is well-known in the number theory as the Lagrange representation of all integer solu-
tions to the equation 22 + y2 = 22.



Theorem 1 1) ([76]) If 1 meets the Dirac equation (1) then the formulas

" = xk(()) +/ (xlzdz + a’:];dé) , k=1,2,3, (2)
with ) .
1 - - -
v =@+ e),  al=g(h—yh),  al=t (3)

give us a surface in R>.
2) ([116]) Every smooth surface in R? is locally defined by the formulas
(2) and (3).

The proof of the second statement is given above and the proof of the
first statement is as follows: by the Dirac equation, the integrands in (2)
are closed forms and, by the Stokes theorem, the values of integrals are
independent of the choice of a path in a simply connected domain in C.

This representation of a surface is called a Weterstrass representation.
In the case U = 0 it reduces to the classical Weierstrass (or Weierstrass—
Enneper) representation of minimal surfaces. 2

The following proposition is derived by straightforward computations.

Proposition 1 Given a surface X defined by the formulas (2) and (3),
1) z is a conformal parameter on the surface and the induced metric
takes the form

ds® = €**dzdz,  e” = |1)* + |2,
2) the potential U of the Dirac operator equals to

_ He®

U
2 )

where H is the mean curvature, > i.e. H = % with 1, 22 the prin-
cipal curvatures of the surface,
8) the Hopf differential equals Adz> = (f.., N)dz> and

|A|2 _ (741 _ %2)26404
16 ’

A = 1201 — Y1042,

4) the Gauss—Weingarten equations take the form

o} a, Ae 0 0 U
#-(% )=l (i 2)]e-e

2The spinor representation of minimal surfaces originates in lectures of Sullivan in the late
1980s. It was successively applied to some problems on minimal surfaces by Kusner, Schmitt,
Bobenko et al. (see [85] and references therein) and this approach deserves a complimentary
survey.

3We recall that the normal vector N meets the condition

Af = 2HN,

where A = 4e=2%99 is the Laplace—Beltrami operator corresponding on the surface.



5) the compatibility conditions for the Gauss—Weingarten equations
are the Gauss—Codazzi equations which are

A = (U, —a.U)e®, .z +U> —Ade > =0

and the Gaussian curvature equals K = —de™*%ar,5.

It is easy to notice that if ¢ meets the Dirac equation (1) then the
vector function ¢* defined by the formula

(2)=(3) e

also meets the Dirac equation.
Let us identify R® with the linear space of 2 x 2 matrices spanned over

R by
0 — 0 -1 -1 0
= (F0) e (00 w0 1)

We have the orthogonal representation of SU(2) on R? which is as follows

er — p(S)(ex) = ?TeiS =S%e1S, k=1,2,3,

_ A H . 2 2
S = < BT > € SU(2), ie [N+ |ul*=1,
which descends through SO(3) = SU(2)/{£1}. The following lemma is
proved by straightforward computations:

Lemma 1 If a surface ¥ is defined by 1) via the Weierstrass representa-
tion, then

1) M+ pp* defines the surface obtained from X under the transfor-
mation p(S) of the ambient space R>.

2) M with A € R defines an image of X under the dilation © — Az.

REMARK. The formulas (1) and (3) were introduced in [76] for induc-
ing surfaces which admit soliton deformations described by the modified
Novikov—Veselov equation. They originate in some complex-valued for-
mulas derived for other reasons by Eisenhart [34]. Similar representation
for CMC surfaces in terms of the Dirac operator was proposed in 1989 by
Abresch (talk in Luminy). It was very soon understood that these formu-
las give a local representation of a general surface (see [116]; in the proof
given above we follow [122], later another proof was given in [47] and
from the physical point of view the representation was described in [95]).
Moreover this representation appeared to be equivalent to the Kenmotsu
representation [75] which does not involve explicitly the Dirac operator.

2.2 The global Weierstrass representation

In [116] the global Weierstrass representation was introduced. For that
is necessary to use special i;-bundles over surfaces and to consider the
Dirac operator defined on sections of bundles. In this event



e the Willmore functional appears as the integral squared norm of the
potential U and the conformal geometry of a surface is related to
the spectral properties of the corresponding Dirac operator;

e since it was proved in [116] that tori are deformed into tori by the
modified Novikov—Veselov flow and this flow preserves the Willmore
functional, the moduli space of immersed tori is embedded into the
phase space of an integrable system which has the Willmore func-
tional as an integral of motion.

By the uniformization theorem, any closed oriented surface ¥ is con-
formally equivalent to a constant curvature surface ¥y and a choice of a
conformal parameter z on X fixes such an equivalence Yo — X.

Since the quantities

Yadz, Vidz, Y1gedz, €**dzdz, H =2Ue ™

are globally defined on a surface Yo, this leads to the following description:

Theorem 2 ([116, 119]) Ewvery oriented closed surface X, immersed in
R®, admits a Weierstrass representation of the form (2)-(3) where 1 is a
section of some bundle E over the surface o which is conformally equiv-
alent to X and has constant sectional curvature and Dy = 0. Moreover

a) if ¥ = CU{oo} is a sphere then v and U defined on C are expanded
onto the neighborhood of the infinity by the formulas:

(¥1,92) = (241,292), U— |2°U a5z — =271, (5)

and there is the following asymptotic of U:

U:CODSt—i—O L as z — 0.
|2]2 |2[3

b) if © is conformally equivalent a torus o = R?/A, then
Ulz+72+7) =U(2,2), Y(z+72+7) =p(N(z,2) forallyeA

where p s the character of A — {1} which takes values in {+1} and
determines the bundle
EZ 5,
such that (1, ¥2)" is a section of E.
¢) if ¥ s a surface of genus g > 2, then Xo = H/A, where H is the
Lobachevsky upper-half plane and A is a discrete subgroup of PSL(2,R)
which acts on H = {Imz > 0} C C as

az+b a b
R CE

L(2,R).
cz+d’ d)GS(,)

The -bundle
ES s,

is defined by the monodromy rules

v+ (1, 92) — (cz + d) (Y1, 92). (6)



and L
U(1(2),7(2)) = lez + d*U(z, 2).
The bundle E splits into the sum of two conjugate bundles E = Eo® Ey
which sections are Y1 and V2 respectively.

Since PSL(2,R) = SL(2,R)/{£1l}, an element v € PSL(2,R) de-
fines a monodromy up to a sign. The same situation holds for the torus.
Therefore the bundles F are called spin bundles.

Given a conformal parameter on X, the potential U is fixed and is
called the potential of the representation. Moreover we have

W) = 4/ Udz A dy.
3

Any section ¢ € T'(E) such that Dy = 0 defines a surface which is
generically not closed but only have a periodic Gauss map. Therewith
the Weierstrass formulas define an immersion of the universal covering X
of ¥. The following proposition shows when such an immersion converts
into an immersion a a compact surface.

Proposition 2 The Weierstrass representation defines an immersion of
a compact surface X if and only if

Pidinw= | ¢idihw= [ ¢i1¢pdZAw=0 (7)

%o %o o
for any holomorphic differential w on .

We see that to any immersed torus ¥ C R® with a fixed conformal
parameter z it corresponds the Dirac operator D with the double-periodic
potential

He*
2

where H is the mean curvature and e?“dzdz is the induced metric.

U=V =

2.3 Surfaces in three-dimensional Lie groups

For surfaces in three-dimensional Lie groups the Weierstrass representa-
tion is generalized as follows.

Let G be a three-dimensional Lie group with a left-invariant metric
and let

f:X2—-G

be an immersion of a surface ¥ into G. We denote by G the Lie algebra
of G. Let z = x + iy be a conformal parameter on the surface.

We take the pullback of TG to a G-bundleover : G — E = f~H(TG) =
Y., and consider the differential

da: Q' (S E) — (3 E),
which acts on E-valued 1-forms:

daw = dqw + djw



where w = udz + u*dz and
daw = —Vspudz Ndz, diw= Voru'dz Adz.
By straightforward computations we obtain the first derivational equation
da(df) = 0. (8)

The tension vector 7(f) is defined via the equation

da(edf) = f - (2 (N)de Ady = & f - (7(f))dz A dz

where f-7(f) = 2HN, N is the normal vector and H is the mean curva-
ture. This gives the second derivational equation:

da(xdf) = ie** HNdz A dz. 9)

Since the metric is left invariant we rewrite the derivational equations
in terms of _
V=flof, U =f"0f
as follows: B
OV — U + VgU™ — V¥ =0, (10)
OU* + U + Vo U* 4 VW = *Hf ' (N). (11)
The equation (10) is equivalent to (8) and the equation (11) is equivalent
to (9).
We take an orthonormal basis e, ez, es in the Lie algebra G of the
group G and decompose ¥ and U™ in this basis:

3 3
U= Zer, U =) Zgey.
k=1 k=1
Then the equations (10) and (11) take the form

> (0Z; - 0Z;)e; + Y (2 2k — Z; Zx) Ve er = 0, (12)

J gk
Z(aZj + 5Zj)6j + Z(ijk + ZjZk)Vejek =
J 3k (13)
20H [(ZQZ,:; — ZQZg)el + (Zng — Z3Zl)62 —+ (21Z2 — lez)e:;} .

Here we assumed that the basis {e1, e2, e3} is positively oriented and there-
fore

) =
2ie > [(Z2Zs — ZaZs)er + (Z3Z1 — Z3Zh)ea + (2122 — Z1Za)es]
(for G = SU(2) with the Killing metric this formula takes the form
fH(N) = 2ie™2*[¥*, U]). Since the parameter z is conformal we have

(U, W) = (U, 0*) =0, (U,T") = %em

which is rewritten as

1 2a
Zi 4+ 75+ 75 =0, |Zl|2+|22|2+|23|2:5e2.



Therefore, as in the case of surfaces in R3, the vector Z is parameterized
in terms of ¢ as follows:

i - 1 - _
Zi=SWs+90), Ze=gW-vl), Zs=ti  (19)

Let us show how to reconstruct a surface from 1 meeting the deriva-
tional equations (10) and (11). In the case of non-commutative Lie groups
that can not be done by the integral Weierstrass formulas.

Let ¢ be defined on a surface ¥ with a complex parameter z and ¥
constructed from 1 meet (10) and (11). Let us pick up a point P € .
We substitute v into the formula (14) for the components Z1, Z2, Z3 of
U = Zizl Zrer, = f10f and solve the linear equation in the Lie group
G:

fZ = f\I’7
with the initial data f(P) = g € G. Thus we obtain the desired surface
as the mapping

f:2—G.

For the group R? a solution to such an equation is given by the Weierstrass
formulas (2) and (3).

From the derivation of (10) and (11) it is clear that any surface ¥ in G
is constructed by this procedure which is just the generalized Weierstrass
representation for surfaces in Lie groups. In this event we say that
generates the surface X.

Let us write down the derivational equations (10) and (11) in terms
of ). They are written as the Dirac equation

Dw:[( 5 §>+<[0] 3)“:0’ (15)

the induced metric is given by the same formula
ds? = e**dzdz, e = | + [¢a?,

and the Hopf quadratic differential Adz? equals to

A= ("Z"Qad)l - ’(/)18’([_)2) + ZZjZkVejek,N

gk

For a compact Lie group with the Killing metric, in particular for G =
SU(2), we have Ve, e, = —V,, e; and the Hopf differential takes the same
form as for surfaces in R®: A = 9201 — 11 0vs.

We consider three-dimensional Lie groups with Thurston’s geometries.
Let us recall that by Thurston’s theorem [112, 126] all three-dimensional
maximal simply connected geometries (X,Isom X) admitting compact
quotients are given by the following list:

1) the geometries with constant sectional curvature: X = R3 S*  and
H,

2) two product geometries: X = 5% x R and H? x R;

3) three geometries modelled on Lie groups Nil, Sol, and SLo with
certain left invariant metrics.

10



The group R? with the Euclidean metric was already considered above.
Hence we are left with four groups:

SU((2)=S% Nil, Sol, SLa

where Nil is a nilpotent group, Sol is a solvable group, and SLs is the
universal cover of the group SLz(R):

—z

e 0 =z
, Sol = 0 y ,
1

1
Nil = 0 e
0 0 0

o~ 8
[ SR

with z,y,z € R.
The case G = SU(2) was studied in [122] and surfaces in the other
groups were considered in [14]:

U=V = %(H — i) (|1 + [gel),

the Gauss—Weingarten equations are

0 a, Ae @ o 0 U -~
o (5 %)l (e )]
their compatibility conditions — the Gauss—Codazzi equations —

take the form

s+ |UP —|APe ™ =0, A:=(U.—a.U)e”
with Adz? the Hopf differential:
A = 1011 — 19¢a,
e (G =Nil:
U=V =L (i + al?) + Ll — ),

the Gauss—Weingarten equations are

0 az—iwﬂﬁz Ae @ -
o () eee

0 0 U

and the Gauss—Codazzi equations have the following shape
2 —2a H? 2a 1 4 4 2 2
s — AP 4 ot = S (3l 4 3l — 101 Flyal?),

H . 1 _
5 e + §(|¢2|4 — 1" prthe = 0

where the Hopf differential equals to
A = (1201 — $10) + i3,

Az -

11



[ ] G:ﬁg:

U= P+ ) i (Gl - Shon).
V=Tl + ) +i (Sl - gleal)

the Gauss—Weingarten equations are written as

0 o, + ﬂll)ﬂZz Ae™ @ o
(s e

9] 0 14
[& B ( —Ae™™ oz + Zhiepo )] v=0,

and the Gauss—Codazzi equations take the form
oa 1 5, o
.z —e ? |A|2+162 H? = ** —5|Zs)?,
5 573 Lo 20, 5 5 2
O|A+—"—)==H., O —— | Z5~,
< +2(H—i)) o to\qm—p )

A = (Pa20hr — 1h10) — %w?u’é,

where

e G = Sol: we consider only domains where Zs = 111} in which
Y1’

2 P2

157

P2

the Gauss—Weingarten equations consist in the Dirac equation and

the following system

U =5 (1 val®) + 30

V= Dl +[gal) + 57

—a 1- = . 1-
Oyn = oz + Ae” My — S, Oy = —Ae” "Y1+ azthr — oYY,
the Gauss—Codazzi equations are

o 1 9
s —e |A|2+162 H? = 2641 [*[pa]” — (Ju|* + [92]*)),

1
1
X ]
Az = SH-E = ([af* — 1| )10

with 1
A = (Y2011 — 10v2) + 5(153 — ).

It needs to make several explaining remarks:

1) for the last three groups the term Z3 appears in the formulas. The
direction of the vector es has different sense for these groups:

1a) the groups Nil and SL» admit S'-symmetry which is the rotation
around the geodesic drawn in the direction of e3. This rotation together
with left shifts generate IsomG;

12



1b) for Sol the vectors e; and ez commute. Therefore the equation
Z3 = 911P2 = 0 can be valid in an open subset B of a surface and therewith
the Dirac equation is not extended by continuity onto the whole surface.
Since H = 0 in B we put

U=V =0 for ¢11)2 =0 and G = Sol.

However on the boundary 0B of the set {Z3 # 0} the potentials Uso,1 and
Vsol are not always correctly defined due to the indeterminacy of 1"’—1 for
11 = 0 and the Dirac equation with given potentials is valid outside 0B;

2) for G = R® or SU(2) the Gauss-Codazzi equations are derived as
follows. We have

RYy=(0—-A)(0-B)yp—(0—-B)(0— A= (A — B, + [A,B])y =0,

where (0 — A)y = (0 — B)y = 0 are the Gauss-Weingarten equations
and the vector function 1" (see (4)) meets the same equation Ry* = 0
which together with Ry = 0 implies that R = A; — B, + [A4, B] = 0. For
other groups the equations DyY* = 0 and Ry™ = 0 does not hold and,
in particular, the kernel of the Dirac operator can not be treated as a
vector space over quaternions. Therefore the Gauss—Codazzi equations
are derived in [14] by other methods;

3) in fact the Dirac equations in the case of non-commutative groups
are nonlinear in 1 due to the constraints on the potentials. Therefore if
1) defines a surface then Ay does not define another surface for |\| # 1
since these groups do not admit dilations. For SU(2) the mapping (4)
maps a solution of the Dirac equation to another solution of it and the
analog of part 1 of Lemma 1 holds: A + pp*, |A]> 4+ |p|? = 1, defines
an image of the initial surface under some inner automorphism of SU(2)
corresponding to a rotation of the Lie algebra.

Let us expose some corollaries. Since the case G = SU(2) was well-
studied, * we consider only other groups.

Theorem 3 1) Given v generating a minimal surface in a Lie group,
the following equations hold:

D1 = (sl — nP)a, O = —J(Wal* — s for G = Nil,

1

4

= 3 1 1 3

oY1 =1 <Z|¢1|2 - §|1/)2|2) 2, Oa = —i <§|¢1|2 - Z|¢2|2) N
for G = §.Z/2,

oy = %zﬁ%zﬁz, My = —%J)ﬂz)g for G = Sol.

2) (Abresch [4]) If a surface has constant mean curvature then the
following quadratic differential Adz* is holomorphic:

752
2H + i

Adz? = <A + ) dz*  for G =Nil,

4For SU(2) the minimal surface equations are v = —%(W’l [2+|12]?))2, 0o = %(W’l |2+
[2]2)41, and CMC surfaces are distinguished by the condition Az = 0.

13



5 2 2 a7
R = SLo.
2(H =) 5>dz for G = SL»

3) If for a surface in G = Nil the differential Adz2? is holomorphic
then the surface has constant mean curvature.

Adz? = (A +

It would be interesting to understand relations of formulas for con-
stant mean curvature surfaces in these groups to soliton equations. Such
relations are well-known for such surfaces in R? and SU(2).

The analogs of the statement 2) are known also for surfaces in the
product geometries S? x R and H? x R [5]. However only for surfaces in
Nil the converse — the statement 3) — is also proved. °

We remark that for minimal surfaces in Nil and Sol the analog of
the Weierstrass representation was obtained by other methods in [67, 68].
Other approaches to study surfaces in Lie groups were used in [32, 45].

2.4 The quaternion language and quaternionic func-
tion theory

Pedit and Pinkall wrote the Weierstrass representation representation of
surfaces in R? in the quaternion language and then extended it to surfaces
in R* [100] (see some preliminary results in [69, 70, 107]).

Indeed, the idea of using quaternions comes from the symmetry of the
kernel of the Dirac operator under the transformation (4) (remark that
that holds for surfaces in R® and SU(2) when U = V and is not valid for
surfaces in other three-dimensional Lie groups).

We identify C? with the space of quaternions H as follows

. zZ1 —22
(z1,22) = 21 + jz2 = _
z2 zZ1

and consider two matrix operators
5 2 0 . (U 0 0 -U
=(05) w=ilho)-(o )
Here j is one the standard generators of quaternions and we have
P=-1, Z=jz 09j=jo.
Then the Dirac equation takes the form

(04 jU) (1 + japa) = (01 — Urha) 4 j(Onha + Unpr) = 0.

Since, by (6), ¥1 and 12 are sections of the same bundle E it is worth
working in terms of quaternions to rewrite the Dirac equation as

(0 +3U) (1 + 12j) = 0.

One may treat L = Ep ® Ep as a quaternionic line bundle whose
sections take the form 1 +12j and which is endowed by some quaternion

5 After this paper was submitted for a publication it was shown that for surfaces in G = SLy
and in H?2 xR the analogous statement does not hold: there are surfaces for which the quadratic
differential Adz? is holomorphic and which are not CMC surfaces [42].
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linear endomorphism J such that J? = —1. In our case J simply acts as
the right-side multiplication by j:

J o (h1,02) = (—2,01) or b1+ hoj — (Y1 + ¥2j)j = —t2 + 1.

This mapping J defines for any quaternion fiber a canonical splitting into
C @ C (in our case this is a splitting into v1 and ). In [100, 28] such a
bundle is called a “complex quaternionic line bundle”.

The Dirac operator in these terms is just

D = (04 jU) (¥ + 2j) = (Oh1 — Utha) + (9tp2 + Uth1)j

and we see that its kernel is invariant under the right-side multiplica-
tions by constant quaternions (see Lemma 1) and thus the kernel can be
considered as a linear space over H. By (6), we have an operator

D:T(L) - I['(KL)

where, given a bundle V, we denote by I'(V') the space of sections of a
bundle V and K is the bundle of 1-forms of type (0,1), i.e., of type fdz,
over a surface Xo.

This operator, of course, is not linear with respect to right-side mul-
tiplications on quaternion-valued functions and the following evident for-
mula holds:

D(YA) = (DY)A + 1 (i + jOn) + a(—0n + jopu),

where A = u+jn = p+7j. In [100] this formula is written in a coordinate-
free form as

D(WA) = (DY)A+ %(wdx + Tk dN),

the potential U multiplied by j from the left is called the Hopf field Q = jU
of the connection D on L and the quantity

W= [ |UPdzndy
o
is called the Willmore energy of the connection D.

Although at the beginning this quaternion language had looked very
artificial, at least to us, it led to an extension of the Weierstrass repre-
sentation for surfaces in R* [100]. Later it was developed into a tool of
investigation based on working out analogies between complex algebraic
geometry and the theory of complex quaternionic line bundles. It appears
that that is effectively applied to a study of special types of surfaces and
Biacklund transforms between them in the conformal setting, i.e. not dis-
tinguishing between R* and S* [28, 90]. Finally this approach had led
to a fabulous extension of the Pliicker type relations from complex alge-
braic geometry onto geometry of complex quaternionic line bundles and
application of that to obtaining lower bound for the Willmore functional
[43] (see in §5.4). Therewith this theory deals in the same manner with
general bundles L not always coming from the surface theory [43]. The
bundles related to surfaces are distinguished by their degrees: it follows
from (5) and (6) that

deg Fo = genus (Xo) — 1 =g — 1.
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2.5 Surfaces in R*

The Grassmannian of oriented two-planes in R* is diffeomorphic to the
quadric
yi+ys+ys+yi=0, yeCP’.

We take another coordinates in vy}, v, ys, y4 in C*:

i 1 1
= §(yi +yh), Y2 = §(yi —yh), Yz = §(yé +y1),  ya= 5(ys — ya).

N .

In terms of these coordinates 54,2 is defined by the equation
! !
Y1Y2 = YslYs-
It is clear that there is a diffeomorphism
(CPl X (CPl e 64,2
given by the Segre mapping
Y1 = agba, y3 =aibi, y5=asbi, yi=aibs

where (a1 : a2) and (b1 : b2) are the homogeneous coordinates on different
copies of CP".

Let us parameterize ¥, k = 1,2,3,4, in terms of these homogeneous
coordinates and put

a1 =1, az =@, b1 =11, by=1s.

In difference with the 3-dimensional situation this parameterization is
not unique even up to the multiplication by +1 and the vector functions
1 and ¢ are defined up to the gauge transformations

f —f
(n)-(on) (2)-(g) o
where f is an arbitrary function. However the mappings
Gy = (1 :02), Gy = (p1:P2)
into CP! are correctly defined and split the Gauss map
G =(Gy,Gy) : S — Gag = CP' x CP".

We have the following formulas for an immersion of the surface:

o = 25(0) + / (x’;dz + yz’;dz) . k=1,2,3,4, (17)
with
1t - o 1, -
T, = 5(@211)2 + @1¢1)7 Ty = §(W2¢2 - ‘lel)y
zd = 5(9521#1 +p12), ai= §(¢2¢1 — p11P2).
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Of course, as in the three-dimensional case, these formulas define a surface
if and only if the integrands are closed forms or, equivalently,

Imzf, =0, k=1,2,34
This is rewritten as

(Pathr), = (Pr1¢2)., (Pathe), = — (@1¢n), - (19)

For generic ¢ and v these conditions are not written in terms of Dirac
equations.
However there is the following

Theorem 4 ([124]) Let r : W — R* be an immersed surface with a
conformal parameter z and let Gy = (¢ cosn : sinn) be one of the com-
ponents of its Gauss map.

There exists another representative ¢ of this mapping Gy = (Y1 : o)
such that it meets the Dirac equation

Dip =0, D:(_Og §>+<g g) (20)

with some potential U.
A wvector function ¥ = (
tion

eIt cosn, €9 sinn) is defined from the equa-

gz = —i0z cos? n, (21)

whose solution is defined up to addition of an arbitrary holomorphic func-
tion h and the corresponding potential U is defined by the formula

U=—e""9""(if, sinncosn +1n.)
up to multiplication by e,
Given the function v, a function ¢ which represents another compo-
nent G, of the Gauss map meets the equation

Voo v 0 0 U 0
D=0, D _<_5 0>+<0 U). (22)

Different lifts into C* x C? of the Gauss mapping G : ¥ — CP' x CP!
are related by gauge transformations

Y1 ey ©1 e "o _
3 3 U h—h)U,
< 1/)2 - eh'l/]2 bl 802 - €7h§02 bl - exp( ) ’
(23)
where h is an arbitrary holomorphic function on W.

Corollary 1 Any oriented surface in R* is defined by the formulas (17)
and (18) where the vector functions b and ¢ meet the equations of the
Dirac type (20) and (22):

Dy =D"p=0.
The induced metric equals

e®*dzdz = (1> + [¥2*) (o1 |” + 2| ) dzdz
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2z,

and the norm of the mean curvature vector H = =322 meets the equality

[Hle®
Ul = .
U] 9

Let us consider the diagonal embedding
G32 =CP' — G4z =CP' x CP".

If  and ¢ generate a surface and lie in the diagonal: ¢ = +1), then 2* = 0
and we obtain a Weierstrass representation of the surface in R>.

The formulas (17) and (18) appeared for inducing surfaces in [77].
This corollary demonstrates that they are general although this has to
follow also from [100] where such a representation was first indicated in
the quaternion language.

We indicate two specific features of the representation of surfaces in
R* which were not discussed in the previous papers:

e given a surface, a representation is not unique and different repre-
sentations are related by nontrivial gauge transformations;

e a Weierstrass representation of some domain is not always expanded
onto the whole surface and in difference with the three-dimensional
case it needs to solve O-problem (21) on the whole surface to obtain
a representation of the surface.

Indeed, take ¢ and ¢ generating surface X, a domain W C ¥ and a
holomorphic function f on W which is not analytically extended outside
W. Then by (16) we construct from v, varphi, and f a another represen-
tation of W which is not expanded outside W.

EXAMPLE. LAGRANGIAN SURFACES IN R%.

We expose the Weierstrass representation of Lagrangian surfaces in
R* obtained by Helein and Romon [61]. A reduction of the formulas (18)
to the formulas from [61] was demonstrated by Helein [59]).

Let us take the following symplectic form on R*:

w=dz' Adz® + dz® A da’.

We recall that an n-dimensional submanifold ¥ of a 2n-dimensional sym-
plectic manifold M?" with a symplectic form w is called Lagrangian if the
restriction of w onto ¥ vanishes:

wlz =0.

This means that at any point « € X the restriction of w onto the tangent
space T, X vanishes, i.e., T,,Y is a Lagrangian n-plane in R?".
The condition that a 2-plane is Lagrangian in R* is written as

Im (y192 + yaga) =0

or
lyil? = lyal? — lysl” + lyal* = 0.

In terms of a1, a2, b1, and bs it takes the form

[b1[* = [ba?.

18



Hence the Grassmannian of Lagrangian 2-planes in R* is the product of
manifolds

Gy¥ =CP' x §'
where CP*! is parameterized by (a1 : a2) and S* is parameterized by

1
B== logb—1 mod 27.
1 bg

This quantity [ is called the Lagrangian angle. We conclude that a surface
is Lagrangian if and only if

[th1] = |2

in its Weierstrass representation. Let us put

i
s:<e 1)7 (s51:82) = (1 : o) € CP!

NCRYE

and apply Theorem 4. We obtain the following formulas:
_ i _ 1 L g
g 27 U= 2ﬂ27 1/)1*1/)2*\/56 .

For any solution ¢ to the equation D¢ = 0, we obtain a Lagrangian
surface defined by ¢ and ¢ via (18. Moreover all Lagrangian surfaces are
represented in this form.
Let
f:X— R*

be an immersion of an oriented closed surface in R*. By Theorem 4, this
surface is locally defined by the formulas (17) and (18). A globalization is
similar to the case of surfaces in R® and on the quaternion language was
described in [100, 28] however to obtain it one has to solve a d-problem
of the surface [124]:

Proposition 3 Given a Weierstrass representation of an immersion of
an oriented closed surface ¥ into R*, the corresponding functions v and
@ are sections of the C2-bundles E and E" over ¥ which are as follows:

1) E and EY split into sums of pair-wise conjugate line bundles

E:EQ@EO, EVZEX@E(\J/

such that 11 and 12 are sections of Ey and @1 and @2 are sections of Ey ;

2) the pairing of sections of Eo and Ey is a (1,0) form on X: if

a € F(EO)7 /8 S F(E(;/)y
then
afdz

18 a correctly defined 1-form on 3;
3) the Dirac equation Dy = 0 implies that U is a section of the same
line bundle Ey as

% S F(EU) for [ RS F(Eo), v E F(Eo)
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and UUdz NdZ is a correctly defined (1,1)-form on ¥ whose integral over
the surface equals .

UUdz A dz = —=W(X)

5 2

where W(X) = [, |H|?dp is the Willmore functional.

The gauge transformation (23) show that in difference with the three-
dimensional case 1) are not necessarily sections of spin bundles.
For tori we derive from Theorem 4 the following result.

Theorem 5 ([124]) Let X be a torus in R* which is conformally equiv-
alent to C/A and z is a conformal parameter on it.

Then there are vector functions v and ¢ and a function U on C such
that

1) ¢ and ¢ give a Weierstrass representation of ¥;

2) the potential U of this representation is A-periodic;

3) functions ¢, ¢, and U meeting 1) and 2) are defined up to gauge
transformations

1 ey $1 e "o Fieh
7 7 24
<1/)2>_><6h1/)2 ’ 02 - e—hw2 ,U—>€ U ( )
where
h(z) =a+bz, Im(by) € 7Z for all v € A.

As in the case of surfaces in R® in general the vector functions 1 and
¢ define an immersion of the universal covering surface X of a surface X
: 4
into R*.

Proposition 4 An immersion of Y converts into an immersion of ¥ if
and only if

/ 1 @rdZ Aw = / Yrp2dZ Aw = / Po@rdZ Aw = / apadZ Aw =0
b b b b

(25)
for any holomorphic differential w on X.

For 11 = 1,12 = £¢2 the formula (25) reduces to (7).

3 Integrable deformations of surfaces

3.1 The modified Novikov—Veselov equation

The hierarchy of modified Novikov—Veselov (mNV) equations was intro-
duced by Bogdanov [20, 21] and each equation from the hierarchy takes
the form of Manakov’s “L,A B”-triple

oL

T [L, An] = BnL,

where L = D is the Dirac operator



and A, and B, are matrix differential operators such that the highest
term of A,, takes the form

82n+1 +52n+1 0
Ap = ( 0 92+l 4 gan+l +..

In difference with “L,A”-pairs, “L,A ,B”-triple preserves only the zero en-
ergy level of L deforming the corresponding eigenfunctions. Indeed, we
have

L
L0 — Loy + L = LI(A +00y] — (4 + B)[Ly).
Therefore if i) meets the equation
o .
T AYp =0 (26)

and Ly = 0 for the initial data 1o = ¥|¢=¢, of this evolutionary equation
then
Ly =0

for all ¢t > to.
For n = 1 we have the original mNV equation

Uy = (U +3U.V + ngz) + (Uzzz +3U:V + gU\_/z) (27)

where
VE = (UQ)Z- (28)

We see that if the initial Cauchy data U|:—o is a real-valued function then
the solution is also real-valued. In the case when Ul:—o depends only on
x we have U = U(z,t) and the mNV equation reduces to the modified
Korteweg—de Vries equation

Uy = iUm +6U,U° (29)

(here V = U?).

This reduction explains the name since Novikov and Veselov had in-
troduced in [129, 130] a hierarchy of (2 + 1)-dimensional soliton equa-
tions which take the form of “L,A B”-triples for scalar operators with
L = 00 + U, the two-dimensional Schrédinger operator, and reduces in
(1 + 1)-limit to the Korteweg—de Vries equation. The original Novikov—
Veselov equation takes the form

Ut:Uzzz+U222+(VU)z+(‘7U)2, V§:3Uz

and its derivation was later modified by Bogdanov for deriving the mNV
equation.

It from the formulas (2) and (3) of the Weierstrass representation that
just the zero energy level of the Dirac operator relates to surfaces in R
This leads to the following
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Theorem 6 ([76]) Let U(z,Z,t) be a real-valued solution to the mNV
equation (27). Let ¥ be a surface constructed via the Weierstrass repre-
sentation (2) and (3) from 1o such that 1o meets Dirac equation Do =0
with the potential U = U(z, 2,0). Let (2, Z,t) be a solution to the equa-
tion (26) with ¥|i=0 = vo.

Then the surfaces X.(t) constructed from 1(z, z,t) via the Weierstrass
representation give a soliton deformation of the surface 3.

The deformation given by this theorem is called the mNV deformation
of a surface.

Of course, this theorem holds for all equations of the mNV hierarchy.
The recursion formula for them is still unknown and the next equations
are not written explicitly down until recently except the case n = 2 [116].
Finite gap solutions to the mNV equations are constructed in [120] (see
also [121]).

It was established in [116] that this deformation has a global meaning
for tori and preserves the Willmore functional.

Theorem 7 ([116]) The mNV deformation evolves tori into tori and
preserves their conformal classes and the values of the Willmore func-
tional.

The proof of this theorem is as follows. To correctly define this de-
formation we need to resolve the constraint (28) and for tori that can be
done globally as it was shown in [116]. We have to take a solution V' to
(28) normalized by the condition that

/de/\dZ:O.
b

The form (U?).dz A dZ is an exact form on a torus X:

U2 3
UU; = <UUZZ - ts

U2

U2V> + (UUEZ Y + g U2‘7>

and therefore the Willmore functional is preserved:

A 02qs paz = / (U?)edz AN dz = 0.
dt [ =

The flat structure on a torus admits us to identify differentials with pe-
riodic functions. For instance, formally U?dzdZ is a (1, 1)-differential and
Vdz? is a quadratic differential. This is impossible for surfaces of higher
genus and therefore that persists to define globally the mNV deformations
of such surfaces.

Some attempt to redefine soliton deformations in completely geometri-
cal terms was done in [29]. Finally it did not manage to avoid introducing
a parameter on a surface however some interesting geometrical properties
of the deformations were revealed.

After papers [76, 116] in the framework of affine and Lie sphere geom-
etry some other soliton deformations of surfaces with geometrical conser-
vation laws were introduced and studied in [78, 41, 22].
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3.2 The modified Korteweg—de Vries equation

In the case when U depends only on z = Re z the Dirac equation Dy =0
for functions of the form

0(2) = p(yexn () (30)

reduces to the Zakharov—Shabat problem

_ _ 0 1Y)\ d qg —ik _
oo (4 )8 (4 2] o

for k= %.

Noti(?e that for surfaces of revolution the function 1 takes the form (30)
in some conformal coordinate z = x+1iy where y is the angle of revolution.
However there are many other surfaces with inner S'-symmetry for which
the potential U depends only on z. The function ¢ is periodic for tori of
revolution and is fast decaying for spheres of revolution ([119]).

The operator L is associated with the modified Korteweg—de Vries
hierarchy of soliton equations which admit the “L,A”-pair representation

dL

The simplest of them is

3
qt :qmzz+§q2qmu n=1,

5 5 15

The first of them coincides with the reduction (29) of the mNV equation
after substituting ¢ — 4U and rescaling the temporary parameter ¢t — 4t.
In fact, the mKdV hierarchy is the reduction of the mNV hierarchy for
U=U(z).

We see that in the mKdV case we have no constraints of type (28) and
may easily define mKdV deformations of surfaces of revolution. Moreover
in this case there is a recursion formula for higher equations:

0 n _
%:D Gz, D=02+¢ +q0; 'q.

Let us introduce the Kruskal-Miura integrals. Their densities R are
defined by the following recursion procedure:

it ¢ =
Ri==" =" Rup1=—Ruz— ) RiRng.
k=1
It is shown that R2, are full derivatives and only the integrals

H :/Rzk—1d$

dot not vanish identically.
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Theorem 8 ([117]) For every n > 1 the n-th mKdV equation trans-
forms (as the reduction of the mNV deformation) tori of revolution into
tori of revolution preserving their conformal types and the values of Hy, k >
1.

A proof of the analogous theorem for spheres of revolution (they are
studied in [119]) is basically the same as for tori.

We note that the preservation of tori is not a trivial fact. This L
operator also comes into the “L,A”-pair representation of the sine-Gordon
equation and, thus, this equation also induces a deformation of surfaces
of revolution. However this deformation closes up tori into cylinders.

We see that

1 2
H1:—Z/Qde:—4/U2dx:—;/U2d$/\dy

and therefore the first Kruskal-Miura integral is proportional to the Will-
more functional. The next integrals are

1

Hy = —
>~ 16

/(q2 —A4g})dx, Hs= % /(q6 - 20¢°¢ + 8goa”)dz.
It is interesting

what are the geometrical meanings of the functionals Hy and what are
extremals of these functionals on compact surfaces of revolution?

The mKdV deformations of surfaces of revolution determine deforma-
tions of the revolving curves in the upper half plane. geometry of such
deformations and therewith an interplay between recursion relations and
curve geometry were studied in [88, 50].

3.3 The Davey—Stewartson equation

The mNV equations are themselves reductions for U = —p = ¢ of the
Davey—Stewartson equations represented by “L,A,B”-triples with

L:<_05 g)*(ﬁp 2)

Actually this reduction of the Davey-Stewartson (DS) equations give
more equations which are of the form

U =i(0*"U +9"U) +...

and -
U, =8""Uu+6"Hu+...

for n > 1. The first series does not preserve the reality condition U = U
and the second series for U = U reduces to the mNV hierarchy.
The first two of these equations are the DS2 equation

Us = i(Uzz + Uszz + 2(V 4+ V)U) (31)
where

V:=0(|U%) (32)
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and the DS3 equation (which is sometimes called the Davey—Stewartson
I equation)

Ut = Usze + Uzzz + 3(VU. + VUz) + 3(W + W)U (33)

where
V= (UP?)., W:=(OU.)., W.=(UUs):. (34)

The Davey—Stewartson equations govern soliton deformations of sur-
faces in R*. As for the case for surfaces in R® such deformations were
introduced by Konopelchenko who proved in [77] the corresponding ana-
log of Theorem 6.

However in this case there are two specific problems:

1) As we already mentioned in §2.5 the Weierstrass representation
of a surface in R* is not unique. Does the DS deformations of surfaces
geometrically different for different representations?

2) The constraints for the DS equations are more complicated and how
to resolve the constraints (32) and (34) to obtain global deformations of
closed surfaces?

These problems we considered in [124].

The answer to the first question demonstrates a big difference from
the mNV deformation:

e the DS deformations are correctly defined only for surfaces with
fixed potentials U of their Weierstrass representations and for dif-
ferent choices of the potentials such deformations are geometrically
different.

It would be interesting to understand the geometrical meanings of
these different deformations of the same surface.

The second question is answered by the following analog of Theorem
7

Theorem 9 1) Given V uniquely defined by (82) and the normalization
condition [Vdz Adz =0, the DS> equation induces deformation of tori
into tori preserving their conformal classes and the values of the Willmore
functional.

2) For

Ve = ([UP)., /de NdZ=0, W =00 "(au.), W =80 “(ius)

(35)
the DSs equation governs a deformation of tori into tori which preserves
their conformal classes and the Willmore functional.

The surface is deformed via deformations of ¥ and ¢ and such de-
formations involve the operators A from the “L,A ,B”-triple. There much
more additional potentials coming in A and the DS equations as it is ex-
plained in [77]. We do not explain here the reductions in the formula for
A which are necessary to save closedness of surfaces under deformations.
We only mention that the formula (34) defines the periodic potentials W
and W' up to constants and the formula (35) normalizes these constants.
This normalization is necessary for preserving the Willmore functional.
The resolution of the constraints is exposed in [124] and we refer to this
paper for all details.
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4 Spectral curves

4.1 Some facts from functional analysis

Given a domain Q C R", denote by L,(2) and W;f the Sobolev spaces
which are the closures of the space of finite smooth functions on €2 with
respect to the norms

1]l = / \F(@)Pdzs . . dn

and

P
dl‘l .. dl’n

S S
Oligy...0nz,

o= > /

0<ly+-+iln=I<k

For a torus 7" = R" /A we denote by L,(T") and W} (T") the analogous
Sobolev spaces formed by A-periodic functions. Therewith the integrals
in the definitions of norms are taken over compact fundamental domains
of the translation group A.

Proposition 5 Given a compact closed domain ) in R™ or a torus, we
have

e (Rellich) there is a natural continuous embedding W) (Q) — L,(Q)
which is compact for k > 0;

e (Holder) a multiplication by u € Ly, is a bounded operator from L,
to Ly with |luvllr < |lullpllvlle, 5+ ¢ =7

e (Sobolev) there is a continuous embedding W, (Q) — Lq(Q), ¢ <
”Tpp whose norm is called the Sobolev constant;

n

e (Kondrashov) for q < ;™= the Sobolev embedding is compact.

We shall denote the space of two-component vector functions on a
torus M = R?/A by

Ly, = Lpy(M) x Ly(M), W;:sz(M)XW;(M)

in difference with the spaces of scalar functions Lo (M) and W, (M).

Let H be a Hilbert space. An operator A : H — H is compact if for
the unit ball B = {|z] < 1 : = € H} the closure of its image A(B) is
compact. The spectrum Spec A of a compact operator A is bounded and
can have a limit point only at zero.

Given a Hilbert space H and an operator A (not necessarily bounded)
denote by R(\) the resolvent of A. It is a operator pencil :

RO\ = (A-N""

with singularities at Spec A and holomorphic in A outside Spec A.
The Hilbert identity reads

R(p)R(N) = — (R(A) = R(p)), (36)
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or in another notation it is

111 11
A—pA—X p—XAX\A-X A—pu)’
Given a resolvent defined in some domain in C, we may extend it onto C
by using the following consequence of the Hilbert identity:

R(p) = RO (k= NRM\) +1) 7"
(notice that R(A)R(u) = R(u)R(N)).

Proposition 6 If R()\) is compact for A = Ao and holomorphic in A near
Ao then

1) R(p) is compact for any p € C\ Spec A and the resolvent has poles
in points from Spec A;

2) R(N) is holomorphic in C\ Spec A.

4.2 The spectral curve of the Dirac operator with
bounded potentials

In this section we explain the scheme of proving the existence of a spectral
curve of the differential operator with periodic coefficients which we used
[118] for the case of Dirac operators with bounded potentials. This case
covers all Dirac operators corresponding to immersed tori in R*.

Let
0 0 U 0 U 0
pf<_5 0)+(O V),po+<0 V).

Here we denote by Dy the free Dirac operator:

D0:<_05 ‘3) (37)

A Floquet eigenfunction v of the operator D with the eigenvalue (or
the energy) F is a formal solution to the equation

Dy = B
which satisfies the following periodicity conditions:
Wiz +75,2 +7,) = Yz, 2) = wv)i(z,2), §=1,2
where
(k,vi) = k1vj + ko, v =75 +i7; € C=R?, k= (ki ko).

The quantities ki1, k2 are called the quasimomenta of ¢ and (u1, p2) =

(u(v1), pu(7y2)) are the multipliers of 1.
Let us represent a Floquet eigenfunction ¢ as a product

U(z,2) = T G5 7), z=w iy, 2y €R,
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with a A-periodic function ¢(z, Z). The equation Dy = E1 takes the form

(5 8) oo ™)](2)-2(2)

We have an operator pencil

D(k) =D+ Tk (38)
wher
ere - ( 0 wi(ky — ika2) ) (39)
—mi(k1 + ik2) 0 '

This pencil depends analytically on parameters k1, k2.

We see that to find a Floquet eigenfunction 1) with the quasimomenta
k1, k2 and the energy F is the same as to find a periodic solution ¢ to the
equation

D(k)p = Ep.

We consider solutions to this equation from L.
We take a value of Ey such that the operator (Do — Eo) is inverted on
Lo, i.e. there exists the inverse operator

(Do — Eo) ™" : Lo — W3
We represent ¢ in the form
¢ =(Do—Eo)"'f
and substitute this expression into the equation
(D(k) — E)g =0
arriving at the following equation:
(14+ A(k,E))f =0, fE€ L,
with
Ak, E) = ( ZI&?EQ JT?EE Z_’fg) ) (Do — Eo)~" =
= B(k, E)(Do — Eo) .

Finally the problem of existence of Floquet functions with the quasi-
momenta k and the energy F reduces to the solvability of the equation

1+ A(k,E))f=0

in L,. Let us notice that the operator A(k, F) is decomposed in the
following chain of operators:

(Do—E)~ 1! 1 embedding multiplication
2 e

L W, CmResine p, MRSt (40)

The first mapping is continuous, the second mapping is compact, and,

assuming that the potentials U and V are bounded, the third mapping
which is the multiplication by B(k, F) is continuous. Therefore, we have
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Proposition 7 Given bounded potentials U and V, the analytic pencil of
operators A(k, E) : Lo — Lo consists of compact operators.

Now we can use the Keldysh theorem [73, 74] which is the Fredholm
alternative for analytic operator pencils of the form [1+ A(u)] where A(u)
is a compact operator for every u. It reads that

e the resolvent of a pencil [1 + A(u)] : H — H where A(p) is an
analytic pencil of compact operators is a meromorphic function of
w. Its singularities which correspond to solutions of the equation
(14+A(p))f = 0 form an analytic subset ) in the space of parameters
W

In the sequel we consider only Floquet functions with E = 0.

For the operator D with potentials U,V we have u = (k, E) € C* and

we put

Qo(U,V) = QN {E = 0}. (41)
This set is invariant under translations by vectors from the dual lattice
A" CR*=C:

ki — ki +m, k2 — ka+mn.
We recall that the dual lattice consists of vectors n = n1 + in2 such that

(n,7) = my" + 127y for any v ="' +i7? € A.
The spectral curve is defined as

T = Qo(U,V)/A".
REMARK. It is easy to notice that the composition of the operator
(D(k) = E)™ = (Do — Eo) "(1+ A(k, E)) ™" : Lo — Wy

and the canonical embedding W3 — Ls is the resolvent R(k, E) of the
operator

D(k):D+< 0 mi(k1 — ika) )

—71‘7:(]61 + ikg) 0
The intersection of the set of poles of R(k, E') with the plane E = 0 is the
set Qo (U, V).

We arrive at the following definitions:

e the spectral curve I' of the operator D with potentials U and V'
is the complex curve Q(U,V)/A* considered up to biholomorphic
equivalence;

e on I there is defined the multiplier mapping, which is a local em-
bedding near a generic point:

M:T =€ o M(k) = (1, p2) = (€270 e2r 2]y,

where ~1,7v2 are generators of A C C and (k,v;) = kiRen; +
kolm~y;,5 =1,2. 8

6This a mapping depends on a choice of generators v1,~2. if the basis 71,72 is replaced
by another basis 31 = av1 + by2, 52 = ¢y1 + dy2, then M = (u1, p2) is transformed as follows

M= M= (u§ b, 1§ 3). (42)
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e to every point of I' there is attached the space of Floquet functions
with given multipliers. The dimension of such spaces, in general,
jumps at singular points of T'.

Proposition 8 Let k = (k1,k2) be the quasimomenta of a Floquet func-
tion of D.

1) IfU =V, T admits an antiholomorphic involution 7 : k — —k.

2)IfU = U and V = V, T admits an antiholomorphic involution
kE— k.

8) IfU = U =V, then the composition of involutions from 1) and 2)
gives a holomorphic involution o : k — —k.

Such conditions are usual for spectral curves (see, for instance, the
case of a potential Schrédinger operator in [129, 130]) and for the Dirac
operator are explained in [110, 120, 121]. The simplest of them is the first
one which is proved by the following evident lemma.

Lemma 2 IfU =V, then the transformation ¢ — ©* given by (4) maps
Floguet functions into Floquet functions changing the quasimomenta as
follows: k — —k.

Let us denote by I'ym the normalization of I'. The Riemann surface I'
is not algebraic but a complex space for which the existence of a normal-
ization was proved in [51]. Since we are in a one-dimensional situation all
singular points are isolated and the normalization is as follows:

1) if a point P € T is reducible, i.e. several branches of I" intersect at
P, then these branches are unstacked;

2) for an irreducible singular point P the normalization I'nm — I' is a
local homeomorphism near P given in terms of local parameters by some
series

kv =t"4..., ke=t"+..., a>1, b>1.

Here ¢ is a local coordinate near P on I'nm.

If there are no reducible singular points then the normalization map
I'um — I' is a homeomorphism.

The genus of the complex curve I'y1, is called the geometric genus of
I and is denoted by p,(T'). It is said that an operator is finite gap (on the
zero energy) level if py(T") < oo.

The analog of the arithmetic genus for I" which comes into theorems
of the Riemann-Roch type is always infinite: pq(I") = oco.

We have

e nonsingular points of the normalized spectral curve I'n;m parameter-
ize (up to multiples) the Floquet functions ¢, Dy = 0. In difference
with I" the one-to-one parameterization property fails only in finitely
many singular points.

In §4.7 we argue that in the case when the genus of I'ny is finite
it is better to replace I'nm by a curve I'yy, whose definition involves the
Baker—Akhiezer function of D.

"This follows from the asymptotical behavior of the spectral curve (see §4.3).
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EXAMPLE. THE SPECTRAL CURVE FOR U =V = 0 (THE FREE OPER-
ATOR). For simplicity, we assume that A = Z+iZ. The Floquet functions
are as follows

1/]+ = (6A+Z70)7 Y= (Ovek_g)
and are parameterized by a pair of complex line with parameters A\ and
A—. These complex lines form the normalized spectral curve I'nm. Since
it is of finite genus we compactify it by two points at infinities such that
1 has exponential singularities at these points. The quasimomenta of of
these functions are

klz)\—f—km, k2:>\—++n2, for o,
21 2
k1:L+m17 k2:—£+m2, for ’(/)77
211 2w

where m;,n; € Z. The functions ¥»* and ¢y~ have the same multipliers
at the points

AP =m(n+im), A" =n(n—im), m,n€Z,

which form the resonance pairs. The complex curve I' is obtained from two
complex lines after the pair-wise identification of points from resonance
pairs.

REMARK. SPECTRAL CURVE AND THE KADOMTSEV—PETVIASHVILI
EQUATION. We exposed above the scheme which we used for defining
the spectral curves of differential operators with periodic coefficients in
1985 (this paper was never published although it is referred in [81]). Very
similar scheme as we had known later was used by Kuchment [82] (see
also [83]). However some observation about the Kadomtsev—Petviashvili
equations done in that time is worth to be mentioned. Actually there are
two Kadomtsev—Petviashvili (KP) equations

Oz (ut + Uty + Uzez) = —352uyy

with €2 = £1. For ¢ = i it is called the KPI equation and for ¢ = 1
it is called the KPII equation. From the point of view of physics these
equations are drastically different. Both these equations admit similar
“L,A™-pair representations L = [L, A] with the L operator

L =¢ed,+ 92 +u.

Here the potential v is double-periodic or, which is the same, defined on
some torus R?/A. The free operator equals Lo = €9, — 8 and to prove
the existence of the spectral curve by the scheme used above we need to
take the inverse operator

(Lo — Eo)_l Lo — W;’l

where sz,1 is the space of functions on the torus such that u, us, uge, and
uy lie in Lo. For simplifying computations, we consider the case when A
is generated by (27,0) and (0,277 ). Then the Fourier basis in Lo is
formed by the functions

elhetlmy) ke 7.
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In this basis the operator (Lo — Eo) is diagonal and we have
(Lo — Eo)ei(kz_"”y) = (ielr — K — Eo)ei(kz+l7y).
Since € = 1 for KPII, we have for Ey > 0 a bounded operator

-1 _i(kz+lT 1 i(kx+IlT
(Lo — Eo) 1oi(katiry) _ F P Eoe (ke+lry)

It is easy to check that if ¢ = 4 then for any Ej either the operator
(Lo — Eo) is not inverted or its inverse is unbounded. That takes the
case for any lattice A. One can deduce from these reasonings that for the
operator L = i0, + 92 + u the spectral curve does not exist. For the heat
operator L = 0, + 02 + u it exists and is preserved by the KPII equation.

The spectral curve of a two-dimensional periodic differential operator
L on the zero energy level was first introduced in the paper by Dubrovin,
Krichever, and Novikov [33] in the case of Schridinger operator, where it
is showed that

1) the periodic operator which is finite gap on the zero energy level is
reconstructed from some algebraic data including this curve; &

2) this curve is the first integral of the deformations of L governed by
the “L,A,B”-triples.

Proposition 9 ([33]) Let L be a two-dimensional periodic differential
operator, I' be its spectral curve, and M be the multiplier mapping.
Let we have the evolution equation

oL
— =|[L,A] - BL
L4
such that the operator A is also periodic. Then this deformation of L

preserves I' and M.

This result generalizes the conservation law for the spectral curve of
a one-dimensional operator L deformed via the “L,A”-pair type equation
%—f = [L, A] (this was first established for the periodic KdV equation by
Novikov in [98]).

This proposition follows from the deformation equation v + Ay = 0
for the Floquet functions which preserves the multipliers (see §3.1 and
the equation (26)). The conservation of the zero level spectrum was first
indicated by Manakov in [93] where the “L,A,B”-triples were introduced.

Corollary 2 The spectral curve I' and the multiplier mapping M of the
periodic Dirac operator D are preserved by the modified Novikov-Veselov
and Davey-Stewartson equations.

For the mKdV deformations we have two spectral curves: I' defined for
the two-dimensional Dirac operator and I'" defined for a one-dimensional
operator Lykdav which comes into the Zakharov-Shabat problem (see
§3.2) and the “L,A”-pair representation for the mKdV equation. These
complex curves are related by the canonical branched two-covering I' —
Iy [120] and both of them are by the mKdV equation. The complex curve
T'o is uniquely reconstructed from the Kruskal-Miura integrals Hy,k =
1,..., which are also first integrals of the mKdV equation.

8For the Dirac operator D see the reconstruction formula 51 and its derivation in [123]
and §4.7.
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4.3 Asymptotic behavior of the spectral curve

The spectral curve of D is a perturbation of the spectral curve of the
free operator Dy. Although this perturbation could be rather strong in a
bounded domain |k| < C, outside this domain it results just in a trans-
formation of double points corresponding to resonance pairs into handles.
Moreover the size of a handle is decreasing as |k| — oo and is estimated
in terms of the perturbation.

Thus we have

1) a compact part I'o = Qo N {|k| < C} whose boundary consists in a
pair of circles;

2) a complex curve I'c obtained from the planes k1 = k2 and k1 =
—ik2 by removing the domains with {|k| < C} and transforming some of
double points corresponding to resonance pairs into handles;

3) I'o and ' are glued along their boundaries;

4) T has two ends at which M(T") behaves asymptotically as in the
case of the free operator.

This complex curve is the curve obtained from I" by unstucking double
points which correspond to resonant pairs and survive the perturbation.
We denote it again by T'.

The operator is finite gap (on the zero energy level) if under the per-
turbation Dy — D only finitely many double points are transformed into
handles.

This picture is typical in soliton theory where the spectral curve of
some operator with potentials is a perturbation of the spectral curve of
the corresponding free operator and therewith the perturbation is small
for large values of quasimomenta. It was rigorously established for the
two-dimensional Schfodinger operator by Krichever [81] who used pertur-
bation theory. In [122] we proposed to clarify this geometrical picture for
the Dirac operator by using same methods and formulated the expected
statement as Pretheorem.

The theory of spectral curves initiated developing of the analytic the-
ory of Riemannian surfaces (not only hyperelliptic) of infinite genus in
[39, 40].

In [110] Schmidt proposed another approach to confirm this asymp-
totic behavior of the spectral curve. It is based on his result on the
existence of the spectral curves for the Dirac operators with Lo potentials
and the continuiosity of these curves for weakly converging sequence of
potentials.

Theorem 10 ([110]) Given U,V € L2(T?), the equation
D(k)p = (D+Tw)p = Ep

with k € C*, E € C, has a solution in Lo if and only if (k, E) € Q where
Q is an analytic subset in C*. This subset Q 4s is formed by poles of the
operator pencil
(1 + Ava(k,E))71 Lo — Lo
where Au,v(k, E) is polynomial in k, E. Moreover if
weakly

Un,Vin — Uso, Voo
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in {|U]|ze <C,[|V]2e <C} ° then
lAv, v (k, E) — Auee Voo (K, E)|l2 — 0

uniformly near every k € C2.

We expose the proof of this theorem in Appendix 1. Let us return to
the asymptotic behavior of the spectral curve.

First note the following identity which is checked by straightforward
computations:

(7 ) (E ) 2)-

b—a
e’ U 0 0 ax
*DO‘F( 0 ea_bV )+Tk+< —bg 0 )

for all smooth functions a,b: C — C.
For any k = (k1,k2) € A* C C define A-periodic functions

wiK(Z7 5) — ei27ri(f<11+n2y)
and take the functions a(z, Z) and b(z, Z) in the form
a(z,z) = 2mi(arx + azy), b(z,2) =2mi((cn — k1)x + (a2 — K2)y),

where

a(k) = (a1, a2) = <Hl -;im’ —im;- HQ) .

The following equalities are clear: e’ @ =4_., a., =b; =0. That
together with (43) implies

Proposition 10 ([110]) If ¢ € Lo satisfies the equation
WU 0 B
{Do + ( 0 bRV + T =0

then ¢ = < 11)6“ (; > @ € Lo meets the equation

(D + Thta)e' =0.
Therefore
Qo(W—xU, V) = Qo(U, V) + a(k) forall ke A"

(here the right-hand side denotes Qo(U, V) translated by ).

weakly

9Recall that a sequence {u,} in a Hilbert space H weakly converges t0 too: Un — Uco
if for any v € H we have limy— o (tn, v) = (Uoo,v) where (u,v) is the Hilbert product in H.
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The functions 1., s € A", form a Fourier basis for L2. The mapping
- U =¢.UU = ZVGA* U, shifts the Fourier coefficients of U:

U
U, =U,_p. Therefore, we have

wnUWﬂy 0 as k| — oo.

Theorem 10 (see Appendix 1) and Proposition 10 imply that in a small
bounded neighborhood O(k) of k& € C? for large |x| the intersection
Qo(U,V) with O(k) + (k) is very closed to the intersection of Qo(0,0)
with O(k):

Qo(U, V)N [O(k) + a(k)] = Qo(0,0) NO(k) as |k| — oco.

We conclude that asymptotically as |k| — oo the spectral curve of D
behaves as the spectral curve of the free operator Dy on Ls.

For U =V = 0 the spectral curve I' is biholomorphic equivalent to a
pair of two planes (complex lines) defined in C* by the equations

ko =iki, ko= —iki,

and glued at infinitely many pairs of points corresponding to the so-called
resonance pairs

<k1 = BT g, = z‘kl) o (kl = M g, = —z‘kl)
Y172 — Y172 Y17Y2 — Y172

where m,n € Z. Moreover these planes are naturally completed by a

pair of points co+ which lie at at infinity and are obtained the limit

(k1,+iki) — oo+ as ki — oo. Near generic points there is a double

covering I' - C : (k1,k2) — k1. By Proposition 10, we have

Corollary 3 Given a Dirac operator with La-potentials, M(T) for suf-
ficiently large |k| asymptotically behaves as

ko = +ik;.

Therefore it has at most two irreducible components such that every com-
ponent contains at least one of these asymptotic ends.

The bound for the number of irreducible components is clear, since
other components have to be localized in a bounded domain of C? which
is impossible for one-dimensional analytic sets.

Thus we arrive at the definition compatible with one used in the finite
gap integration [33, 80]:

e if the spectral curve I' of the operator D is of finite genus, then this
operator is finite gap and we call the completion of I' by a pair of
infinities co+ the spectral curve (of a finite gap operator).

We finish with the procedure which reconstruct the value of

/ UVdx N dy
C/A
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from (I', M) when T is of finite genus. Near the asymptotic end where
ko =~ tk1 we introduce a local parameter )Jrl such that the multipliers
behave as Oom
u) = Ay + S5O,
+
Then

/ UVdx ANdy = —Co - (Area(C/A) (44)
C/A

(see [53, 122] for the case U = V).

The analogous formula for the area of minimal tori in S® was derived
by Hitchin in [65].

This formula gives us a reason to treat the pair (I', M) as a gener-
alization of the Willmore functional. First that was discussed for tori of
revolution in [117]. In this case the spectral curve is reconstructed from
infinitely many integral quantities known as the Kruskal-Miura integrals
[117].

4.4 Spectral curves of tori

Given a torus ¥ immersed into the three-dimensional Lie group G = R3,
SU(2) = 83, Nil or SL» and its the Weierstrass representation, we take
the spectral curve I' of the operator D coming in this representation.

We call it the spectral curve of the torus X.

It is defined for all smooth tori and not only for integrable tori (see
§4.6). This definition was originally introduced for tori in R? in [118] and
for tori in S® in [119] in its relation to the physical explanation of the
Willmore conjecture. The formula (44) shows that the Willmore func-
tional is reconstructed from I' and the multiplier mapping M (at least in
the case when I is of finite genus).

This definition does not depend on a choice of a conformal parameter
on the torus ¥ = R?/A. The multiplier mapping M depends on a choice
of a basis in A and the change of a basis results in a simple algebraic
transform of M (see (42)).

Let us define the spectral curve for tori in R*.

In [124] we explained that the Weierstrass representation for a surface
in R* is not unique. The potentials of different representations of a torus
are related by the formula

U — Uexp(a+bz—a—bz) (45)

where Im by € 7Z for all v € A. The multiplier mapping M depends on
the choice of U and under the transformation (45) it is changed as follows:

p(y) = euly), veEA

As in the case of tori in R® that the integral squared norm of the potential
U is reconstructed from (I', M) by the same formula (44).

The conformal invariance of the Willmore functional led us to the
conjecture which we justified by numerical experiments in [117] and was
very soon after its formulation was confirmed in [53]:
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Theorem 11 Given a torus in R3, its spectral curve T' and M are in-
. ) =3
variant under conformal transformations of R™.

The proof from [53] works rigorously for the spectral curves of finite
genus and is as follows. Let us consider the generators of the conformal
group which is SO(4,1) and write down the deformation equations for a
Floquet function ¢ which are of the form

Doy + 6U - . (46)

It is enough to check the invariance only for inversions and even just for
one of them since all they pairwise conjugated by orthogonal transforma-
tions. We take the following generator for an inversion:

oxt = —22'2® 2% = 222, 62° = (2"’ + (27)% — (27)?
and compute the corresponding variation of the potential:
8U = [tpa]* — [y |*

where 1) generates the torus. In [53] for this variation an explicit formula
for a solution to (46) is given in terms of functions meromorphic on the
spectral curve. It follows from this explicit formula that the multipliers
are preserved. For the spectral curve of finite genus these meromorphic
functions are easily defined. For the case of spectral curve of infinite
genus one needs to clarify some analytical details that as we think can be
done and relates on a rigorous and careful treatment of the asymptotic
behavior of the spectral curve.

Another proof of theorem 11 for isothermic tori was done in [122]. It
is geometrical and works for spectral curves of any genus.

4.5 Examples of the spectral curves

PRODUCTS OF CIRCLES IN R*,
We consider the tori ¥, r defined by the equations

(1_1)2 + (1'2)2 — 7,,27 (1_5)2 + (1_4)2 — RQ.

They are parameterized by the angle variables z,y defined modulo 27:
zt = rcosz,z? = rsinz,z® = Rcos y,x4 = Rsiny. The conformal pa-
rameter, the period lattice and the induced metric are as follows:

z:x—i-igy, A:{27rm+i27r%n : m,n € 72}, ds® = r’dzdz.

By simple computations we obtain the formula for the Gauss map: 2L =

az

—etly—2) Z—; = e *W+)_ Let us apply Theorem 4 to the mapping

e i@ty)  q )
E?‘,R i (bl . bz) = (T : ﬁ) CP .

We have g = w,
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and the torus X, r is defined via the Weierstrass representation by vector
functions

V=2 = %QXP <‘@)7 p1=—p2 = —%exp <Q)

The values of the Willmore functional on such tori are given by the
formula

W(Enr) = 4 /

ET‘,R

R
UPRdeAdy =72 [ L + 2
||acy7r<R+T

and attain their minimum at the Clifford torus ¥, , in R*: W(Err) = o2,
The spectral curve I'(u) of the Dirac operator

0 o0 u 0
D7<_5 0)—|—<0 ﬂ)’ u = const,

with the constant potential U = wu is the complex sphere with a pair of
marked points (“infinities”) which are A = 0 and A = co:

I'(u) = CP".

The normalized Baker—Akhiezer function (or the Floquet function) equals

2
V(z,2,\) = < z; >: Ai@ﬁgxp(kz—%g) ( _1% )

The normalization means that the following asymptotics hold:

ez 0
(VRS 0 as A\ — o0, Y= A2 as A — 0

with the local parameters \y = A near A = oo and A\_ = _lw? near

py
A = oo.

For a torus X, r we have

e the function ¢ generating it via (18) equals to ¢(z, 2, —u), u = 1
1), and its monodromy is as follows ¥(z + 27, zZ — 27, —u) = Y(
1'27r§7 zZ— i27r§, —u) = —Y(z,z, —u);

e there are exactly four points on the spectral curve I'(u) for which the
function (%, z, A) has the same monodromy as 9(z, Z, —\): these are
A = *u, 4. Moreover,

¢1(3757—U) _ __@2(2727 u) ) .
Ya(z,2,—u) | Y1(z,Z,u) k
e the spectral curve I'(u) is smooth.

Here k1 and k2 are the quasimomenta of Floquet functions ¢ (z, z, A).

A periodic potential U is defined up to the gauge transformation (24)
which for b = 0 and e* ¢ = —1}; transforms the potential U of the
Clifford torus to the potential

1
1A+ =<



which coincides with the potential of the same torus considered as a torus
in the unit sphere S* C R* [122]. This leads to the following questions:
1) do the spectral curves of a torus in S° C R* defined as for a torus
in S3 and a torus in R* always coincide?
2) given a torus in S® C R*, does the potential U of its Weierstrass
representation in R* is always gauge equivalent to the potential of its
Weierstrass representation in S°:

where H is the mean curvature of this torus in S®?
A positive answer to the second question implies a positive answer to
the second one. We think that the both questions are answered positively.

TuE CLIFFORD TORUS IN R?.
The Clifford torus in R® is the image of the Clifford torus in S* C R*
under a stereographic projection

3

1 2
1 2 3 4 € € T Z kN2
(x y L T, T )_) (1—115471—1’4’1—1’4)7 (I) =1L

k

It is considered up up to conformal transformations of R* and hence can
be obtained as the following torus of revolution: given a circle of radius
r = 1 in the z'2z® plane such that the distance between the the circle
center and the z!' axis equals to R = v/2, the Clifford torus is obtained
by a rotation of this circle around the 2* axis.

Theorem 12 ([123]) The Baker—Akhiezer function of the Dirac opera-
tor D with the potential

siny
2V2(siny — V2)

s a vector function (z, z, P), where z € C and P € T such that

U= (47)

o the complez curve I' is a sphere CP' = C with two marked points
00t = (A = 00),00- = (A = 0) where X is an affine parameter on
C C CP! and with two double points obtained by stacking together
the points from the following pairs:

1+7 =141 and BRI IAY
4 7 4 4 7 4 k
e the function v is meromorphic on I'\ {co+} and has at the marked
points (“infinities”) the following asymptotics:

e+ 0 Jul?
YR 0 as ky =X — o0; Y= okt as k- = —5-

i -1
where u = % and k3 are local parameters near 0o+ ;
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e ) has three poles on I'\ {co+} which are independent on z and have
the form

14+ V=2—4 —14i—/—2i—4 1

P1 4\/5 y P2 = 4\/5 ap3:\/§'

Therewith the geometric genus pg(I') and the arithmetic genus pq (')
of ' are as follows:

pe(0) =0, pa(T) =2.
The Baker—Akhiezer function satisfies the Dirac equation Dy = 0 with
potential U given by (47) at any point from T'\ {oco4, 00—, p1,p2,p3}-

The Clifford torus is constructed via the Weierstrass representation
(2) and (8) from the function

)

It is showed that ¢ has the form

2

lul® o A A A
777)\ = ABTTRE 1- - )
Y1(z,2,0) = e (ql/\_p1+q2/\_p2+( q qz)/\_m)

[u]
Pa(z,2,\) = MR

2
z b1 b2 p3
t t 1—t1—t
<1p1—)\+ 2p2—)\+( 1 2)p3—)\>
144

where u = =+ and the functions g1, g2,%1,t2 depend only on y and 27-
periodic with respect to y. They are found from the following conditions

4.6 Spectral curves of integrable tori

It is said that a surface is integrable if the Gauss—Codazzi equations is the
compatibility condition

[0z — A(A),0y — B(A)] =0 (48)
for the linear problems
Oep = AN, Oyp = B(M¢

such that A and B are Laurent series in a spectral parameter. It is also
assumed that A comes nontrivially into this representation. For deriving
explicit solutions of the zero curvature equation (48) equation one can
use the machinery of soliton theory and, in particular, of the theory of
integrable harmonic maps which started with papers [106, 137, 128] and
was intensively developed in last thirty years (the recent statement of this
theory is presented in [54, 55, 60]). The most complete list of integrable
surfaces in R? is given in [19] (see also [46]).

This theory works well for spheres when it is enough to apply algebraic
geometry of complex rational curves and for tori when explicit formulas for
surfaces are derived in terms of theta functions of some Riemann surfaces.
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For surfaces of higher genus theory of integrable systems does not lead
to a substantial progress. This probably has serious reasons consisting in
that tori are the only closed surfaces admitting flat metrics.

The spectral curves of integrable tori appear as the spectral curves
of operators coming in these auxiliary linear problems. These complex
curves (Riemann surfaces) serve for constructing explicit formulas for tori
in terms of theta functions of these Riemann surfaces.

It appears that that is not accidentally and these spectral curves of
integrable tori are just special cases of the general spectral curve defined
in §4.4 for all tori (not only integrable).

In [122] we proved such a coincidence (modulo additional irreducible
components) for constant mean curvature and isothermic tori in R® and
for minimal tori in S®. Corollary 3 rules out additional components.

A) CONSTANT MEAN CURVATURE (CMC) ToRI IN R*. By the Ruh-
Vilms theorem, the Gauss map of a surface in R® is harmonic if and only if
this surface has a constant mean curvature [109]. By the Gauss—Codazzi
equations this is equivalent to the condition that the Hopf differential
Adz? is holomorphic:

Ag — 0

On a sphere a holomorphic quadratic differential vanishes and there-
fore, by the Hopf theorem, CMC spheres in R® are exactly round spheres
[66]

It was also conjectured by Hopf that all immersed compact CMC sur-
faces in R are just round spheres. Although this conjecture was confirmed
for embedded surfaces by Alexandrov [6] it was disproved for immersed
surfaces of higher genera. The existence of CMC tori was established in
the early 1980’s by Wente by means of the Banach space implicit func-
tion theorem. The first explicit examples were found by Abresch in [2]
and the analysis of these examples performed in [3] gave a hint on the
relation of this problem to integrable systems. It was proved later for a
CMC torus the complex curve I is of finite genus [105] and this allowed
to apply the Baker—Akhiezer functions to deriving explicit formulas for
such tori in terms of theta functions of I' (this program was realized by
Bobenko in [17, 18]). The existence of CMC surfaces of very genus greater
than one was established by Kapouleas also by implicit methods [71, 72]
and the problem of explicit description of such surfaces stays open. We
remark that some other interpretation of CMC surfaces in terms of an
infinite-dimensional integrable system was proposed in [79] and is based
on the Weierstrass representation.

On a torus a holomorphic quadratic differential is constant (with re-
spect to a conformal parameter z). Given a CMC torus, by dilation of
the surface and a linear transform z — az of the conformal parameter, it

is achieved that 1
5@{ H=1.

Adz® =
In this event the Gauss—Codazzi equations read
Uz +sinhu =0

where u = 2o and e2“dzdZ is the metric on the torus. This equation is
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the compatibility condition for the following system

0 1 —U; =\ _ 0 1 0 e _
[&‘5( A )}”’*O’ La—‘a( 0 )P’*O-
(49)

Let A be the period lattice for the torus. We consider the linear

problem
1/ —u. 0 1/ 0 -
Lw_ach—§< 0 uz)w_2<—/\ 0 )w'

Since L is a first order 2 x 2-matrix operator, for every A € C the system
(49) has a two-dimensional space V) of solutions and these spaces are
invariant under the translation operators

Tip(2) = plz+7;), =12,

where v1 and 2 are generators of A. The operators fl,fg, and L com-
mute and therefore have common eigenvectors which are glued into a
meromorphic function ¢ (z, z, P) on a two-sheeted covering

I'-C:Pel—)eC,

ramified at points where IA“] and L are not diagonalized simultaneously.
This the standard procedure for constructing spectral curves of periodic
operators [98].

To each point P € T there corresponds a unique (up to a constant mul-
tiple) Floquet function v¥(z, z, P) with multipliers pu(v1, P) and /j,(’)/27 P).
The complex curve T is compactified by four ‘infinities” oo}, 00 such
that ool are projected into A = co and co? are projected into A = 0 and
we may take 1) meromorphic on T with the following essential singularities
at the “infinities™

_ Az 1 1
Ql)(Z,Z,P) ~ exp (??) ( +1 ) as P_)OOia

Y(z,Z, P) ~ exp ($ﬁ) ( 11 ) as P — ooi.

The multipliers tend to co as A — 0, co.
The complex curve I' admits the involution which preserves multipli-
ers:

s =-x ()= () otk =k, atocd) = ok

©2 ©2

The complex quotient curve f/ o is called the spectral curve of a CMC
torus.
We have

Proposition 11 ([122]) ¢ meets (49) if and only zfa/) (A2, e“p1) T
satisfies the Dirac equation Dy = 0 with U = =

2 .
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Thus we have an analytic mapping of I' onto the spectral curve of a
general torus defined in §4.4 such that the mapping preserves the mul-
tipliers. This implies these complex curves coincide up to irreducible
components. Together with Corollary 3 this implies

Proposition 12 The spectral curve of a CMC torus in R? coincides with
the (general) spectral curve, of the torus, defined in §4.4.

B) MINIMAL TORI IN S®. We consider the unit sphere in R* as the Lie
group SU(2). For minimal surfaces in SU(2) the derivational equations
(10) and (11) are simplified and we obtain the Hitchin system [65]

O — 9" + [T*, 0] =0, IV +9T* =0. (50)

The first equation implies that the SLy connection A = (9 4 ¥, d + T*)
on f~Y(TQ) is flat. In this event the second equation implies that this
connection is extended to an analytic family of flat connections

-1
Ax = <8+ 1A g+ ﬂw)
2 2
where A = A; and A € C\ {0}. Thus we obtain an “L,A”-pair with
a spectral parameter and therefore derive that this system is integrable.
This trick is general for integrable harmonic maps.

Let us define the spectral curve.

Let ¥ be a minimal torus in SU(2) and let {y1,72} be a basis for
A.We define matrices H(\) and H(\) € SL(2, C) which describe the mon-
odromies of Ay along closed loops realizing 1 and 72 respectively. These
matrices commute and hence have joint eigenvectors ¢(\, 1) where y is a
root of the characteristic equation for H(\):

p—TrH\)+1=0.

The eigenvalues

Ui = % <TrH(,\) +4/Tr2H(\) — 4)

are defined on a Riemann surface I' which is a two-sheeted covering of
CP' ramified at the odd zeros of the function (Tr?H(\) — 4) and at 0
and oo (multiple zeros are removed by the normalization). This I is the
spectral curve of a minimal torus in SU(2) and has finite genus.

Above we expose Hitchin’s results which are valid for all harmonic tori
in S? (this includes both cases of minimal tori in S? and harmonic Gauss
maps into S? C S*) [65]. Now we have to confine to minimal tori in S°.

Let D be the Dirac operator associated with this torus and the spinor
1" generates the torus via the Weierstrass representation. Let us

1 (a -b - ‘ -
LZE( b a )7 a:_zw/1+¢é7 b:—“l}i"'w'z-

We have
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Proposition 13 ([122]) The Hitchin eigenfunctions ¢ are transformed

by the mapping
a0 A 4
p—oY=e ( 1 0 > L

into solutions of the Dirac equation D = 0 corresponding to the torus
in S3.

As in the case of CMC tori in R® (see above) this Proposition together
with Corollary 3 implies

Proposition 14 The spectral curve of a minimal torus in S° coincides
with the (general) spectral curve of the torus (as this curve is defined in

§4-4)-

4.7 Singular spectral curves

The perturbation of the free operator could be so strong that another
singularities (not coming from resonance pairs) could appear in I'. If
I'um is algebraic then we write down the corresponding Baker—Akhiezer
function ¥ (z, z, P) such that

1) Dy = 0;

2) 1 is meromorphic on I' and has the following asymptotics at the
infinities:

et 0
P = 0 as P — ooy, Y= Aoz as P — oo_

where A" are local coordinates near cor, A\i'(cor) = 0. We may put
)\i = 27T ik1.

The function ¢ is formed by Floquet functions (z, z, P) taken at
different points of the spectral curve such that 1) is meromorphic and has
the asymptotics as above. The function “draws” the complex curve I'y, on
which it is defined such that no one Floquet function is counted twice in
different points of I'y,. There is a chain of mappings

I'im =Ty =T

such that the composition of them is the normalization of " and the first
of them is the normalization of I'y. We have evident inequalities:

Pg(T) = pg(Ty) < pa(Ty) < 00

where p,(T'y) is the arithmetic genus of I'y, which differs from the geo-
metric genus of I'y, by the contribution of singular points.

The function ¢ can be pulled back onto a nonsingular curve I' where
it will have exactly pa(T'y) + 1 poles (this follows from the finite gap
integration theory). For the Dirac operator, p,(I'y) equals “the number
of poles of its normalized Baker—Akhiezer function” minus one.

We arrive to the following conclusion:

o the Baker—Akhiezer function ¢ defines the Riemann surface I'y, in
the classical spirit of the Riemann paper as the surface on which
the given function ¢ is naturally defined. This surface is obtained
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from I" by performing normalizations of singularities only when the
dimension of the space of Floquet functions at the point is decreased
after the normalization (for instance, this is the case of resonance
pairs).

e in difference with I'nm, the complex curve I'y, gives a one-to-one
parameterization of all Floquet functions (up to multiples).

For minimal tori in S® this situation is explained in detail in [65].

If we would like to construct a torus with finite spectral genus in
terms of theta functions we have to work with the curve I'y, again as we
demonstrated that in §4.5 for the Clifford torus.

The following definition of I'y, comes from the finite gap integration
theory:

e Let D be a Dirac operator with double-periodic potentials U and V'
and let I'y, be a Riemann surface (probably singular) of finite arith-
metic genus p,(I'y) = g with two marked nonsingular points oo
and local parameters k' near these points such that k3'(co+) = 0.
Let 1¢(z, z, P) be a Baker—Akhiezer function i) which is defined on
C x Ty \ {oo+} such that
1) v is meromorphic in P outside co+ € I" and has poles at g + 1
nonsingular points P; + - - - 4+ Pyi1;

2) 1 has the following asymptotics at co4:

Y~ eFt? [( (1) >—|—< é;i >k11+0(k;2)} as P — ooy,

wzek‘5[< ) >+( gli )k:1+0(k:2)} as P — oo_
2

and 1) satisfies the Dirac equation D = 0 everywhere on I'y, except
the “infinities” co+ and the poles of .

We say that I'y is the spectral curve of a finite gap operator D.

For a generic divisor P1 +- - -+ Py41 such a function is unique and the
potentials are reconstructed from it by the formulas:

U=—&, V=¢. (51)

The attempt to define such a Riemann surface in the case when py (T") =
oo meets a lot of analytical difficulties.

We refer to [123] for more detailed exposition of some questions related
to singular spectral curves.

We see in §4.5 that for the Clifford torus 11 C R* the potential is
constant and the spectral curve is a sphere. Moreover

P(I') = pa(T'y) =0.

However the potential of its stereographic projection, which is the Clifford
torus in R3, equals
sin x

v= 2¢/2(sinz — v/2)
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where z is one of the angle variables and, by Theorem 12, for an operator
with this potential we have

pQ(F) = 07 pa(sz;) = 2.

Therefore the stereographic projection of the Clifford torus from S® into
R® results in the appearance of singularities in Ty.
This leads to an interesting problem:

e what is the relation between the spectral curve of a torus in the
unit sphere S® C R* and the spectral curve of its stereographic
projection?

We think that the answer to this question is as follows: the potentials
are related by some Bicklund transformation which leads to a transfor-
mation of the spectral curve. Probably there is an analogy with such
a transformation for the Schridinger operator exposed in [35]. We also
expect that the answer to the following question is positive:

e do the images M(T') of the multiplier mappings for a torus in S*
and for its stereographic projection coincide?

There is another interesting problem:
e characterize the spectral curves of tori in R® and R,

For tori in R® and in R* the answers have to be different. Indeed, it
was already mentioned in [17] that the spectral curves for CMC tori in R?
have to be singular (for them that results in the appearance of multiple
branch points which are transformed by the normalization into pairs of
points interchanged by the hyperelliptic involution). '© However for the
Clifford torus in R* the spectral curve is nonsingular.

5 The Willmore functional

5.1 Willmore surfaces and the Willmore conjec-
ture

The Willmore functional for closed surfaces in R? is defined as
W(E) = / H?du (52)
Y

where du is the induced area form on the surface. It was introduced by
Willmore in the context of variational problems [133]. Therewith Will-
more was first who stated a global problem of the conformal geometry
of surfaces, i.e. the Willmore conjecture which we discuss later. The
Euler-Lagrange equation for this functional takes the form

AH+2H(H?> - K)=0

101n [110] it is showed that for tori in R® M(T") contains a point of multiplicity at least
four or a pair of double points at which the differentials dki and dkz vanish (here ki and
ko are quasimomenta). We notice that does not mean that I'y, meets the same conditions:
for instance, for the Clifford torus in R3 the spectral curve I’y has a pair of double points at
which dk; and dk2 do not vanish and has no more singular points.
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where A is the Laplace-Beltrami operator on the surface. Surfaces meet-
ing this equation are called Willmore surfaces.

We remark that H = % and, by the Gauss-Bonnet theorem, for
a compact oriented surface ¥ without boundary we have

/Kdu = / s1s2dp = 2 (X)
b b

where x(X) is the Euler characteristic of 3. By adding a topological term
to W we obtain the functional with the same extremals among closed
surfaces and may simplify the variational problem. For spheres it takes
the case when considering the functional

WE) = [ = Kydp = W(E) — 2mx(2)

we conclude that ! .
W=- / (501 — 502)*dp.
4 /5

We recall that a point on a surfaces is called an umbilic point if 501 = s
at it. A surface is called totally umbilic if all its points are umbilics. By
the Hopf theorem, a totally umbilic surface in R® is a domain in a round
sphere or in a plane. For spheres this gives for spheres a lower estimate
for the Willmore functional and a description of all its minima:

e for spheres
W(E) > 4r

and W(X) = 4r if and only if ¥ is a round sphere.

For surfaces of higher genus this trick does not work.

The functional W was introduced by to Thomsen [125] and Blaschke
[15] who called it the conformal area for the following reasons:

1) the quantity (H? — K)dy is invariant with respect to conformal
transformations of the ambient space and therefore, given a compact ori-
ented surface & C R® and a conformal transformation G : R° — R which
maps X into a compact surface, we have

o~ o~

W(E) = W(G(%));

2) if ¥ is a minimal surface in 5% and 7 : $* — R is the stercographic
projection which maps ¥ into R*, then 7(X) is a Willmore surface.

Moreover as it is proved in [25]

3) outside umbilic points there is defined a quartic differential ﬁ(dz)4
which is holomorphic if the surface is a Willmore surface;

We expose these results in Appendix 2.

By 2) there are examples of compact closed Willmore surfaces. We re-
mark that not all compact Willmore surfaces are stereographic projections
of minimal surfaces in S* (this was first showed for tori in [103]).

It follows from 3) that outside umbilics Willmore surfaces admit a good
description which is similar to the description of CMC surfaces in terms

' This is similar to the instanton trick which led to a discovery of selfdual connections.
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of the holomorphicity of a quadratic Hopf differential. However there are
examples of compact Willmore surfaces which even have lines consisting
of umbilics [10].

By 1) the minimum of the Willmore functional in each topological
class of surfaces is conformally invariant and hence degenerate. We note
that the existence of a minimum which real-analytical surface was proved
for tori by Simon [115] and for surfaces of genus g > 2 by Bauer and
Kuwert [12]. Recently Schmidt presented the proof of the following result:
given a genus and a conformal class of an oriented surface, the Willmore
functional achieves its minimum on some surface which a priori may have
branch points or be a branched covering of an immersed surface [111]. His
technique uses the Weierstrass representation and some ideas from [110].
12

Bryant started the program of describing all Willmore spheres by ap-
plying the fact that at a holomorphic quartic differential on a sphere
vanishes and, therefore, Willmore spheres admit description in terms of
algebro-geometric data [25]. We have

e the image of a minimal surface in R® under a Moebius transform
(x—x0) — (x—x0)/|x —20|* is a Willmore surface and any minimal
surface ¥ with planar ends is mapped by a Moebius transform. with
the center zo outside the surface, into a smooth compact Willmore
surface Y’ such that

W(E') = 4nn,

where n is the number of planar ends of X.

Bryant proved that all Willmore spheres are Moebius inverses of minimal
surfaces with planar ends, that the case n = 1 corresponds to the round
spheres, there are no such spheres with n = 2 and 3, and described all
Willmore spheres with n = 4. Later it was proved in [101] that Willmore
spheres exist for all even n > 6 and all odd n > 9. The left cases n = 5
and 7 were finally excluded in [27].

The Willmore conjecture states that

e for tori
w > 272

and the Willmore functional attains its minimum on th_e3 Clifford
torus and its images under conformal transformations of R".

The Clifford torus was already introduced in §4.5.

Since the Willmore functional is conformally invariant and the stere-
ographic projection 7 : S* — R is conformal, we do not distinguish the
original Willmore conjecture and its counterpart for tori in S* for which
the Willmore functional is replaced by

Wes = / (H? +1)dp,  Wes (D) = W (D). (53)

Willmore introduced his conjecture in [133] where he checked it for
round tori of revolution.

125ee Appendix 1.
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It is proved in many special cases:

1) for tube tori, i.e for tori formed by carrying a circle centered at a
closed curve along this curve such that the circle always lies in the normal
plane, by Shiohama and Takagi [114] and by Willmore [134] (if we admit
for the radius of the circle to vary we obtain channel tori for which the
conjecture was established in [63]);

2) for tori of revolution by Langer and Singer [87];

3) for tori conformally equivalent to R?/T'(a, b) with 0 < a < 1/2,v/1 — a2 <
b < 1 where the lattice I'(a,b) is generated by (1,0) and (a,b) (Li-Yau
[91]);

4) the previous result of Li and Yau was improved by Montiel and Ros
who extended it to the case (a — 1) + (b—1)2 < 1 [97];

5) for tori in S* which are symmetric under the antipodal mapping
(Ros [108]).

6) since it was also proved by Li and Yau that if a surface has a self-
intersection point with multiplicity n then W > 47n [91], the conjecture
is proved for tori with selfintersections.

Some other partial results were obtained in [7, 127].

We also mention the paper [131] where the second variation form of
W for the Clifford torus was computed and it was proved that this form is
non-negative. The second variation formula for general Willmore surfaces
was obtained in [99].

In general case the conjecture stays open.

We shall discuss some recent approach applied in [110] in the next
paragraph.

By (53), the following conjecture is a special case, of the Willmore
conjecture, which also stays open:

e for minimal tori in S® the volume is bounded from below by 2w2 and
attains its minimum on the Clifford torus in S®.

By the Li-Yau theorem on surfaces with selfintersections this conjec-
ture follows from the following conjecture by Hsiang and Lawson:

e the Clifford torus is the only minimal torus embedded in S>.

Since a holomorphic quartic differential on a torus has constant coef-
ficients, there are two opportunities: it vanishes or it equals c(dz)?*, ¢ =
const # 0.

In the first case a torus is obtained as a Moebius image of a minimal
torus with planar ends. For evident reasons it is clear that there are
no such tori with n = 1 and 2 ends. The case n = 3 was excluded
by Kusner and Schmitt who also constructed examples with n = 4 [85].
First examples of minimal rectangular tori with four planar ends were
constructed by Costa [31]. Recently Shamaev constructed such tori for
all even n > 6 [113]. However it looks from the construction that in generic
case these tori do not have branch points that was rigorously proved only
for n = 6,8, and 10.

In the second case the Codazzi type equations for Willmore tori with-
out umbilics coincide with the four-particle Toda lattice [44, 9]. '® The

13See Appendix 2.
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theta formulas for such Willmore tori are derived in [9] by using Baker—
Akhiezer functions related to this Toda lattice.

Another construction of Willmore tori by methods of integrable sys-
tems was proposed in [58].

For surfaces of higher genus the candidates for the minima of the
Willmore functional were proposed by Kusner [84].

There is the conjecture that for tori in R* the Willmore functional
J |H|?dp attains its minimum on the Clifford torus in R*, i.e. the prod-
uct of two circles of the same radii (see [135, 136]) . Since this torus is
Lagrangian the last conjecture is weakened by assuming that the Clifford
torus is the minimum for W in a smaller class of Lagrangian tori. That is
discussed in [96] where it is proved that WV achieves its minimum among
Lagrangian tori on some really-analytical torus.

We do not discuss the generalization of the Willmore functional for
surfaces in arbitrary Riemannian manifolds which is

/ (H[? + R)dy

where K is the sectional curvature of the ambient space along the tangent
plane to the surface. The quantity (|H|*> — K + K)dp is invariant with
respect to conformal transformations of the ambient space [30].

In [14] another generalization of the Willmore functional for surfaces
in three-dimensional Lie groups is proposed. It is based on the spectral
theory of Dirac operators coming into Weierstrass representations (see
also §5.5).

We also have to mention the Willmore flow which is similar to the
mean curvature flow and decreases the value of W (see the paper [86] and
references therein).

We finish this part by a remark on constrained Willmore surfaces
which are, by definition, critical points of the Willmore functional re-
stricted onto the space of surfaces with the same conformal type. It was
first observed by Langer that compact constant mean curvature surfaces
in R® are constrained Willmore since for them the Gauss map is harmonic
[104]. We refer for the basics of the theory of such surfaces to [24].

5.2 Spectral curves and the Willmore conjecture

As it is showed in [116] in terms of the potential U of a Weierstrass
representation of a torus in R® the Willmore functional is

W= 4/ Udady.
M

So it measures the perturbation of the free operator.

We recall that the Willmore conjecture states that this functional for
tori attains its minimum at the Clifford torus for which the Willmore
functional equals 272.

Starting from the observation that the Willmore functional is the first
integral of the mNV flow which deforms tori into tori preserving the con-
formal class (see §3.1) we introduced in 1995 the following conjecture (see
[116]):
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e a nonstationary (with respect to the mNV flow) torus cannot be a
local minimum of the Willmore functional.

It was based on the assumption that a minimum of such a variational
problem is nondegenerate and thus has to be stable with respect to soliton
deformations which are governed by equations from the mNV hierarchy
and which preserve the value of the Willmore functional. By soliton theory
these equations are linearized on the Jacobi variety of the normalized
spectral curve and generically these linear flows span this Jacobi variety
which is an Abelian variety of complex dimension p4(I') or some Prym
subvariety of the Jacobi variety.

Its geometrical analog was formulated in [118] where we introduced a
notion of the spectral genus of a torus as py(I'):

e given a conformal class of tori in R®, the minima of the Willmore
functional are attained at tori of the minimal spectral genus.

In [118] we proposed the following explanation to the lower bounds for
W: for small perturbations of the zero potential U = 0 the Weierstrass
representation gives us planes which do not convert into tori and, since
for surfaces in R® the Willmore functional is the squared Ly-norm of U,
the lower bound shows how large a perturbation of the zero potential has
to be to force the planes to convert into tori.

The strategy to prove the Willmore conjecture after proving the last
conjecture is to calculate the values of the Willmore functional for tori of
the minimal spectral genus (by using the formula (44) or by other means)
and to check the Willmore conjecture.

We already mentioned in this text the paper [110] by Schmidt. This
paper contains a series of important results. '* For our interests we
expose only the results related to the asymptotic behavior of the spectral
curve. Although until recently we did not go through all details of [110]
we have to say that

in fact the paper [110] proposes a proof only for our conjecture (see
above). The value of pa(T'y) is a priori unbounded however in [110] the
calculations of values of the Willmore functional are done only for the
minimal possible values of both py(T') and pa(T'y).

Following the spirit of the previous conjectures it is natural to guess
that

e given a conformal class of tori in R® and a spectral genus, the minima
of the Willmore functional are attained at tori with the minimal
value of po(T'y).

This conjecture also fits in the soliton approach since the additional
dergees of freedom coming from p(I') — py(I") (or some part of it, is
the flows are linearized on the Prym variety) also correspond to soliton
deformations.

141n this paper it is also presented a proof of the fact that the spectral genus of a constrained
Willmore torus in R? is finite. Another proof was presented by Krichever (unpublished). This
fact is nontrivial even for Willmore tori because the trick which uses soliton theory and was
applied in [65, 105] to harmonic tori in S® and constant mean curvature tori in R® (see also
[18]) does work not for all tori. It is applied only to tori described by the four-particle Toda

lattice without umbsilic points at which ef = 0 (see Appendix 2).
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By our opinion these conjectures are interesting by their own means.
We remark that proofs of the last two of them together with calculations of
the values of the Willmore functional for tori with minimal possible values
of py(T') and pq(T'y) would lead to checking the Willmore conjecture.

We would like also to mention another interesting problem:

e how to generalize this spectral curve theory for compact immersed
surfaces of higher genera?

5.3 On lower bounds for the Willmore functional

In [119] we established in some special case a lower estimate, for the
Willmore functional, which is quadratic in the dimension of the kernel of
the Dirac operator.

Let represent the sphere as a infinite cylinder Z compactified by a
couple of points such that z = = + iy is a conformal parameter on Z, y
is defined modulo 27, x € R, and these two “infinities” are achieved as
T — +00.

Lemma 3 ([119]) Given a sphere in R®, the asymptotics of 1) and the
potential U are as follows

[1 P+ wel* = Cre™"1+0(e "), U = Use "14+0(e ™) as & — +o0,

where C+ and Uy are constants. If Cy = 0 or C— = 0 then there is
a branch point at the corresponding marked point © = +o0o or x = —o0
respectively.

The kernel of D on the sphere consists of solutions i to the equation
Dy = 0 on the cylinder such that |11 |* + [¢a]? = O(e™) as © — +oo0.

Let us assume that the potential U( of the Dirac operator depends on
x only. For instance, such a situation realizes for a sphere of revolution
for which y is an angle of rotation. However this is not only the case of
spheres of revolution and there are more such surfaces with an intrinsic
S'-symmetry reflected by the potential of the Weierstrass representation.

Theorem 13 ([119]) Let D be a Dirac operator on M = S? with a
real-valued potential U =V which depends only on the variable x. Then

/ U?dx A dy > nN? (54)
M

where N = dimyg KerD = %dimc KerD. These minimuma are achieved

on the potentials
N

Un(z) = 2coshz’

The proof of this theorem is based on the method of the inverse scatter-
ing problem applied to a one-dimensional Dirac operator. This quadratic
estimate appeared from the trace formulas by Faddeev and Takhtadzhyan
[38].

Before giving the proof of Theorem 13 we expose one of its conse-
quences, i.e. Theorem 14.

Together with the proof of Theorem 13 we introduced the following
conjecture.
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Conjecture 1 ([119]) The estimate (54) is valid for all Dirac operators
on a two-sphere.

Very soon after the electronic publication of [119] appeared Friedrich
demonstrated the following corollary of this conjecture: '3

Theorem 14 ([48]) Let us assume that Congecture 1 holds. Given an
eigenvalue \ of the Dirac operator on a two-dimensional spin-manifold
homeomorphic to the two-sphere S?, the inequality holds

M Area(M) > mm?(\) (55)
where m(\) is the multiplicity of \.

We remark that due to the symmetry (4) of Ker D the multiplicity of
an eigenvalue is always even. For the case m(A) = 2 the inequality (55)
was proved by Bér [11].

PRrROOF OF THEOREM 14. First we recall the definition of the Dirac
operator on a spin-manifold (see [49, 89| for detailed expositions).

A spin n-manifold M is a Riemannian manifold with a spin bundle
E over M such that at each point p € M there is defined a Clifford
multiplication

T,M x E, — E,

such that
vewepFwov-p==2(v,w)e, v,we€T,M, )€ Ep.

We also assume that there is a Riemannian connection V which induces a
connection on E. Then the Dirac operator is defined at every point p M

as
Dy = Z er - Ve, @
k=1
where ey, ..., en is an orthonormal basis for 7, M and ¢ is a section of E.

We consider as an example a two-dimensional spin manifold M with
a flat metric. The Clifford algebra Cls is isomorphic to H. Thus we have
a C?-spin bundle over M (here we identify H with C @ C). For the flat
metric on M the Clifford multiplication is represented by the matrices

o 0 1 o 0 —z
€1 = Ex = _1 0 , €2 = €y = i 0 .

It is easy to check that
ezey + eyeqx =0, el = ef, =—1.

The Dirac operator Dy is given by the formula

0 0
Do:ez-31+ey-8y:2< _5 O>:2Do

15The conjecture was finally proved by Ferus, Leschke, Pedit, and Pinkall in [43] together
with the generalization of (54), the so-called Pliicker formula, for surfaces of higher genera
(we expose that in §5.4).
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and its square equals to the Laplace operator (up to a sign):
Dj = -9; - 9.

For a conformally Euclidean metric e’dzdz the Dirac operator takes
the form
D= 6730/4D060/4

(see [13]). Therefore the eigenvalue problem
Dy = Ay
for the Dirac operator associated with such a metric takes the form
Dole”/ ] — Ae”/?[e7 ] = 0

which we rewrite as

(DO+U)1/):0, = — 5 1/):@0/490.

If Conjecture 1 holds we have the inequality

2 ; 2 2
/ Uda A dy = %Area(M) - <d1m<cKer (Do +U)) —m ()\)
M

2 4

This proves Theorem 14.

Proor oF THEOREM 13. If the potential U depends only on = the
linear space of solutions to D = 0 on the sphere S? = Z U +oco =
R, x S, U oo is spanned by the functions of the form ¥ (z,y) = p(z)e”?
such that

e [( 5 )+ (8 )= (0 ¥)s

where e?"* = —1 (this condition defines the spin bundle over the sphere,
see [117]) and ¢ is exponentially decaying as © — £oco. This means that
 is the bounded state of L, i.e. s belongs to the discrete spectrum which
is invariant with respect to the complex conjugation » — 3. Therefore
dimc D = 2N is twice the number of bounded states meeting the condition
Im s > 0.

The trace formula (76) (see Appendix 3) for for p = ¢ = 2U takes the
form

N

/OO U?(z)dz = —i /_OO log(1 — [b(k)|*)dk + > " Im sx;.

— 00 =1

Given dim Ker D = N, the functional [,, U*(z)dzAdy = 2r [ U?(z)dx
achieves its minimum on the potential with the following spectral data:

_i(2k—1)

b(k) = 0, Ak B)

,k=1,...,N,
and we have

1 N
/ U?(x)dz A dy > 21 —+§+...+_ — N2
52 2 2 2
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Actually there is N-dimensional family of potentials with such the spectral
data and it is parameterized by A1,...,An and moreover this family is
invariant with respect to the mKdV equations. It is easy to show that ev-
ery such a family contains the potential Uy = 5—2o—; pn(z) = 2Un(z) =
N/ cosh z is the famous N-soliton potential of the Dirac operator.

Theorem 13 is proved.

We see that the equality in (54) is achieved on some special spheres
which are particular cases of the so-called soliton spheres introduced in
[119]. By definition, these are spheres for which potential of the Dirac
operator D is a soliton (reflectionless) potential U(z). It is also worth to
select a special subclass of soliton spheres distinguished by the condition
that all poles s, ..., sn,Im s > 0, of the transition coefficient T'(k) are
of the form @mT'H)i, m € N.

Soliton spheres are easily constructed from the spectral data via the
inverse scattering method (see (77) in Appendix 3).

We showed in [119] that

e the lower estimate (54) achieves the equality on the soliton spheres
corresponding to the potentials Uy = 5——);

e generically a soliton sphere is not a surface of revolution. '6

e the class of soliton spheres is preserved by the mKdV deforma-
tions (note that they are defined by 1 + l-equations) for which the
Kruskal-Miura integrals are integrals of the motion;

e soliton spheres corresponding to the potentials Uy =
described in terms of rational functions, 17
rational spheres;

2 cosh x are
i.e. they can be called

e soliton spheres such that each pole s; is of the form w are

critical points of the Willmore functional restricted onto the class of
spheres with one-dimensional potentials.

5.4 The Pliicker formula

Our attempts to prove Conjecture 1 had failed due to the lack of well-
developed inverse scattering method for two-dimensional operators. How-
ever in a fabulous paper [43] this conjecture was proved together with its
generalization for surfaces of arbitrary genera by using methods of alge-
braic geometry.

As it was mentioned in [100] the following statement can be derived
from the results of [8] (see also [56]):

Proposition 15 Let E be a C*-bundle over a surface M 1) and let 1) be
a nontrivial section of E such that Dy = 0. Then the zeroes of i are

16Tndeed, let us denote by fi = @1 (z)e*1Y,. ..

Ker D. Then any linear combination f = a1 fi+- - -+axn fnv via the Weierstrass representation

ives rise to a sphere in R3. If there is a pair of nonvanishing coefficients a; and «y, such that
g P. p g J

Im s¢; # Im s¢, then this sphere is not a surface of revolution.

17From the reconstruction formulas (77) it is clear that that holds for all reflectionless

potentials.
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isolated and for any local complex coordinate z on M centered at some
zero p of the function : z(p) =0, we have

¥ = 2" +0(l2|")

where ¢ is a local section of E which does not vanish in a neighborhood
of p. The integer k is well-defined independent of choice z.

This integer number k is called the order of the zero p:
ord ¢ = k.
Now recall the Gauss equation (see Proposition 1 in §2.1):
ez +U? = [APe** =0, e =[] + |vaf” (56)

For simplicity, we assume that M is a sphere and E is a spin bundle.
If ¢ vanishes nowhere then it defines a surface in R® and integrating the
left-hand side of (56) over M we obtain

/azgdl’/\dy—l—/ Ude/\dy—/ |A]2e™?*dx A dy = 0. (57)
M M M

By the Gauss theorem, the first term equals

—1/ (—40(,22672&) eQadx/\dy:—l/ Kdy = —m,
4 4 Sy

where K is the Gaussian curvature and dyu is the measure corresponding
to the induced metric. Thus we have '®

/ Ulde Ady =7 + |AlPe™*“dx A dy > —/ azzdx Ndy = 7.
M M M

In general for any surface and for any section v satisfying Dy = 0 (i.e.
we do not assume here that ¢ does not vanish anywhere) we have

/ U?dz A dy = n(— deg Eo + Zordpw) + / |AlPe 2“dx A dy >
M - M

> n(—deg Eo + Z ord )
p
(see [100]). The integrand |A|*¢™2* has singularities in the zeros of 1)
however the integral converges and is non-negative.

Returning to the case of spin bundles over spheres (degEo =g — 1 =
—1) and assuming that dimg Ker D = N we take a point p and choose a
function ¢ € Ker D such that ord p¢ = dimKerygD — 1= N — 1. Now we
substitute 1 in (56) and obtain

/ Ude Ady =n(1+ N —1) + / |AI’e **dx Ady > 7N.
M M

18For general complex quaternionic line bundles L = Ey @ Eo we have S, M Qzzdr ANdy =

mdeg Eg = md.
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However this estimate is too rough since we see from the proof of Theorem
13 that not only the function from Ker D with the maximal order of zeros
contributes to lower bounds for the Willmore functional and it needs to
consider the flag of functions.

In [43] the deep analogy of this problem to the Pliicker formulas which
relate the degrees and the ramification indices of the curves associated to
some algebraic curve in CP"™ was discovered. This enables to write down
this flag and count the contribution of the whole kernel of D into the
Willmore functional. Finally this led to the establishing of the estimates
for the Willmore functional which are quadratic in dimy Ker D.

To formulate the main result of [43] we introduce some definitions.
Let H be a subspace of Ker D. For any point p we put

no(p) = minord p¢ for ¢ € H.
Then successively we define
nk(p) = minord p3p for ¢ € H such that ord p1p > ni—1(p).
We have the Weierstrass gap sequence
no(p) <ni(p) <---<nn-1(p), N =dimgH,
and a chain of embeddings
H=HoDHiD--DHn

with Hj consisting of ¢ such that ord ,¢ > ni(p). Then we define the
order of a linear system H at the point p as

N-1
ord, H =Y (ni(p) — k i (p) — —N N-1).
k=0

We say that p is a Weierstrass point if ord , H # 0.
Now we can formulate the main result of this theory:

Theorem 15 ([43]) Let H C KerD and dimg H = N. Then
/ Udz A dy = m(N*(1 — g) + ord H) + A(M), (58)
M

where the term A(M) is non-negative and reduces to the term [, |Ale™2*dzA
dy in the case of (57).

In fact the main result of [43] works for Dirac operators D with complex
conjugate potentials U = V % on arbitrary complex quaternionic line
bundles of arbitrary degree d (this is straightforward from the proof) and
explains the term A(M) in the terms of dual curves:

|UPdz Ady = m(N((N —1)(1 — g) — d) 4+ ord H) + A(M),

19Tn this case W = [UVdxz Ady = [ |U|?>dz A dy where W is the Willmore functional.
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where g is the genus of M and d = deg L = deg Fp. In Theorem 15 we
assume that d = g — 1, i.e. the case which is interesting for the surface
theory.

For U = 0 we have also A(M) = 0 and the Plicker formula reduces
to the original Pléker relation for algebraic curves (see, for instance, [52]):

ord H=N((N —1)(g —1) +d).
For g = 0 we have
Corollary 4 ([43]) Conjecture 1 is valid: [ U?dx A dy > wN>.

For g > 1 we have an effective lower bound only in terms of ord H
because the term quadratic in N vanishes for g = 1 and is negative for
g>1.

For obtaining effective lower bounds for the Willmore functional in [43]
it was proposed to use some special linear systems H. Let dimy Ker D =
N. We take in Ker D a k-dimensional linear system H distinguished by
the condition that for all ¢ € H we have ord ,9 > N — k for some fixed
point p. The Weierstrass gap sequence at this point meets the inequality

nm(p) >N—-k+1, 1=0,....,k—1,

and therefore ord , H > k(N — k). From (58) we have
/Ude Ady > n(k*(1 - g) + k(N — k)) = kN — k*g. (59)

If g = O then the right-hand side attains its maximum at £k = N and
we have the estimate (54).

If g > 1 then the function f(x) = 2N — 2%g attains its maximum at
Tmax = %. Therefore the right-hand side in (59) attains its maximum

either at k£ = [%] or at [%] + 1, the integer point which is closest to
Tmax. From that it is easy to derive the rough lower bound valid for all
g. Of course for special cases this bound can be improved as, for instance,

in the case g = 1:

Corollary 5 ([43]) We have

/Ude Ady > % (N? = ¢%) (60)
forg>1 and
nN?
N
/Ude/\dy > 9 iz Jor N even (61)
== for N odd
forg=1.

The proof of Theorem 14 works straightforwardly for deriving the fol-
lowing corollary.
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Corollary 6 ([43]) Given an eigenvalue A of the Dirac operator on a
two-dimensional spin-manifold of genus g, the following inequalities hold:

am?(\) forg=20

AArea(M”{ () =) forg> 1,

g
where m(\) is the multiplicity of \.

Another important application of (61) concerns the lower bounds for
the area of CMC tori in R? and minimal tori in S®. One can see from the
explicit construction of the spectral curves (see §4.6) that in both cases
the normalized spectral curves are hyperelliptic curves

u? = P(\)

such that a pair of branch points correspond to the “infinities” co+. There
are also 2g other branch points (here g is the genus of this hyperelliptic
curve) at which the multipliers of Floquet functions equal +1 (this is
by the construction of the spectral curve). Moreover there are also a
pair of points interchanged by the hyperelliptic involution at which the
multipliers are also +1 (the tori are constructed via these Floquet func-
tions as it is shown in [65] and [17]). Thus we have the space F' with
dim¢ F' = 2g + 2 consisting of solutions to Dy = 0 with multipliers +1.
Let us take 4-sheeted covering M of a torus M which doubles both peri-
ods. The pullbacks of the functions from F' onto this covering are double-
periodic functions, i.e. they are sections of the same spin bundle over M.
The complex dimension of the kernel of D acting on this spin bundle is
at least 2g + 2 and thus dimy KerD > g + 1. Applying (61) we obtain
the lower bounds for [ |U|*dz A dy. For CMC tori we have H = 1 and
U= % Thus

/A Udx A dy = iArea(]/\/I\) = Area(M).
M

ie®

For minimal tori in S° we have U = —%-~ and thus [ |U)2dx A dy =
Area(M). We derive

Corollary 7 For minimal tori in S® and CMC tori in R of spectral
genus g we have the following lower bounds for the area:

L 1)2
Area > —(QI ) ) for g odd
N W for g even.

In [43] it is remarked that it follows from [65] that for minimal tori in
5?3 the bound can be improved by replacing g+ 1 by g +2. Moreover it is
valid for the energy of all harmonic tori in S® however we do not discuss
the spectral curves of harmonic tori in this paper.

Recently the genus of the spectral curve was applied by Haskins to
completely another problem: to study special Lagrangian T2-cones in C*
[57]. He obtained linear (in the genus) lower bounds for some quantities
characterizing the geometric complexity of such cones and conjectured
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that these bounds can be improved to quadratic bounds. We note that
the methods of [57] are completely different from methods used in [43].

The contribution of the term ord H is easily demonstrated by soliton
spheres such that the poles of the transition coefficient are of the form
(20 + 1)i/2. In this case ord Ker D counts the gaps in filling these energy
levels.

Recently the definition of soliton spheres was generalized in the spirit
of the lower estimates for the Willmore functional: a sphere is called
soliton if for it the “Pliicker inequality”

|UPdz A dy > 7(N*(1 — g) + ord H)
M
becomes an equality, i.e. A(M) =0 [102].

As it was showed by Bohle and Peters [23] this class contains many
other interesting surfaces.

Before formulating their result we recall that Bryant surfaces are just
surfaces of constant mean curvature one in the hyperbolic three space
[26]. By [23], Bryant surface M in the Poincare ball model B® C R? is a
smooth Bryant end if there is a point p., on the asymptotic boundary 0B*
such that M Up is a conformally immersed open disc in R®. Generally
a Bryant surface is called a compact Bryant surface with smooth ends
if it is conformally equivalent to a compact surface with finitely many
punctured points at which the surface have open neighborhoods isometric
to smooth Bryant ends.

It is clearly a generalization of minimal surfaces with planar ends.

We have

Theorem 16 ([23]) Bryant spheres with smooth ends are soliton spheres.
The possible values of the Willmore functional for such spheres are 4mN
where N is positive natural number which is non-equal to 2,3,5, or 7.

As it was mentioned by Bohle and Peters they were led to this the-
orem by the observation that the simplest soliton spheres corresponding
to the potentials Uy = 52— can be treated as Bryant spheres with
smooth ends. They also announced that all Willmore spheres are soliton
spheres (we remark that by the results of Bryant and Peng the Willmore
functional has the same possible values for Willmore spheres as for Bryant
spheres with smooth ends [25, 27, 101]).

5.5 The Willmore type functionals for surfaces in
three-dimensional Lie groups

The formula (44) shows that it is reasonable to consider the functional
E(X) = / UVdz A dy
b

for surfaces. For tori it measures the asymptotic flatness of the spectral
curve and for surfaces in R’ it equals £ = 1W ([116]). In [14] this
functional was considered for surfaces in other Lie groups and was called
the energy of a surface. Although the product UV is not always real-
valued for closed surfaces the functional is real-valued and equals
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e for SU(2) [122]:
1
E= /(H2 +1)dpu,
i.e. it is a multiple of the Willmore functional;

e for Nil [14]:

o for SLo [14]:

1 s 5 1),
E(M)_4/M<H ST 4)du,

e for surfaces in Sol, since the potentials have indeterminacies on the
zero measure set, the energy F is correctly defined. However we do
not know until recently its geometric meaning.

We recall that by K we denote the sectional curvature of the ambient
space along the tangent plane to a surface.

These functionals were not studied and many problems are open:

1) are they bounded from below (some numerical experiments confirm
that)?

2) what are their extremals?

3) what are the analogs of the Willmore conjecture for them?

Appendix 1. On the existence of the spectral curve
for the Dirac operator with L,-potentials

In this appendix we expose the proof of Theorem 10 following [110] where,
as we think, the exposition is too short.

Moreover the ideas of the proof of this theorem are essential for prov-
ing the main result of [111]: the minimum of the Willmore functional in
a given conformal class of surfaces is constructed as follows. We con-
sider the infimum of the Willmore functional in this class and take in
this class a sequence of surfaces (or, more precisely their Weierstrass rep-
resentations) with the values of the Willmore functional converging to
the infimum. Then there is a weakly converging sequence of potentials
of the corresponding Dirac operators. The Dirac operator with the limit
potential also has a nontrivial kernel (this follows from the converging of
the resolvents) and the desired minimizing surface is constructed from a
function from this kernel by the Weierstrass representation. Of course
it is necessary to control the smoothness which is possible. However in
[111] it is mentioned that one can not say that there are no the absence
of branch points of the limit surface.

The analog of the decomposition (40) is the following sequence

(DD*EO)il 1 Sobolev’s embedding multiplication

W, — L 2 — L,, p<2. (62)

2—p

Ly

All operators coming in the sequence are only continuous and we can not
argue as in §4.2.
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Let M = C/A be a torus and z be a linear complex coordinate on M
defined modulo A. Denote by p(z1, 22) a distance between points z1, z2 €
M in the metric induced by the Euclidean metric on C via the projection
C — C/A.

The following proposition is derived from the definition of the resolvent

(Do — E)Ro(E) = 6(z — 2')
by straightforward computations.
Proposition 16 The resolvent
Ro(E)= (Do —E)™' : Ly — Wy — Lo

of the free operator Do : Lo — Lo is an integral matriz operator

f(z,2) = [Ro(E) (2, 2) = /MKo(Z7Z'7E)f(Z',7)dx’dy', 2 =a +ay,

r21  T22

with the kernel Ko(z,2,2',2', E) = ( i e ) ik = Tin(2, 2,2, 2, B),

where

1 1= 1 .= 1, .= ,
T2 = Eamz, To1 = —Earlh E(@@+E2)ru = E(aa‘FEQ)Tm =—0(z—2).

Corollary 8 The integral kernel of Ro(E) equals

, n [ —EG -3G
KO(Z7Z7E)7< 5G —EG)’

where G is the (modified) Green on the Laplace operator on the torus M :
(00 + E}G(2,2 E) = 6(z — 7).
EXAMPLE. Given a torus M = C/{2nZ + 2miZ}, we have

§(z—2") = Z ei(k(z_z,)ﬂ(y_y,)), z=x+iy, 2 = +iy,
k,leZ

/ 1 i(k(z—z)+1(y—y’
G(z,2',E) = -4 me( ( JHUy—y") (63)
k,l€Z

For other period lattices A the analog of series (63) for G looks almost the

same and has very similar analytic properties. We do not write it down

and always will refer to (63) when we consider its analytical properties.
The following proposition is clear.

Proposition 17 The series (63) converges for E = i\ with A € R and
A> 0 (i.e. X sufficiently large).

For calculating the operator

1 embedding

Ro(k,E)= (Do +Tr — E)" ' : Ly — Wy “VE™ L,
let us use the following identity

(Do+Ti —E)=(1+Ti(Do — E) ") (Do — E) = (1 + Ty Ro(E))(Do — E)
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which implies the formula for the resolvent
Ro(k,E) = Ro(E)(1+ TyRo(E)) ™' = Ro(E) Y _ [-TxRo(E)]'  (64)
1=0

provided that the series in the right-hand side converges.
REMARK. Given p, 1 < p < 2, the symbol

Ro(E)= (Do — E)™' or Ro(k,E)= (Do+Ty—E)""

denotes

a) an operator A : L, — W,;

b) a composition B : L, — Lg, ¢ = 22_—pp, of A and the Sobolev embed-
ding W, — Lg;

¢) a composition C : L, — L, of A and the natural embedding WI} —
L,.
The actions of these operators are the same on the space of smooth func-
tions which can be considered as embedded into W, or L, (all these spaces
are the closures of the space of smooth functions with respect to different
norms). Therefore it is enough to demonstrate or prove all necessary esti-
mates only for smooth functions and that could be done by using explicit
formulas for the resolvents.

Let us decompose resolvents into sums of integral operators as follows.

0 f
We denote by x. the function x.(r) = orr=>e defined for r >
1 forr<e

0,7 € R. Given 0 > 0, decompose the resolvent Ro(k, E) into a sum of
two integral operators:

Ro(k, E) = R5°(k, E) + Ry (k, E) : L, — Ly
where the “near” part R3°(k, E) is defined by its kernel
KS(2,2,7,2,E) = Ko(2, 2,2, 2, E)x<(p(2, 7))
and the “distant” part Ry °(k, E) has the following kernel
K3%(2,2,72,2,E) = Ko(2,%,2', 2/, E)(1 — xe(p(2,2"))).

Proposition 18 Given p, 1 <p <2, k= (k1,ks) € C* and 6,0 < 6 < 1,
there exists a real constant \g >> 0 such that

[Tk Ro(iMN)|Ly—L, <6

for all A > Mo and for k sufficiently close to k.

Therefore for such A and k

1) the series in (64) converges and defines a bounded operator from
Ly to Wy, Lq or L, (this depends on the meaning of the symbol Ro(E)
multiplied from the left with the series);

2) the norm of the operator

Ro(k,i\) : Ly — W,

1s bounded by some constant rp;
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3) given € > 0, we have

Jim [R5 (kyiN) |z, -z, =0, g = Qszp.

This proposition follows from the explicit formula (63) for the kernel
of resolvent.

We denote by rinj the injectivity radius of the metric on M and in-
troduce the norms || - ||2;c defined for 0 < € < rinj as follows. Given
U € Lz(M), we denote by Ul|p(..) the restriction of U onto the ball
B(z,e) ={w € M : p(z,w) < e} and define ||U]|2;- as

[1T1lz:e = max[|U]5¢z,e) |, -
Proposition 19 1) There are the inequalities

me2

— < e <
woran < 0l <101

for all U € La(M).
2) For all C > 0 and € the sets {||U||2;c < C} are closed and therefore

are compact in both of the weak and the weak convergence topologies on
Ly(M).

PrOOF. It is clear that ||U||2;e < ||U]|2. Moreover we have

HU||§;€V01(M)2/ / |U(z+ 2,2+ 2")[?dz'dz =
M J B(z,e)

:/ / |U(z+z'72+7)|2dz'dz:/ {/ |U(z,2)|2dz} dz' = ne®||U||3
M JB(0,e) B(0,e) LM

where dz = dx Ady,dz’ = dz’ Ady’. The second statement is known from
a course on functional analysis.
Consider the resolvent

R(k,E)=(D+ Ty —E) ' : L, — Ly,.
We again use an identity
U
0

(D+Tk—E):[1+< )(D0+Tk—E)*1](Do+Tk—E)

< o

which implies
o] U 0 l
R(k,E)=Ro(k,B)Y |~ ( o 1 )Rk E)| .
=0

Proposition 20 Let 1 < p < 2, k = (k1, ko) € C?, £ be sufficiently small
and 0 < § < 1. There is v > 0 such that

(5 ¢)me

for all A > Ao, k sufficiently close to k and U,V with |U]|2e <7, [|[V]|2:e <
v.

<0
Lp—Lyp
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Proor. We have an obvious inequality
RS (k. E)|| < |Ro(k, B)|| for all .

Let S, be the Sobolev constant for the embedding W, — L, (see Propo-
sition 5). For A > Ao we have

| Ro(k, i\, —wy <7

(see Proposition 18). Now consider the composition of mappings

X( U o >
ROSE;E) Wl embﬂding I 0 |4

LP p q P

where the norm of the first mapping is bounded from above by r,, the
norm of the second mapping is bounded from above by S,. Let us compute
the norm of the third mapping.

Since the integral kernel of R5°(k, E) is localized in the closed domain
{p(z,2") < €}, for any ball B(z,«) we have

(6 v )mewns]],. =[(7 V)8 ®D)] (o).

Applying the Holder inequality to the right-hand side of this formula we

obtain
U 0 <e
R (k, E
(5 v )mwndl,,|

<m||R5°(k, E)||1, -1, [(fl@,atroll, < mrpSe ||(fla@ate ],

where m = max(||U||2;e, ||V||2;c). Now we recall the identity
2
[ Mol dz = vol Bz, @)lgl; = ma* g
M
and applying it to the previous inequality obtain

(4 2w

Since we use the Sobolev constant S, for the torus, we have to assume
that (a + 8) < Tinj- If

eN2/p
<mrpSp (1 + —) .
v a

0
m = max (||U ) |4 e) < 65
(0le, V) < (65)
and a = € < rinj/2, we have
U o0 <e
(Y 8 Yasm]| <s

p

This proves the proposition.
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Proposition 21 ([110]) Let p and k € C? be the same as in Proposition
20, let v < (rpSp ¥/4) ™! and let X >> 0, i.e. ) be sufficiently large. Given
sufficiently small € > 0, for U,V such that |U|2;c < C <7, [|[V]|2e < C <
~ the series

oo !

. . U o )

R(k,i\) = Ro(k,i\) IZ; {— < 0 v ) Ro(k,z)\)] (66)

converges uniformly near k and defines the resolvent of operator
D+Ty: Ly, — Ly.

The action of this resolvent on smooth functions is extended to the resol-
vent of D + Ty on the space Ls:

(D+Te— B) ' Ly — Wi "2

This is a pencil of compact operators holomorphic in k in near k. If
weakly

(Un, V) — (Uso, Vo) n {||U]|2:c < C, ||V]|2:c < C} then the corre-
sponding resolvents converges to the resolvent of the operator with poten-
tials (Uso, Vo) in the normed topology.

PRrROOF. By Proposition 20 and (65), for A > Ao we have

U 0 e .
H( U0 )R§ (k, i)

near k. By Proposition 18, for sufficiently large real A, since the norm of
the embedding L, — L, is bounded, we have

Uu o0 Sesq -

This implies that for A >> 0 we have

(5 e

and the series in (66) uniformly converges near k and defines the resolvent
of D+ Ty : Ly — Ly.

The action of R(k,i)\) on smooth functions is given by (66) and we
extend it to a compact operator on Lo as follows. Put

B_lf; {-( v )Ro(k,i)\)]l

and consider the following composition of operators

<U:’yrp5pw<1

P

<1l-o.
p

<1
P

< H( (é v ) (B5° k0 + B3 ™ (k,i0))

embedding B
—_—

I (D+Ty—B) !
p — —

Lo Ly Wpl emRedgine Lo
where all operators are bounded and the embedding WI} — Lo is compact

by the Kondrashov theorem (see Proposition 5). This shows that the
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action of R(k,i\) on smooth functions is extended to a compact operator
on L;. Since the series (66) is holomorphic in k the resolvent R(k,i\) is
also holomorphic in k.

Now we are left to prove that the resolvent is continuous in U and
V. Every entrance of the matrix < g 3 ) in any term of (66) is
dressed from both sides by the resolvents Ro(k,i)\) which are bounded
integral operators. Let I = 1 and let K(z,2',k,i)\) be the kernel of such
an operator. Then the composition

Ro(k,i)\)< g 8 )Ro(k,M)

acts on smooth functions as the integral operator with the kernel

U(2) 0

F(z,z”):K(Z’Zl’k’i)\)< 0 V&)

) K(Z', 2"k, i)).
Obviously such an integral operator is continuous with respect to the weak
convergence of potentials U,V € La(M). For other values of [ the proof is
analogous. By Proposition 19, every term of the series (66) is continuous
with respect to the weak convergence of potentials {||U]|2;c < C, ||V ||2;c <
C}. Since the series (66) uniformly converges, the same continuosity
property holds for the sum of the series. This proves the proposition.

This proposition establishes the existence of the resolvent only for large
values of A\ where ' = i\. The resolvent is extended to a meromorphic
function onto the F-plane by using the Hilbert formula (see Proposition
6).

PROOF OF THEOREM 10. By Proposition 21 there are ky € C? and
FE € C such that the operator

(D+ Thg — Bo) 't Ly — Wi 2™ 1,
is correctly defined. Let us substitute the expression ¢ = (D+Ty, —F) ' f
into the equation
(D+ T, —E)p=0

and rewrite this equation in the form
(D+Ty, _Tk0+Tk_EO+E0—E)(D+TkO—Eo)ilf =[1+Auv(k,E)f=0
where

Avv(k,E) = (Ty — Ty + Eo — E)(D + Tx, — E)"".

Since the first multiplier in this formula is a bounded operator for any k, £
and the second multiplier is a compact operator, Ay,v(k, E) is a pencil
of compact operators which is polynomial in k£ and E. By applying the
Keldysh theorem as in §4.2 we derive the theorem.

Now the spectral curve is defined as usual by the formula

I'=Qo(U,V)/A".
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REMARK. The resolvents of operators on noncompact spaces does not
behave continuously under the weak convergence of potentials. Indeed,
consider the Schrédinger operator

d2

L=-2_
dx?

+U(x)

where U(z) is a soliton potential (so the operator does have bounded
states). The isospectral sequence of potentials Uy (x) = U(z + N) weakly
converges to the zero potential Us, = 0 for which the Schrédinger operator
has no bounded states. The same is true for the one-dimensional Dirac
operator.

Appendix 2. The conformal Gauss map and the
conformal area

In this appendix we expose the known results on the Gauss conformal
mapping mostly following [25, 36, 44].

We denote by S, the round sphere of radius r in R® and with the cen-
ter at ¢ and denote by II, v the plane, in R3, passing through p and with
the normal vector N. All such spheres and planes in R? are parameterized
by a quadric Q* c R*!. Indeed, let

(z,y) = x1y1 + - - + TaYs — T5Ys5
be an inner product in R**. Put

Q"' ={(z,z) =1} CR",

1 1 1
Sur = 1 (0 50a = = . 30 =7+ ).

IIyn — (N7 <Q7N>7 <Q7 N>)

Given a surface f : 3 — R3, its conformal Gauss map
Gy —Q*

corresponds to a point p € X a sphere of radius % which touches the
surface at p for H # 0:

GC(P) = Sp+N/H,1/H7

and it corresponds to a point the tangent plane at this point for H # 0.
In terms of the coordinates on Q* it is written as

G(p)=H-X+T

where

x= (£SO BB g v v ).

This mapping is a special case of so-called sphere congruences which is
one of the main subjects of conformal geometry (the recent statement of
this theory is presented in [64]).
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We have (X, X) = 0,(T,T) = 1, and (X,T) = 0 which implies that
(dX,X) = ({dT,T)=0,({dT,X) = (—dX,T). It is easily checked that

(dX,T) = (df,N) =0, (dX,DX) = (df,df) =1,
(dX,dT) = (df,dN) = —II, (dT,dT) = (dN,dN) = III,

where the third fundamental form III of a surface measures the lengths
of images of curves under the Gauss map and meets the identity

K- -T-2H -I1+41II

which relates it to I and II, the first and the second fundamental forms
of a surface. It implies that

H? — K)e*
(Ya,Ye) =(Yz,Yz) =0, (Y.,Yz) = e = % = (H2—K)(fz7f5)
where for brevity we denote G° by Y, z is a conformal parameter on
the surface, and I = e?*dzdZ is the induced metric on the surface. We
conclude that

e the conformal Gauss map is regular and conformal outside umbilic
points.

It is clear that X and Y are linearly independent. Outside umbilics the
set of vectors Y,Y,, Yz, and X is uniquely completed by a vector Z € R®
to a basis

o= (Y,Y.,,Y:, X, 2)"
for C°, the complexification of R®, such that the inner product in R*?!
takes the form

1 0 0 00
0 0 € 00
0 0 00
0 0 0 0 1

0 0 0 1 0

The analogs of the Gauss—-Weingarten equations are

o, =Uo, o0z= Vo,

0 1 0 0 0
0 3. 0 G G
U= —e’B 0 0 C4 C3 ,
0 —67’803 —67ﬁ01 Cs 0
0 —67’804 —67ﬁ02 0 —Cs
0 0 1 0 0
—e? 0 0 Cy (3
V= 0 0 Bz Cy Oy
0 —67ﬁél —67’803 65 0
0 —67ﬁ6'2 —67’804 0 —05

with

Cl = <YZZ7X>4,17 CQ - <YZZ7Z>4,17 C& - <YZZ7X>4,17
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Cy=(Y.2,2)41, Cs=(X:,Z)s1.
It is checked by straightforward computations that

AY +2(H?> - K)Y = (AH +2H(H? — K))X

which, in particular, implies

2

Cs5=0, C4= GT(AH +2H(H? - K)).

Here A = 4e7290 stands for the Laplace-Beltrami operator on the sur-
face. Taking this into account and keeping in mind that Cj is real-valued,
we derive the Codazzi equations for the conformal Gauss map:

B2z + e’ — (C1C2 + 0162)67’8 =0,
Ciz = C1Cs,

Caz + C2C5 = Cyz — 3.Cs + C4Cs,
Csz — Cs. = e P(C1Cy — C1Cy).

(67)

By straightforward computations, we obtain
Cy=A=(N,f..), e’ =24 ?.

The conformal area V¢ of ¥ is the area of its image in Q*:
Ve(D) = / (H?> — K)dp
b

where dp is the volume form on 3. The Euler-Lagrange equation for V¢
is
AH +2H(H? - K) =0.

A surface in R? is called conformally minimal (or Willmore surface), if it
satisfies this equation. We conclude that

e conformally minimal surfaces are exactly surfaces whose G°-images
are minimal surfaces in Q*.

Given a non-umbilic point p € 3, the tangent space to Q* at Y (p) is
spanned by Y,,Y: X, and Z. We see that Y is conformally harmonic,
i.e., AY is everywhere orthogonal to tangent planes to Q*, if and only if
the surface is conformally minimal.

It follows from the Gauss—Weingarten equations for G and the Euler—
Lagrange equation for V¢ that if ¥ is conformally minimal, i.e. C4 = 0,
then the quartic differential

w=(Y:,Yz2) (d2)* = C102 (dz)*

is holomorphic.

We recall that a holomorphic quartic differential on a 2-sphere van-
ishes: w = 0, and any such a differential on a torus is constant: w =
const - (dz)*.

A minimal surface in Q* is called superminimal if w = 0.
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We put

¢ =log ﬁ
C1
We notice that C1 = 0 only for a surface consisting of umbilics and,
by the Hopf theorem, this is a domain in a round sphere in R? or in the
plane.

If w=0 and Ci # 0 then C> = 0 and the Gauss—Codazzi equations
for the conformal Gauss mapping reduce to

ﬂzi + eﬁ = 07 Pzz = 0.

The first of these equations is the Liouville equation and the second one
is the Laplace equation. These equations describe superminimal surfaces
which are not umbilic surfaces.

Let us consider the case when a conformally minimal surface is not
superminimal. Locally by changing a conformal parameter we achieve

that
1

5-
Then the Gauss—Codazzi equations take the form

1
§<YZZ7YZZ>4,1 = CchVQ =

Boz+e® —e P coshpy =0, @.z+ e’ sinh o = 0,

which is the four-particle Toda lattice.

Appendix 3. The inverse spectral problem for the
Dirac operator on the line and the trace formulas

Here being mostly oriented to geometers we expose some facts which are
necessary for proving Theorem 13 and introducing soliton spheres in §5.4.
The inverse scattering problem for the Dirac operator on the line was
solved in [138] similarly to the same problem for the Schrédinger operator
—82 + u(z) [37] (see also [94]).
We consider the following spectral problem, i.e. the Zakharov—Shabat
problem,

w=( ) (68)

(8 8)+(13)

We assume that the potentials p and ¢ are fast decaying as © — Foc.
It is clear from the proofs that it is enough to assume that p(x) and q(x)
are exponentially decaying.

For p = ¢ = 0 for each kK € R\ {0} we have a two-dimensional space
of solutions (free waves) spanned by the columns of the matrix

0 e—ikz
(I'O(IJ{) = ( eikz 0 ) .

For nontrivial p and ¢ for each k € R\{0} we have again a two-dimensional
space of solutions which are asymptotic to free waves when =z — +ooc.

where
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These spaces are spanned by the so-called Jost functions goli,l =1,2. For
defining these functions we consider the matrices ®* (x, k) and ®~ (z, k)
satisfying the integral equations

+oo
T (z, k) = o(z, k) —|—/ Oo(z — ', k) < ]5 2 ) T (', k) da’,

x

Oo(z — ', k) < ]5 2 > O (2, k) da’.

O (z,k) = o (z, k) + /

—o0

These equations are of the form & = &, + AT ®* where A* are operators
of the Volterra type and therefore each of these equations has a unique
solution given by the Neumann series ®*(z,k) = 3.1°, (Ai)l Do (z, k).
The columns of ®* are the Jost functions goli,l = 1,2. We see that
by the construction the Jost functions behave asymptotically as the free

waves:
—ikx
+ 0 + (e
501~<eikz>7 ¢2~< 0 ) as ¢ — Foo.

By straightforward computations it is obtained that

e given a pair of solutions 6 = < 21 > and 7 = ( :1 > to (68), the
> 2

Wronskian W = 6112 — 0271 is constant. In particular, we have
det ®* (z, k) = —1. (70)

In the sequel we assume that the potentials p and g are complex con-
jugate:
P=4q
It is also checked by straightforward computations that the transfor-

mation ’ 1/_)
_ 1 bt = —¥2

maps solutions to (68) to solutions of the same equation. In particular,
it follows from the asymptotics of the Jost functions that they are trans-
formed as follows

*

+  x + + +
P1 — —P2, P2 —P1- (72)
Since the Jost functions gpf,l = 1,2, and ¢, ,l = 1,2, give bases for
the same space, they are related by a linear transform

- +
P1 = S(k ( P1 > .
< vy ) I\ e
It follows from (70) that det S(k) = 1 and we derive from (72) that
e the scattering matriz S(k) is unitary: S(k) € SU(2), i.e.

s = (48 )L T+ b = 1.
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The following quantities

are called the transmission coefficient and the reflection coefficient respec-
tively. The operator L is called reflectionless if its reflection coefficient
vanishes: R(k) = 0.

The vector functions ] e *** and ¢ ¢™*® are analytically continued
onto the lower half-plane Imk < 0, and the vector functions ¢ e and
©]e™*** are analytically continued onto the upper half-plane Imk > 0.

Without loss of generality it is enough to prove that for ¢ e~***. This
function satisfies the equation of the Volterra type

o= (2) [ ) (1 8w

and since the integral kernel decays exponentially for Im k& < 0 the Neu-
mann series for its solution converges in this half-plane.
This implies that

ikx ikx

e T'(k) is analytically continued onto the upper-half plane Imk > 0.
It is shown that

e a(k) vanishes nowhere on R\ {0};

e the poles of T'(k) correspond to bounded states, i.e., to solutions to
(68) which decay exponentially as x — 4o0o. These solutions are
@f (x,5) and @5 (z, 5¢) where a() = 0 and, therefore,

3 (2, %) = u()ei (2, ), p(=) €C, (73)
and the multiplicity of each eigenvalue s equals to one;

e T'(k) has only simple poles in Im k > 0 and for exponentially decay-
ing potentials there are finitely many such poles;

e since the set of solutions to (68) is invariant under (71), the discrete
spectrum of L is preserved by the complex conjugation » — > and
is formed by the poles of T'(k) and their complex conjugates.

The spectral data of L consist of

1) the reflection coefficient R(k),k # 0;

2) the poles of T'(k) in the upper-half plane Im sc > 0: s, ..., xn;

3) the quantities \; = ivyju;,7 = 1,..., N, where 7; = v(5¢;) is the

residue of T'(k) at »; and p; = p(s¢;) (see (73)).

If the potential p = § is real-valued then

¢F(z,—k) = ¢F(z,k) for k € R\ {0}
and this implies that
a(k) = a(—k), R(k)=R(=k), T(k)=T(-F),
the poles of T'(k) are symmetric with respect to the imaginary axis, and

)\j = ;\k for nj = — .
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Now by applying the Fourier transform (with respect to k) to both
sides of the equality

T(k)p; = R(k)ef + ¢35 (74)

after some substitutions we write the equations (74) for the components
of the vector functions in the form of the Gelfand-Levitan—Marchenko

equations
—+oo

Bao)+ [ Baea)a’ + )’ =0,

+oo
o+ o)~ Bileo)+ [ Balea)0e’ +y)da’ =0
for By and Bs with

1 [t

:%700

N
R(k)e ™ dk =) " Xjes*
j=1

where y > x and there are the following limits

lim By(z,y) =0, lim+ By (z,y) = Bx(z,z), k=12,

y— 00 y—
These equations are the Volterra type and are resolved uniquely. The
reconstruction formulas for the potentials are as follows:

ple) = —2Bi(w.2), p()ae) = pla)p(m) = 222200 (g5

See the detailed derivation of this formulas from [138], for instance, in [1].
In the sequel, for simplicity, we assume that the potential p(x) is real-
valued.
In [38] a series of formulas expressing the Kruskal integrals in terms of
the spectral data, i.e. the so-called trace formulas, is derived. We mention
only the formula for the first nontrivial integral:

/jo Pa)de =1 /OO log(1 — [b(k)?)dk + 43 Tmse;.  (76)

j=1

For reflectionless operators the reconstruction procedure reduces to
algebraic equations (see details, for instance, in [138, 1, 119]). The spectral
data consist of the poles s and the corresponding quantities A\j, j =
1,...,N. Put

U(x) = (=A™, ..., —Ane™N7),
)‘k (354 )x .
M; = — TR k=1,...,N.
]k(x) Z(%J +%k)e ) 7 ) )

We have
d Im det(1 4+ iM(x))
=2— t
plw) =250 arctan g A iM(2))

VN (W) - (14 M2 (@)~ W (2, )
et b= (ee iy 0 ey )

(77)
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where (u|v) = uiv1 +---+unvn and

_ { i(sc1+k)x { i(en+k)x
W(x,k)7<—%l+ke ,...,—%N_’_ke )
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