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1 Introduction

In this paper we will investigate (1 + 2)-dimensional integrable systems [1, 2]
in terms of properties of their groups of integrable mappings [3].

This programme was proposed in [4, 5] and can be described in the fol-
lowing way. For each local invertible substitution of the form

u= d(u) = ¢(w, ', u",...) (1.1)

(where u is an s-dimensional vector function, u' are its derivatives of an
arbitrary order with respect to independent arguments) it is possible to con-
struct the Frechet derivative [6]
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P =7, 8u’ 31.'”

As it follows from definition of (1.2), ¢'(u) is s x s matrix operator.
Then it is necessary to consider the following functional equation with
the arguments replaced:

(1.2)

F = F(¢(w) = ¢ (u) F(u), (1.3)

where F is an unknown s-dimensional vector function, the components of
which depend on the vector function u and its derivatives up to the some
finite order.

The equation (1.3) always possesses one (trivial) solution F(u) = u' as
one may verify by differentiation of (1.1) with respect to one of independent
arguments of the problem.

If (1.3) possesses some other solution different from the trivial one, such a
substitution is called in [3] an integrable substitution or integrable mapping.

With each of the solutions of (1.3) it is possible to connect an equation
of evolution type:

u, = Fu) (1.4)
which is obviously invariant under the transformation (1.1). In [4, 5] the
hope was expressed that a future theory of integrable systems is fundamen-
tally connected with the theory of representations of the groups of integrable
mappings.

The goal of the present paper is the investigation of two-dimensional
integrable mappings and the construction on this basis of the explicit forms
of integrable systems belonging to the corresponding hierarchies.
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2 Two-dimensional integrable mappings

Below we will discuss three concrete examples of two-dimensional integrable
mappings which can be considered by the similar methods.

2.1 Darboux—Toda substitution

The explicit form of the direct and inverse D-T integrable substitution is the
following:

= = 7 = v(uv — (Inv)4y),
(2.1
v = %, U= u(ve — (Inu)gy).

The function f(u,v) after application of the s-times direct transformation
3

is denoted by f and after application of the s-times inverse transformation
4—(—"1) m=t

=
by f with the following convention f = f,m>0.

As a direct corollary of (2.1) the following Toda-like recurrence relation
for function Ty = ww hold:

— -
(InTy)zy = —To + 2T, - To. (2.2)
The Frechet derivative [6] corresponding to (2.1) has the form
s =2 oy ), @3
T\v? 2w) - =g+ %D, 4+ %D, - D,y )’ '
where D, zaa,D EB—
The system (1.3) in the concrete case of the D-T substitution may be

rewritten as

.
fi=—wh (2.4)

4_
F2 = 'U2F1 + (Q(U‘U) — v—:;y' + H:‘Dy -+ %}H‘Dz - Dzy)F‘Z-

It is not difficult to check by direct computation that Fy = (u, —v) is the
solution of the last equation and thus the substitution (2.1) is integrable in
the sense of [3].



After the introduction of the new functions F\ = uf,, F5 = vf,, the
system (2.4) takes the form of a single equation for only one unknown function

f2 - o« - -
(wo)(f2 = f2) = (w)(fa — fo) = =Doyfo, f1=—Jo (2.5)
The meaning of the notation in the last equation is explained after formula
(2.1).
In performing further transformations of (2.5) we will use the fact that
the condition of invariance of some function with respect to the discrete

‘_
transformation F' = F is equivalent to statement that the F' = const. This is
in some sense the analogy of the Liouville theorem in the theory of analytical

functions. Using this fact for the function T (fy = f dy(f —T)) we obtain
the Toda chain like equation:

T, =T, j dy(T - o7 +T), Tp=muv. (2.6)

In terms of the solution of (2.6) the evolution type equation (1.4) (which
is indeed invariant with respect to the D-T substitution (2.1)) takes the form:

v = 'dey("f -1, Uy = u/dy(l_“’ - 7). (2.7)

2.2 Two-dimensional Heisenberg substitution

By this term we will understand the direct and inverse transformations of
two functions (u,v) of the form:

— 1 1 o
U=y}, = o+ — =lnv,
Tt v e, °
(2.8)
= 1 1 Yy
v =ul = + -2 = Inu.
1+ w14 uww Pz v
As may be verified, the functions t,,
- -
oo Wl (v)yve b= Ut (V),vy
T+ ww)? (E;’ )2 (1 + uv)? (?} + )2



satisfy the Toda-like recurrence relations
(tm)e = tm [ dyA,, (m=1,2), (2.9)

- >
where A, =ty — 2t,, + tnm.
The explicit form of the Frechet derivative operator is as follows:

0 —v?
q&’(u) = 1 =1 1 ’
(L (4 (=Ry + (R)%6(65'Ds + 671Dy ~ £ Dyy)
(2.10)
where ) |7 "
§=—"22 R=14+w, R=1+uv.
Uz Uy

By a short calculation it is possible to show that equation (1.3) possesses
the nontrivial solution F} = u, F; = —v and, consequently, the Heisenberg
substitution by definition is integrable.

Now we can rewrite equation (1.3) in a more transparent form. Let
us introduce the quantities F} = uB, F; = vA. From the first equation

_}
(1.3) we obtain immediately B = —A. The second equation after some
transformations may be rewritten in the form of a single equation for the

function A:
‘_

uv -+

0+ 11.'&1)2)(::1 —A) ~ (4 - 4) =

(¢I¢y)_l(%AI + %I:'Ay - A:ry)

As we know from the introduction the main equation (1.3) always pos-
sesses the trivial solution Fy = ug, (u,); Fo = vs, (vy) or A = ¢y, (¢,). Let
us look for a solution of (2.10) in the form A = ¢,c. Instead of (2.10) we
obtain the equation for :

( (2.11)

—
Uz Vg

NG a) - —2 (o @)= (2 _ &
(1+'LL’U)2)( ) (1-|-'UJU)2( )'—( ):m e} (212)

( A

Resolving (2.12) by the substitution:

O!y L
) =T-T
(%),
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we obtain the equation to determine function 7*:

T, =T [ dylo(T - T) - 6(T - T)), (2.13)
where o
Ty = ——= .
T (1 + uv)?

2.3 Lotky-Volterra substitution

In this case the direct and inverse transformation have the form
— —
u=u+(lnv),, v=v+(ln E)y,

(2.14)

—

% =u—(In ?)m, = v — (Inw),.

As in the previous case the functions t; = uv,t; = E‘U satisfy the Toda-
like recurrence relations (2.9).
The Frechet operator in this case has the form:

: Dyv™ ) . (2.15)

#09= (p,(ir 14 0,8 D,o

By the same technique as in the previous subsections we obtain a single
equation for the unknown function 7 and expressions of the equations of
hierarchy via this solution

T, = [ dz[T(T = T) — u(T - T)]. (2.16)
whence

= u(T — f) v = D,T.

3 Solution of the main equation

In spite of the essential difference of the Frechet operators in the three cases
considered above the main equations of the problems (2.6),(2.14) and (2.16)
have the same structure and may be solved by the similar methods. We
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shall demonstrate these methods in the more complicated example of the
Heisenberg substitution and present the results of calculations for the other
cases.

First of all let us notice that equation (2.14) has the partial solution

T=T0

as may be seen by the help of the equality below which is the direct corollary
of (2.8) and (2.9)

¢

s ¢z | Bay
¢y 1 +uv

Pay Pz Pay
b2ty by

Let us now seek a solution of (2.14) as T' = Ty [ dycy. Instead of equation
(2.14) we obtain an equation to determine the function ¢y as follows:

A 1
TO - TO = 2¢x(""'—)z + 2¢Iy

14 uv + a

)z - d)zy

— - - - - -
(ag)m+ao/dy[t1 —t1 +t2 — 9] =t1/dy(ao—ag)—i-tz/dy(ao-—ao). (3.1)

As it will be shown below this equation will arise many times and so for
us it will be important to discuss two possible ways of its resolution. Let us
use the following Ansatz

— -
ay = tiayy + 1203,
After substitution of this expression into (3.1) and equating to zero coeffi-

— 5
cients of ?1,%2 (this is an additional assumption) we arrive at the following
equations for the unknown functions «, f;:

«2 — — -
()e e [dylty i+ —ta] = [ dy(Ga - ),
(3.2)

(B1)s + B fdy[g -t +2t; —t_z}] = /dy(&:) — o).

Adding the second equation (3.2) shifted by a direct transformation to the
first one we obtain

— — “2 « o
(o) + B1)g + (o + ﬁl)[fly[tl —th+la—1] =0



and we see that the system (3.2) has the partial solution &) + B/ = 0, which
we will use in what follows.

For this solution the system (3.2) is equivalent to a single equation for
the unknown function a;:

—2 — - 2 +—1 -5
(1) +01/dy[t1 —t+la—ty) = /dy[(tl ) — tocry) — (tay — tacny)].

The last equation has the obvious solution c; = 1. As a corollary we obtain
the second partial solution of our main equation:

ﬂ:%/@@-%.

Further evolution of the equation for e is facilitated by the representation
of the unknown function in integral form o, — [dya, (we retain the same
symbol for the unknown function since it cannot lead to misunderstanding
in the following considerations):

~2 ~ 2 -+
(@)e+an [yl —ti+la—t] = 10 [dy(@— o)+ [ dy(@ - an) (33)

“— 2
which up to the obvious replacement t; — 1 coincides with the equation for

(87} (31)
We can repeat the same trick with this equation as with the equation for
o and after & iterations will obtain:

(—(k+1) -
ar = b1 ogo — taky

and the corresponding equation for cy..q

<—k+2 —k+1 —
(O!k.H) + Oik+1/dy i 7 tg] =

—k+2 +1
fdy[ (t k1 — taon) — ( f1 ay — tzCYl)]

with the obvious solution a4 = 1.
Collecting all results together we obtain a partial solution of the main
equation in the following formal formulae

n

T =To [[(1-Liexpl—(i+1)di— 3 di)) [ dy fdytl. fdytl, (3.4)

i=1 k=1+1
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where the symbol exp d; means that the argument of the s-th term of repeated

h— h+1—
integral (... fdyti ... = ...fdy &1 ...)in (3 4) should be shifted by unity
and the symbol L means the exchange of t1 and tz in the corresponding

p—thterm...fdyh... = ... fdytyr. ..

The expression (3.4} is directly applicable to the Heisenberg and the
Lotky-Volterra integrable hierarchies. In the case of the D-T hierarchy it
is necessary to set all operators L; = 1 and and keep in mind equality
tl e tz = To.

4 Examples

In this section we present the simplest integrable systems in the terms of
usual functions u,v corresponding to the lowest solutions 7}, of the main
equation for D-T, Heisenberg and LV substitutions.

4.1 Darboux—Toda substitution
4.1.1 n=0
To =uv, 1w =aug+buy,, v =av,+ by,

In the examples below we shall choose @ = 1,h = 0 keeping in mind that
it is always possible to add a term (with an arbitrary numerical coefficient)
in which z is changed by y and vice versa.

4.1.2 n=1
T = vy — VU,
Up = Ugy — u/dy(uv)m, —Up = Vg — U / dy(uv),

This is the Davey-Stewartson equation in its original form [5].

4.1.3 n=2
Ty = (uv)ge — 3ugvy — SUU_/(ly(uv)z,



Wy = Ugpy — 3um[cly(u'u)ﬂc - 3ufdy(uxv)m,
Vg = Uggp — Vg / dy(uv), — 3v / dy(vzu)

This is the equation of Veselov-Novikov [6].

4.1.4 n=3
T3 = —(T1) gz — 2(UgVpz — Vglizs) + 2uv / dy(T1), + 4T, f dy(uv)

= —Vprrr + dUspq f dy(uv); — 21;2(/ dy(Ty). — 2[{1y(uv)m)+

20 [ dy(un)aza— [ dy(use)et [(uv)e = ([ dy(uo)oa—[ [ dy(un))

The equation for v may be obtained from the equation for v under the
transposition v — v,v = u,t = —t.

4.2 Heisenberg substitution
4.2.1 n=0

= —VUgy + ZU:,,./dy

Y Ve  —Up = —Ugg + 2u$/dy Y,

14 uv 14 uv
4.2.2 n=1
Vg + Vggz — 3fumfdy uvy +3’UT[[ dy( T U)35]2-4-
+3u, [ dyl —“y—)g) = 3uz [ dy(52 ),
Uy + Uggq — 3umfd'y —u )m+3umlf dy(lTﬁt’w)ml2+
+3u, | dy(u—ﬁ“%)x — 3u; [ Ay
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4.3 Lotky—Volterra substitution
4.3.1 n=0
In the case Tp = v we obtain the trivial system with the help of (2.2)

U = Uy, Up =Yy

4.3.2 n=1

In this case
—- -
S = v/d:n(h —tg) = v, +v? + Zv/dm(uy).
The corresponding integrable system has the form
Up = —Uyy + 2(uv)y, + 2uy/d:z(uy), v = (V2 4+, + 2v/da:(uy))y.

In the one dimensional case D; = D, this system is a partial case of the
wider integrable system considered in [7].

4.3.3 n=2
In this case
Sy = v® + 3vv, + vy, + 3vD; (uv)y + 3(vy + v*) DS (uy) + 3v(D; (uy))?.
The corresponding integrable system is the following
wy = Dy(uyy — 3(vyy) + 3v%u — 3(uy — wv) D7 (u),)+

+D4(3D; (uy) D7 H(wv)y + (D7 (wy))°),
v, = Dy(v* + vy + vy, + 3vD;Huv), + 3(v, +v?) D7 (uy)+
+3v(D; ! (1y))?)-

11



5 Conclusion

In order to appreciate the results of the present paper let us return to the main
equation (1.3). This equation contains two unknown s-dimensional vector
functions ¢(u) and F'(u). The principal problem connected with this equation
is to find a substitution ¢(u) in such a way that equation (1.3) will have
some other solution apart from the trivial one. This problem has not been
considered in this paper. We have taken ad hoc two-dimensional integrable
substitutions (Darboux-Toda, Heisenberg and Lotky—Volterra) and found for
them solutions of equation (1.3). This is only the second part of the problem
as it was formulated in [4, 5].

From the explicit form of integrable equations we can conclude that for
their construction we need to know at most two functions ¢, 5. In addition,
it is necessary to have explicit formulas for multi-times discrete transforma-
tions and techniques of repeated integrals. We have seen also that in the
usual variables u, v all formulas become much more complicated. So we may
conclude that the the method of discrete transformations is a fundamental
principle of the theory of integrable systems. We can imagine that in order
to understand finally the theory of integrable systems it is necessary to have
(or create) the complete theory of representations of the group of integrable
mappings of which we have given here only several examples.
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