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1 Introduction

In this paper we will investigate (1 +2)-elimensional integrable systems [1, 2]
in terms of properties of their groups of integrable Inappings [3].

This programme was proposed in [4, 5] anel can be elescribed in thc fol­
lowing way. For eaeh loeal invertible substitution of the fonn

t-
U = A.( ) - A.( I 11 )- 'f' u - 'f' 'lL, U ,1/, , ... (1.1)

(where u is an s-diInensional vector fUllction, u'··· are its derivatives of an
arbitrary order with respect to independent arguments) it is possible to con­
struct the Frechet derivative [6]

, 84> 84> 84> 2
~ (u) = 8u + 8u,D + 8V,II D +.... (1.2)

As it follows from definition of (1.2), cf/(u) is s x s rnatrix operator.
Then it is necessary to consider thc following functional equation with

the arguments replaced:
t-

F - F(rj>(u)) = rj>'(u)F(u), (1.3)

where F is an unknown s-dimensional vector function, the cOlnponents of
which depend on the vector function v. anel its derivatives up to the some
finite order.

The equation (1.3) always possesses one (trivial) solution F(u) = u' as
one may verify by differentiation of (1.1) with respect to one of independent
arguments of the problem.

If (1.3) possesses some other solution different froln the trivial one, such a
substitution is called in [3] an integrable substitution or integrable mapping.

With each of the solutions of (1.3) it is possible to conneet an equation
of evolution type:

Ut = F(u) (1.4)

which is obviously invariant under thc transformation (1.1). In [4, 5] the
hope was expressed that a future theory of integrablc systems is fundamen­
tally connected with the theory of representations of the groups of integrable
mappings.

The goal of the present paper is the investigation of two-dimensional
integrable mappings anel the construction on this basis of thc explicit forms
of integrable systems belonging to the corresponding hierarchies.
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2 Two-dimensional integrable mappings

Below we will discuss three concretc exalnples of two-dimensional integrable
mappings wbicb can be considered by thc similar methods.

2.1 Darboux-Toda substitution

Tbe explicit form of the direct and inverse D-T integrable substitution is the
following:

~ 1 f-

U = -, v = v(uv - (ln v)Xy),
v

(2.1)

~ 1 ~
v = -, u = u(vu - (ln u)Xy).

u

Tbe function f (u, v) after application of the s-times direct transformation
f-S

is denoted by fand after application of the s-times inverse transformation
S~ f-( -rn) m~

by f with the following convention f = f ,m 2: O.
As a direct corollary of (2.1) the following Toda-like recurrence relation

for function Ta = uv hold:
f- ~

(ln Ta)xy = -Ta + 2Ta - Ta.

Tbe Frechct derivative [6] corresponding to (2.1) has thc form

(
0 -~ )

<jJ'(u) = v2 2(uv) _ V;l:~V +!!LD + 2D - D '
v v y v x xy

(2.2)

(2.3)

(2.4)

where D y - ty ' Dx- :x.
The systenl (1.3) in tbe concrete case of the D-T substitution may be

rewritten as

f-

F2 = v2 F1 + (2(uv) - V~~Y + ~Dy + 7Dx - Dxy )F2 .

It is not difficult to check by direct cOInputation that Fa = (u, -v) is the
solution of the last equation anel thus the substitution (2.1) is integrable in
the sense of [3].
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After the introduction of the new fllnctions F 1 = U11' F2 = V 12, thc
system (2.4) takes the fonn of a single equation for only one unknown function

12
t- t- ---+ ---+

(UV)(f2 - 12) - (UV)(12 - f2) = -Dxy J2' 11 = -/2. (2.5)

The meaning of the notation in the last equation is explainecl after formula
(2.1).

In performing further transformations of (2.5) we will use the fact that
the condition of invariance of some function with respect to the discrete

t-

transformation F = F is equivalent to statement that the F =const. This is
in SOIne sense the analogy of the Liouvillc theorenl in the theory of analytical

t-

functions. Using this fact for the function T (12 = Jdy(T - T)) we obtain
the Toda chain like equation:

J
t- ---+

-TI. = Ta dy(T - 2T + T), Ta = UV. (2.6)

In terms of the solution of (2.6) the evolution type equation (1.4) (which
is indeed invariant with respect to the D~T substitution (2.1)) takes thc form:

Vt=V Jdy(T-T), Ut = '/l, Jdy (T - T). (2.7)

2.2 Two-dimensional Heisenberg substitution

By this term we will understand the direct and inverse transformations of
two functions (u, v) of the form:

t-
U -1=v ,

1 1 ~I.y
----,t-- = + -- 4> = In v,
1 + uv 1 + 7LV cjJx~y'

(2.8)

--+v __ u-1, 1 1 + 'l/Jxy 'Ij; = Inu.
1 + ut - 1 + 7LV WI.Wy'

As may be verified, the functions t m

UyVI.t 1 = ---=----
(1 + UV)2
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satisfy the Toda-like recurrence relations

(2.9)

~ -+
where .6..m == im - 2im + im.

The explicit form of the Frechet derivative operator is as follows:

where
R == 1 + UV,

+- +-
R == 1 + uv.

(2.11)

By a short ca1culation it is possible to show that equation (1.3) possesses
the nontrivial solution F1 == U, F2 == -vand, consequentlYl the Heisenberg
substitution by definition is integrable.

Now we can rewrite equation (1.3) in a Inore transparent form. Let
us introduce the quantities F1 == uB, F2 == vA. From the first equation

--t

(1.3) we obtain imlnediately B == - A. The second equation after some
transformations may be rewritten in the fonn of a single equation for the
function A:

+-
uv +- -+

((1 + uV)2)(A - A) - (1::v)2 (A - A) ==

(ePxePy)-l(~Ax + ~Ay - Axy ).

As we know froln the introduction the rnain equation (1.3) always pos­
sesses the trivial solution F1 == U X1 (uy); F2 == V X1 (vy) or A == ePx, (eP y). Let
us look for a solution of (2.10) in the form A == cPxCi. Instead of (2.10) we
obtain the equation for a:

(2.12)

Resolving (2.12) by the substitution:
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we obtain thc cquation to cletermine funetion T:

J
r -+ -+

Tx = Ta dy[B(T - T) - B(T - T)],

where

2.3 Lotky-Volterra substitution

In this ease tbe direet and inverse transformation havc the form

(2.13)

(2.14)
-+ -+-+
'll = U - (In v)x, v = v - (Inu)y.

r
As in tbe previous ease the functions t 1 = UV, t2 = Uv satisfy the Toda-

like reeu rrenee relations (2.9).
The Frcehet operator in tbis ease has thc fornl:

(2.15)

By the same teehnique as in the prcvious subsections we obtain a single
equation for the unknown funetion T and cxprcssions of thc equations of
hierarehy via this solution

whence

J
{-{- -+

Ty = v dx[U(T - T) - u(T - T)].

-+
Ut = u(T - T) Vt = DyT.

(2.16)

3 Solution of the main equation

In spite of the essential diffcrenee of thc Freehet operators in the three eases
eonsidered abovc thc main equations of the problcIns (2.6),(2.14) and (2.16)
have the same structure anel may be solvecl by the siInilar methoels. We

6



shall demonstrate these methods in the more complicatecl example of thc
Heisenberg substitution and present the results of calculations for the other
cases.

First of all let us notiee that equation (2.14) has the partial solution

T=To

as may be seen by the help of the equality below whieh is thc direct corollary
of (2.8) and (2.9)

To - Ta = 2<PA 1 : )x + 2<pxy ~x 1 : + <Px( !x1 )x - <Pxy ~x + ~;.
UV If'y nv o/X'Yy 'Yy 'Yy

Let us now seek a solution of (2.14) as T = ToJdyCt'.o. Instead of equation
(2.14) we obtain an equation to detennine the fl1lletioll Ct'.o as follows:

As it will bc shown below this equation will arise Inany times and so for
us it will be important to discuss two possible ways of its resolution. Let us
use the following Ansatz

t- -t

Ct'.o = tlCt'.l + t 2ßl.

After substitution of this expression into (3.1) and equating to zero eoeffi-
t- -t

eients of t 1, t 2 (this is an addi tional assuInption) we arrive at the following
equations for thc unknown functions (}:l, ßl:

(3.2)

J t- 2-t -t J -t
(ßl)x + ßl dy[t1 - t 1+ t2 - t2] = dy(Ct'.o - ao).

Adding the second equation (3.2) shifted by a dircct transformation to the
first oue we obtain

7



and we see that the system (3.2) has thc partial solution dl + ßl = 0, which
we will use in what follows.

For this solution the system (3.2) is equivalent to a single equation for
the unknown function al:

The last equation has the obvious solution (};I = 1. As a corollary \ve obtain
the second partial solution of our main equation:

Further evolution of the equation for 0:1 is facilitated by thc representation
of the unknown function in integral form al --+ Jdyal (we retain the same
symbol für the unknown function since it cannot lead to misunderstanding
in the füllowing considerations):

+- +-2
which up to the obvious replacement t 1 --+ t 1 coincides with the equation for
0:0 (3.1).

We can repeat thc same trick with this equation as with the equation for
ao and after k iterations will obtain:

+-(k+1) --t --t

G:k = t 1 ak+ 1 - t2G:k+ I

and the cürresponding equation for CYk+1

with the obvious solution O:k+1 = 1.
Collecting all results together we 0 btain a partial solution of the main

equation in the following formal formulae
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where the symbol exp ds means that the argument of thc s-th term of repeated
h-t h+l-t

integral (... Jdy t l ... -+ ... Jdy t l ... ) in (3.4) sbould be sbifted by unity
r-t r-t

and tbe symbol Lp means thc exchange of t l and t2 in the corresponeling
r-t

p-th term ... Jdy t 1 ••• -+ ... Jdyt 2r . ...
The expression (3.4) is directly applicablc to the Heisenberg and the

Lotky-Volterra integrable hierarchies. In the case of the D-T hierarchy it
is necessary to set all operators Li = 1 anel and keep in minel equality
t l = t 2 = Ta.

4 Examples

In this section we present the simplest integrable systems in the terms of
usual functions 11" v corresponding to the lowest solutions Tn of the main
equation for D-T, Heisenberg and L-V substitutions.

4.1 Darboux-Toda substitution

4.1.1 n=O

Ta = UV, Ut = aux + buy, Vt = avx + bvy.

In the examples below we shall choose a = 1, b = 0 keeping in mind that
it is always possible to add a term (with an arbitrary numerical coefficient)
in which x is changed by y anel vice versa.

4.1.2 n=1

Tl = V1Lx - vxu,

Ut = Uxx - U JdY(UV)Xl -Vt = Vxx - v Jdy(uv)x.

This is the Davey-Stewartson equation in its original form [5].

4.1.3 n=2
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-Ut = -Uxx + 2ux Jdy( vUy
)x'

1 +uv

7Lt = U xxx - 3ux J dy(u'U)x - 3'll J dy(uxv)x,

Vt = 'Uxxx - 3vx J dy(u'U)x - 3v J dy(vxu):r;.

This is the equation of Veselov-Novikov [6].

4.1.4 n=3

T3 = -(T1 )xx - 2(uxvxx - vxuxx ) + 2uv J dy(T1)x + 4T1J dy(uv)x,

Vt = -Vxxxx + 4vxx Jdy(uv)x - 2vx (J dy(T1)x - 2Jrly(uv)xx)+

+2v(J dy(uv)xxx- J dy(uxvx)x+ J(uvxx)x-([J dY(UV)]2)xx-[J dy(uv)x]2).

The equation for u may be obtained from the equation for v under the
transposition u -t v, v -t U, t -t -t.

4.2 Heisenberg substitution

4.2.1 n=O

Vt = -Vxx + 2vx J dy( 1 uV
y

)x,
+uv

4.2.2 n=l

Vt + V xxx - 3vxx Jdy( uV
y

)x + 3vx [J dy( uV
y

) f+
1 + uv 1 + uv x

J ( UxvY ) J (uvy )
+3vx dy (1 + uv)2 x - 3vx dy 1 + uv xx,

J VUy [J (VUY )]2Ut + U xxx - 3uxx dy( )x + 3ux dy +
1 + uv 1 + uv x

J ( Vxuy J (vuY )+3ux dy ( )2)x - 3ux dy xx'
1 + uv 1 + uv
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4.3 Lotky-Volterra substitution

4.3.1 n=O

In the case Ta = v we obtain the trivial system with thc help of (2.2)

Ut = uyl Vt = vy.

4.3.2 n=1

In this case

The corresponding integrable system has thc form

Ut = -uyy + 2(uv)y + 2uyJdx(uy), Vt = (v2 + vy + 2v Jdx(uy))y.

In thc one dimensional case D x = D y this system is a partial case of the
wider integrable system considered in [7].

4.3.3 n=2

In this case

The corresponding integrable system is the following

Ut = Dy(uyy - 3(vuy) + 3v2n - 3(uy - UV)D;l(U)y)+

+Dx (3D;1(Uy)D;1(UV)y + (D;;! (Uy))3),

Vt = Dy(v 3 + 3vvy + vyy + 3vD;1(UV)y + 3(vy + v2)D;1(Uy)+

+3v(D;1 (uy))2).
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5 Conclusion

In order to appreciate the results of the present paper let us return to the main
equation (1.3). This equation contains two unknown s-dimensional vector
functions 4>(u) and F(u). The principal probleIn connected with this equation
is to find a substitution 4>(u) in such a way that equation (1.3) will have
some other solution apart from the trivial one. This problem has not been
considered in this paper. We have takcll ad hoc two-dimensional integrable
substitutions (Darboux-Toda, Heisenberg and Lotky~Volterra)anel found for
them solutions of equation (1.3). This is only the second part of the problem
as it was formulated in [4, 5].

From the explicit form of integrable equations we can conclude that for
their construction we need to know at IUOSt two functions t 1,2 . In addition,
it is necessary to have explicit formulas for multi-times discrete transforma­
tions and techniques of repeated integrals. Vve have seen also that in the
usual variables u, v all formulas become llluch Ill0re complicated. So we may
conclude that the the method of discretc transformations is a fundamental
principle of the theory of integrable systems. We can imagine that in order
to understand finally the theory of integrable systems it is necessary to have
(01' create) the complete theory of reprcsentations of thc group of integrable
mappings of which we have given here only several exalnples.
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