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On the Newton polytope of a Jacobian pair.

Leonid Makar-Limanov

Abstract

The Newton polytope related to a “minimal” counterexample to

the Jacobian conjecture is introduced and described. This description

allows to obtain a sharper estimate for the geometric degree of the

polynomial mapping given by a Jacobian pair and to give a new proof

of the Abhyankar’s two characteristic pair case.

Mathematics Subject Classification (2000): Primary 14R15, 12E05;

Secondary 12E12.
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Introduction.

Let us assume that f, g ∈ C[x, y] (where C is the field of complex numbers)

satisfy J(f, g) = 1 and is a counterexample to the JC (Jacobian conjecture,

see [K]). It is known for many years that then there exists an automorphism

ξ of C[x, y] such that the Newton polygon N (ξ(f)) of ξ(f) contains a vertex

v = (m,n) where n > m > 0 and is included in a trapezoid with the vertex v,
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edges parallel to the y axis and to the bisectrix of the first quadrant adjacent

to v, and two edges belonging to the coordinate axes (see [A1], [A2], [AO],

[H], [J], [L], [MW],[M], [Na1], [Na2], [NN1], [NN2], [Ok]). This was improved

quite recently by Pierrette Cassou-Noguès who showed that N (f) does not

have an edge parallel to the bisectrix (see [CN] and [ML2]).

So below we assume that N (f) is included in such a trapezoid with the

leading vertex (m,n). We may also assume that N (f) and N (g) contain the

origin as a vertex and are similar (easy consequence of the relation J(f, g) =

1), that the coefficients with the leading vertices of f and g are equal to 1

(this can be achieved by an appropriate re-scaling of x, y and f, g), that

degy(g) > degy(f), and that degy(f) does not divide degy(g) (otherwise we

can replace the pair f, g by a “smaller” pair f, g − cfk).

These are the restrictions on N (f) known at present and it is not clear

how to further tighten them by working withN (f) only. To proceed with this

line of research I’ll consider an irreducible algebraic dependence of x, f, g

and obtain information about the Newton polytope of this dependence.

Algebraic dependence of x, f , and g.

We can look at f, g as polynomials in one variable y over C(x). It is well-

known that two polynomials in one variable over a field K are algebraically

dependent over K (see [W]). Therefore f and g are algebraically dependent

over C(x).

We may choose a dependence P (F,G) = P (x, F,G) ∈ C(x)[F,G] (i.e.

P (x, f, g) = 0) such that degG(P ) is minimal possible and hence P is irre-
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ducible as an element of C(x)[F,G], with coefficients in C[x] (since we can

multiply a dependence by the least common denominator of the coefficients),

and assume that these polynomial coefficients do not have a common divisor.

Connection between G and y.

G is an algebraic function of x and F given by P (x, F,G) = 0 and y is

an algebraic function of x and F given by F − f(x, y) = 0.

Lemma on y. y ∈ C(x, f, g) and y ∈ C(f(c, y), g(c, y)) for any c ∈ C.

Proof. By the Lüroth Theorem C(f(c, y), g(c, y)) = C(r(y)) where r is a

rational function (see [W]). We can replace r by its linear fractional transfor-

mation and assume that r = p1(y)
p2(y)

where p1, p2 ∈ C[y] and deg(p1) > deg(p2).

Without loss of generality p1, p2 are relatively prime polynomials. Now,

f(c, y) = F1(r)
F2(r)

for some polynomials F1, F2 where d1 = deg(F1) > d2 =

deg(F2) and f(c, y) =
F1,0p

d1
1 +...+F1,d1

p
d1
2

(F2,0p
d2
1 +...+F2,d2

p
d2
2 )p

d1−d2
2

. Hence p2 = 1 and r is a poly-

nomial. Since 1 = J(f, g)|x=c ∈ r′(y)C[y] we should have r′(y) ∈ C. Therefore

y ∈ C(f(c, y), g(c, y)) and y ∈ C(x, f, g). 2

Remark. It is easy to prove that y ∈ C(x, f, g) using the Jacobian

condition only (∂f
∂y

= Pg
Px
, ∂g

∂y
=
−Pf
Px

since P (x, f, g) = 0, hence ∂
∂y

acts on

C(x, f, g)) but this does not imply that y ∈ C(f(c, y), g(c, y)) for all c ∈ C). 2

There is a one to one correspondence between the roots yi of f(x, y)− F

and Gi of P (x, F,G) in any extension of C(x, F ) which contain these roots.

Indeed, Gi = g(x, yi) and yi = R(Gi) where y = R(G) ∈ C(x, F )[G].
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Newton polyhedron of a polynomial.

Let p ∈ C[x1, . . . , xn] be a polynomial in n variables. Represent each

monomial of p by a lattice point in n-dimensional space with coordinate vec-

tor equal to the degree vector of this monomial. The convex hull N (p) of

the points so obtained is called the Newton polyhedron of p. We will be

using this notion in two-dimensional and three-dimensional cases as Newton

polygons and the Newton polytopes accordingly.

Weight degree function.

Define a weight degree function on C[x1, . . . , xn] as follows. First, take

weights w(xi) = αi, where αi ∈ R and put w(xj11 . . . x
jn
n ) =

∑
i αiji. For a

p ∈ C[x1, . . . , xn] define support supp(p) as the collection of all monomials

appearing in p with non-zero coefficients. Then degw(p) = max(w(µ)|µ ∈

supp(p)). Polynomial p can be written as p =
∑
pi where pi are forms

homogeneous relative to degw. The leading form pw of p according to degw

is the form of the maximal weight of this presentation.

For a non-zero weight degree function monomials appearing in the support

of the leading form of p correspond to the points of a face Φ of N (p) and if

the codimension of Φ is n − i there is a cone of dimension i of the weight

degree functions corresponding to Φ. The leading forms corresponding to

these weights are the same and we will use p(Φ) to denote them.

The correspondence between faces and weight degree functions is one
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to one for the faces of the codimension 1 if we require that the numbers

α1, . . . , αn are coprime integers. We will some times refer to this weight de-

gree function as the function corresponding to the face.

Roots yi of F = f(x, y).

Newton introduced the polygon which we call the Newton polygon in

order to find a solution y of p(x, y) = 0 in terms of x (see [N]). Here is the

process of obtaining such a solution. Consider an edge e of N (p) which is

not parallel to the x axes and take the weight which corresponds to e. Then

the leading form p(e) allows to determine the first summand of the solution

as follows. Consider an equation p(e) = 0. Since p(e) is a homogeneous

form and α = w(x) 6= 0 solutions of this equation are y = cix
β
α where

β = w(y) and ci ∈ C. Choose any solution cix
β
α and replace p(x, y) by

p1(x, y) = p(x, cix
β
α + y). Though p1 is not necessarily a polynomial in x

we can define the Newton polygon of p1 in the same way as it was done for

the polynomials; the only difference is that supp(p1) may contain monomials

xµyν where µ ∈ Q rather than in Z. Further on we will be using this kind of

Newton polygons and Newton polytopes. The polygon N (p1) contains the

degree vertex v of e, i.e. the vertex with y coordinate equal to degy(pw) and

an edge e′ which is a modification of e (e′ may collapse to v). Take the other

vertex v1 of e′ (if e′ = v take v1 = v). Use the edge e1 for which v1 is the

degree vertex to determine the next summand and so on. After possibly a

countable number of steps we obtain a vertex vµ and the edge eµ for which

vµ is not the degree vertex, i.e. either eµ is horizontal or the degree vertex of
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eµ has a larger y coordinate than the y coordinate of vµ. It is possible only if

N (pµ) does not have any vertices on the x axis. Therefore pµ(x, 0) = 0 and

a solution is obtained.

When characteristic is zero the process of constructing a solution is more

straightforward then it may seem from this description. The denominators

of fractional powers of x (if denominators and numerators of these rational

numbers are assumed to be relatively prime) do not exceed degy(p). Indeed,

for any initial weight there are at most degy(p) solutions while a summand

cx
M
N can be replaced by cεMx

M
N where εN = 1 which gives at least N different

solutions.

If degy(p) = n and we want to obtain all n solutions we should choose

the first edge e appropriately. Consider pw where w(x) = 0, w(y) = 1. This

leading form correspond to a horizontal edge with the “left” and “right”

vertices vl and vr or a vertex v in case vl = vr. If we choose e with the degree

vertex vr we will obtain n solutions with decreasing powers of x and if we

choose e with the degree vertex vl we will obtain n solutions with increasing

powers of x. When vl = vr = v choose the “right” edge containing v to obtain

n solutions with decreasing powers of x and the “left” edge containing v to

obtain n solutions with increasing powers of x.

We can apply Newton approach to finding solutions for F − f(x, y) = 0

in an appropriate extension of C(x, F ). To do this we have to take the

weights w(x), w(F ), w(y) so that the corresponding face (possibly an edge)

of N (F − f(x, y)) contains the leading vertex (m,n) of N (f(x, y)) and pro-

ceed as above. Of course the process would be much harder to visualize but

it can be made two-dimensional if the weights α = w(x), ρ = w(F ) are
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commensurable. Say, if w(x) = 0 replace C by an algebraic closure K of C(x)

and make computations over K. If w(x) 6= 0 take for K an algebraic closure

of C(z) where z = x
−ρ
α F , introduce t so that x = td1 and z = td2F where

d1, d2 ∈ Z and α
ρ

= −d1
d2

, and consider F − f(x, y) = zt−d2 − f(td1 , y) as a

polynomial in y, t, t−1 over K.

Newton polytope N (P ).

In this section we will find some restrictions on N (P ).

Observe that degy(g
degy(f) − fdegy(g)) < degy(f) degy(g) because of the

shape ofN (f) andN (g). It is known that then the leading form of P (x, F,G)

relative to the weight w(x) = 0, w(F ) = degy(f), w(G) = degy(g) is

p0(x)(Ga0−F b0)n0 where a0
b0

=
degy(f)

degy(g)
, (a0, b0) = 1 and b0n0 = degF (P ), a0n0 =

degG(P ) (see [ML1]).

It follows from Lemma on y that degG(P ) = [C(x, f, g) : C(x, f)] =

[C(x, y) : C(x, f)] = degy(f) and that degG(Pλ) = degy(f(λ, y)) where Pλ is

an irreducible dependence between f(λ, y) and g(λ, y) for λ ∈ C (recall that

y ∈ C(x, f, g) and y ∈ C(f(λ, y), g(λ, y)).

Furthermore, degG(P ) = degG(Pλ) for all λ ∈ C∗ since degy(f(λ, y)) =

degy(f) for all λ ∈ C∗. Hence Pλ(F,G) is proportional to P (λ, F,G) for all

λ ∈ C∗ and p0(λ) = 0 is possible only if λ = 0. Therefore p0(x) = c0x
d and

(c0x
d)−1P is a polynomial monic in G (with coefficients in C[x, x−1]). From

now on P is this monic polynomial.

Denote by E the edge of N (P ) which corresponds to the leading form

(Ga0 − F b0)n0 of P . This edge belongs to two faces Φa and Φb of N (P ) (say,
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Φa is above Φb). The face Φb can be below the plane FOG since P (x, F,G)

is a Laurent polynomial in x. The x axis cannot be parallel to any of these

faces since the leading form of P relative to the weight w(x) = 0, w(F ) =

degy(f), w(G) = degy(g) is (Ga0 − F b0)n0 .

We can use N (P ) to find a presentation of G as a fractional power series

in x, F using approach discussed in Roots yi of F = f(x, y).

The face Φb.

Assume that the face Φb (the lower face containing E) is below the plane

FOG. Since the x axis is not parallel to the face Φb we can choose the

corresponding weight by taking w(x) = 1, w(F ) = ρ < 0, w(G) = σ < 0. Of

course, ρ, σ ∈ Q. Expansions of G as well as the corresponding expansions

of y relative to this weight are by components with the increasing weight.

Consider the leading form P (Φb) and its factorization into irreducible

factors. If all these factors depend only on two variables then P (Φb) =

φ1(x, F )φ2(x,G)φ3(F,G) and Φb is either an interval, or a parallelogram,

or a hexagon with parallel opposite sides. Since Φb is neither (Φb is not

E and it cannot contain an edge parallel to E), P (Φb) has an irreducible

factor Q(x, F,G) which depends on x, F , and G. Denote by G a root of

Q(x, F,G) = 0 and by G̃ a root of P (x, F,G) = 0 for which G is the leading

form and take the corresponding ỹ = R(x, F )[G̃]. Then f(x, ỹ) = F and

g(x, ỹ) = G̃.

We can write ỹ =
∑∞
j=0 yj where yj are the homogeneous components of

ỹ. Since f(x, ỹ) = F there exists a k for which yj = cjx
µj , cj ∈ C, µj ∈ Q if
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j ≤ k and yk+1 6∈ C(x).

We also can get ỹ from the Newton polytope of F −f(x, y). The terms yj

for j ≤ k are obtained by a resolution process applied to N (f) and the term

yk+1 is defined by a face Ψ of this polytope which contains (0, 0, 1), i.e. the

vertex corresponding to F (otherwise yk+1 ∈ C(x)). The face Ψ corresponds

to the weight w(x) = 1, w(F ) = ρ, w(y) = α = w(yk+1) and Ψ contains an

edge e ∈ xOy of N (f(x,
∑k
j=0 yj + y)).

Denote fk = f(x,
∑k
j=0 yj+y), gk = g(x,

∑k
j=0 yj+y) (thenN (fk) contains

the edge e and w(fk) = ρ) and by fk(e), gk(e) the leading forms of fk and

gk for the weight w. Thus fk(e)(x, yk+1) = F by definition of yk+1; also

gk(e)(x, yk+1) 6= 0 (recall that yk+1 6∈ C(x)). Since gk(
∑∞
j=k+1 yj) = G̃ we

should have gk(e)(x, yk+1) = G.

If J(fk(e), gk(e)) = 0 then gk(e)(x, yk+1) = cF λ (since fk(e) is a homoge-

neous form of a non-zero weight any homogeneous form which is algebraically

dependent with fk(e) is proportional to a rational power of fk(e)). But G

depends on x and so J(fk(e), gk(e)) 6= 0. In view of J(fk, gk) = 1 this implies

J(fk(e), gk(e)) = 1.

Since the expansion ỹ is by components with the increasing weight, w(x) >

0, w(fk) < 0 the leading vertex (m,n) should be below the line containing e.

The following consideration shows that this is impossible. We have w(gk) =

w(G) = σ < 0 and ρ+ σ = w(x) +w(y) to make J(fk(e), gk(e)) = 1 possible.

Therefore ρ = w(x)+w(y)−σ = 1+α−σ and points (ρ, 0) and (1−σ, 1) have

the same weight ρ. (Recall that w(x) = 1, w(y) = α, w(F ) = ρ, w(G) = σ.)

Thus they both belong to the line containing the edge e. But this line inter-

sects the bisectrix of the first quadrant in the point with coordinates smaller
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than 1 since ρ < 0, σ < 0, and the vertex (m,n) is above this line.

Hence Φb cannot be below FOG and P (x, F,G) ∈ C[x, F,G]. On the

other hand P (0, f(x, 0), g(x, 0)) = 0 and the Newton polygon of this depen-

dence is not an edge. Therefore the face Φb coincides with FOG.

The face Φa.

For the face Φa, another face which contains E , choose the weight w(x) =

1, w(F ) = ρ > 0, w(G) = σ > 0. An expansion of G relative to this weight

is by components with the decreasing weight.

Repeating verbatim considerations from the previous subsection we ob-

tain an edge e of the correspondingN (fl) which belongs to the line containing

the points (ρ, 0), (1− σ, 1) and runs below the leading vertex (m,n).

Therefore ρ + n[1 − σ − ρ] ≥ m, i. e. n − m ≥ n(ρ + σ) − ρ. Also

σ = b0
a0
ρ because Φa contains E and n − m ≥ [n(1 + b0

a0
) − 1]ρ. Hence

ρ ≤ (n−m)a0
n(a0+b0)−a0 , σ ≤

(n−m)b0
n(a0+b0)−a0 and degx(P ) ≤ nσ ≤ (n−m) nb0

n(a0+b0)−a0 .

If these inequalities are not strict then the edge e contains (m,n) i.e. e

is the (right) leading edge. Since ρ < 1, σ < 1 this would imply that f(x, 0)

and g(x, 0) are constants and then J(f, g) = 1 is impossible. Therefore (m,n)

does not belong to e and the inequalities are strict.

From Lemma on y we have C(x, f, g) = C(x, y). Therefore the degree

[C(x, y) : C(f, g)] of the field extension is equal to degx(P ) and [C(x, y) :

C(f, g)] < (n − m) nb0
n(a0+b0)−a0 . This estimate is sharper than the estimate

m+ n obtained by Yitang Zhang (see [Zh]).

It is known that [C(x, y) : C(f, g)] = degx(P ) for the Jacobian mapping is
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at least 6 (see [D1], [D2], [DO], [Or], [S], [Zo]). Hence the difference n−m > 6.

We can get a somewhat better estimate for ρ if we consider the highest

possible order vertex of the modified leading edge. For example if the leading

edge is vertical then m divides n and the leading form of f can be (xiyi(k+1)−

xiyi(k+1)−1)a0 . Therefore the order vertex in the “vertical” case cannot be

higher than (m,n− a0).

If the leading edge is not vertical then after modification the order vertex

of fw also can be (µ, n− a0) where µ < m.

So the “best” improvement is obtainable in the case of the vertical edge

and gives [C(x, y) : C(f, g)] < (n−m− a0) nb0
(n−a0)(a0+b0)−a0

Edges of N (P ).

An edge of N (P ) can be parallel to a coordinate plane GOx or FOG

and then the leading form of G which corresponds to this edge is cxr or cF r

where c ∈ C∗, r ∈ Q. An edge parallel to FOx does not correspond to any

leading form of G.

If E is a slanted edge i.e. an edge which is not parallel to any coordinate

plane then the leading form G = cxr1F r2 where c ∈ C∗, ri ∈ Q∗. In this case

we have more freedom in choosing a weight which corresponds to E and with

an appropriate choice the edge e ∈ N (fk) (see The face Φb) collapses to a

vertex and both fk(e), gk(e) are monomials. Since J(fk(e), gk(e)) = 1 and

degy(fk(e)), degy(gk(e)) are non-negative integers either degy(gk(e)) = 0 or

degy(fk(e)) = 0. If degy(gk(e)) = 0 then G = gk(e)(x, yk+1) = xr and
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the edge E is parallel to GOx and not slanted; if degy(fk(e)) = 0 then

fk(e) ∈ C(x) while fk(e)(x, yk+1) = F .

Hence N (P ) does not have slanted edges.

Non-vertical and non-horizontal faces.

Consider again the face Φa. This face belongs to a slanted plane contain-

ing E which intersects the first octant by a triangle 4. Since all edges of Φa

are parallel to the coordinate planes and Φa contains E , the face Φa is either

4 or a trapezoid obtained from 4 by cutting it with an edge E1 parallel to

E .

If Φa is a trapezoid then the same consideration applied to E1 shows that

the next face is also a triangle or a trapezoid, and so on until we reach the

face parallel to FOG.

Horizontal faces.

We have a non-degenerate horizontal face Φb ⊂ FOG (“floor”). We also

have a “ceiling” which may degenerate into a vertex. Let us replace f, g

by f − c1, g − c2 where ci ∈ C and (c1, c2) is a “general pair”. Then the

corresponding Newton polytope has a triangular floor (with a vertex in the

origin) and a triangular ceiling (with a vertex on the x axis).
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The shape of N (P ).

Collecting information we obtained about N (P) we can conclude that all

its vertices are in the coordinate planes FOx and GOX, there are two hori-

zontal faces which are right triangles with right angles in the origin and on

the x axes, a face ΦG in FOx and a face ΦF in GOx, which are polygons with

the same number of vertices, and all remaining faces are trapezoids obtained

by connecting the corresponding vertices of ΦF and ΦG by edges which are

parallel to E .

To give a new proof that in the case of two characteristic pairs counterex-

ample is impossible (see [A2, A3, A4, A5]) ) we will estimate ρ from below.

An estimate of ρ from below.

In order to get an estimate for ρ of the face Φa from below we should

know more about P (x, F,G).

Consider f, g ∈ C(x)[y]. The first necessary ingredient is the expansion

of g as a power series of f in an appropriate algebra relative to the weight

given by w(y) = 1, w(x) = 0.

Expansion of G.

Consider the ring L = C[x−1, x] of Laurent polynomials in x. Define A to

be the algebra of asymptotic power series in y with coefficients in L, i.e. the
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elements of A are
∑i=k
−∞ yiy

i where yi ∈ L. For a =
∑i=k
−∞ yiy

i define |a| = yky
k.

Lemma on radical. If r ∈ Q is a rational number, |a| = cxlyk, c ∈ C,

and |a|r ∈ A then ar ∈ A.

Proof. This follows from the Newton binomial theorem since a = |a|(1 +∑i=k−1
−∞

yi
yk
yi−k) where all yi

yk
∈ L. Therefore ar = |a|r∑∞j=0

(
r
j

)
(
∑i=k−1
−∞

yi
yk
yi−k)j

is an element of A. 2

Consider f(x, y), g(x, y) as elements of A. Then |f | = xmyn and |g| =

|f |λ0 where λ0 = b0
a0

(see Introduction and Newton polytope N (P )). By

lemma on radical fλ0 ∈ A and hence g1 = g− c0fλ0 ∈ A (here c0 = 1). Since

J(f, g1) = 1 either J(|f |, |g1|) = 0 or J(|f |, |g1|) = 1. If J(|f |, |g1|) = 0 then

|g1| = c1|f |λ1 , c1 ∈ C, r1 ∈ Q and we can define g2 = g − c0f
λ0 − c1f

λ1

which is in A for the same reasons as g1. We can proceed until we obtain

gκ = g − ∑κ−1
i=0 cif

λi ∈ A for which J(|f |, |gκ|) = 1, i.e. J(xmyn, |gκ|) = 1.

Therefore |gκ| = (cκ(x
myn)

1−n
n − 1

n−mx
1−my1−n) where cκ ∈ C. If cκ 6= 0

then (xmyn)
1−n
n ∈ A and m

n
∈ Z which is impossible since 0 < m < n. Thus

|gκ| = 1
(m−n)x

1−my1−n and we can write

g =
κ−1∑
i=0

cif
λi + gκ, ci ∈ C (1)

where degy(|fλi |) > 1 − n, degy(|gκ|) = 1− n, and |gκ| = 1
(m−n)x

1−my1−n =

1
(m−n)x

n−m
n |f |λκ where λκ = 1−n

n
.

In order to obtain a “complete” expansion

g =
∞∑
i=0

cif
λi (2)
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of g through x and f we should extend A to a larger algebra B with ele-

ments
∑i=k
−∞ yiy

i where yi ∈ Ln = C[x
−m
n , x

m
n ] in which f

1
n is defined. Indeed

|x−m
n f

1
n | = y and we can obtain an expansion with ci ∈ Ln.

Hence λi = ni
n
, ni ∈ Z. Since degg(P ) = n and λκ = 1−n

n
all n roots Gj of

P (x, F,G) = 0 in B can be obtained from G =
∑∞
i=0 ciF

ni
n by substitutions

F
1
n → εjF

1
n , j = 0, 1, . . . , n− 1 where ε is a primitive root of 1 of power n.

A monomial of P (x, F,G) containing a power of x.

Polytope N (P ) contains the edge E with vertices (n0, 0, 0) and (0, n, 0)

(in the system of coordinates FGx). Hence if N (P ) contains a vertex (i, j, k)

then λ0nρ ≥ iρ + jσ + k = (i + λ0j)ρ + k and ρ ≥ k
λ0(n−j)−i which gives a

meaningful estimate when k > 0.

The following algorithm will produce an irreducible relation for polyno-

mials f, g ∈ C(x)[y].

Put g̃0 = g. Assume that after s steps we obtained g̃0, . . . , g̃s. Denote

degy(g̃i) by mi and the greatest common divisor of n,m0, . . . ,mi by di. Put

d−1 = n and ai = di−1

di
for 0 ≤ i ≤ s. (Clearly asms is divisible by ds−1 and

as is the smallest integer with this property.)

Call a monomial m = f ig̃j00 . . . g̃
js
s s-standard if 0 ≤ jk < ak, k = 0, . . . , s.

Find an s−1-standard monomial ms,0 with degy(ms,0) = asms and k0 ∈ K =

C(x) for which ms,1 = degy(g̃
as
s − k0ms,0) < asms. If ms,1 is divisible by ds

find an s-standard monomial ms,1 with degy(ms,1) = ms,1 and k1 ∈ K for

which ms,2 = deg(g̃ass − k0ms,0 − k1ms,1) < ms,1 and so on.
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If after a finite number of reductions ms,i which is not divisible by ds is

obtained, denote the corresponding expression by g̃s+1 and make the next

step. After a finite number of steps we obtain an irreducible relation.

This algorithm was suggested in [ML1] with a proof that it works. In the

zero characteristic case it is also shown there that all g̃i are polynomials in y

(i.e. there are no negative powers of f in the standard monomials).

We can rewrite (1) as

g =
κ−1∑
i=0

cif
ni
n + gκ, ci ∈ C (3)

where |gκ| = 1
(m−n)

xy
|f | . Applying the algorithm to this expansion we will get

after several steps “the last” g̃κ with |g̃κ| = c|xy
f
g̃a0−10 g̃a1−11 . . . g̃

aκ−1−1
κ−1 |.

In the case of two characteristic pairs κ = 1 and |g̃1| = c|xy
f
g̃a0−10 |. If

we denote |f | = (xayb)a0 , |g| = (xayb)b0 then P = g̃b1 − cxb−af ig̃j0 − . . .

where |xb−af ig̃j0| = |xy
f
g̃a0−10 |b. Therefore ρ ≥ b−a

λ0(n−j)−i = b−a
λ0(ba0−j)−i . Since

|xb−af ig̃j0| = |xy
f
g̃a0−10 |b = |xb−a(xayb)1−a0b+b0(a0−1)b| we have a0i + b0j =

1−a0b+b0(a0−1)b and i+λ0j = bb0a0−ba0−bb0+1
a0

(recall that λ0 = b0
a0

). Hence

ρ ≥ b−a
λ0(ba0−j)−i = (b−a)a0

λ0ba20−(bb0a0−ba0−bb0+1)
= (b−a)a0

ba0b0−(bb0a0−ba0−bb0+1)
= (b−a)a0

ba0+bb0−1 .

On the other hand ρ < (n−m)a0
n(a0+b0)−a0 =

(b−a)a20
ba0(a0+b0)−a0 = (b−a)a0

b(a0+b0)−1 and we have a

contradiction.
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[Zo] H. Żo ladek, An application of Newton-Puiseux charts to the Jacobian

problem. (English summary) Topology 47 (2008), no. 6, 431–469.

19



Department of Mathematics, Wayne State University, Detroit, MI 48202, USA;

Max-Planck-Institut für Mathematik, 53111 Bonn, Germany;

Department of Mathematics & Computer Science, the Weizmann Institute of Science,

Rehovot 76100, Israel;

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA.

E-mail address: lml@math.wayne.edu

20


	30_Makar-Limanov_cover
	30_Makar-Limanov

