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Automorphic zeta functions of orthogonal groups (resp., symplectic groups) are de-
fined by Euler products associated to eigenfunctions of corresponding Hecke–Shimura

rings operating on spaces of polynomial harmonic vectors (resp., spaces of Siegel mod-

ular forms). Although these groups and rings are quite different, it was found that
sometimes the corresponding zeta functions are close related. For example, the zeta

function of orthogonal group of every integral positive definite quadratic form in 4
variables corresponding to an harmonic eigenvectors of genus 2 are equal up to a

translation of argument to the (spinor) zeta function of the theta-series of genus 2 of

the quadratic form twisted with this harmonic vector. A similar result is also proved
for quadratic forms in 2 variables. Proofs of the relations between zeta functions of

the orthogonal and symplectic groups are based on author’s formulas expressing im-

ages of harmonic theta-series under the action of symplectic Hecke operators through
the action of orthogonal Hecke–Shimura rings on their harmonic coefficients.
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§1. Introduction on orthogonal zeta functions

The principal objects and tools of the arithmetic representation theory of Lie
groups, the zeta functions of discrete subgroups, naturally arise from consideration
of representations of corresponding Hecke–Shimura rings on suitable spaces of au-
tomorphic forms (automorphic representations). In the most popular case of zeta
functions of modular forms one considers representations of Hecke–Shimura rings
of subgroups of the integral symplectic groups Spn(Z) on spaces of holomorphic
modular forms given by Hecke operators.
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2 ANATOLI ANDRIANOV

In this work we are continuing the study of zeta functions of orthogonal groups
of integral positive definite quadratic forms started in [10] for the case of single-
class forms. In the situation of orthogonal groups Hecke–Shimura rings appears
as automorph class rings of suitable systems of integral quadratic forms. In the
simplest case of single-class quadratic forms if, for example, the genus of the form
consists of single class of integral equivalence, it is just the automorhp class ring
of such a form. An (integral proper) automorph of a nonsingular integral quadratic
form q(X) in m variables is by definition an integral m×m-matrix D with positive
determinant satisfying the condition

(1.1) q(DX) = µq(X) ( tX = (x1, . . . , xm)),

where µ = µ(D) is an integral positive number called the multiplier of the auto-

morph. All automorphes form a semigroup A = A(q), the automorph semigroup

of q, and the automorphes of the multiplier µ = 1 form a subgroup E = E(q), the
group of (proper) units of q. The Hecke–Shimura ring or the automorph class ring

of q over Z consists of all finite formal linear combinations with coefficients in Z
of the symbols (EDE) = τ(D) corresponding in a one-to-one way to double cosets
EDE of A modulo E, called bellow just by double classes,

(1.2) H = H(q) =

{
τ =

∑

α

aατ(Dα) ( formal finite )
∣∣∣ aα ∈ Z, Dα ∈ A

}
,

with the product of two double cosets defined by

τ(D)τ(D′) =
∑

ED′′E⊂EDED′E

c(D,D′; D′′)τ(D′′)

where c(D,D′; D′′) is the number of pairs of representatives Di ∈ E\EDE and
D′

j ∈ E\ED′E satisfying DiD
′
j ∈ ED′′. If form q is not single-class, the ring H,

should be replaced by a more complicated construction of a matrix Hecke–Shimura

ring, which will be explained in next section. In the single-class case the sums of
double cosets of fixed multipliers,

(1.3) τ(µ) =
∑

D∈E\A/E, µ(D)=µ

τ(D) ∈ H,

satisfy simple multiplicative relations

(1.4) τ(µ)τ(ν) = τ(ν)τ(µ) = τ(µν)

if µ and ν are coprime, and µ or ν is coprime to the determinant of q. It follows
that the formal Dirichlet series with the coefficients τ(1), τ(2), . . . (note that τ(1) =
τ(1m) is the unity element of the ring H) can be expanded into a formal Euler
product:

(1.5)
∞∑

µ=1

τ(µ)

µs
=

∑

ν|(detq)∞

τ(ν)

νs

∏

p - detq

∞∑

δ=0

τ(pδ)p−δs,
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where µs we consider just as a formal quasicharacter of the multiplicative semigroup
N of positive integers, and where ν and p range over all positive integers dividing
some powers of detq and prime numbers not dividing detq, respectively. The
specialization of a general conjecture formulated in [7] (see next section) to the
single-class case assumes that, for each prime number p not dividing detq, the
formal power series with coefficients τ(1), τ(p), τ(p2), . . . is (formally) a rational
fraction over the ring H = H(q) with denominator of degree 2k and numerator of
degree at most 2k − 2, when the number of variables m of q is odd of the form
2k − 1 or even of the form 2k::

∞∑

δ=0

τ(pδ)tδ = Rp(t)
−1Φp(t),

where
Rp(t) = τ(1) +

∑

1≤i≤2k

ρit
i, Φp(t) =

∑

0≤j≤2k−2

φjt
j

with ρi = ρi(p), φj = φj(p) ∈ H(q). In this case we shall say that the formal power
series over H(q) given by

(1.6) Zp(t, q) = Rp(t)
−1

is a local zeta series of form q.
Let us suppose now that we are given a complex representation H(q) 3 τ 7→ |τ

of the ring H(q) on some linear space, and P is a common eigenfunction, so that
P |τ = λ(τ)P for all τ ∈ H(q) with the eigenvalues λ(τ). As a representation spaces
in this case appear the spaces of harmonic polynomials relevant to the quadratic
form. Then, by analogy with the theory of zeta functions of Siegel modular forms,
one can consider the power series

Zp(t, P ) =


1 +

∑

1≤i≤2k

λ(ρi)t
i




−1

and the Euler product

(1.7) Z(s, P ) =
∏

p - detq

Zp(p
−s, P ),

which is naturally to call a local and the (regular) global orthogonal zeta function of

the form q, respectively, corresponding to the eigenfunction P and ask on properties
of the zeta functions. In general case representation on harmonic forms is replaced
by representation on harmonic vectors. To the natural question whether exist
links of zeta functions corresponding to different types of discrete subgroups we
obtain here a partial positive answer. It will be shown that in some cases the
orthogonal zeta functions can be explicitly expressed through spinor zeta functions
of appropriate Siegel modular forms.
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In §2 we survey basic definitions and properties of the automorph class rings.
In §3 we examine the standard representations of automorph class rings on spaces
of harmonic vectors and consider the question of existence of eigenvectors. In §4,
in particular, we find explicit expressions of the zeta functions of positive definite
quadratic forms in m = 2 and 4 variables corresponding to the eigenvectors in terms
of Hecke zeta function, if m = 2, and Andrianov zeta function of genus 2, if m = 4,
of harmonic theta-series with the harmonic eigenvectors as coefficients (Theorems
4.2 and 4.3, respectively). It is shown in §5 on examples of binary quadratic forms
of fundamental discriminants that corresponding global zeta functions coincide,
in fact, with zeta functions of relevant quadratic fields with appropriate Hecke
characters.

One can hardly doubt that presented here results of rather elaborate calcu-
lations is just a reflection of much more general links of automorphic represen-
tations of Hecke–Shimura rings of orthogonal and symplectic groups over global
fields. The transformation formalism expressing images of harmonic theta-series
under the action of Hecke operators through the action of automorph class rings on
their harmonic coefficients and underlying relations between Hecke–Shimura rings
of symplectic groups and automorph class rings of orthogonal groups may provide
an initial tool for investigation of these links (see, for example,[4], [5], and [9]).
Nevertheless, the direct approaches to orthogonal zeta functions not based on the
reduction to the symplectic case would be also of considerable interest.

Notation. We fix the letters N, Z, Q, and C, as usual, for the set of positive
rational integers, the ring of rational integers, the field of rational numbers, and
the field of complex numbers, respectively.

If A is a set, Am
n denotes the set of all m × n-matrices with elements in A. If

A is a ring with the identity element, 1n denote the identity element of the ring
An

n. The transpose of a matrix M is denoted by tM . For two matrices S and N of
appropriate sizes we write

S[N ] = tNSN.

Acknowledgements. This paper was comleted during my stay at Max-Planck-
Institut für Mathematik in Bonn during the Spring of 2006. I am very grateful to
administration and staff of the Max-Planck-Institut for warm hospitality, exelent
working conditions, and support.

§2 Automorph class rings of integral quadratic forms

In this section we are going to define automorph class rings of integral nonsin-
gular quadratic forms and consider basic properties of the rings. We mainly follow
the scheme stated in [3] but we replace the systems of representatives of integral
equivalence classes of even matrices having the same size, signature, divisor, level,
and determinant considered in [3] by more natural systems of representatives of
proper integral equivalence classes contained in the proper similarity class of an
even nonsingular matrix.

We first define the abstract rings, which can be regarded as matrix generaliza-
tions of Hecke–Shimura rings of double cosets. Let us suppose that we are given a
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multiplicative group G, a finite set of subgroups Λ1, . . . , Λh, and subsets Σij ⊂ G
for all pairs of indices i, j = 1, 2, . . . , h. We shall say that the system

(2.1) S =
(
Λ1, . . . , Λh;Σ11, Σ12, . . . , Σhh

)

is a hs–system if the following three conditions are fulfilled:
(i) ΣijΣjk ⊂ Σik for i, j, k = 1, 2, . . . , h;
(ii) Λi ⊂ Σii for i = 1, 2, . . . , h;
(iii) each double coset ΛigΛj with g ∈ Σij is a union of finite number of left

cosets Λig
′.

It is easy to check that, since G is a group, then each double coset ΛigΛj with
g ∈ Σij is also union of finite number of right cosets g′Λj , and decomposition of the
double coset ΛigΛj into disjoin union of left cosets modulo Λi (resp., right cosets
modulo Λj) can be taken in the form

(2.2) ΛigΛj =

{ ⋃
λ∈(Λj∩g−1Λig)\Λj

Λigλ⋃
λ∈Λi/(Λi∩gΛjg−1) λgΛj.

We shall say that a hs–system (2.1) is tame if each of the double coset ΛigΛj

with g ∈ Σij is also a union of finite number of right cosets g′Λj , and the number
of the right cosets is equal to the numbers of the left cosets Λig

′ ⊂ ΛigΛj. Since G
is group, this condition, according to (2.2), means that

(2.3) [Λi : (Λi ∩ gΛjg
−1)] = [Λj : (Λj ∩ g−1Λig)]

= [gΛjg
−1 : (Λi ∩ gΛjg

−1)] (∀ i, j = 1, 2, . . . , h, and g ∈ Σij).

Lemma 2.1. (1). The hs–system (2.1) is tame if and only if each of the double

coset ΛigΛj with g ∈ Σij contains a common system of representatives for left

cosets modulo Λi and right cosets modulo Λj .

(2). If all of the groups Λ1, . . . , Λh are finite, then the hs–system (2.1) is tame

if and only if the groups have equal orders:

(2.4) #(Λ1) = · · · = #(Λh).

Proof. The part (1) follows from the obvious observation that each left coset Λigλ
with λ ∈ Λj meets each right coset µgΛj with µ ∈ Λi, since the element µgλ belongs
to the both of the cosets. If the groups Λi and Λj are finite, the set ΛigΛj is finite
too and

#(ΛigΛj) = #(Λi)#(Λi\ΛigΛj) = #(ΛigΛj/Λj)#(Λj).

Thus, the equality (2.3) is equivalent to #(Λi) = #(Λj). 4.

Given a hs–system (2.1), we let Lij = L(Λi, Σij) denote the free Abelian group
consisting of all finite formal linear combinations

τ =
∑

α

aα(Λigα)
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with integral coefficients aα, of the symbols (Λigα) with gα ∈ Σij which are in
one-to-one correspondence with the left cosets of Σij relative to the group Λi, and
we let Dij denote the subgroup of Lij consisting of all elements which are invariant
under the natural right multiplication by every elements in Λj :

Λj 3 λ : τ 7→ τλ =
∑

α

aα(Λigαλ),

i.e.,
Dij = {τ ∈ Lij | τλ = τ for all λ ∈ Λj}.

It is easy to see that the subgroup Dij is again free, and for a basis of the subgroup
one can take the different elements of the form

(2.5) τ(g) =
∑

gα∈Λi\ΛigΛj

(Λigα) (g ∈ Σij),

which are in one-to-one correspondence with the distinct double cosets ΛigΛj con-
tained in Σij . For given elements

τ =
∑

α

aα(Λigα) ∈ Dij and τ ′ =
∑

β

bβ(Λjg
′
β) ∈ Djk,

where i, j, k = 1, 2, . . . , h, we define the product ττ ′ by setting

(2.6) ττ ′ =
∑

α,β

aαbβ(Λigαg
′
β).

It is not hard to see that this product does not depend on the choice of represen-
tatives gα or g′β in the corresponding left cosets, belongs to the space Dik, and
determines a bilinear pairing

Dij ×Djk 7→ DijDjk ⊂ Dik.

Finally, we let

(2.7) D = D〈S〉 = D(Λ1, . . . , Λh;Σ11, Σ12, . . . , Σhh)

denote the additive group consisting of all h× h-matrices of the form

t =



τ11 . . . τ1h
...

. . .
...

τh1 . . . τhh


 ,

where τij ∈ Dij , with the natural matrix addition and multiplication by integral
scalars. Clearly, the group D is free, and as a basis of the group one can take the
set matrices of the form

(2.8) t[(gij)] =



τ(g11) . . . τ(g1h)

...
. . .

...
τ(gh1) . . . τ(ghh)


 ,
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where gij ∈ Σij and τ(gij) ∈ Dij are elements of the form (2.5). If we now define
multiplication in D by the usual rule for matrix multiplication,

tt′ = (τij)(τ
′
jk) =




h∑

j=1

τijτ
′
jk


 ,

where τijτ
′
jk is the product (2.6), we obviously obtain an associative ring, which we

shall call the (matrix) Hecke–Shimura ring (HS–ring) or the ring of double cosets

of the system S = (Λ1, . . . , Λh;Σ11, Σ12, . . . , Σhh) (over Z). The HS– ring D(S) is
called tame if the system S is tame. Note that the basic ring Z in the definition
of Hecke–Shimura rings can be replaced by arbitrary commutative and associative
ring A with the identity element, which leads to Hecke–Shimura rings over A.

Now we turn our attention to representations of quadratic forms by quadratic
forms. A quadratic form

(2.9) q(X) =
1

2
tXQX ( tX = (x1, . . . , xm))

in m variables with matrix Q is called integral if the matrix Q belongs to the set

Em =
{
Q = (Qij) ∈ Zm

m

∣∣∣ Qij = Qji, Qii ∈ 2Z (i, j = 1, . . . ,m)
}

of even matrices of order m. The form is nonsingular if detq = detQ 6= 0. Speaking
on integral quadratic forms, we shall mainly use the equivalent language of even
matrices. The reader can easily translate corresponding definitions and statements
into the language of quadratic forms.

For two matrices Q and Q′ of Em we shall denote by

(2.10) R+(Q, Q′) =
{
D ∈ Zm

m

∣∣∣ Q[D] = Q′, detD > 0
}

the set of all proper integral representations of Q′ by Q. Two nonsingular matrices
Q and Q′ of Em are said to be properly similar,

Q ∼+ Q′,

if detQ = detQ′, and the set R+(Q, µQ′) is not empty for an integral positive
scalar µ coprime to detQ. In this case a matrix D ∈ R+(Q, µQ′) is called a
(proper) similarity of Q to Q′ with the multiplier µ = µ(D). We shall denote by

(2.11) S+(Q, Q′) =
⋃

µ∈N, gcd(µ,det Q)=1

R+(Q, µQ′), where detQ = detQ′,

the set of all (proper) similarities of Q to Q′.
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Lemma 2.2. Let Q and Q′ be two nonsingular matrices of Em with equal deter-

minants. Then the mapping

(2.12) S+(Q, Q′) 3 D 7→ D∗ = µ(D)D−1

is an bijection of the set S+(Q, Q′) onto the set S+(Q′, Q), which does not change

multipliers and satisfies (D∗)∗ = D. In addition, if D ∈ S+(Q, Q′) and D1 ∈
S+(Q′, Q′′), where Q, Q′ and Q′′ are even matrices of the same order with equal

nonzero determinants, then (DD1)
∗ = D∗

1D
∗.

Proof. If D ∈ S+(Q, Q′), then the matrix D∗ = µ(D)D−1 satisfies obviously
tD∗Q′D∗ = µ(D)Q and D∗ = (Q′)−1 tDQ. It follows that the matrix D∗ is integral,
because its products by two coprime numbers detD = µm/2 and detQ′ = detQ are
integral, belongs to S+(Q′, Q), and has the same multiplier as that of D.The rest
is clear. 4

The relation of proper similarity is clearly reflexive and transitive. Besides, the
relation is symmetric, by Lemma 2.2. It follows that the set of nonsingular even
matrices of given order is disjoint union of the proper similarity classes

(2.13) 〈Q〉+ =
{
Q′ ∈ Em

∣∣∣ Q′ ∼+ Q
}
.

Further, we recall that two even matrices Q and Q′ of order m are said to be
properly equivalent, Q '+ Q′, if

Q′ = Q[U ] with some U ∈ Λm
+ = SLm(Z).

Quadratic forms q and q′ with properly equivalent matrices are called properly

equivalent, q '+ q′. The set of all matrices Q′ (resp., quadratic forms q′), which
are properly equivalent to a given matrix Q (resp., a form q) is called the (proper)
equivalence class of the matrix Q (resp., of the form q) and denoted by {Q}+ (resp.,
{q}+). For example,

(2.14) {Q}+ =
{
Q′ = Q[U ]

∣∣∣ U ∈ Λm
+

}
.

The basic characteristics of an integral quadratic form with matrix Q such as the
signature of Q (i.e. the numbers of positive and negative squares in a real diag-
onalization of the corresponding form q), the determinant d = detQ, the divisor

of Q when Q 6= 0 (i.e. the largest natural number δ such that δ−1Q is an even
matrix), and the level of Q when detQ 6= 0 (i.e. the smallest natural number q
such that qQ−1 is an even matrix) all depend only on the equivalence class (2.6) of
the matrix Q. According to the reduction theory of integral quadratic forms (see,
for example, [13, Chapter 9]), the set of all even matrices of fixed size and fixed
nonzero determinant is the union of a finite number of classes of integrally properly
equivalent matrices. In particular, each proper similarity class of a nonsingular
even matrix is a finite union of the (disjoint) classes of proper equivalence,

(2.15) 〈Q〉+ =

h+〈Q〉⋃

i=1

{Qi}+.
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The number h = h+〈Q〉 = h+〈q〉 will be refereed as (proper similarity) class number

of the matrix Q. Since we consider below only proper similarities, equivalences,
classes, and class number, the adjective ”proper” as well as the corresponding index
”+” will be, as a rule, omitted after the first mention.

Let Q be a nonsingular matrix of Em. We fix a set of representatives Q1, . . . , Qh

satisfying (2.15). Given such a system, we define subgroups E1,E2, . . . ,Eh of the
group G = GLm(Q) by taking Ei to be the group

(2.16) Ei = E+(Qi) = R+(Qi, Qi)

of (proper) units of the matrix Qi, and define subsets Aij of G for i, j = 1, . . . , h
by taking Aij to be the sets

(2.17) Aij =

∞⋃

µ=1

Aij(µ), where Aij(µ) = R+(Qi, µQj),

of (proper) automorphes of Qi to Qj . Unlike the similarities, the multiplier of an
automorph can be arbitrary positive integer.

We are going to define the Hecke–Shimura ring (2.7) of the system

S〈Q〉 = (E1, . . . ,Eh;A11,A12, . . . ,Ahh),

but first we have to check whether it is a hs–system. From the definitions it
immediately follows that the groups Λi = Ei and sets Σij = Aij satisfy conditions
(i) and (ii) of the definition of hs–systems. To verify the condition (iii) we prove
the following simple lemma.

Lemma 2.3. For every nonsingular matrix D ∈ Zm
m, the intersection of the left

coset ΛD modulo the group Λ = Λ+ = SLm(Z) with a set Aij is either empty or

else consists of a single left coset EiD
′ of the set Aij modulo the group Ei.

Proof. In fact, if D′, D′′ ∈ Aij ∩ ΛD, then Qi[D
′] = µ′Qj, Qi[D

′′] = µ′′Qj, and
D′′ = λD′ with λ ∈ Λ, whence

Qi[λ] = Qi[D
′′(D′)−1] = µ′′Qj [(D

′)−1] = µ′′/µ′Qi

and so µ′′ = µ′, λ ∈ Ei, and D′′ ∈ EiD
′. 4

We now turn to the condition (iii). Let D ∈ Aij , and let

EiDEj =
⋃

α

EiDα

be a partition into disjoint left cosets. Then

⋃

α

EiDα ⊂ ΛDΛ =
⋃

β

ΛD′
β ,
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and, by the lemma, each coset ΛD′
β contains not more than one of the cosets EiDα.

But the union on the right is finite (see, for example, [2, §3.2]), and so the union
on the left is also finite. Therefore we can define the ring (2.7) of double cosets of
the system S〈Q〉,

(2.18) H〈Q〉 = H(Q1, . . . , Qh) = D(E1, . . . ,Eh;A11,A12, . . . ,Ahh)

generalizing the ring (1.2), which will be called a Hecke–Shimura ring or automorph

class ring of Q (over Z). In what follows we shall fix the matrix Q and all the
notation related with the definition of the ring H〈Q〉, including a system Q1, . . . , Qh

of representatives of classes of integral equivalence contained in the similarity class
(2.15).

The elements of the ring H〈Q〉 of the form (2.8),

(2.19) τττ [(Dij)] =
(
τ(Dij)

) (
Dij ∈ Aij , τ(Dij) =

∑

Dα
ij∈Ei\EiDijEj

(
EiD

α
ij)
)
,

form a basis of the ring over Z. The elements (2.19), where all of the matrices Dij

belong to the corresponding subsets of similarities

Sij =
⋃

µ≥1,gcd(µ,q)=1

Aij(µ) ⊂ Aij

and their linear combinations with integral coefficients will be called regular ele-

ments of the ring H〈Q〉. The subset Hr〈Q〉 of all regular elements form clearly
a subring of H〈Q〉, the regular subring of H〈Q〉 or the similarity class ring of Q,
which itself can be interpreted as a ring of double cosets:

(2.20) Hr〈Q〉 = D(E1, . . . ,Eh;S11,S12, . . . ,Shh) ⊂ H〈Q〉,

For an element

(2.21) t =
∑

α

aα

(
τ(Dα

ij)
)
∈ Hr〈Q〉,

we set

(2.22) t∗ =
∑

α

aα
t(τ∗(Dα

ij)), where τ∗(D) = τ(D∗) = τ(µ(D)D−1).

Lemma 2.4. The mapping t 7→ t∗ is a linear antiautomorphism of the order 2 of

the similarity class ring Hr〈Q〉.
Proof. By Lemma 2.2, the map t 7→ t∗ is a linear mapping of Hr〈Q〉 into itself and
satisfies (t∗)∗ = t. In particular, it is one-to-one.

It remains to check that the map t 7→ t∗ is a multiplicative antihomomorphism,
i.e. it satisfies relations

(2.23) (tt1)
∗ = t∗1t

∗ (t, t1 ∈ Hr〈Q〉).
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It is sufficient to verify the relations for basic elements (2.19) of the ring Hr〈Q〉.
Note, first of all, that by a quite elementary but rather tiresome computation based
on the technique used in the proof of [2, Proposition 3.1.7], one can check that

(2.24)
(
τ(D)τ(D′)

)∗
= τ∗(D′)τ∗(D) for all D ∈ Sik, D

′ ∈ Skj (i, j, k = 1, . . . , h),

where the star map on the left is extended by linearity on integral linear combina-
tions of double cosets τ(D′′) with D′′ ∈ Sij . Then, on one hand, we have

(
(τ(Dik)(τ(D′

kj)
)∗
ij

=

(∑

k

τ(Dik)τ(D′
kj)

)∗

ij

=

(∑

k

τ∗(D′
kj)τ

∗(Dik)

)

ji

=

(∑

k

τ∗(D′
ki)τ

∗(Djk)

)

ij

.

On the other hand,

(
(τ(D′

ik))∗(τ(Dkj))
∗)

ij
=
(
(τ∗(D′

ki))(τ
∗(Djk))

)
ij

=

(∑

k

τ∗(D′
ki)τ

∗(Dkj)

)

ij

.

Comparison of the expressions proves the relations (2.23) for the basic elements. 4
Generally speaking, the ring H〈Q〉 is noncommutative, however, under certain

conditions important commutation relations similar to relations (1.4) for h〈Q〉 = 1
are valid for elements of the ring. In order to formulate the relations, we introduce
some notation. According to the theory of elementary divisors for the group Λ =
GLm(Z) (see, e.g. [2, Lemma 3.2.2]), each double coset ΛDΛ of a nonsingular
matrix D ∈ Zm

m contains unique diagonal representative of the form

(2.25) ed(D) = diag(d1, . . . , dm) with di ∈ N and di|di+1.

If detD > 0, the same is clearly true for the double coset Λ+DΛ+ of the group
Λ+ = SLm(Z). The diagonal matrix ed(D) is called the matrix of elementary

divisors of D, and the numbers di = di(D) are elementary divisors of D. The
elementary divisors satisfy

(2.26) di(D)di(D
′) = di(DD

′) (i = 1, . . . ,m) if gcd(det(D), det(D′)) = 1

and

(2.27) d1(D) · · ·dm(D) = | detD|,

For a matrix of elementary divisors

D = ed(D) = diag(d1, d2, . . . , dm)

we define an element of H〈Q〉 of the form

(2.28) t(D) = t[d1, . . . , dm] = (τij(d1, . . . , dm)),
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where, for i, j = 1, . . . , h,

τij(D) = τij[d1, . . . , dm] =

{ ∑
D′∈Ei\Aij∩Λ+DΛ+

(EiD
′) if Aij ∩ Λ+DΛ+ 6= ∅

0 if Aij ∩ Λ+DΛ+ = ∅,

and Aij are the sets of automorphes (2.17). In addition, for positive integers µ we
introduce the sum of elements (2.28) of the form

(2.29) t(µ) =
∑

di∈N, di|di+1,

d1···dm=µm/2

t[d1, . . . , dm] = (τij(µ))

similar to elements (1.3), where

τij(µ) =
∑

D′∈Ei\Aij(µ)

(EiD
′).

Finally, it will be convenient to define for positive integers d the ”scalar” elements
of H〈Q〉 of the form

(2.30) [d] = [d]m = t[d, . . . , d︸ ︷︷ ︸
m

] = diag((E1(d · 1m)), . . . , (Eh(d · 1m)).

Lemma 2.5. The elementary divisors of a similarity D ∈ Sij satisfy the relations

ed(D) = ed(µ(D)D−1) ⇔ dk(D)dm−k+1(D) = µ(D) (k = 1, 2, . . . ,m),

i.e. the corresponding elements (2.28) satisfy

t(D)∗ = t(D) (D ∈ Sij , i, j = 1, 2, . . . , h);

in particular,

(2.31) t(µ)∗ = t(µ) if gcd(µ, detQ) = 1.

Proof. Since detQi = detQj = detQ, it follows from the relation tDQiD = µ(D)Qj

that detD = µ(D)m/2 and tDQi = Qjµ(D)D−1. Since gcd(µ(D), detQ) = 1, the
last relation implies, by (2.26), the relation ed(D)ed(Q) = ed(Q)ed(µ(D)D−1).
The rest follows directly from definitions. 4
Theorem 2.6. Let Q be a nonsingular even matrix of order m, and let t(D) =
t[d1, . . . , dm] and t(D′) = t[d′1, . . . , d

′
m] be two nonzero elements of the form (2.28).

Suppose that the elementary divisors of matrices D and D′ satisfy the conditions

(2.32) gcd(dm/d1, d
′
m/d

′
1) = 1,

and gcd(dm/d1, detQ) = 1 or gcd(d′m/d
′
1, detQ) = 1.
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Then the following relations hold in the ring H〈Q〉:

(2.33) t(D)t(D′) = t(DD′) = t(D′)t(D).

In particular, for every element of the form (2.29) and every element (2.30),

(2.34) [d]t(D) = t(D)[d] = t(dD).

Proof. We follow the pattern of the proof of [3, Theorem 2.2] with necessary mod-
ifications. First of all, we note that the particular case (2.34) immediately and
directly follows from the definitions. Therefore, it is sufficient to prove relations
(2.33) assuming also that d1 = d′1 = 1. In this case the conditions (2.32) can
obviously be written in the form

gcd(detD, detD′) = 1, and gcd(detD, detQ) = 1 or gcd(detD′, detQ) = 1

which we shall assume in the sequel. To prove the first of relations (2.33) it is
enough to check that

∑

k

τik(D)τkj(D
′) = τij(DD

′) (i, j = 1, 2, . . . , h).

Let
τik(D) =

∑

α

(EiA
α
ik), τkj(D

′) =
∑

β

(EkB
β
kj),

and
τij(DD

′) =
∑

γ

(EiC
γ
ij).

Then we must show that it is possible to choose the set of representatives Cγ
ij of

the cosets Ei\Aij ∩ Λ+DD
′Λ+ to be the set of all products Aα

ikB
β
kj . Since detD

and detD′ are coprime, similarly to [2, Proposition 3.2.5] one can easily verify that
the following relation holds in the ring (2.7) of double cosets D(Λ,Σ) for the group
Λ = Λm

+ and semigroup Σ = {M ∈ Zm
m| detM > 0}:

(2.35)
∑

A′∈Λ\ΛDΛ

(ΛA′) ·
∑

B′∈Λ\ΛD′Λ

(ΛB′) =
∑

A′,B′

(ΛA′B′) =
∑

C′∈Λ\ΛDD′Λ

(ΛC ′).

From this relation and Lemma 2.2 it follows that all of the products Aα
ikB

β
kj are

contained in the double coset ΛDD′Λ, and they belong to distinct left cosets modulo
Λ in this double coset. In particular, they belong to distinct left cosets of the
subgroup Ei ⊂ Λ. We now take an arbitrary representative C ′ ∈ Ei\Aij ∩ΛDD′Λ.
By (2.35), C ′ can be written in the form

C ′ = A′B′, where A′ ∈ ΛDΛ, B′ ∈ ΛD′Λ.
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Since C ′ ∈ Aij , it follows that Qi[A
′B′] = µµ′Qj, and hence

(2.36) µ−1Qi[A
′] = µ′Qj [(B

′)−1],

where µ = µ(D) and µ′ = µ(D′). The denominators of the entries in the rational
symmetric matrix on the left in (2.36) are products of primes which divide µ =
(detD)2/m, while the denominators on the right side are products of primes which
divide detB′ = detD′. Since detD and detD′ are coprime, it follows that both of
the matrices in (2.36) are integral matrices. Furthermore, since at least one of the
numbers detD, detD′ is odd, it follows that both of the matrices are even matrices.
Since at least one of the numbers detD, detD′, say detD = detA′, is prime to
detQ = detQi. It follows that the even matrix µ−1Qi[A

′] is similar to Qi, and so
it is equivalent to one of the matrices Q1, . . . , Qh, say Qk:

µ−1Qi[A
′] = Qk[λ] with λ ∈ Λ,

so that Qi[A
′λ−1] = µQk. Thus, A′λ−1 ∈ Aik ∩ ΛDΛ and hence A′λ−1 = δAγ

ik

with δ ∈ Ei. But then, since

µµ′Qj = Qi[A
′B′] = Qi[A

′λ−1 · λB′] = µQk[λB′],

it follows that λB′ ∈ Akj ∩ ΛD′Λ, and hence λB′ = δ1B
β
kj with δ1 ∈ Ek. Then

C ′ = A′B′ = δAγ
ikδ1B

β
kj = δδ′Aα

ikB
β
kj,

where δδ′ ∈ Ei. This proves the theorem. 4
Corollary 2.7. The elements (2.29) satisfy

(2.37) t(µ)t(µ′) = t(µµ′) = t(µ′)t(µ)

if

gcd(µ, µ′) = 1, and gcd(µ, detQ) = 1 or gcd(µ′, detQ) = 1.

Proof. By summing up the relations (2.33) over all matrices of elementary divi-
sors D = diag(d1, . . . , dm) with d1 · · ·dm = µm/2 and D′ = diag(d′1, . . . , d

′
m) with

d′1 · · ·d′m = (µ′)m/2, we obviously get the relations (2.37). 4
It follows from Corollary 2.7 that the formal Dirichlet series with the coefficients

t(1), t(2), . . . can be expanded into a formal (matrix) Euler product similar to (1.5),

(2.38)
∞∑

µ=1

t(µ)

µs
=

∑

ν | (det Q)∞

t(ν)

νs

∏

p - det Q

∞∑

δ=0

t(pδ)

pδs
,

where we consider µs just as a formal quasicharacter of the multiplicative semigroup
N, and where ν and p range over all positive integers dividing a power of detQ and
prime numbers not dividing detQ, respectively. It was conjectured in [7] that, for
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each prime number p not dividing detQ, the formal power series with coefficients
t(1) = [1], t(p), t(p2), . . . is (formally) a rational fraction over the ring H〈Q〉 with
denominator of degree 2k and numerator of degree at most 2k − 2, when the order
m of Q is odd of the form 2k − 1 or even of the form 2k:

(2.39)

∞∑

δ=0

t(pδ)tδ = Rp(t)
−1Φp(t),

where
Rp(t) = [1] +

∑

1≤i≤2k

ρit
i, Φp(t) = [1] +

∑

1≤j≤2k−2

φjt
j

with ρi = ρi(p), φj = φj(p) ∈ H〈Q〉. In this case we shall say that the formal power
series over H〈Q〉 given by

(2.40) Zp(t, 〈Q〉) = Rp(t)
−1

is a local zeta series of Q. It was proved in [7] that the conjecture is true for even
nonsingular Q of order m = 2, 3, and 4. Namely, for each prime number p not
dividing detQ, the following formal identities hold:

(2.41)

∞∑

δ=0

t(pδ)tδ

=





([1] − t(p)t+ χQ(p)[p]t2)−1 (m = 2),

([1] − ( t(p2) − [p])t2 + p[p2]t4)−1([1] + [p]t2) (m = 3),

([1] − t(p)t+ t̃(p2)t2 − p[p]t(p)t3 + p2[p2]t4)−1([1] − χQ(p)[p]t2) (m = 4),

where χQ is the character of the quadratic form q(X) with matrix Q, i.e. (for

p 6= 2) χQ(p) =
(

(−1)m/2 det Q
p

)
is the Legendre symbol, and where

(2.42) t̃(p2) = χQ(p)t[1, p, p, p2] + (1 + χQ(p))p[p].

(see [6],[7, Theorems 1.1, and 1.3]). It follows that the local zeta series in these
cases have the form

(2.43) Zp(t, 〈Q〉) = ([1] − t(p)t+ χQ(p)[p]t2)−1 (m = 2);

(2.44) Zp(t, 〈Q〉) = ([1] − (t(p2) − [p])t+p[p2]t4)−1 (m = 3);

(2.45) Zp(t, 〈Q〉) = ([1] − t(p)t+ t̃(p2)t2 − p[p]t(p)t3 + p2[p2]t4)−1 (m = 4),

The cited summation formulas imply new commutation relations in similarity
class rings (2.20) of even nonsingular matrices Q of orders 2, 3, and 4.
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Proposition 2.8. Let Q be an even nonsingular matrix of order m = 2, 3, or 4,
and let p be a prime number not dividing detQ. Then all elements t(pδ) ∈ Hr〈Q〉
with δ = 0, 1, 2, . . . belong to the ring of polynomials over Z in the commuting with

each other elements t(p), [p] if m = 2, elements t(p2), [p] if m = 3, elements t(p),
t[1, p, p, p2], [p] if m = 4 and χQ(p) = 1, and elements t[1, p, p, p2], [p] if m = 4
and χQ(p) = −1.

Proof. The cases m = 2 and m = 3 follow directly from (2.41) and (2.34). In the
case m = 4, by the same reason, it is sufficient to check that the element t[1, p, p, p2]
commutes with t(p), if χQ(p) = 1, and that t(p) = 0 if χQ(p) = −1. The latter
follows from [7, (6.13)]. If χQ(p) = 1, then according to the formula [7, (6.37)], we
can write

t[1, p, p, p2]t(p) = t[1, p, p2, p3] + (p+ 1)[p]t(p).

Thus, by Lemmas 2.5 and 2.4, we obtain

t[1, p, p, p2]t(p) =
(
t[1, p, p, p2]t(p)

)∗
= t(p)∗t[1, p, p, p2]∗ = t(p)t[1, p, p, p2].

4
Let us suppose now that we are given a complex representation

Hr〈Q〉 3 t 7→ |t

of the ring Hr〈Q〉 by linear operators, and let P be an eigenvector for all operators
|t of the form |t(µ) with µ coprime with the level q of Q, P |t(µ) = λ(t(µ))P , where
λ(t(µ)) are the corresponding eigenvalues. Then, by analogy with the theory of
zeta functions of Siegel modular forms, one can consider the power series

(2.46) Zp(t, P ) = Zp(t, P, 〈Q〉) =


1 +

∑

1≤i≤2k

λ(ρi)t
i




−1

with t = p−s

and the Euler product

(2.47) Z(s, P ) =
∏

p - det Q

Zp(p
−s, P )

which is naturally to call a local and the global (regular) orthogonal zeta function

of the ring Hr〈Q〉 corresponding to the eigenvector P , respectively, and ask on
properties of the zeta functions. We shall show below that in some cases the or-
thogonal zeta functions can be explicitly expressed through spinor zeta functions
of appropriate Siegel modular forms.

§3. Representations on harmonic vectors

In this section we shall define linear representations of automorph class rings of
positive definite quadratic forms on spaces of harmonic vectors and consider the
question of existence of eigenfunctions for the representation.
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First we shall recall definition and properties of harmonic polynomials with re-
spect to positive definite quadratic forms. A polynomial P0 = P0(X) over C in
mn variables xij , where X = (xij) is m× n–matrix of variables, is called harmonic

polynomial of genus n and weight k, where k is a nonnegative integer, if it is a
harmonic function in mn variables in the sense that

(3.1) ∆P0 =
∑

i,j

∂2P0

∂x2
ij

= 0,

and it satisfies the condition

(3.2) P0(XA) = (detA)kP0(X) for every A ∈ GLn(C).

It follows from the definition that, for every harmonic polynomial P0(X) of genus
n and weight k and every matrix U from the real orthogonal group Om(R) of
order m, the polynomial P0(UX) is again a harmonic polynomial of genus n and
weight k. In this sense the definition of harmonic polynomials is related to the
quadratic form q0 = x2

1 + · · · + x2
m with matrix Q0 = 2 · 1m, whose group of real

automorphisms is exactly the group of orthogonal matrices of order m. We are now
going to define harmonic polynomials related in the same way to an arbitrary real
positive definite quadratic form (2.9) in m variables with matrix Q: since the form
is positive definite, then there is a real matrix S such that

Q = 2 tSS,

and for a harmonic polynomial P0 of genus n and weight k we define a harmonic

polynomial P = PQ(X) of genus n and weight k with respect to the quadratic form

with matrix Q (or just with respect to Q) by

(3.3) P (X) = PQ(X) = (P0|S)(X) = P0(SX).

It is a polynomial in X, which, by (3.2), satisfies the relations

(3.4) P (XA) = (detA)kP (X) for every A ∈ GLn(C).

It is also clear that, for every matrix

U ∈ O(Q, R) =
{
U ∈ Rm

m

∣∣∣ Q[U ] = Q
}

= S−1Om(R)S,

the polynomial

(P |U)(X) = P (UX) = P0(SUX) = (P0|SUS−1)(SX)

is again a harmonic polynomial P of genus n and weight k with respect to Q. The
set Pn

k (Q) of all harmonic polynomials of genus n and weight k with respect to Q is
clearly a linear space over the field C. It follows from (2.4) that each polynomial in
Pn

k (Q) is homogeneous of degree nk. Thus, the space Pn
k (Q) is finite-dimensional.

The following proposition describes the spaces of harmonic polynomials of genus n
and weight k with respect to positive definite quadratic forms.
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Proposition 3.1. The space of harmonic polynomials Pn
k (Q) relative to the matrix

Q of a positive definite quadratic form in m variables is spanned over C by the

polynomials

(3.5) P (X) = det( tΩQX)k,

where Ω is a matrix of Cm
n satisfying tΩQΩ = 0 if k > 1.

Proof. If S is a real matrix satisfying Q = 2 tSS, then P (X) = P0(SX), where
P0 ∈ Pn

k (Q0) with Q0 = 2 · 1m. By a consequence the theory of Kashiwara-Verne
[15] noted by Freitag [14, Proposition 6.20], the proposition is true for Q = Q0.
Then it is true also for Q = tSQ0S, because a relation tΩQΩ = 0 means that
t(SΩ)Q0(SΩ) = 0. (For a simple proof in the case n = 1 see [16, Ch. VI) 4

The general linear group GLm(C) operates on functions P = P (X) : Cm
n 7→ C

by linear transformations of variables

(3.6) U 7→ |U : P (X) 7→ (P |U)(X) = P (UX) (U ∈ GLm(C)).

These operators clearly preserve the relations (3.4) and satisfy the relations

(3.7) |U |V = |UV (U, V ∈ GLm(C)).

Lemma 3.2. Each of the operators |U with U ∈ GLm(R) maps the space Pn
k (Q)

bijectively onto the space Pn
k (Q[U ]).

Proof. If S satisfies 2 tSS = Q, then Q[U ] = 2 t(SU)(SU). Thus, by the definition,

PQ[U ](X) = P0(SUX) = (PQ|U)(X),

where P0 = P2·1m
(X) ∈ Pn

k (Q0) is a harmonic polynomial of genus n and weight
k. 4

Let us now define a (Hermitian) scalar product of functions P, P ′ : Rm
n 7→ C

relative to matrix Q of positive definite quadratic form in m variables by

(3.8) (P, P ′) = (P, P ′)Q = (detQ)
n
2

∫

1
2Q[X]≤1n

P (X)P ′(X)dX,

where dX = d(xij) =
∏

i,j dxij is the Euclidean volume element on Rm
n , and the

inequality A ≤ B for two real symmetric matrices of the same order means that
the matrix B − A is positive semi-definite.

Lemma 3.3. For every matrix U ∈ GLm(R) and functions P, P ′ : Rm
n 7→ C the

scalar product (3.8) satisfies the relation

(3.9) (P |U, P ′|U)Q[U ] = (P, P ′)Q,

where |U is the operator (3.6). In particular, for every real positive number µ,

(3.10) (P |µ−1/2U, P ′)µ−1Q[U ] = (P, P ′|µ1/2U−1)Q.
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Proof. By the change of variables X 7→ Y = UX, we obtain

(P |U, P ′|U)Q[U ] = | detU |n(detQ)
n
2

∫

1
2 Q[UX]≤1n

P (UX)P ′(UX)dX

= (detQ)
n
2

∫

1
2 Q[Y ]≤1n

P (Y )P ′(Y )dY.

The formula (3.10) follows from (3.9), if we replace U by µ−1/2U and P ′ by
P ′|µ1/2U−1. 4

Now, let Q be an even positive definite matrix of order m and Q1, . . . , Qh a
system of representatives of the equivalence classes (2.14) contained in the similarity
class (2.13) of Q, so that the decomposition (2.15) holds. By a harmonic vector of

genus n and weight k with respect to the system Q1, . . . , Qh we call a row of the
form

(3.11) P = (P1, . . . , Ph) with Pi ∈ Pn
k (Qi).

With usual rules of addition and multiplication by complex numbers the set

Pn
k 〈Q〉 = Pn

k (Q1, . . . , Qh)

of all harmonic vectors for the system Q1, . . . , Qh, where Q belongs to the similarity
class of the matrices Qi, can be considered as a linear space over field C. We equip
the space Pn

k 〈Q〉 with Hermitian scalar product by defining the scalar products
(P, P′) of two vectors P = (P1, . . . , Ph) and P′ = (P ′

1, . . . , P
′
h) of Pn

k 〈Q〉 by

(3.12) (P, P′) =

h∑

i=1

(Pi, P
′
i )Qi

= (detQ)n/2
h∑

i=1

∫

1
2Qi[X]≤1n

Pi(X)P ′
i (X)dX,

where (Pi, P
′
i )Qi

are the scalar products (3.8) on Pn
k (Qi).

Let now In
k (Qi) be the subspace of all polynomials in Pn

k (Qi), which are invariant
with respect to all operators |U of the form (3.6) with U ∈ Ei = E+(Q):

(3.13) In
k (Qi) =

{
P ∈ Pn

k (Qi)
∣∣∣ P (UX) = P (X) for all U ∈ Ei

}
,

and

(3.14) In
k 〈Q〉 = In

k (Q1, . . . , Qh) = {(P1, . . . , Ph)|Pi ∈ In
k (Qi)}

the subspace of units invariant vectors of Pn
k 〈Q〉. The automorph class ring H〈Q〉 =

H(Q1, . . . , Qh) naturally operates on the spaces In
k 〈Q〉 by linear operators: for

t = (τij) ∈ H〈Q〉 we define the Hecke operator |t on In
k 〈Q〉 by

(3.15) |t = |(τij) : P = (Pi) 7→ P|t =

(
h∑

i=1

Pi|τi1, . . . ,
h∑

i=1

Pi|τih
)
,
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where, for τij =
∑

α aα(EiDα) ∈ H〈Q〉ij with Dα ∈ Aij (see (2.17)) and Pi ∈
In

k (Qi), it is set

(3.16) Pi|τij =
∑

α

aαPi|Dα ∈ Pn
k (Qj),

and where the operators |Dα are defined by(3.6). Since Pi ∈ In
k (Qi), each of the

polynomials (3.16) does not depend on the choice of representatives Dα ∈ EiDα.
Since τijU = τij for all U ∈ Ej , we conclude that each of the polynomials (3.16)
in fact belongs to the space In

k (Qj). Therefore, each of the operators |t maps the
space In

k 〈Q〉 into itself. The operators |t are clearly linear, and, as it easily follows
from the definition of multiplication in the ring H〈Q〉, the operator corresponding
to product of two elements of H〈Q〉 is the product of operators corresponding to
factors:

|tt′ = |t|t′ (t, t′ ∈ H〈Q〉).

Thus, we obtain a linear representation of the ring H〈Q〉 on the space In
k 〈Q〉.

Theorem 3.4. Let Hr〈Q〉 = D(E1, . . . ,Eh;S11,S12, . . . ,Shh) be the similarity

class ring of an even positive definite matrix Q. Suppose that orders of the groups

of units E1, . . . ,Eh are equal to each other. Then, for each element t of the ring

Hr〈Q〉, the Hecke operators |t and |t∗ on In
k 〈Q〉, where t∗ is the element (2.22),

are conjugate with respect to the scalar product (3.13):

(3.17) (P|t, P′) = (P, P′|t∗) (P, P′ ∈ In
k 〈Q〉, τττ ∈ Hr〈Q〉).

Proof. It is sufficient to prove (3.17) for elements t = (τ(Dij)) of the form (2.19)
with Dij ∈ Sij . In this case, by (2.22),

t∗ = (τ(Dij))
∗ = t(τ(D∗

ij)) = t(τ(µ(Dij)D
−1
ij )).

By Lemma 2.1, each double coset EiDijEj contains a common system of repre-
sentatives {Dα

ij} for left cosets modulo Ei and right cosets modulo Ej . Then, by

using Lemma 1.2, we easily conclude that the system {µ(Dij)(D
α
ij)

−1} is a com-
mon system of representatives for left cosets modulo Ej and right cosets modulo

Ei contained in the double coset Ejµ(Dij)D
−1
ij Ei. In particular, with this system

of representatives we have the decompositions

(3.18) τ(Dij) =
∑

α

(EiD
α
ij) and τ(µ(Dij)D

−1
ij ) =

∑

α

(Ejµ(Dij)(D
α
ij)

−1).

If P = (P1, . . . , Ph) then, by (3.15), (3.16), and (3.18), we have

P|t =

(
h∑

i=1

∑

α

Pi|Dα
i1, . . . ,

h∑

i=1

∑

α

Pi|Dα
ih

)
,
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where |Dα
ij are the operators (3.6). Hence, by (3.13), we get

(P|t, P′) =

h∑

j=1

h∑

i=1

∑

α

(Pi|Dα
ij , P

′
j)Qj

.

Again,by (3.15), (3.16), and (3.18), we can write

P′|t∗ =

( h∑

i=1

∑

α

P ′
i |µ(D1i)(D

α
1i)

−1, . . . ,
h∑

i=1

∑

α

P ′
i |µ(Dhi)(D

α
hi)

−1

)
,

hence

(P, P′|t∗) =
h∑

j=1

h∑

i=1

∑

α

(Pj , P
′
i |µ(Dji)(D

α
ji)

−1)Qj
.

By (3.4) and (3.10), we obtain

(
Pj , P

′
i |µ(Dji)(D

α
ji)

−1
)
Qj

= µ(Dji)
nk/2

(
Pj , P

′
i |µ(Dji)

1/2(Dα
ji)

−1
)
Qj

= µ(Dji)
nk/2

(
Pj |µ(Dji)

−1/2Dα
ji, P

′
i

)
µ(Dji)−1Qj [Dji]

=
(
Pj|Dα

ji, P
′
i

)
Qi
.

It follows that

(P, P′|t∗) =

h∑

i,j=1

∑

α

(
Pj |Dα

ji, P
′
i

)
Qi

= (P|t, P′). 4

Proposition 3.5. In the notation and under the assumptions of Theorem 3.4, the

Hecke operators |t on the space In
k 〈Q〉, corresponding to every system of commut-

ing with each other elements t ∈ Hr〈Q〉 satisfying t∗ = t can be simultaneously

diagonalized on each invariant subspace of In
k 〈Q〉. In particular, if m = 2 or m = 4

all Hecke operators corresponding to elements t(pδ) with δ = 0, 1, 2, . . . and prime

p not dividing detQ can be simultaneously diagonalized on each of the invariant

subspaces.

Proof. By Theorem 3.4, the Hecke operators |τ for τ satisfying τ ∗ = τ are selfadjoint
with respect to the Hermitian scalar product (3.13). By a known theorem of linear
algebra, any family of commuting with each other selfadjoint linear operators on
a finite-dimensional Hilbert space can be simultaneously diagonalized. The last
assertion follows from the first and Proposition 2.8. 4

One can conjecture that the linear combinations with integral coefficients of the
elements (2.28) contained in Hr〈Q〉 form a subring. If it is true, then it follows from
Lemmas 2.4 and 2.5 that the subring is commutative. At present the conjecture is
proved only for quadratic forms in m = 2 variables (see [3, Theorem 2.4])
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§4. Action of Hecke operators on harmonic theta-sums

Given be an even positive definite matrix Q of order m and a system of repre-
sentatives Q1, . . . , Qh of the equivalence classes (2.14) contained in the similarity
class (2.13) of Q. Let P = (P1, . . . , Ph) be a harmonic vector (3.11) of weight k
and genus n with respect to the system Q1, . . . , Qh. We shall define the harmonic

theta-sum of genus n of the similarity class 〈Q〉 = 〈Q〉+ corresponding to P by

(4.1) Θ(Z; P, 〈Q〉) = θ(Z; P1, Q1) + · · ·+ θ(Z; Ph, Qh),

where the variable Z belongs to the upper half-plane of genus n,

Hn = {Z = X + iY ∈ Cn
n| tZ = Z, Y > 0},

and

θ(Z; Pi, Qi) =
∑

N∈Zm
n

Pi(N)eπ
√
−1Trace(Qi[N ]Z)

is the theta-series of genus n of the quadratic form with matrix Qi corresponding

to the form Pi. Each of these-theta series is obviously convergent absolutely and
uniformly on compact subsets of Hn and so it defines a holomorphic function in
n(n+1)/2 complex variables. The Fourier expansion of the series has the form

(4.2) θ(Z; Pi, Qi) =
∑

A∈En, A≥0

r(A; Pi, Qi)e
π
√
−1Trace(AZ)

with constant Fourier coefficients

r(A; Pi, Qi) =
∑

N∈Zm
n , Qi[N ]=A

Pi(N).

On replacing of N by UN with U ∈ Λm = GLm(Z), we get the identity

θ(Z; Pi|U, tUQiU) = θ(Z; Pi, Qi),

where Pj |U is defined by (3.6); in particular,

(4.3) θ(Z; Pi|U, Qi) = θ(Z; Pi, Qi) ∀U ∈ Ei.

By replacing, if it is necessary, each of the polynomials Pi by its average

#(Ei)
−1
∑

U∈Ei

Pi|U

over the unit group Ei, which does not change the theta-series, we may assume
without loss of generality that Pi ∈ In

k (Qi) for i = 1, . . . , h, that is P ∈ In
k 〈Q〉.
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According to [1] (see also [8]), if m is even, then each of the theta-series (4.2)
belongs to the space Mn

m/2+k(q, χQ) of modular forms of weight m/2 + k for the
group

Γn
0 (q) =

{
M =

(
A B
C D

)
∈ Spn(Z)

∣∣∣ C ≡ 0 (mod q)

}
,

where q is the level of Q, with the (Dirichlet) character χQ modulo q satisfying

χQ(−1) = (−1)m/2 and

χQ(p) =

(
(−1)m/2 detQ

p

)
(the Legendre symbol)

if p is an odd prime number which do not divide q. In particular, the function
F = F (Z) = θ(Z; Pj , Qj) satisfy the functional equation

det(CZ +D)−(m/2+k)F
(
(AZ +B)(CZ +D)−1

)
= χQ(detD)F (Z)

for every matrix

(
A B
C D

)
∈ Γn

0 (q). Hence, the theta-sum (4.1) is a modular form

too,

(4.4) Θ(Z; P, 〈Q〉) ∈ Mn
m/2+k(q, χQ).

Following the general pattern of the theory of Hecke operators on Siegel modular
forms (see, e.g., [2, Chapter 4], or [9, §2]), we shall now remind the basic definitions
and the simplest properties of (regular) Hecke operators on the spaces Mn

w(q, χ) of
modular forms of an integral weight w and a character χ for the group Γn

0 (q). Let
us denote by

Hn
0 (q) = H(Γn

0 (q), Σn
0 (q))

the Hecke–Shimura ring of the semigroup

Σn
0 (q) =

{
M =

(
A B
C D

)
∈ Z2n

2n

∣∣∣ tMJnM = µ(M)Jn, µ(M) > 0,

gcd(detM, q) = 1, C ≡ 0 (mod q)

} (
Jn =

(
0 1n

−1n 0

))

relative to the group Γn
0 (q) (over C). Note that the ring Hn

0 (q) can also be defined
as the similarity class ring of the subsemigroup Σn

0 (q) of the semigroup Σn = Σn
0 (1)

of similarities of the skew-symmetric bilinear form with the matrix Jn, relative to
the subgroup Γn

0 (q) of the group Γn = Γn
0 (1) of units of the this form.

The ring Hn
0 (q) is generated over C by the commuting with each other alge-

braically independent elements

(4.5)





Tn(p) =
(
diag(1, . . . , 1︸ ︷︷ ︸

n

, p, . . . , p︸ ︷︷ ︸
n

)
)
Γn

0 (q)
,

Tn
j (p2) =

(
diag(1, . . . , 1︸ ︷︷ ︸

n−j

, p, . . . , p︸ ︷︷ ︸
j

, p2, . . . , p2

︸ ︷︷ ︸
n−j

, p, . . . , p︸ ︷︷ ︸
j

)
)
Γn

0 (q)
(1 ≤ j ≤ n),
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where p runs over all prime numbers not dividing q, and where

(4.6) (M)Γ = τ(M) =
∑

M ′∈Γ\ΓMΓ

(ΓM ′) with Γ = Γn
0 (q) and M ∈ Σn

0 (q)

is the double coset (2.5) of M modulo Γn
0 (q) (see [2, Theorem 3.3.23]).

For
T =

∑

i

ci(Γ
n
0 (q)Mi) ∈ Hn

0 (q),

the Hecke operator |T = |w,χT on a space Mn
w(q, χ) can be defined by

(4.7) F |T =
∑

i

ciF |r,χMi (F ∈ Mn
w(q, χ)),

where

F |w,χ

(
A B
C D

)

= χ(detA) det(CZ+D)−wF
(
(AZ +B)(CZ +D)−1

) ((
A B
C D

)
∈ Σn

0 (q)

)

are the Petersson operators. The Hecke operators are independent of the choice of
representatives Mi ∈ Γn

0 (q)Mi and map the space Mn
w(q, χ) into itself.

Quite often Hecke operators map theta-series to linear combinations of similar
theta-series. An easy modification of a particular case of a rezult of paper [9,
Theorem 4.1] can be formulated as follows. Suppose that a double coset τ(M) ∈
Hn

0 (q) of the form (4.6), where m ≥ n and µ(M) = µ coprime to level q of the a
matrix Q ∼ Qi, belongs to the image of the ring Hm

0 (q) under the Zharkovskaya
map

(4.8) Ψm,n = Ψm,n
Q = Ψm/2,χQ

: Hm
0 (q) 7→ Hn

0 (q)

(see [2, §4.2.4] and [9, §3]). Then the image of the theta-series θ(Z, Pi, Qi) of
genus n of the positive definite matrix Qi of even order m with the harmonic form
Pi ∈ In

k (Qi) under the action of Hecke operator corresponding to a double coset
τ(M) ∈ Hn

0 (q) can be written in the form

θ(Z; Pi, Qi)|τ(M)

=
∑

D∈S(Qi,µ)/Λ+

I(D, Qi,Ψ
n,m(τ(M)))θ(Z; Pi|µ−1D, µ−1Qi[D]),

where

S(Qi, µ) =
{
D ∈ Zm

m

∣∣∣ detD = µm/2, µ−1Qi[D] ∈ Em

}
,

Λ+ = SLm(Z), Ψn,m(M) ∈ Hm
0 (q) is an inverse image of the double coset (M)

under the map Ψm,n, and where the operators P 7→ P |U are defined by (3.6); with
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certain constant (i.e. independent on Z and Pi) coefficients I(D, Q′, T ) satisfying
relations

I(UDV, Q′, T ) = I(D, Q′[U ], T )

for all U, V ∈ Λ = GLm(Z), Q′ ∈ 〈Q〉 and T ∈ Hm
0 (q).

Each of the matrices µ−1Qi[D] with D ∈ S(Qi, µ) is properly similar to Qi ∼ Q
and hence is properly equivalent to one of the representatives Q1, . . . , Qh in the
similarity class 〈Q〉, say, to Qj, that is µ−1Qi[D] = Qj [U ] with U ∈ Λ+. It follows
that the formula for the action of the operator |τ(M) can be rewritten in the form

(4.9) θ(Z; Pi, Qi)|τ(M)

= µ−nk
h∑

j=1

∑

D∈R(Qi,µQj)/Ej

I(D, Qi,Ψ
n,m(τ(M)))θ(Z; Pi|D, Qj),

where we have also used relations (3.4).
We summarize all known at present results of computations of the coefficients

I(D, Q′, T ) with Q′ ∈ 〈Q〉: for each number p not dividing the level q of Q, the
following formulas hold

(4.10) I(D, Q′, Tm(p))

=

{
pm/2

∏m/2
j=1 (1 + χQ(p)p−j), if D ∈ ΛDm

m/2(p)Λ,

0, otherwise,

where Λ = GLm(Z), Dm
m/2(p) = diag(1, . . . , 1︸ ︷︷ ︸

m/2

, p, . . . , p︸ ︷︷ ︸
m/2

);

(4.11) I(D, Q′, Tm
m−1(p

2)) =





χQ(p)p(2+m−m2)/2, if D ∈ ΛDm
m−2,1(p)Λ,

αm(p), if D ∈ Λ(p1m),

0, otherwise,

where Dr
m−2,1(p) = diag(1, p, . . . , p︸ ︷︷ ︸

m−2

, p2), and

αm(p) = χQ(p)p(2+m−m2)/2 (pm − 1)

p− 1
+ p−m2/2(χQ(p)pm/2 − 1);

(4.12) I(D, Q′, 〈p〉m) =

{
p−m2/2 if D ∈ Λ(p1m),

0 otherwise ,

where for abbreviation we write

Tn
n (p2) = (p · 12n)Γn

0 (q) = 〈p〉n.
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( In [4, formula (2.19) and Lemma 5.1] the sums γ(Q, D, T ) similar to the coeffi-
cients I(D, Q, T ) were defined and computed for T = Tm(p). In [6, §2] the sums
γ(Q, D, T ) were, in fact, computed for T = 〈p〉m = Tm

m (p2) = (p12m)Γm
0 (q) and

T = Tm
m−1(p

2). See also [2, Lemma 3.3.32] for the presentation of Tm
m−1(p

2) used
in [6]. It directly follows from definitions of these sums that I(D, Q, τ(M)) =
χQ(µ)mµm/2γ(Q, µD−1, τ(M)) = µm/2γ(Q, µD−1, τ(M)), where µ = µ(M).)

The formulas (4.10)–(4.12) imply, in particular, that for elements

(4.13) T = Tm(p), 〈p〉m = Tm
m (p2), and Tm

m−1(p
2)

with primes p not dividing the level of Q, the coefficients I(D, Q′, T ) as function
of Q′ depend only on the similarity class of Q′, and as functions of D depend only
on the double coset ΛDΛ. Therefore, if Ψn,m(τ(M)) is a linear combination of the
element (4.13), then the formula (4.9) under the same assumptions can be rewritten
in the form

θ(Z; Pi, Qi)|τ(M)

= µ−nk
∑

d1|···|dm;
didm−i+1=µ

I(diag(d1, . . . , dm), Q,Ψn,m(τ(M)))

×
h∑

j=1

θ(Z;
∑

D∈Sij∩Λ+diag(d1,...,dm)Λ+/Ej

Pi|D, Qj)

Suppose now that the orders of the groups E1, . . . ,Eh are equal to each other,
then, by Lemma 2.1, the HS–ring Hr〈Q〉 is tame, and we can take as a system of
representatives of right cosets modulo Ej contained in any double coset EiD

′Ej ∈
R(Qi, µQj) a suitable system of representatives of the left cosets Ei\EiD

′Ej . It
allows us to rewrite the last formula in the form

θ(Z; Pi, Qi)|τ(M) = µ−nk
∑

d1|···|dm;
didm−i+1=µ

I(diag(d1, . . . , dm), Q,Ψn,m(τ(M)))

×
h∑

j=1

θ(Z;
∑

D∈Ei\Sij∩Λ+diag(d1,...,dm)Λ+

Pi|D, Qj)

= µ−nk
∑

d1|···|dm;
didm−i+1=µ

I(diag(d1, . . . , dm), Q,Ψn,m(τ(M)))
h∑

j=1

θ(Z; Pi|τij[d1, . . . , dm], Qj)

(see (2.28) and (3.16)). Returning to the theta-sums, under the same assumptions
we can present the image of a theta sum (4.1) under the action operator |τ(M) in
the form

(4.14) Θ(Z; P, 〈Q〉)|τ(M) = θ(Z; P1, Q1)|τ(M) + · · ·+ θ(Z; Ph, Qh)|τ(M)
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= µ−nk
∑

d1|···|dm;
didm−i+1=µ

I(diag(d1, . . . , dm), Q,Ψn,m(M))

×
h∑

j=1

θ(Z;

h∑

i=1

Pi|τij [d1, . . . , dm], Qj)

= µ−nk
∑

d1|···|dm;
didm−i+1=µ

I(diag(d1, . . . , dm), Q,Ψn,m(τ(M)))Θ(Z; P|t[d1, . . . , dh], Q)

(see (3.28) and (3.15)).
Note that the formulas (4.10)–(4.12) determine, in particular, sums I(D, Q, T )

for all generators of the rings H1
0(q) and H2

0(q), provided that we can explicitly
express inverse images Ψn,m(τ(M)) of the generators (4.5) for n = 1, 2 through the
elements (4.13). For this we shall first consider the action of the Zharkovskaya map
on corresponding elements.

Lemma 4.1. The following formulae hold for the action of the Zharkovskaya map

Ψ = Ψn,n−1
w,χ : Hn

0 (q) 7→ Hn−1
0 (q) on some of the elements (4.5) for n > 1 and each

prime number p not dividing q :

(4.15) Ψn,n−1(Tn(p)) = (1 + χ̄(p)pn−w)Tn−1(p);

(4.16) Ψn,n−1(〈p〉n) = χ̄(p)p−w〈p〉n−1;

(4.17) Ψn,n−1(Tn
n−1(p

2)) = χ̄(p)p1−wTn−1
n−2 (p2) + bn(p)〈p〉n−1,

where χ̄ is the character conjugate to χ, and where

bn(p) = bn,w,χ(p) = χ̄(p2)p2n−2w + χ̄(p)(p− 1)p−w + 1.

Proof. The action of the Zharkovskaya map related to the action of Hecke operators
on the spaces Mn

w(q, χ) was calculated in [2, §4.2.4]. However, applying the results
of calculations, one have to take into account that the Hecke operators defined in
[2, (2.4.11) and (2.4.12)] have another normalization than one we use here and differ
from the operators defined in [9] by the equalities (1.10) with l = 0, (2.13), (2.14),
and (2.20) with Q = H and P = 0 on homogeneous elements of multiplicator µ by
the factor χ(µn)µnw−n(n+1)/2.

The formula (4.15) follows from [2, Propositions 4.2.17 and 4.2.18 and formula
(4.2.80)] applied to Hecke operators |wχ(pn)pnw−n(n+1)/2Tn(p) (note different nor-
malization mentioned above). Formula (4.16) follows by similar arguments from [2,
Lemma 3.3.34]. As to formula (4.17), the situation is slightly more complicated.
First, by using [An(87), factorization (3.5.69) of Theorem 3.5.23, formulas (3.5.34),
(3.4.15), (3.5.33), and (3.3.61)] , we get the relation

(4.18) Tn
n−1(p

2) = −pn〈p〉nrn
1 (p) + (pn − 1)〈p〉n,
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where rn
1 (p) is the first coefficient of the Rankin p-polynomial Rn

p (v) defined by [2,
formulas (3.5.15) and (3.5.16)]. Since µ(rn

1 (p)) = 1, it follows from [2, Theorem
4.2.18 and relation (4.2.82)] that

(4.19) Ψn,n−1(rn
1 (p)) = rn−1

1 (p) − χ̄(p)pn−w − χ(p)pw−n.

Since the Zharkovskaya map is a ring homomorphism, formula (4.17) follows from
(4.18), (4.16), (4.19) by an easy computation. 4

Applying repeatedly formulas (4.15) for the images of Tm(p), . . . , Tn(p) with
w = m/2, χ = χQ, and n < m, we get the relation

Ψm,n(Tm(p)) = γm
n (p)Tn(p), where γm

n (p) =

{
m−n−1∏

i=0

(1 + χQ(p)pm/2−i)

}
.

The factor γm
n (p) is equal to 0 if and only if m/2 ≤ m − n − 1, i.e. n ≤ m/2 − 1,

and χQ(p) = −1. Hence,

(4.20) Ψn,m(Tn(p)) = γm
n (p)−1Tm(p) unless n ≤ m/2 − 1 and χQ(p) = −1.

Similarly, by (4.16), we get Ψm,n(〈p〉m) = (χQ(p)p−m/2)m−n〈p〉n. Hence, since
χQ(p) = ±1, we obtain

(4.21) Ψn,m(〈p〉n) = χQ(p)npm(m−n)/2〈p〉m.

By induction from formulae (4.16) and (4.17) easily follow for 2 ≤ n < m the
relations

Ψm,n(Tm
m−1(p

2)) = (ap)m−nTn
n−1(p

2) + am−n−1

(
m−n−1∑

i=0

pibm−i(p)

)
〈p〉n,

where a = χQ(p)p−m/2. This relation and the relation (4.21) imply that one can
take

Ψn,m(Tn
n−1(p

2)) = χQ(p)np(m−n)(m−2)/2Tm
m−1(p

2)

− χQ(p)n+1p(m2−mn−m+2n)/2

(
m−n−1∑

i=0

pibm−i(p)

)
〈p〉m

(note that χQ(p) = ±1 and m is even). Hence, in particular, we have the relations

(4.22) Ψ2,4(T 2
1 (p2)) = p2T 4

3 (p2) − χQ(p)p4(b4(p) + pb3(p))〈p〉4

= p2T 4
3 (p2) − χQ(p)p2(p6 + p5 + p3 + p2 + χQ(p)(p2 − 1))〈p〉4.



AUTOMORPHIC ZETA FUNCTIONS 29

We turn now to formulas for the action on theta sums of Hecke operators corre-
sponding to certain coefficients of the spinor p-polynomials

Sn
p (t) =

2n∑

j=1

(−1)jσn
j (p)tj

over p-subrings of the rings Hn
0 (q) for prime p not dividing q (see, for example,

[2, (3.3.78)]). These polynomials appear as denominators of p-factors of the stan-
dard formal Euler products over the ring Hn

0 (q) and present considerable interest
because after substituting t = ψ(p)p−s with a Dirichlet character ψ and replacing
coefficients by the eigenvalues Λ(σn

j (p)) of corresponding Hecke operators acting on
an eigenfunction F ∈ Mn

w(q, χ) one gets denominators

Sp(ψ(p)p−s,Λ) =
2n∑

j=1

(−1)jΛ(σn
j (p))ψ(pj)p−sj

of the p-factor of the regular spinor zeta function with the character ψ,

(4.23) ZF (s, ψ) =
∏

p - q

Sp(ψ(p)p−s,Λ)−1.

corresponding to the eigenfunction. For n = 1 it is the Hecke zeta function of
the elliptic modular form F ; for n = 2 the product determines the Andrianov
zeta function of the eigenfunction F of genus 2. We shall restrict ourselves to the
action on theta products of Hecke operators corresponding to the coefficients σn

1 (p),
σn

2n−1(p), σ
n
2n(p), and σ2

2(p). This will be sufficient for computation of the Euler
product (4.23) corresponding to eigenfunctions of genus n = 1 and 2. According to
[2, (3.3.81), (3.3.79), (3.3.80), and Exercise 3.3.38], with the above notation these
coefficients can be written in the form

(4.24)

σn
1 (p) = Tn(p),

σ2n−1(p) = (pn(n+1)/2〈p〉n)2
n−1−1Tn(p),

σn
2n(p) = (pn(n+1)/2Tn

n (p2))2
n−1

= (pn(n+1)/2〈p〉n)2
n−1

,

σ2
2(p) = pT 2

1 (p2) + p(p2 + 1)〈p〉2.

So that we have, in particular,

(4.25)

S1
p(t) = 〈1〉1 − T 1(p)t+ p〈p〉1t2,
S2

p(t) = 〈1〉2 − T 2(p)t+ (pT 2
1 (p2) + p(p2 + 1)〈p〉2)t2

− p3〈p〉2T 2(p)t3 + p6〈p〉22t4.

Hence, it will be sufficient to consider the action of operators corresponding to
elements Tn(p), 〈p〉n, and T 2

1 (p2). By (4.14), (4.10), (4.20), and (2.29), we obtain

(4.26) Θ(Z; P, 〈Q〉)|T n(p) = δm
n (p)Θ(Z; P|t(p), 〈Q〉),



30 ANATOLI ANDRIANOV

where, excluding the case n ≤ m/2 − 1 and χQ(p) = −1,

δm
n (p) = p−nk+m/2γm

n (p)−1

m/2∏

j=1

(1 + χQ(p)p−j)

= χQ(p)np−n(k+ m
2 )+

n(n+1)
2 ×





∏m
2 −n

j=1 (1 + χQ(p)pj−1)−1 if n < m/2

and χQ(p) 6= −1,

1 if n = m/2,
∏n−m

2
j=1 (1 + χQ(p)p−i) if n > m/2;

by (4.14), (4.12), and (4.21), we have

(4.27) Θ(Z; P, 〈Q〉)|〈p〉n = χQ(p)np−n(m/2+k)Θ(Z;P|[p]m, 〈Q〉);

finally, if m = 4, by (4.14), (4.11), (4.22), and (4.27), we get

(4.28) Θ(Z; P, 〈Q〉)|T 2
1 (p2) = χQ(p)p−(3+4k)θ(Z; P|t[1, p, p, p2], 〈Q〉)

+ p2−4k
(
α4(p) − χQ(p)p−6(b4(p) + pb3(p))

)
θ(Z; P|[p]4, Q).

= χQ(p)p−(3+4k)θ(Z; P|t[1, p, p, p2], 〈Q〉) + p−4−4k(χQ(p)p2 − 1)θ(Z;P|[p]4, 〈Q〉).
Let Q be an even positive definite matrix of level q and even order m = 2k and

Q1, . . . , Qh a system of representatives of the equivalence classes (2.14) contained
in the similarity class (2.13) of Q. Suppose that orders of groups of proper units of
the matrices Qi are equal to each other. Let now

P = (P1, . . . , Ph) ∈ In
k 〈Q〉

be an invariant harmonic vector (3.11) of genus n and weight k with respect to
the system Q1, . . . , Qh. Since, by Corollary 2.7, the elements t(p) with primes
p - q commute with each other, and, by Lemma 2.5, they satisfy relations (2.31), it
follows, by Proposition 3.5, that each invariant subspace of the spaces In

k 〈Q〉 has
an basis of common eigenfunctions for all of the operators t(p). If P of the space
In

k 〈Q〉 is an eigenfunction with the eigenvalues λ(t(p)). Then, by (4.26) the theta
sum Θ(Z; P, Q) is an eigenfunction for the Hecke operator |T (p) = T n(p),

(4.29) Θ(Z; P, 〈Q〉)|T (p) = Λ(T (p))Θ(Z; P, 〈Q〉)

with the eigenvalue

(4.30) Λ(T (p)) = δm
n (p)λ(t(p)),

excluding the cases when n ≤ m/2 − 1 and χQ(p) = −1.
We now consider relations of the zeta functions (2.47) corresponding to eigenvec-

tors of automorph class rings of binary and quaternary quadratic forms on spaces
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of harmonic vectors and zeta functions (4.23) of the theta-sums corresponding to
these harmonic vectors. Note that under the assumption that m = 2 or 4 and that
the ring H〈Q〉 is tame all of the Hecke operators corresponding to coefficients of
the local zeta series (2.41) for all prime p not dividing detQ can be simultaneously
diagonalized on each of the invariant subspaces of harmonic vectors.

Let Q be the matrix of a positive definite binary quadratic form, n = 1, and
let P ∈ I1

k〈Q〉 be an eigenvector for all of the Hecke operators of |t(p) with prime
numbers p not dividing the level q of Q. By the assumption and (3.4), for these
primes we have the relations

P|t(p) = λ(t(p))P and P|[p] = P(pX) = pkP = λ([p])P.

Hence, the p-factor (2.46) of the zeta function (2.47) of P is

Zp(p
−s, P) = (1 − λ(τ(p))p−s + χQ(p)λ([p])p−2s)−1.

On the other hand, by (4.29) and (4.27), the theta-series Θ(z; P, Q) ∈ M1
1+k(q, χQ)

is an eigenfunction of the Hecke operators |T (p) = |T 1(p) and |〈p〉 = |〈p〉1 with the
eigenvalues

Λ(T (p)) = δ21(p)λ(t(p)) = χQ(p)p−kλ(t(p)),

Λ(〈p〉) = χQ(p)p−(1+k) = χQ(p)p−(1+2k)λ([p]),

respectively. It follows that for p-factor of the zeta function (4.23) with character
ψ = χQ of the eigenfunction F = Θ(z; P, Q) we obtain the identity

S1
p(χQ(p)pk−s, F )−1 = (1 − Λ(T (p))χQ(p)pk−s + Λ(〈p〉)p(χQ(p)pk−s)2)−1

= (1 − λ(τ(p))p−s + χQ(p)λ([p])p−2s)−1 = Zp(t, P).

The equalities of the local zeta functions for all prime p not dividing the level of Q
implies the equality of the corresponding Euler products:

Theorem 4.2. Let Q be the matrix of a positive definite binary quadratic form,

q the level of Q, and χQ the corresponding Dirichlet character modulo q, and let

P ∈ I1
k〈Q〉 be an harmonic eigenvector for all Hecke operators |t(p) with prime

numbers p - q. Then the theta-sum of the class 〈Q〉 with harmonic vector P,

F = Θ(z; P, 〈Q〉) ∈ M1
1+k(q, χQ),

is an eigenfunction for all of the Hecke operators |T (p) = |T 1(p), and the corre-

sponding regular zeta functions (2.47) and (4.23) are related by the identity

Z(s, P) = ZF (s− k, χQ).

Finally, we shall prove that similar relations hold also in the case of quadratic
forms in m = 4 variables, harmonic forms of genus n = 2, and corresponding
theta-series.



32 ANATOLI ANDRIANOV

Theorem 4.3. Let Q be the matrix of a positive definite quaternary quadratic

form, q the level of Q, and χQ the corresponding Dirichlet character modulo q, and

let P ∈ I2
k〈Q〉) be an harmonic eigenvector for all of the Hecke operators |t(p) and

|t[1, p, p, p2] with prime numbers p - q. Then the theta-sum of the class 〈Q〉 with

harmonic vector P,

F = Θ(Z; P, 〈Q〉) ∈ M2
2+k(q, χQ),

is an eigenfunction for all of the Hecke operators |T 2(p) and T 2
1 (p2) with p - q and

the corresponding zeta regular functions (2.47) and (4.23) are related by the identity

Z(s, P) = ZF (s− 2k − 1, χ1/q),

where χ1/q is the unit character modulo q.

Proof. By the assumption, for each prime number p with p - q we have

P|t(p) = λ(t(p))P, P|t[1, p, p, p2] = λ(t[1, p, p, p2])P.

By (3.4), we obtain

P|[p]4 = P(pX) = p2kP = λ([p]4)P.

Hence, by (2.45) and (2.42), the p-factor (2.46) of the orthogonal zeta function
(2.27) of the eigenform P is

Zp(t, P) =
(
1 − λ(t(p))p−s + (χQ(p)λ(t[1, p, p, p2]) + (1 + χQ(p))pλ([p]2))p

−2s

− pλ([p]2))λ(t(p))p−3s + p2λ([p]2)
2p−4s

)−1
.

On the other hand, by (4.29)-(4.30), (3.27), and (4.28), respectively, we obtain

Θ(Z; P, 〈Q〉)|T 2(p) = δ42(p)λ(t(p))Θ(Z; P, 〈Q〉) = p−2k−1λ(t(p))Θ(Z; P, 〈Q〉),

Θ(Z; P, 〈Q〉)|〈p〉2 = χQ(p)2p−2(k+2)Θ(Z; P|[p]4, 〈Q〉) = p−4k−4λ([p]4)Θ(Z; P, 〈Q〉),
and

Θ(Z; P, 〈Q〉)|T 2
1 (p2)

= χQ(p)p−(4k+3)Θ(Z; P|t[1, p, p, p2], 〈Q〉)+p−4k−4(χQ(p)p2−1)Θ(Z; P|[p]4, 〈Q〉)
=
(
χQ(p)p−(4k+3)λ(t[1, p, p, p2]) + p−4k−4(χQ(p)p2 − 1)λ([p]4)

)
Θ(Z; P, 〈Q〉).

Hence, by (4.25), we conclude that the p-factor of the zeta function (4.23) with
s − 2k − 1 in place of s and ψ = χ1/q corresponding to the eigenfunction F =
Θ(Z; P, 〈Q〉) of Hecke operators |T from the ring H2

0(q) is equal to

Sp(p
2k+1−s, Λ) =

(
1 − Λ(T 2(p))t+ Λ(pT 2

1 (p2) + p(p2 + 1)〈p〉2)t2

− Λ(p3〈p〉2T 2(p))t3 + p6Λ(〈p〉22)t4
)−1

,
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where Λ(T ) are the corresponding eigenvalues and t = p2k+1−s, which is equal to

(
1 − p−2k−1λ(t(p))t+

(
p(χQ(p)p−(4k+3)λ(t[1, p, p, p2])

+ p−4k−4p(χQ(p)p2 − 1)λ([p]4)) + p(p2 + 1)p−4k−4λ([p]4)
)
t2

+ p3p−4k−4λ([p]4)p
−2k−1λ(t(p))t3 + p6p−8k−8λ([p]4)

2t4
)−1

=

(
1 − λ(t(p))p−s +

(
χQ(p)λ(t[1, p, p, p2]) + (1 + χQ(p))pλ([p]4)

)
p−2s

− pλ([p]4)λ(t(p))p−3s + p2λ([p]4)
2p−4s

)−1

= Zp(t, P).

The equalities of the local zeta functions for all prime p not dividing the level of Q
implies the equality of the Euler products. 4

§5. Binary forms of fundamental discriminant

Let

Q1 =

(
2a1 b1
b1 2c1

)
, . . . , Qh =

(
2ah bh
bh 2ch

)

be the matrices of a system of representatives

(5.1) q1(X) = a1x
2
1 + b1x1x2 + c1x

2
2, . . . ,qh(X) = ahx

2
1 + bhx1x2 + chx

2
2

of proper equivalence classes of integral positive definite binary quadratic forms of
divisor δ = gcd(ai, bi, ci) = 1 and discriminant b2i − 4aici = − detQi = −d < 0.
Note that in this case all of the matrices Qi have the same level q = d.

On the other hand, we introduce imaginary quadratic field K = Q(
√
−d). Let

∆ < 0 be the discriminant of the field K, then K = Q(
√

∆) and −d has the form
∆t2 with t ∈ N. In order to simplify the forthcoming considerations, we shall
assume that the discriminant of forms (5.1) is fundamental i.e. it coincides with
the discriminant of the field K, so that ∆ = −d.

If

(5.2) qi(X) = ai(x1 − γix2)(x1 − γix2) with γi =
−bi +

√
−d

2ai
∈ H1

is the standard factorization of qi, we shall say that the number γi is the root of

qi. All of the roots γi belong to the field K. We associate with each of the forms
qi the Z-module Mi = {1, γi} = {Z + γiZ} of rank 2 (a full module) in the field
K. The norm N(Mi) of the module Mi is equal to 1/ai and its ring of multipliers
is the ring

O(Mi) =
{
α ∈ K|αMi ⊂ Mi

}
= {1, aiγi} = {α ∈ K|α+ α, αα ∈ Z} = O,



34 ANATOLI ANDRIANOV

i.e. it coincides with the ring of integral numbers of the field K. The modules
M1, . . . ,Mh form a full system of representatives of all classes of equivalent full
modules in K with the ring of multipliers O. For details on modules in quadratic
fields and their relations with binary quadratic forms see, for example, [2, Appendix
3].

An integral matrix D =

(
a b
c d

)
with detD > 0 is an automorph of matrix Qi

to Qj with multiplier µ if and only if qi(DX) = µqj , which means that

ai(ax1 + bx2 − γi(cx1 + dx2))(ax1 + bx2 − γi(cx1 + dx2))

= ai

(
(a− γic)x1 − (γid− b)x2

)(
(a− γic)x1 − (γid− b)x2

)

= aiN(a− γic)

(
x1 −

γid− b

a− γic
x2

)(
x1 −

γid− b

a− γic
x2

)

= µaj(x1 − γjx2)(x1 − γjx2),

where N(α) = αα is the norm of α ∈ K. Since the numbers γj and γid−b
a−γic

both

belong to the upper half-plane, the last identity is equivalent with the relations

(5.3)
1

N(Mi)
N(a− γic) =

µ

N(Mj)
and

γid− b

a− γic
= γj .

The last relation means that the second column of D is uniquely determined by the
first column, and the first column satisfies (a−γic)γj ∈ Mi, i.e. (a−γic)Mj ⊂ Mi,

which can be written as the inclusion a− γic ∈ MiM−1
j . Thus, an integral matrix

D =

(
a b
c d

)
with detD > 0 is an automorph of matrix Qi to Qj with multiplier

µ if and only if

(5.4) a− γic ∈ MiM−1
j and N(a− γic) = µN(Mi)/N(Mj) = µN(MiM−1

j ).

Let us associate to each automorph

D =

(
a b
c d

)
∈ Aij(µ) = R+(Qi, µQj)

the number

(5.5) α(D) = αij(D) = a− γic ∈ MiM−1
j .

As we have seen above, the correspondence D 7→ α(D) is one-to-one between the
set Aij(µ) and the set of all numbers α ∈ MiM−1

j with N(α) = µ. In particular,

it is one-to-one between each of the group of units Ei = Aii(1) and the group of
units E = E(O) of the ring O, hence,

(5.6) #(E1) =, · · · ,= #(Eh) = #(E(O)).
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If D =

(
a b
c d

)
∈ Aij(µ) and D′ =

(
a′ b′

c′ d′

)
∈ Ajk(ν), then the product

DD′ =

(
a′′ b′′

c′′ d′′

)

where a′′ = aa′ + bc′ and c′′ = ca′ + dc′, belongs to Aik(µν) and, by using (5.3), we
obtain

(5.7) α(DD′) = αik(DD′) = a′′ − γic
′′ = aa′ + bc′ − γi(ca

′ + dc′)

= (a− γic)a
′ − (γid− b)c′ = (a− γic)(a

′ − γid− b

a− γic
c′) = αij(D)αjk(D′).

It follows that each double coset EiDEj ⊂ Aij coincides with the left coset EiD,
and the principal modules

(
α(D)

)
= α(D)O of the ring O are in one-to-one cor-

respondence with the double or left coset. This correspondence, which we shall
denote also by α so that α(EiDEj) = α(EiD) = α(D)O, is clearly compatible with
the multiplication of double cosets in the automorph class ring H = H(Q1, . . . , Qh)
and the usual multiplication of modules with the ring of multipliers O, in addition

N(α(D)O) = N(α(D)) = µ(D),

where N stands for norm of modules and numbers, respectively. Hence, the C-linear
extension a of the correspondence α on the extended Hecke–Shimura ring

H̃ = HC(Q1, . . . , Qh) = H(Q1, . . . , Qh) ⊗ C

where ⊗ stands for tensor product over Z (the extension of the ring of scalars),

considered over the field C, is an isomorphism of the ring H̃ onto the ring M(O)
of all matrices of order h whose {i, j}–entries are formal finite linear combinations
with coefficients in C of nonzero principal modules αO with α ∈ MiM−1

j (we

extend the ring of scalars Z to C because below we shall use complex coefficients).
Let us find the a-images of the elements t(µ) = (τij(µ)) of the form (2.29). By

definition, we have

(5.8) a(t(µ)) = (aij(µ)) , where aij(µ) = α(τij(µ)) =
∑

(
α
)
⊂MiM−1

j ,

N
(
α
)
=µN(MiM−1

j )

(
α
)
.

The conditions
(
α
)

⊂ MiM−1
j and N

(
α
)

= µN(MiM−1
j ) mean that

(
α
)

=

AMiM−1
j , where A is an ideal of the ring O (i.e. a full module with the ring

of multipliers O contained in O) of norm N(A) = µ and such that the module
AMiM−1

j is principal. Thus,

aij(µ) =
∑

A⊂O, N(A)=µ

MiM−1
j A∼O

AMiM−1
j
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Let Cl(K) be the group of classes of equivalent full modules in the field K i.e. the
factor group of the multiplicative group of all modules by the subgroup of principal

modules, and let Ĉl(K) be the group of characters of Cl(K). By the orthogonality
relations for characters, we have

1

h

∑

χ∈cCl(K)


 ∑

A⊂O, N(A)=µ

χ(A)A


χ(MiM−1

j )MiM−1
j

=
∑

A⊂O, N(A)=µ

1

h


 ∑

χ∈cCl(K)

χ(AMiM−1
j )


AMiM−1

j = aij(µ).

Therefore, we can rewrite the whole matrix a(t(µ)) in the form

(5.9) a(t(µ)) =
∑

χ∈cCl(K)


 ∑

A⊂O, N(A)=µ

χ(A)A


 I(χ),

where

(5.10) I(χ) =
1

h

(
χ(MiM−1

j )MiM−1
j

)
⊂ M(O).

The sum of these matrices

(5.11)
∑

χ∈cCl(O)

I(χ)

=
1

h


 ∑

χ∈cCl(O)

χ(MiM−1
j )MiM−1

j


 = diag(O, . . . ,O) = 1M(O) = 1

is the unity element of the ring M(O). Besides, the matrices satisfy the idempotent
relations

(5.12) I(χ)I(χ′) =

{
I(χ) if χ = χ′

0 if χ 6= χ′,

because we have

I(χ)I(χ′) =
1

h2

(
h∑

l=1

χ(MiM−1
l )MiM−1

l χ(MlM−1
j )MlM−1

j

)

=
1

h2

(
χ(Mi)χ

′(M−1
j )MiM−1

j

∑

l

χ(M−1
l )χ′(Ml)

)
,
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and the relations (5.12) follow from the relations

∑

l

χ(M−1
l )χ′(Ml) =

∑

l

(χ′χ−1)(Ml) =

{
h if χ = χ′

0 if χ 6= χ′.

Let us assign to each nonzero ideal A of the ring O the matrix {A} ∈ M(O) of the
form

(5.13) {A} =
∑

χ∈cCl(K)

χ(A)AI(χ) = A
∑

χ∈cCl(K)

χ(A)I(χ).

In particular, by (5.11), we see that

(5.14) {O} =
∑

χ∈cCl(K)

OI(χ) = O · 1M(O) = 1

is the unity element of M(O). The relations (5.12) imply relations

(5.15) {A}{B} =
∑

χ

χ(A)AI(χ)
∑

χ′

χ′(B)BI(χ′)

=
∑

χ

χ(AB)ABI(χ) = {AB}.

With the notation (5.13) we can rewrite the relation (5.9) in the form

(5.16) a(t(µ)) =
∑

A⊂O, N(A)=µ

{A}.

The above formulas allows us to write the a-image of the formal Dirichlet series
(2.38) in the terms of the ideals of the ring O:

∞∑

µ=1

t(µ)

µs
⇒

∞∑

µ=1

a(t(µ))

µs
=
∑

A

{A}
N(A)s

,

where A ranges over all nonzero ideals of O, and we can use the multiplicative
theory of ideals of the ring O for the ”Euler factorization” of the last series. By
(5.14), we get

(5.17) =
∏

P

∞∑

δ=0

{P}δ

N(P)δs
=
∏

P

(
1 − {P}

N(P)s

)−1

=
∏

p

∏

P|p

(
1 − {P}

N(P)s

)−1

,

where P runs through all prime ideals of O, p runs through all rational prime
numbers, and P in the last product ranges over all prime ideals dividing the ideal
(p) = pO.
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We use well-known laws of factorization of prime numbers into prime ideals of
the ring O (see, e.g., [11, Ch. 3, §8, Th. 2]). Let χK be the Diriclet character
associated with the field K. Then, for a prime number p, if χK(p) = 1, there
are exactly two conjugate prime ideals P and P of the ring O dividing p, the
ideals satisfy PP = pO and N(P) = N(P) = p, in addition, by (5.15) and (5.16),
respectively, we have {P}{P} = p{O} = p1 = pa(t(1)) and {P} + {P} = a(p); if
χK(p) = −1, there is the single prime ideal P dividing p, the ideals satisfy P = pO
and N(P) = p2, besides, {P} = {pO} = a([p]) and a(t(p)) = 0; but if χK(p) = 0,
there is the single prime ideal P dividing p, and the ideals satisfy the conditions
P2 = pO and N(P) = p, so that {P} = a(p). Note that in the situation under
consideration the character χK is equal to the character χQ of the quadratic form
with matrix Q equivalent to one of the matrices Qi. Therefore, the Euler product
expansion can be rewritten as

∞∑

µ=1

a(t(µ))

µs
=

∏

p primes

(
a([1]) − a(t(p))

ps
+
χK(p)a([p])

p2s

)−1

.

After returning to inverse image of the map a, we get the decomposition

(5.18)

∞∑

µ=1

t(µ)

µs
=

∏

p primes

(
[1] − t(p)

ps
+
χK(p)[p]

p2s

)−1

,

which refines the decomposition (3.38).
Let us now consider the linear extension of the representation (3.15) to a linear

representation of the ring H̃ on the invariant subspace

Ik = I1
k(Q1, . . . , Qh) = {(P1, . . . , Ph)|Pi ∈ Ik(Qi)}

of the space Pk = P1
k(Q1, . . . , Qh) of harmonic vectors of genus 1 and weight k

(= degree) with respect to the system Q1, . . . , Qh, where Ik(Qi) = I1
k(Qi) is the

space (3.13) of Ei-invariant harmonic form. It easily follows from Proposition 3.1
that the space P1

k(Qi) of all harmonic form of genus 1 and degree k relative to the
matrix Qi is spanned over C by the polynomials

(5.19) P k
i (X) = (x1 − γix2)

k and P k
−i(X) = (x1 − γix2)

k (X =

(
x1

x2

)
),

where γi is defined by (5.2). By (5.6), it is not hard to check that these polynomials
are Ei-invariant if and only if the degree k is divisible by the order e = e(O) =
#(E(O)) of the group of units of the ring O, which we shall assume hereafter. In
this case the space Ik coincides with the space Pk of all harmonic vectors, and 2h
vectors

(5.20) P±i = P
(k)
±i = (0, . . . , 0, P k

±i, 0, . . . , 0) with ± i = ±1, . . . ,±h

form a basis of the spaces.
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The image of a form P ∈ Ik(Qi), under the action (3.16) of the Hecke operator
|τij(D) with D ∈ Aij(µ) is equal to

P |τij(D) =
∑

D′∈Ei\EiDEj

P (D′X) = P (DX),

because EiDEj = EiD. If P = P k
i and D =

(
a b
c d

)
, then, by (5.3) and (5.5), we

have

P k
i |τij(D) = P k

i (DX) = (ax1 + bx2 − γi(cx1 + bx2))
k

= (a− γic)
k

(
x1 −

γid− b

a− γic
x2

)k

= (a− γic)
k(x1 − γjx2)

k = αk
ij(D)P k

j .

Hence, the subspace P+
k = I+

k of Pk spanned by vectors P1, . . .Ph is invariant with
respect to all Hecke operators of H, and, in particular,by (2.29), similarly to (5.8)
we obtain, for i = 1, . . . , h and µ = 1, 2, . . . , the formula

(5.21) Pi|t(µ) =
h∑

j=1

a
(k)
ij (µ)Pj , where a

(k)
ij (µ) =

∑
(
α
)
⊂MiM−1

j ,

N
(
α
)
=µN(MiM−1

j )

αk.

Besides, by (3.4), for Hecke operators corresponding to elements (2.30) we have

(5.22) Pi|[d] = dkPi (i = 1, . . . , h).

Similarly, we have

P k
−i|τ(D) = P k

−i(DX) = (a− γic)
k(x1 − γjx2)

k = αk
ij(D)P

k

−j ,

whence, the subspace P−
k = I−

k of Pk spanned by vectors P−1, . . .P−h is invariant

with respect to all Hecke operators of H̃, and, in particular, for i = 1, . . . , h and
µ = 1, 2, . . . , we obtain the formula

P−i|t(µ) =

h∑

j=1

a
(k)
ij (µ)P−j ,

where

a
(k)
ij (µ) =

∑
(
α
)
⊂Mi(Mj)−1,

N
(

α
)
=µN(Mi(Mj)−1)

αk =
∑

(
α
)
⊂MiM−1

j ,

N
(

α
)
=µN(MiM−1

j )

αk.
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Thus, we can restrict ourselves to consideration of the Hecke operators on P+
k . To

this end, we introduce a linear representation ◦ of the semigroup of all nonzero
ideals of the ring O on the space P+

k by setting

Pi ◦ A = αij(A)kPj if AMi ∼ Mj ⇔ AMi = αij(A)Mj with αij(A) ∈ K.

Let M(A) =
(
αij(A)k

)
be the matrix of the operator ◦A in the basis P1, . . .Ph .

Then we clearly have

(5.23) M(A)M(B) = M(AB), M
((
α
))

= αk · 1h if α ∈ O,

and the matrix (5.21) of the Hecke operator |t(µ) in the same basis can be written
in the form

(5.24)
(
a

(k)
ij (µ)

)
=

∑

A⊂O, N(A)=µ

M(A).

If AMi = αij(A)Mj , then, by going to conjugate modules, we get the relation

AMi = αij(A)Mj . Since, for every full module M with the ring of multipliers O,

we have MM = N(M)O, where N(M) is the norm of M, the last relation implies
that AN(Mi)M−1

i = αij(A)N(Mj)M−1
j , or AMj = N(Mi)

−1αij(A)N(Mj)Mi,
i.e., by the definition of matrices M ,

M(A) = N−2 tM(A)N2, where N = diag(
√
N(M1), . . . ,

√
N(Mh)).

This relation can be rewritten in the form

(5.25) M ′(A) = NM(A)N−1 = N−1 tM(A)N = t(NM(A)N−1) = tM
′
(A).

On the other hand, by (5.23), the matrices M ′(A) together with matrices M(A)
commute with each other, and so, in particular, commute with M ′(A). Thus,
each of the matrices M ′(A) = NM(A)N−1 = is normal, and, by a well-known
theorem of linear algebra (see, e.g., [G(51), §14.2]), all of the matrices M ′(A) can
be simultaneously diagonalized. It follows that there is a basis of the space P+

k of
common eigenvectors for all of the operators ◦A. Let F = a1P1 + · · · + ahPh be
such an eigenvector, so that

F ◦ A = ρ(A)F for all ideals A ⊂ O.

Since the h-th degree of every ideal A ⊂ O is a principal ideal, Ah = αO with
α ∈ O, by (5.23), we conclude that

ρ(A)h = ρ(Ah) = ρ(αO) = αk =

(
α

|α|

)k

|α|k =

(
α

|α|

)k

N(A)kh/2.

Hence,

ρ(A) = Ψk(A)N(A)k/2 with Hecke character Ψk(A) =

(
h

√
α

|α|

)k

.
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The eigenvalues of the Hecke operators |t(µ) on the space P+
k corresponding to the

eigenvector F, by (5.21) and (5.24), can be written as

ρ(t(µ)) =
∑

A⊂O, N(A)=µ

ρ(A),

and the corresponding zeta function is equal to

Z(s, F) =

∞∑

µ=1

ρ(t(µ))

µs
=
∑

A⊂O

ρ(A)

N(A)s
=
∑

A⊂O

Ψk(A)

N(A)s−k/2

=
∏

P primes ideals of O

(
[1] − Ψk(P)

N(P)s−k/2

)−1

= ζO(s− k/2, Ψk),

where

ζO(s, Ψk) =
∑

A

Ψk(A)

N(A)s
=
∏

P

(
1 − Ψk(P)

N(P)s

)−1

with A and P running through all nonzero ideals and all prime ideals of O, respec-
tively, is the Hecke zeta function of the ring O with the character Ψk. It follows
that the Dirichlet series Z(s, F) converges absolutely and uniformly in each right
half-plane <s ≥ 1+k/2+ε with ε > 0. The function Z(s, F) can again be presented
in every domain of absolute convergence by means of Mellin integral of the theta-
sum Θ(z; F, 〈Q〉) = a1θ(z; P1, Q1)+ · · ·+ahθ(z; Ph, Qh) for a class 〈Q〉 equivalent
to one of the matrices Qi:

r(2; F)Z(s, F) =
(2π)s

Γ(s)

∫ ∞

0

(Θ(
√
−1t; F, 〈Q〉) − F(0))ts−1dt,

where r(2; F) and F(0) are the coefficient at e2π
√
−1z and the constant term in

the Fourier expansion of the theta-sum, and where Γ(s) is the gamma-function,
which allows one to prove that the zeta function has the meromorphic analytical
continuation over whole s-plane and satisfies a functional equation. Alternatively,
the analytical properties of the zeta function ζO(s, Ψk) can be investigated by
means of Fourier analysis on adele space of the field Q(

√
−d), as it was done in

Tate’s thesis.
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