vmmmwmmnmmm

FOR CUBIC SURFACES

»
DIMITRI KANEVSKY

Max-Planck-institut
far
Mathematik
Bibliothek

inv. Nr.: 2076

Stand-Nr

Max-Planck-Institut

fir Mathematik
Gottfried-Claren-StraBe 26
D~5300 Born 3

WPI/SFB 84-16

]

I would li{ke to thank the Alexander von Humholdt Poundation
for their supnort while this work was done.



In our paper a few examples of very elementar calculations of Brauer
equivalence for cubic surfaces V over local and global fields K are given
(without study of cchamological groups iGal (R/K,Pic VeK)). Also some questions
of Manin on universal,Brauer and R- equivalences posed in [m] are answered.

In Sections 1,2 we shall give precise definitions,statements of
theorems and motivations.The proofs are contained in other sections.To show
more explicitly how main theorems work in applications we gaflered proofs-of
- all corollaries and examples in the last section.

The part of Theorem 2.10 concerning Brauer equivalence was first proved
by me for cyclic extensions of fields and it totk its last form in the result
of discussions with J.-L.Colliot-Thelene and J.-J.Sansuc whom I'm obliged very
much.I also would like to thark the Max-Planck-~Institut fiir Mathematik where

this paper was written for hospitality and excellent working conditions.



§1 Definitions.

We begfink introducing some notation and terminology.General refe-
rences are [Ma,Ch.1,2,3] and also [Bl,Appendi)a ,[E:T—S ,§7].

Let ,V\cvzbe a projective cubic Surface defined over a field K
and V(L) a set of nonsingular (geometric) points of V with values
in a field LOK.

1.1. A xeV(K) is a point of general type(resp. an Eckardt point) if
a tangent plane to V at x does not contain a straight line < V@K (resp.
contains three lines of Vak all passing through x).
Points x,yéV(K), x # y, are said to be.dn .general position if
the straight line xy does not touch V.

Given x,yeV(K) xXoy will denote any point in V(K) such that there
exists a straight line 1 for which either x+y+xoy=1+V is a cycle of
intersection of V with 1 or l1eV,x,Y ,xevy¢l.

1.2. An equivalence relation A on V(K) is said to be admissible if
for any Xy rXgrXo Xo oY, 1Y, o¥,© y‘eV(K) such that X v Yy mod A,
X, ~Y, mod A it follows that x,e. Xyev¥,° Y, mod A.

The finest admissible equivalence onV(K) is called universal
(and denoted by the letter U).R-equivalence is the finest admissible
equivalence for which x,ye€ V(K) belong to the same class if there
exists a K-morphism f: !{i—-) V such that x,y € f( li(x)) .

1.3. Points x,y € V(K) are called Brauer equivalent (written x~y mod R)
if for any a€ Br(V) a(x)=al(y).

(Here: a(x)=class A(x) € BrK,where :A(x) is ageometric fibre of Azumaja
algebra A/K on V, which. represents a in Br(v)).

Standart calculations of Brauer equivalence on smnoth V involve

the fdllowina steps:



to find 27 straight lines on V and define the action Gal(ﬁ/K) on
ones;

to compute H! (Gal(K/K), Pic VeK);

to find some of generators of Br(v: .:tc.

In our computations in this paper we shall use only that Brauer
egquivalence is admissible, coarser than R- equivalence and the
following fact:

1.4. If K is global and for all places v of K (except may be one)
m—-torsions in groups of Brauer classes V(Kv)/B are trivial, then
m—-torsionin.V(K)/B is trivial. (Here Ky denote any complation of K
belonging to v and m=2 or 3).

1.5. Given an admissible equivalence A on V(K) let E=V(K)/A be a set
of classes modulo A and let us set X,¢X =x3 ,XIGE, if there exist
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points X, € X such that x, ¢« x_=x_,.Defining a new binary operation

L 2 3
XY =TI <(X°Y) where I is any . fixed clas’s, one can convert E into a commutativ
foufang loop (henceforth abbreviated CML) ,which is the direct product of
an abelian group of period 2 and CML of period 3 (the latter is also
an abelian group if it is of order at most 27). CML E is independent
up to isomorphism from the choice of an unit class I€¢ E and we shall

write also MA(K)(or %A? for CML E.

1.6. Given any admissible equivalence A on V(K) we der-~te by Am

(m = 2 or 3) admissible equivalences on V(K) such that A =A2 N A3

(i.e. x v ymod A& x v ymod A, ms= 2,3) and M has period m.

A
m

Let K be a local (nonarchimedean) field with rasidue field. k,
V a cubic surface over k, where V —> Spec.k is the closed fibre of V'
(some nrojective scheme lifted from V and defined over the rina of
integers of K). Generalizing Svinnertnn-Dyer we shall say that e V (k)

is class-free (rasp. m-class-free) if all noints V(K) whose reducti



modulo the prime of K is % belona to the same class modulo U
(resp. U,).

1.7. We shall write A' > A if A' is admissible equivalence coarser
than- A and sometimes for any X € V(K) denote by the same letter A

thekrestriction to X of given equivrience relation A on V(K).

§2.Results.

Now we formulate all results of this work.

2.1.Theorem. (cf. [SD , Lemmas 15-20] ).

Let V be a cubic surface over K a finite extension of p-adic
numbers, V(K) contains a point of general type.’\\l‘—-) Spec k the ¢losed fibre
of V%wheré k istheresiduefield.Let'§e%(k) be in general position
with some point in V(k).

Then X is class-free if char k # 2,3 and m~class-free if m is prime to

char k.

2.2.Corollary.

Let V be smooth and char k # 3. Then 3-torsion in MR(K) is
trivial.If in addition V(K) has an Eckardt point, V does not contain
straight line over k, # V(k) > 1 and V(k) consists of only Eckardt. points
then R- equivalence on V(K) is trivial.

2.3.Example.

Let K=Q (8) where 02+ 8 + 1=0 and let V< R"?( be defined by
the equation T: + T: + T: + eT:= 0.
Then M,(K) = Z& = Z, Mp(K) = 1 and MUQ(L) = 1 for any nontrivial
unramified extension L of K.

2.4 .Remarks.

This example, first, answerg on the question in [ Ma, p.76] on

the structure of HU(K) and MR(K)-



Secondly it answers on the gquestion in (?a,bp.és] showing that there
is not analogous of the Manin theorem f(see 5.1 ) for universal
equivalences. Finally 2.3. provides a counterexample in relation with
the following quotation from [SD,p.112] : "... one may hope that
universal equivalence and R- eguivalence are the same." (See also an
example of M_ (k) # M,(k) in [SD, §8] for finite k).

Other examples in our paper are based on the following theorem
in which we keep all assumptions of Theorem 2.1.

2.5 .Theoremn.

Let V be a cone with a hasew a plane cubic curve, let 'v‘l'(k) =P
be a set of nonsingular (geometric) points of W over k (with a
standart group structure if w smooth), let no one of singular
points of V over k lifts to V(K) and let every point in P is in
general pogition with some other one.

Then we have:
i) If char k # 2 (resp. char k # 3) 2- torsion in MU(K) is trivial
{resp. all k- points of any straight k— line <V 1lift to.a set
of points in V(X) belonging to the same class modulo U3 ).
ii) Let V decomposed over k on three distinct planes defined over k
all passing through one line. Then,if char k # 3’MUJK) = Z . More
precisely, all k- pcints on each of this planes lift to a set of
polnts in V{K) belonging to the same class modulo U, .

iii). Let char k#3,W be smoothang %(k) cotntdin’. am*inflection 'point.
Then there »xists a surjective map ¥: v(x)-——’P:= { x e,P!.Bx = 0}
such that the following holds: '



al x; € VIK), x ~ x mod U D vix )= ¥ix )

b) HU(K) 4 P

c) Let A> U (considered on V(K!). Then there exists A°> U such
3

t:!nat-.u3 =AﬂA and M; =M, x Mo .

A A
2.6.Corollary-example.

Let V given by: 2p3 4+ 3p T3 973 Zps - 3
g y: P pa ¢ Tz*plpzTa 0 in By,

wvhere p # 3 are rational primes such that Qp do not contain a primitive
1

‘ N
cubic root from one ard (denoting Fp =Z/pZ) 3E€ (F;), r pmod p. € (E‘E:)3
)} 3 .
(1,3} = {1,2} . L ’

Then 3- torsions in MR(QP), MB(Q) are trivial for all primes p € Z
except may be p = 3.
2.7.Remark.

V is built in some relation with the Cassels-Guy surface.

v T3 + 9T’ + 12'1‘3 + 10T3 = 0 for which the Hasse principle
failes [Ma . ch.6, 47.6] .

It was shown for some of rational surfaces existence of the
so-caled Manin obstruction to the Hasse principle ([Ma,Ch.G],
@-Sd},[CT—C—é]). But the problem of describing explicitly the Manin
obstruction on the general Cassels—-Guy surface

V2: '1” + aT’ + b'l‘3 - cT: = 0 (posed by Swinnerton-Dyer) is still open.

In view of computations in rCT ] showing that the 3- group of
i (Gal(R/@,Pic Ve @) % Z,, if [Q(a‘/’,b‘/’. ct/3):
hope that surfaces V., and others constructed in the same manner
will be helpfull in study of the abiove problem.
2.8, Let L/K be a Galois extension of fields with G = Gal (L/K) and
let gex denote a transform of xé V(L) by g¢ G. Admisslble equivalence
Aon V{L) is said to be G- admissilkle if x ~ y mod A<=y gex~ g-y
mod A for any g¢G. In this case there c¢xists the action of G on MA(L)
¢fining by X — g-X:= { g.x | x€X} , X< M,(L),g¢G.

]

27, one may



2.9. If G = Zz generated by ocand for an unit class I in MA(L)

INV(K) # § one can get a "Norm" map (cf. [Ma, Ch.2, §15])

NA'G: M, (L)—> M, (K) defined by X - XoXAV(K), XE€ MA(L).
The following result will be proven in Section 4.

2.10.Theorem.  (The notation of 2.8)

Let K be infinite, V(L) has a point of general type. Then
universal and R- equivalencesare G- admissible. If in addition V is

smooth and char k=@ then Brauer equivalence on V(L) is G~ admissible.

2.11. Now up to the end of this section we keep the following notation.

Let.L be a finite extension of Q, Lpa completion of L at a prime p.

Let Vcn?i and a curve wcV be given by Tz + T: + T;’ + aT:=0 for an integer
3 3 3 n )
and T,+ T /+T,= 0 respectively, let W, = 3vac lbbe the closed fibre of \msLP°

(vith the residue field lp of Lp , but we shall write w(lp) instead of

~ )
1 ). Let S = be a set of all primes in L
""p( p)) e L,a {pl, e, ... pr } et o P
dividing a and prime to 3. Let VL;= : n'QESL . V(Lpi)' Pi==
Iy ]

= {xew(l ) |3x
Pi
VL- — PL a defined for compnnents as in 2.5(iii) for wi =y, K=1L

0}, P, =Trbi, 1= 1,2...r. Let ¥y =@, ¥ ... ¥)
i

P, = P. Letus identify V(L) with its diaconal image in VL'
3

i
Let UL denote admissible equivalence on V(L) defined by: x,ye V(L)< VL'

X~y mod U == Y (x) = ¥y, (¥)-Let us choose a group structure on

w(L) such that the originin w(L) belongs to the unit class in M, (L)
L

(and induces modulo piorigins in w(lp.) ).
Then we have the following result



2.12. Corollary.

For any A > U_ there exists A’ >U_ such that U, = AnA’ and

L L

Mp X MA" = MULC:PL.a’

In particular (cf. [Ma, Ch.6, 45.6.]) M, is a finite group of

period 3 and rank MA s 2r.

Now let L = Q(8), 62+ 6 + 1 = 0, a€Z, G = Gal(L/p) Zzz _

generated by o . For any p¢€ S identifiying Z/p Z with its diagonal

Q,a’

image ;nﬂlp( for all peSL'a, p|{ p) » one canconsider PQ,a as the subset

of P a Let in addition to above to choose anorigin in w(L) belonging
’

to w(@). Let N: PL,a - ,PQ,

—) N(x) = (x1 + yl, x‘2 + yz...) where y = (yl...yr)e PL,a is the

a be defined by x = (xl,xz... xr) € PL,a

transform of x by o. (The acticonof cwonP one can define as follows:

L,a

1 . *p. =P,
et all xi6w(lpi) 1ift to some z; € W(Lpi) and let ¢ Ch pJ
then Y; lifts to the transform of Zj by o for the natural isomorphism

g: w'(Lp ) N w(Lp ) coming from the the isomorphism of Lp onto Lb which is
j i 3 M
induced by the action of ¢ on L).

In view of the question in [Ma, Ch.6, 45.7.4:\ we give also

the following 1last statement of this section.

2.13. Corollary.

Let B be Brauer equivalence on V(L) and B' its restriction on

V(Q). Then for suitahle choosen ll/L there exist injective homorphisms

C—’ 3 =
3(L) MUL(L) < PL,a uch that MB3' MB3(\ PQ,a
and the map N53G: My (L) — MB3' (@) (8ee 2.9.) is the restriction
' 3

of H
N PL,a ——P‘ P

MB& Q) < MB

to M

Q'a B3 (L) :



§3. Proofs.

Now we prove Theorem 2.1 fixing its notation.
Given prime p in K and x = (t,.,t, ,¢, ,t;) €V(K) where ti are relatively
prime integers we denote by x‘mod p* a class (&t;,at;,at;,at;)
such that t' = t mod p" and a runs all invertible elements in the
ring of inte;ers‘;f K modulo p®. LetT: V(K) — 31k1$defined by
7(x) = x mod p and let given::\i e V (k) Sy:= {x eV(K)] Tmix) = ¥X}.
3.1 Lemma.
Let X, g;e‘\\;(k) be in general position. If X is not m-class-free
there exists A > U, such that #Sg/A = m (m = 2 or 3).
Proof.
First, by Lemma 2.8(i) in {Kal for any x € Sg, yess; X oy € sz=§°§'
and therefore # S ,;{/A = # SS;/A = # SE/A . Let A> Umibe any finest
admissible equivalence such that # S;{-/A? 1.Let C be any subgroup
‘of order m belonging to the associative centre of MA (which is not
~trivial by [Ma, Ch.1,Th.1.3] ),and let A_ be an admissible equiva-
lence on V(K) such that MAc coinsides with the factorloop MA/C.
Then Aci,IXand by our assumption # Sg/A_ = # Sz/A_ = # S§/Ac,= 1,
i.e. Sy/ACZC if we pick up an unit class]in V(K)/A such that
InS; # §.If m = 3 let classes I # Je€C, XeM, be choosen such
that J\ Sz # #, X\ S; # #. Then JXN\S; # § and I XN\sg # P
(recall JX = Is(J¢X)). Thus (since M, has period 3) X # JX f'J’X
implying Lemma.
Now let A be as in 3.1 and let Xi’i = 1,...m be all classes in

MAsuch that Xif\ Sy # ¢.By [_Ka,L.Z.?]there exists n¢Z such that
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Stin'a‘{j =8 (i #3) where X, = X,(\ sy nod &' . By [Ka, L.2.8.]

# ')\(i = #‘&j' i.e. # S;Y mod p® = m(# "}\f‘,,‘. Thus Theorem 2.1 . immediates
from this fact that m]| # {sy mod ,;;“}=q2("—1) » g4 = #k (see [Ka,L.Z.GJ )
Before proving Theorem 2.5 we consider next two lemmas in which

keep the notation of 2.5.

3.2. Lemma.

Let £: ¥ —Y W be a natural projection of the cone on its
’ase (with the center at the vertex of '\‘7) : let 3 be as in 2.5iiji) ,let equi-~
valence relation X on '\‘7(k) (resp. A on V(K)) defined by:

?fl'» ?ez mod X < f(;c'l) - f&z)esp (resp. x ~ x mod A 4=

mlx ) & wi(x ) mod X). Then X,A are admissible and M,(K) 2 My(k) = P/3P.
Proof. ( We assume that xeyeP if x,v €P),

First, we show that :'\c'l'h 3‘:‘2 mod X implies ?c'lo ? ~ §z°"\" mod X for
any J'\:'i,?fe ‘\\;(k). Since for any XeP X - %X €3P and f(;c'io 3\!’) = f&i) or
f(;\c'i)of(;') it is enough to check that asb - cob € 3P for any a,b,ce¢ P
such that a - ce3P. Indeed, using asb = -(a + b) we have aob - ceb =
~(a+b) + (c+b) =c~-ae3p. Thus, X is admissible implying by
the property w(x) o n(y) = n(xeoy) (x,y€ V(K)) the same for A. The
last statement in 3.2 follows from this fact that just established bi-

jections between CLM's and P/3P preserve their lows of compositions.

3.3. Lemma.

Let ¥ ¢ V(k), s, :=R(S,), where d=1,2,3,satisfy:
a r 8,58 o) vhere 12,3,satisfy:
1 #8=#k=aq;
ii) any two points ;\c'ae ga' J'\c'se §B are in general position and ﬁ'ﬂo :"c'neds'&

where {a, 806} = {1, 2, 3} ?
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i11) for any x4,x, € S, there exists Y= X, 0X,€& S5y .
Then we have: # Sa/ U=1if m is prime to char k and SJISIV Sa/U2

belongs to the unit class in M if char k # 2.

Uz
Proof.

Let xic;V(K), i=1,2...4, be all distinct classes modulo U,
such that xiﬂ S1 # @. Using ii) in 3.3 and i) in [ka, Z.é}one can
find for any 1 5 i,j 5 d z,y€ S, such that z . (y oXi):S {z o ly ou)!uexi}=
=Xj. By 2.1 all points in gi are m-class-free if m prime to char k.
Therefore # %i = # yj' where &i = XiﬂS1 mod p, i.e. # §1 =q = d(#}i)
for any 15 ifd. Further from iii) in 3.3 it follows thatall classes
xi, i=1,...4, form subloop in MUmof order 4 and (by a general
theory, e.g. [Ma, €h.1,1.9]) of period m,d. This by i) in 3.3 .
implies the first statement in Lemma. Second one follows from this
fact that by iii)in 3.3(and the first statement just proved)for any
X € S ,class (x) o class(x) = class(x o x) in MUm, i.e. by [Ma, ch.1,5.1.4]

2-torsion in CML( s1V s,V 8;)/U ) &€ M, is trivial.

3.4.Proof of 2.5.

Let X _1X, and'x3= X o xze P (resp. 11,12,13) be in general position
(resp. distinct straight lines over k all passing through one point
and such that w = 1 ¥ 1 U 1 ). Then § = £ (x ) (resp. ¥ =£77(1))
satisfy conditions i-iii in 3.3 ( f was defined in 3.2 ). This
implies i) and ii) in Theorem 2.5.
Further let w/K be a smooth plane cubic curve belonging V

such that w(T) = P where we set T = w(K) CV(K).Let us choose ordinary
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group structures on T and P such that the originin T belongs to the
unit class I in MU (K) (note that by 2.5i) for any X eMU {K),
3 , 3
XNT # #) and lies above the origin inP. Then My (k) =% T/INT
3

defined by the restriction map X € M, (K) ~> X\T. Again by 2.5i)

3

for any X,YéMU (K), £7(X)N £n(Y) = § if X # ¥, implying T/TNI T
. _

=P/n(I)N P. Since MU has period 3, 7 (I)N P> 3P, i.e. there exists a
3
surjective map of P/3P onto P/m(I)[\P = T/INT = M, (K) whose
3

injectivity immediates from 3.2,

To complete the proof of iii) in 2.5 it is enough to describe
an isomorphism j: P/3Pp — ,P as follows.

Let P = P''XxP'' where P' is 3-torsion in P. Let a; (1 $1is 2) be

i i
generators of P' of period 3n1. Let ¢ : P ~—> JP = 2Z3 be composition
of the projection P — P' and the map P' —> P which maps a =
» i o o

=da +daceP (d,eZ, 03 4,<3 ) into 3'd a+ 32d a € P

11 2 2 i i 11 22 3
where o, = ni- 1 if n 2 1 and a, = 0 if n, = 0. Then ¢ factors through

1 1
g: P — P/3P, g(x) = x + 3P, and one can define j uniquely from
the following commutative diagramm. :
N\
P/3P —> 3P

J
(For the proof of 2.5,1iii),G) 3ee 5.4)

§4. Actions of Galois groups on CML's.

Here we prove Theorem 2.10, whose notation we keep. First we

recall the following result from [Ma,ch.2,13.10] .
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4.1. Proposition.

Let B(V) be the group of biration=1 automorphisms of V gene-
rated by all tx’ x € V(L) , where t, map a general point ye V
into xey. Let B, (V) be the normal subgroup of B(V) generated by
t. t.  t t. t_t £ 11 x.,vy. V{L). Then x V(L
X; ¥, CXy0Y, X, ¥, XY, or a 1'Y1€ (L) 'Y€ V(L) ,

X n y mod U e= txtyé.Bo ).

Now the first statement in 2.10 immediates from this fact

~

that Bo (V). is invariant under the action of G on B(V) by
tx — tgox for any x €V(L), g €G.
4.2.The second statement in 210 is the consequence of the following
evident fact:

let a L-morphism f: l!il(eL —>VeL covers points x,y € V(L)
(i.e. x,yef(lP:((L)) » then for any g ¢ G the morphism
f?: Pll(eL — VeL, defined by fg(u) = g-f(gl.u), ue!'lK(L) ’
covers points g-x,g9-.y.
4.3. Before proving the last statement in 2.10 we note the fol-
lowing. Let V be smooth, char k = 0 , let V' /= VeL; H & Gal(L/L)
and let L(V) be a field of rational functions on V defined over
an  algebraic closure L of L. Then using [_CT-S,§7.] anu EM;,Ch.S.dZ.ZJ
one can introduce the action G = Gal(L/K) on Br(v') cHa(H,i(V)*)
induced by the natural action G on HZ(H,i(V)*) (see for the explicit
description [H-S , p.117]after Proposition 7).From this one can
see (checking on the level of cocycles) that for any a €Br(v'),
§¢G and xeV' (L) a‘s( §x) = a(x)‘s, where(.)‘S denote a transform

of (.) by 6.
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This implies Theorem 2.10 for Brauer equivalence. Indeed, let
a(x) = aly) for all a¢Br(V'), then denoting for any 6eG, &= &}
we have a(§x) = {aa'(x)}6= '{aé.(y)]éf— a{dy), since ad.e Br(v').

4.4.Remark.

For any cubic hypersurface V over a field K one can suggest
the following hypothetical orincinle :
*) Let V(K) = f. Then there exists.a Galois extension L of K
with G = Gal(L/K) and G-admissible equivalence A on V(L) (defined
for any dimension exactly as for dim V = 2) such that the¥re are

not G-invariant classes in MA(L).

and V_smooth
The *) trivially holds if diE“V_;_Tvﬁﬁgﬁ’21asses of universal
equivalence on V(L) coinside with points. I don't know any
example to *) if dim V D> 1.Taking A = B it would be interesting
to check *) for any known examples of cubic surfases over number
fields for which the Hasse principle failes. Is there any

relation between *) and the Manin obstruction?

§5. Applications.

Here we prove all corollaries and examples from Section 2.
We shall use the following Manin result ([ha,ch.2,15.1.1]).

5.1. Proposition.

Let V be a cubic surface over infinite field K, V(K) has a
' (Guednalnt
point of general type, L separable :xtension of K and x,ye¢V(K) <V(L).

Then we have:
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If x £ y mod Ra for R-equivalence on V(K) then x % y mod R,
and for R-equivalence, considered on V(L).

5.2. Proof of 2.2 and 2.3.

Let L/K be a tower of quadratic extensions such that for
the residue field 1 of L #1 > 4 and for any xeG(l) there
exists ye V(l) in general position with x. Then by [SD,Th.f]
#V(L/U =1, i.e. by [SD,L.14] and Theorem 2.1 # V(L)/U, =
= V(1)/U;= 1. From 5.1 it now follows MRS(L) = Mna(K) = 1.

If additional conditions in 2.2 are fulfilled even MUz(K) = 1

by [Ka,1.§] . Statements in 2.3 follows from [ka, 1.6] and 2.2.

5.3. Proof of 2.6.

Let primes p # pi'3' Then the closed fiber of VQQ: is
smooth. Therefore, if p # 2 then$ V(D) /U=1by {sn,'rh.zland,if 240,
taen #V(QZ)/R3 = 1 by 2.2. Further,arhimedez‘-xlnbiilaces of
0 do not give contribution into V()/B since VeR == q:. Finally,
let p[pi be a prime in . K = Q (8), where e2 + 6+ 1=0.

Then V/ﬁ)satisfies ii) in Theorem 2.5 and from this theorem

it follows that the subset V(Qp )<:V(Kp)belongs to the same
i
U3 -class for U considered on V(Kp) implying by Proposition 5.1

triviality of 3-torsion in MR(QP ), since R3> Ua' Finally, the equalit
i
My (R) = 1 follows- from properties of Brauer equivalences
3

listed in 1.3 and 1.4.

5.4. Proof of 2.12.

By the definition in 2.11 M, cP = Z' and one can see
UL L,a 3
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(e.g. induction by r) that for any subgroaps M.cMc<cP there

1 L,a
exists a subgroup Mgc:M such that Mi X M; & M. Therefore given
‘MO - e 0 ~ :
A > UL let M c:MUL be such th:.: MA x M ,MUL.Then admissible
-] - ;O 0='
equivalence A°> o, such that Mpo = MUL/MA M° satisfies AN A UL

5.5.Proof of 2.13. Using assumptions before 2.13 and choosinc gene-

rators of 3-torsions in w(1)) (see the end of 3.4)such that \VL
commutes with the action Gonv{) <V, and P, a Pne can consider
14
MB(L)as a G-invariant suboroup of M,CP, .(by the erd of
3 L Ia

the theorem 2.10). This implies the corollary 2.13.
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