Max-Planck-Institut für Mathematik Bonn

Abstract commensurators of solvable Baumslag-Solitar groups

by
O. Bogopolski

Abstract commensurators of solvable Baumslag-Solitar groups

O. Bogopolski

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn
Germany

Institute of Mathematics of Siberian Branch of Russian Academy of Sciences
Novosibirsk
Russia

Düsseldorf University
Germany

Abstract commensurators of solvable Baumslag - Solitar groups

O. Bogopolski
Institute of Mathematics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia and Düsseldorf University, Germany e-mail: Oleg_Bogopolski@yahoo.com

December 7, 2010

Abstract

We prove that for any $n \geqslant 2$, the abstract commensurator group of the Baumslag Solitar group $\operatorname{BS}(1, n)$ is isomorphic to the subgroup $\left\{\left.\left(\begin{array}{ll}1 & q \\ 0 & p\end{array}\right) \right\rvert\, q \in \mathbb{Q}, p \in \mathbb{Q}^{*}\right\}$ of $\mathrm{GL}_{2}(\mathbb{Q})$.

1 Introduction

For a group G, we denote by $\operatorname{Aut}(G)$ its automorphism group, by $\operatorname{Comm}(G)$ its abstract commensurator group, and by $\mathrm{QI}(G)$ its quasi-isometry group; see Definitions 2.1 and 5.1. For a finitely generated G, there are natural homomorphisms

$$
\operatorname{Aut}(G) \rightarrow \operatorname{Comm}(G) \rightarrow \operatorname{QI}(G)
$$

which became embeddings if G has the unique root property, i.e. if

$$
\forall x, y \in G \forall n \in \mathbb{N}\left(x^{n}=y^{n} \Rightarrow x=y\right) ;
$$

see Sections 2 and 5.
We are interested in computing of abstract commensurator groups of (solvable) Baumslag - Solitar groups. The Baumslag - Solitar groups $\operatorname{BS}(m, n), 1 \leqslant m \leqslant n$, are given by the presentation $\left\langle a, b \mid a^{-1} b^{m} a=b^{n}\right\rangle$. These groups have served as a proving ground for many new ideas in combinatorial and geometric group theory (see, for instance, $[2,5,6]$). The only solvable groups in this class are groups $\mathrm{BS}(1, n)$; the groups $\mathrm{BS}(m, n)$ with $1<m \leqslant n$ contain a free nonabelian group.

The automorphism groups of $\operatorname{BS}(m, n)$ were described by Collins in [4]. It follows that the automorphism groups of $\operatorname{BS}(1, n)$ and $\operatorname{BS}(1, k)$ with $n, k \geqslant 1$ are isomorphic if and only if n and k have the same sets of prime divisors.

In [5], Farb and Mosher proved for $n \geqslant 2$ that $\operatorname{QI}(\operatorname{BS}(1, n)) \cong \operatorname{Bilip}(\mathbb{R}) \times \operatorname{Bilip}\left(\mathbb{Q}_{n}\right)$, where \mathbb{Q}_{n} is the metric space of n-adic rationals with the usual metric and $\operatorname{Bilip}(Y)$ denotes the group of bilipschitz homeomorphisms of a metric space Y.

Moreover, they proved that $\mathrm{BS}(1, n)$ and $\mathrm{BS}(1, k)$ with $n, k \geqslant 1$ are quasi-isometric if and only if these groups are commensurable, that happens if and only if n and k have common powers. In [6], Whyte proved that groups $\mathrm{BS}(m, n)$ with $1<m<n$ are quasi-isometric.

In this paper we compute the abstract commensurator groups of $\mathrm{BS}(1, n)$. We prove that the abstract commensurator groups of all groups $\operatorname{BS}(1, n), n \geqslant 2$, are isomorphic.

Main Theorem. For every $n \geqslant 2$, $\operatorname{Comm}(\operatorname{BS}(1, n))$ is isomorphic to the subgroup $\left\{\left.\left(\begin{array}{ll}1 & q \\ 0 & p\end{array}\right) \right\rvert\, q \in \mathbb{Q}, p \in \mathbb{Q}^{*}\right\}$ of $\mathrm{GL}_{2}(\mathbb{Q})$.

Note that $\operatorname{BS}(1,1) \cong \mathbb{Z}^{2}$, and it is well known, that $\operatorname{Comm}\left(\mathbb{Z}^{m}\right) \cong \mathrm{GL}_{m}(\mathbb{Q})$ for $m \geqslant 1$.

2 General facts on commensurators

Definition 2.1 Let G be a group. Consider the set $\Omega(G)$ of all isomorphisms between subgroups of finite index of G. Two such isomorphisms $\varphi_{1}: H_{1} \rightarrow H_{1}^{\prime}$ and $\varphi_{2}: H_{2} \rightarrow H_{2}^{\prime}$ are called equivalent, written $\varphi_{1} \sim \varphi_{2}$, if there exists a subgroup H of finite index in G such that both φ_{1} and φ_{2} are defined on H and $\left.\varphi_{1}\right|_{H}=\left.\varphi_{2}\right|_{H}$.

For any two isomorphisms $\alpha: G_{1} \rightarrow G_{1}^{\prime}$ and $\beta: G_{2} \rightarrow G_{2}^{\prime}$ in $\Omega(G)$, we define their product $\alpha \beta: \alpha^{-1}\left(G_{1}^{\prime} \cap G_{2}\right) \rightarrow \beta\left(G_{1}^{\prime} \cap G_{2}\right)$ in $\Omega(G)$. The factor-set $\Omega(G) / \sim$ inherits the multiplication $[\alpha][\beta]=[\alpha \beta]$ and is a group, called the abstract commensurator of G and denoted $\operatorname{Comm}(G)$.
Definition 2.2 A group G has the unique root property if for any $x, y \in G$ and any positive integer n, the equality $x^{n}=y^{n}$ implies $x=y$.

For closeness, we reproduce here short proofs of the following two lemmas from [1].
Lemma 2.3 Let G be a group with the unique root property. Then $\operatorname{Aut}(G)$ naturally embeds in $\operatorname{Comm}(G)$.

Proof. There is a natural homomorphism $\operatorname{Aut}(G) \rightarrow \operatorname{Comm}(G)$. Suppose that some $\alpha \in \operatorname{Aut}(G)$ lies in its kernel. Then $\left.\alpha\right|_{H}=\mathrm{id}$ for some subgroup H of finite index in G. If m is this index, then $g^{m!} \in H$ for every $g \in G$. Then $\alpha\left(g^{m!}\right)=g^{m!}$. Extracting roots, we get $\alpha(g)=g$, that is $\alpha=\mathrm{id}$.

Lemma 2.4 Let G be a group with the unique root property. Let $\varphi_{1}: H_{1} \rightarrow H_{1}^{\prime}$ and $\varphi_{2}: H_{2} \rightarrow H_{2}^{\prime}$ be two isomorphisms between subgroups of finite index in G. Suppose that $\left[\varphi_{1}\right]=\left[\varphi_{2}\right]$ in $\operatorname{Comm}(G)$. Then $\left.\varphi_{1}\right|_{H_{1} \cap H_{2}}=\left.\varphi_{2}\right|_{H_{1} \cap H_{2}}$.

Proof. The equality $\left[\varphi_{1}\right]=\left[\varphi_{2}\right]$ means that there exists a subgroup H of finite index in G such that both φ_{1} and φ_{2} are defined on H and $\left.\varphi_{1}\right|_{H}=\left.\varphi_{2}\right|_{H}$. Clearly $H \leqslant H_{1} \cap H_{2}$. Denote $m=\left|\left(H_{1} \cap H_{2}\right): H\right|$. Let h be an arbitrary element of $H_{1} \cap H_{2}$. Then $h^{m!} \in H$ and so $\varphi_{1}\left(h^{m!}\right)=\varphi_{2}\left(h^{m!}\right)$. Since G is a group with the unique root property, we get $\varphi_{1}(h)=\varphi_{2}(h)$.
Lemma 2.5 The group $\mathrm{BS}(m, n)$ has the unique root property if and only if $(n, m)=1$. In particular, $\operatorname{Aut}(\mathrm{BS}(m, n))$ naturally embeds in $\operatorname{Comm}(\mathrm{BS}(m, n))$ if $(m, n)=1$.

Proof. The first claim follows by direct calculations in the HNN-extension $\langle a, b| a^{-1} b^{m} a=$ $\left.b^{n}\right\rangle$. Note, that for $m=1$ one can check it easier by using matrix calculations in view of Lemma 4.1. The second claim follows from Lemma 2.3.

3 A structure of finite index subgroups of $\mathrm{BS}(1, n)$

Let $\operatorname{BS}(1, n)=\left\langle a, b \mid a^{-1} b a=b^{n}\right\rangle$, where $n \geqslant 2$. Denote $b_{j}=a^{-j} b a^{j}, j \in \mathbb{Z}$. Then

$$
b_{j}^{n}=b_{j+1}, \quad a^{-1} b_{j} a=b_{j+1}, \quad b_{i} b_{j}=b_{j} b_{i} \quad(i, j \in \mathbb{Z})
$$

Consider the homomorphism

$$
\begin{aligned}
\psi: \quad \mathrm{BS}(1, n) & \rightarrow \mathbb{Z} \\
a & \mapsto 1 \\
b & \mapsto 0
\end{aligned}
$$

Lemma 3.1 1) We have $\operatorname{BS}(1, n)=U \rtimes V$, where $U=\operatorname{ker} \psi=\left\langle b_{j} \mid j \in \mathbb{Z}\right\rangle, V=\langle a\rangle$, and V acts on U by the rule $a^{-1} b_{j} a=b_{j+1}$.
2) The subgroup U has the presentation $\left\langle b_{j} \mid b_{j}^{n}=b_{j+1}, j \in \mathbb{Z}\right\rangle$ and so it can be identified with $\mathbb{Z}\left[\frac{1}{n}\right]$.
3) $\mathrm{BS}(1, n) \cong \mathbb{Z}\left[\frac{1}{n}\right] \rtimes \mathbb{Z}$, where \mathbb{Z} acts on $\mathbb{Z}\left[\frac{1}{n}\right]$ by multiplication by n.

Proof. The first claim is obvious, the second follows by applying the Reidemeister Schreier method, and the third claim follows from the first two.

Lemma 3.2 Every subgroup H of finite index in $\operatorname{BS}(1, n)$ can be written as $H=\left\langle a^{k} u, w\right\rangle$ for some $k>0, u, w \in U$ and $w \neq 1$.

Proof. The subgroup H is finitely generated. Since the image of H under the epimorphism $\psi: \operatorname{BS}(1, n) \rightarrow \mathbb{Z}$ is generated by some $k>0$, we can write $H=\left\langle a^{k} u, u_{1}, \ldots, u_{s}\right\rangle$ for some $u, u_{1}, \ldots, u_{s} \in U=\operatorname{ker} \psi$. Observe that every finitely generated subgroup of $U \cong \mathbb{Z}\left[\frac{1}{n}\right]$ is cyclic. So, $H=\left\langle a^{k} u, w\right\rangle$ for some $w \in U$. Clearly, $w \neq 1$, otherwise $\operatorname{BS}(1, n)$ were virtually cyclic, that is impossible.

Lemma 3.3 Let $H=\left\langle a^{k} b_{q}^{r}, b_{p}^{s}\right\rangle$ with $k>0$. Then $H=\left\langle a^{k} b_{q}^{r}, b_{i}^{s}\right\rangle$ for every $i \in \mathbb{Z}$.
Proof. Since $\left(a^{k} b_{q}^{r}\right)^{-t} \cdot b_{p}^{s} \cdot\left(a^{k} b_{q}^{r}\right)^{t}=b_{p+t k}^{s}$ for every integer t, we have

$$
H=\left\langle a^{k} b_{q}^{r}, b_{p+t k}^{s}\right\rangle=\left\langle a^{k} b_{q}^{r}, b_{p+(t+1) k}^{s}\right\rangle .
$$

Given $i \in \mathbb{Z}$, we choose t such that $p+t k \leqslant i<p+(t+1) k$. Then $H=\left\langle a^{k} b_{q}^{r}, b_{i}^{s}\right\rangle$, since b_{i} is a power of $b_{p+t k}$ and $b_{p+(t+1) k}$ is a power of b_{i}.

Proposition 3.4 Every subgroup H of finite index in $\operatorname{BS}(1, n)$ can be written as $H=$ $\left\langle a^{k} b^{l}, b^{m}\right\rangle$ for some integer k, l, m, where $k, m>0$ and $(m, n)=1$. The index of this subgroup is km .

Proof. By Lemma 3.2, $H=\left\langle a^{k} b_{q}^{r}, b_{p}^{s}\right\rangle$ for some $k, s>0$ and $r, q, p \in \mathbb{Z}$. Set $m=$ $s /(n, s)$. Clearly, $(m, n)=1$. We claim that $H=\left\langle a^{k} b_{q}^{r}, b_{p}^{m}\right\rangle$. Indeed, b_{p}^{s} is a power of b_{p}^{m}. On the other hand, $\left(a^{k} b_{q}^{r}\right) \cdot\left(b_{p}^{s}\right)^{\frac{n^{k}}{(n, s)}} \cdot\left(a^{k} b_{q}^{r}\right)^{-1}=a^{k} \cdot b_{p}^{m n^{k}} \cdot a^{-k}=b_{p}^{m}$.

By Lemma 3.3, $H=\left\langle a^{k} b_{q}^{r}, b^{m}\right\rangle$. We show that $H=\left\langle a^{k} b^{l}, b^{m}\right\rangle$ for some l. If $q \geqslant 0$, then $b_{q}=b^{n^{q}}$ and we can take $l=r n^{q}$. Let $q<0$. Since $(m, n)=1$, there exists an
integer t, such that $m t \equiv r \bmod \left(n^{-q}\right)$. Denote $l=(r-m t) / n^{-q}$. Then, again with the help of Lemma 3.3, we have

$$
H=\left\langle a^{k} b_{q}^{r}, b_{q}^{m}\right\rangle=\left\langle a^{k} b_{q}^{r-m t}, b_{q}^{m}\right\rangle=\left\langle a^{k} b_{q}^{l n^{-q}}, b_{q}^{m}\right\rangle=\left\langle a^{k} b^{l}, b^{m}\right\rangle
$$

To prove the last claim, one have to check, that $\left\{a^{i} b^{j} \mid 0 \leqslant i<k, 0 \leqslant j<m\right\}$ is the set of representatives of the left cosets of H in $\operatorname{BS}(1, n)$. We leave this to the reader.

Proposition 3.5 Let $H=\left\langle a^{k} b^{l}, b^{m}\right\rangle$ be a subgroup of $\mathrm{BS}(1, n)$ with $k, m>0$ and $(n, m)=1$. Then H has the presentation $\left\langle x, y \mid x^{-1} y x=y^{n^{k}}\right\rangle$ with generators $x=a^{k} b^{l}$, $y=b^{m}$.

Proof. Consider the homomorphism $\psi: \operatorname{BS}(1, n) \rightarrow \mathbb{Z}$ introduced above. We have $\psi(x)=k$ and $H \cap \operatorname{ker} \psi=\left\langle x^{-i} y x^{i} \mid i \in \mathbb{Z}\right\rangle$. Thus, we have $H=\left\langle x^{-i} y x^{i} \mid i \in \mathbb{Z}\right\rangle \rtimes\langle x\rangle$.

Using the isomorphism $\operatorname{BS}(1, n) \cong \mathbb{Z}\left[\frac{1}{n}\right] \rtimes \mathbb{Z}$ from Lemma 3.1, we can write $H \cong$ $\mathbb{Z}\left[\frac{m}{n^{k}}\right] \rtimes k \mathbb{Z} \cong \mathbb{Z}\left[\frac{1}{n^{k}}\right] \rtimes \mathbb{Z}$, where \mathbb{Z} acts on $\mathbb{Z}\left[\frac{1}{n^{k}}\right]$ by multiplication by n^{k}. By Claim 3) of Lemma 3.1 we have $H \cong \mathrm{BS}\left(1, n^{k}\right)$.

Proposition 3.6 Let $H_{1}=\left\langle a^{k_{1}} b^{l_{1}}, b^{m_{1}}\right\rangle$ and $H_{2}=\left\langle a^{k_{2}} b^{l_{2}}, b^{m_{2}}\right\rangle$ be two subgroups of $\mathrm{BS}(1, n)$ with $k_{1}, k_{2}, m_{1}, m_{2}>0$ and $\left(n, m_{1}\right)=\left(n, m_{2}\right)=1$. Then H_{1} is isomorphic to H_{2} if and only if $k_{1}=k_{2}$.

Proof. If $k_{1}=k_{2}$, then $H_{1} \cong H_{2}$ by Proposition 3.5. This proposition also implies, that $H_{i} /\left[H_{i}, H_{i}\right] \cong \mathbb{Z} \times \mathbb{Z}_{n^{k_{i}-1}}$. So, if $k_{1} \neq k_{2}$, then $H_{1} \nsubseteq H_{2}$.

4 The proof of the Main Theorem

Notations. For any ring R let R^{*} denote the group of invertible elements of R. For any subring R of \mathbb{Q} let us denote by $\mathcal{G}(R)$ the subgroup of $\mathrm{GL}_{2}(\mathbb{Q})$, consisting of the matrices $A=\left(\begin{array}{ll}1 & A_{12} \\ 0 & A_{22}\end{array}\right)$ with $A_{12} \in R$ and $A_{22} \in R^{*}$. Let $\mathcal{G}_{1}(R)$ and $\mathcal{G}_{2}(R)$ denote the diagonal and the unipotent subgroups of $\mathcal{G}(R)$, i.e.

$$
\mathcal{G}_{1}(R)=\left\{A \in \mathcal{G}(R) \mid A_{12}=0\right\}, \quad \mathcal{G}_{2}(R)=\left\{A \in \mathcal{G}(R) \mid A_{22}=1\right\} .
$$

Clearly, $\mathcal{G}(R)=\mathcal{G}_{2}(R) \rtimes \mathcal{G}_{1}(R)$. Note that $\mathbb{Z}\left[\frac{1}{n}\right]^{*}=\left\{n^{i} \mid i \in \mathbb{Z}\right\}$.
Lemma 4.1 The map $a \mapsto A=\left(\begin{array}{ll}1 & 0 \\ 0 & n\end{array}\right), b \mapsto B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ can be extended to an isomorphism $\theta: \operatorname{BS}(1, n) \rightarrow \mathcal{G}\left(\mathbb{Z}\left[\frac{1}{n}\right]\right)$.

Proof. The proof is easy; see Exercise 5.5 in Chapter 2 in [3].
We will use the following theorem of D. Collins.

Theorem 4.2 ([4, Proposition A]) Let $G=\left\langle a, b \mid a^{-1} b a=b^{s}\right\rangle$ where $|s| \neq 1$. Let

$$
s=\delta p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{f}^{e_{f}}
$$

where $\delta= \pm 1$ and $p_{1}, p_{2}, \ldots, p_{f}$ are distinct primes. Then $\operatorname{Aut}(G)$ has presentation:

$$
\begin{aligned}
& \left\langle C, Q_{1}, Q_{2}, \ldots, Q_{f}, T\right| \\
& Q_{i}^{-1} C Q_{i}=C^{p_{i}}, Q_{i} Q_{j}=Q_{j} Q_{i}, \\
& \left.T^{2}=1, T Q_{i}=Q_{i} T, T^{-1} C T=C^{-1}\right\rangle
\end{aligned}
$$

where $i, j=1,2, \ldots, f$. In this presentation the automorphisms are defined by

$$
Q_{i}:\left\{\begin{array}{l}
a \mapsto a \\
b \mapsto b^{p_{i}},
\end{array} \quad C:\left\{\begin{array}{l}
a \mapsto a b \\
b \mapsto b,
\end{array} \quad T:\left\{\begin{array}{l}
a \mapsto a \\
b \mapsto b^{-1} .
\end{array}\right.\right.\right.
$$

Proposition 4.3 Let $n \geqslant 2$ be a natural number. We identify $\operatorname{BS}(1, n)$ with $\mathcal{G}\left(\mathbb{Z}\left[\frac{1}{n}\right]\right)$ through the isomorphism described in Lemma 4.1. Let H_{1}, H_{2} be two isomorphic subgroups of $\operatorname{BS}(1, n)$, both of finite index. Then for every isomorphism $\varphi: H_{1} \rightarrow H_{2}$, there exists a unique matrix $M=M(\varphi) \in \mathcal{G}(\mathbb{Q})$ such that $M^{-1} x M=\varphi(x)$ for every $x \in H_{1}$.

Proof. First we prove the existence of $M(\varphi)$. By Propositions 3.4 and 3.6, we can write $H_{1}=\left\langle a^{k} b^{l_{1}}, b^{m_{1}}\right\rangle$ and $H_{2}=\left\langle a^{k} b^{l_{2}}, b^{m_{2}}\right\rangle$ for some integer l_{1}, l_{2}, and $k, m_{1}, m_{2}>0$, where $\left(n, m_{1}\right)=\left(n, m_{2}\right)=1$. By Proposition 3.5, H_{j} has the presentation $\left\langle x_{j}, y_{j} \mid x_{j}^{-1} y_{j} x_{j}=y_{j}^{n^{k}}\right\rangle$, where $x_{j}=a^{k} b^{l_{j}}, y_{j}=b^{m_{j}}, j=1,2$. After identification of elements of $\operatorname{BS}(1, n)$ with matrices, we have

$$
x_{j}=\left(\begin{array}{cc}
1 & l_{j} \tag{1}\\
0 & n^{k}
\end{array}\right), \quad y_{j}=\left(\begin{array}{cc}
1 & m_{j} \\
0 & 1
\end{array}\right) .
$$

Let $\varphi_{0}: H_{1} \rightarrow H_{2}$ be the isomorphism, such that $\varphi_{0}\left(x_{1}\right)=x_{2}$ and $\varphi_{0}\left(y_{1}\right)=y_{2}$. Then $\varphi=\varphi_{1} \varphi_{0}$ for some $\varphi_{1} \in \operatorname{Aut}\left(H_{1}\right)$. By Theorem 4.2, $\operatorname{Aut}\left(H_{1}\right)$ is generated by the automorphisms

$$
\alpha_{i}:\left\{\begin{array}{l}
x_{1} \mapsto x_{1} \\
y_{1} \mapsto y_{1}^{p_{i}},
\end{array} \quad \beta:\left\{\begin{array}{l}
x_{1} \mapsto x_{1} y_{1} \\
y_{1} \mapsto y_{1},
\end{array} \quad \gamma:\left\{\begin{array}{l}
x_{1} \mapsto x_{1} \\
y_{1} \mapsto y_{1}^{-1}
\end{array}\right.\right.\right.
$$

$i=1,2, \ldots, f$, where $p_{1}, p_{2}, \ldots, p_{f}$ are all prime numbers dividing n. Thus, it is sufficient to show the existence of the matrices $M\left(\varphi_{0}\right), M(\beta), M(\gamma)$, and $M\left(\alpha_{i}\right), i=1,2, \ldots, f$.

First we prove the existence of $M\left(\varphi_{0}\right)$. We shall find $M\left(\varphi_{0}\right) \in \mathcal{G}(\mathbb{Q})$, such that

$$
\begin{aligned}
& x_{1} \cdot M\left(\varphi_{0}\right)=M\left(\varphi_{0}\right) \cdot \varphi_{0}\left(x_{1}\right), \\
& y_{1} \cdot M\left(\varphi_{0}\right)=M\left(\varphi_{0}\right) \cdot \varphi_{0}\left(y_{1}\right) .
\end{aligned}
$$

Using (1), one can compute that

$$
M\left(\varphi_{0}\right)=\left(\begin{array}{cc}
1 & \frac{l_{1} m_{2}-l_{2} m_{1}}{m_{1}\left(n^{k}-1\right)} \tag{2}\\
0 & \frac{m_{2}}{m_{1}}
\end{array}\right) .
$$

Similarly, we get

$$
M\left(\alpha_{i}\right)=\left(\begin{array}{cc}
1 & \frac{l_{1}\left(p_{i}-1\right)}{n^{k}-1} \tag{3}\\
0 & p_{i}
\end{array}\right), \quad M(\beta)=\left(\begin{array}{cc}
1 & \frac{-m_{1}}{n^{k}-1} \\
0 & 1
\end{array}\right), \quad M(\gamma)=\left(\begin{array}{cc}
1 & \frac{-2 l_{1}}{n^{k}-1} \\
0 & -1
\end{array}\right) .
$$

The uniqueness of M follows from the triviality of the centralizer of H_{1} in $\mathcal{G}(\mathbb{Q})$; the later is easy to check.

Lemma 4.4 1) Let $\varphi: H \rightarrow H^{\prime}$ be an isomorphism between subgroups of finite index in $\mathrm{BS}(1, n)$ and let K be a subgroup of finite index in H. Then $M\left(\left.\varphi\right|_{K}\right)=M(\varphi)$.
2) Let $\varphi_{1}: H_{1} \rightarrow H_{1}^{\prime}$ and $\varphi_{2}: H_{2} \rightarrow H_{2}^{\prime}$ be two isomorphisms between subgroups of finite index in $\mathrm{BS}(1, n)$. Suppose that $\left[\varphi_{1}\right]=\left[\varphi_{2}\right]$ in $\operatorname{Comm}(\operatorname{BS}(1, n))$. Then $M\left(\varphi_{1}\right)=$ $M\left(\varphi_{2}\right)$.

Proof. 1) For every $x \in K$ we have $M\left(\left.\varphi\right|_{K}\right)^{-1} x M\left(\left.\varphi\right|_{K}\right)=\left.\varphi\right|_{K}(x)=\varphi(x)=M(\varphi)^{-1} x M(\varphi)$ and the claim follows from the uniqueness of M.
2) By Lemmas 2.4 and 2.5, we have $\left.\varphi_{1}\right|_{H_{1} \cap H_{2}}=\left.\varphi_{2}\right|_{H_{1} \cap H_{2}}$. Claim 1) implies that $M\left(\varphi_{1}\right)=M\left(\left.\varphi_{1}\right|_{H_{1} \cap H_{2}}\right)=M\left(\left.\varphi_{2}\right|_{H_{1} \cap H_{2}}\right)=M\left(\varphi_{2}\right)$.

This enables to define M of the commensurator classes: $M([\varphi]):=M(\varphi)$.
Theorem 4.5 For every natural $n \geqslant 2$, the map $\Psi: \operatorname{Comm}(\operatorname{BS}(1, n)) \rightarrow \mathcal{G}(\mathbb{Q})$ given by $[\varphi] \mapsto M([\varphi])$ is an isomorphism.

Proof. 1) First we prove that Ψ is a homomorphism. Let $\varphi_{1}: H_{1} \rightarrow H_{2}, \varphi_{2}: H_{3} \rightarrow H_{4}$ be two isomorphisms between subgroups of finite index in $\operatorname{BS}(1, n)$. We shall show that $M\left(\left[\varphi_{1}\right]\right) M\left(\left[\varphi_{2}\right]\right)=M\left(\left[\varphi_{1} \varphi_{2}\right]\right)$. Write $\varphi_{1} \varphi_{2}=\sigma \tau$, where σ is the restriction of φ_{1} to $\varphi_{1}^{-1}\left(H_{2} \cap H_{3}\right)$ and τ is the restriction of φ_{2} to $H_{2} \cap H_{3}$:

$$
\varphi_{1}^{-1}\left(H_{2} \cap H_{3}\right) \xrightarrow{\sigma}\left(H_{2} \cap H_{3}\right) \xrightarrow{\tau} \varphi_{2}\left(H_{2} \cap H_{3}\right) .
$$

For $x \in \varphi_{1}^{-1}\left(H_{2} \cap H_{3}\right)$ we have $\left(\varphi_{1} \varphi_{2}\right)(x)=\tau((\sigma(x)))=M(\tau)^{-1} M(\sigma)^{-1} x M(\sigma) M(\tau)$. Hence, $M\left(\varphi_{1} \varphi_{2}\right)=M(\sigma) M(\tau)=M\left(\varphi_{1}\right) M\left(\varphi_{2}\right)$ and the claim follows.
2) The injectivity of Ψ trivially follows from the definition of $M([\varphi])$.
3) Now we prove that Ψ is a surjection. By specializing parameters in (2) and (3), we obtain some matrices in $\operatorname{im} \Psi$. Taking $l_{1}=m_{2}$ and $l_{2}=m_{1}$ in $M\left(\varphi_{0}\right)$, we get the matrix

$$
D\left(\frac{m_{1}}{m_{2}}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{m_{1}}{m_{2}}
\end{array}\right)
$$

with $m_{1}, m_{2}>0,\left(m_{1}, n\right)=\left(m_{2}, n\right)=1$. Taking $l_{1}=0$ in $M\left(\alpha_{i}\right)$ and in $M(\gamma)$, and taking $m_{1}=1$ in $M(\beta)$, we get the matrices

$$
D\left(p_{i}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & p_{i}
\end{array}\right), \quad D(-1)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad T(k)=\left(\begin{array}{cc}
1 & \frac{1}{n^{k}-1} \\
0 & 1
\end{array}\right), \quad k>0
$$

The matrices $D\left(\frac{m_{1}}{m_{2}}\right), D\left(p_{i}\right)$ and $D(-1)$ generate the subgroup $\mathcal{G}_{1}(\mathbb{Q})$ in the image of Ψ.
So, it is sufficient to show that $\mathcal{G}_{2}(\mathbb{Q})$ is contained in im Ψ. Since the additive group of \mathbb{Q} is generated by $\mathbb{Z}\left[\frac{1}{n}\right]$ and all numbers $\frac{1}{s}$ with $(s, n)=1$, it is sufficient to show that
the subgroup $\mathcal{G}_{2}\left(\mathbb{Z}\left[\frac{1}{n}\right]\right)$ and the matrices $\left(\begin{array}{ll}1 & \frac{1}{s} \\ 0 & 1\end{array}\right)$ with $(s, n)=1$ are contained in the image of Ψ. The first follows from the fact that the group of the commensurator classes of inner automorphisms of $\mathrm{BS}(1, n)$ is mapped, under Ψ, onto $\mathcal{G}\left(\mathbb{Z}\left[\frac{1}{n}\right]\right)$ The second follows from the formula $\left(\begin{array}{cc}1 & \frac{1}{s} \\ 0 & 1\end{array}\right)=(T(\phi(s)))^{t}$, where ϕ is the Euler function and t is the natural number such that $n^{\phi(s)}-1=s t$.

5 Appendix: Commensurators and quasi-isometries

Let X and Y be two metric spaces. A map $f: X \rightarrow Y$ is called a (coarse) quasi-isometry between X and Y, if there are some constants $K, C, C_{0}>0$, such that the following holds:

1. $K^{-1} d_{X}\left(x_{1}, x_{2}\right)-C \leqslant d_{Y}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leqslant K d_{X}\left(x_{1}, x_{2}\right)+C$ for all $x_{1}, x_{2} \in X$.
2. The C_{0}-neighborhood of $f(X)$ coincides with Y.

There is always a coarse inverse of f, a quasi-isometry $g: Y \rightarrow X$ such that $f \circ g$ and $g \circ f$ are a bounded distance from the identity maps in the sup norm; these bounds, and the quasi-isometry constants for g, depend only on the quasi-isometry constants of f.

Definition 5.1 Let X be a metric space. Two quasi-isometries f and g from X to itself are considered equivalent if there exists a number $M>0$ such that $d(f(x), g(x)) \leqslant M$ for all $x \in X$. Let $\operatorname{QI}(X)$ be the set of equivalence classes of quasi-isometries from X to itself. Composition of quasi-isometries gives a well-defined group structure on $\mathrm{QI}(X)$. The group $\mathrm{QI}(X)$ is called the quasi-isometry group of X.

Let G be a group with a finite generating set S. For $g \in G$ denote by $|g|$ the minimal k, such that $g=s_{1} s_{2} \ldots s_{k}$, where $s_{1}, s_{2}, \ldots, s_{k} \in S \cup S^{-1}$. We consider G as a metric space with the word metric with respect to $S: d(x, y)=\left|x^{-1} y\right|$ for $x, y \in G$. For a finitely generated group G, the group $\operatorname{QI}(G)$ is well defined and does not depend on a choice of a finite generating set S.

It is well known that there is a natural homomorphism $\Lambda: \operatorname{Comm}(G) \rightarrow \operatorname{QI}(G)$. This homomorphism is defined by the following rule. Let $\varphi: H \rightarrow H^{\prime}$ be an isomorphism between two finite index subgroups of G. We choose a right transversal T for H in G with $1 \in T$. First we define a map $f_{\varphi}: G \rightarrow G$ by the rule $f_{\varphi}(h t):=\varphi(h)$ for every $h \in H$ and $t \in T$. Clearly, f_{φ} is a quasi-isometry. Then we set $\Lambda([\varphi]):=\left[f_{\varphi}\right]$.

Lemma 5.2 Let G be a finitely generated group with the unique root property. Then $\Lambda: \operatorname{Comm}(G) \rightarrow \mathrm{QI}(G)$ is an embedding.

Proof. We will use notation introduced before this lemma. Suppose that $\left[f_{\varphi}\right]=\left[\mathrm{id}_{\mid G}\right]$. Then there is a constant $M>0$, such that $d\left(f_{\varphi}(x), x\right) \leqslant M$ for every $x \in G$. Let $h \in H$. Then for every integer n holds: $\left|h^{-n} \varphi\left(h^{n}\right)\right|=d\left(\varphi\left(h^{n}\right), h^{n}\right) \leqslant M$. Since G is finitely generated, the M-ball in G centered at 1 is finite. Hence, there exist distinct n, m such that $h^{-n} \varphi\left(h^{n}\right)=h^{-m} \varphi\left(h^{m}\right)$. Then $h^{n-m}=(\varphi(h))^{n-m}$ and so $h=\varphi(h)$ by the unique root property. Hence $[\varphi]=1$ and the injectivity of Λ is proved.

Corollary 5.3 The group $\operatorname{Comm}(\operatorname{BS}(m, n))$ naturally embeds in $\operatorname{QI}(\operatorname{BS}(m, n))$ if $(m, n)=1$.

6 Acknowledgements

The author thanks the MPIM at Bonn for its support and excellent working conditions during the fall 2010, while this research was finished. He is gratefully thankful to Nadine Hansen for hearing the first version of this paper.

References

[1] L. Bartholdi, O. Bogopolski, On abstract commensurators of groups, J. Group Theory, 13, (6) (2010), 903-922.
[2] G. Baumslag G, D. Solitar, Some two-generator, one-relator non-Hopfian groups, Bull. Amer. Math. Soc., 68 (1962), 199-201.
[3] O. Bogopolski, Introduction to group theory, EMS: Zürich, 2008.
[4] D. Collins, The automorphism towers of some one-relator groups, Proc. London Math. Soc., 36, (3) (1978), 480-493.
[5] B. Farb and L. Mosher (appendix by D. Cooper), A rigidity theorem for the solvable Baumslag-Solitar groups, Inventiones, 131, (2) (1998), 419-451.
[6] K. Whyte, The large scale geometry of the higher Baumslag - Solitar groups, GAFA, 11 (2001), 1327-1343.

