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HIGHER ORDER LAPLACIANS II.
LAPLACIAN COMMUTING WITH THE HIGHER ORDERS

by

Z.1. Szabo

Introduction

We continue the study of higher order Laplacians introduced in the previous paper
[9]. We slightly modify this notion because now we use unnormed integrals w.r.t. a
kernel function H(p,q) . The infinitesimal generators (the higher order Laplacians) are
denoted by clé[k) .

In this paper the normal analycity plays an important role. A Riemannian
manifold is defined to be normal analytic if it is real analytic in the normal coordinates.
A kernel function H(p,q) is normal analytic if, for any p , the kernel function
H p( « )= H(p,*) is analytic in the normal coordinates defined around p .

In the first chapter we prove the Basic Theorem of the operators D]gk) asserting
that for a symmetric (H(p,q) = H(p,q)) normal analytic function H the Laplacian

commutes with the operators Dﬁk) if and only if:

1) on any geodesics 7 the kernel function H2/ w (where w is the Riemann—density
in normal coordinates) is depending on the geodesics distance r1(p,q) ; i.e. a

function ¢7 exists such that H2/w is of the form ¢ 7(r(p,q)) on 7,



.

2) the kernel function H(p,q) = H(p,q)/«(p,q) satisfies the ultrahyperbolic

equation

(8, #)p.a) = (8, F)(pa) -

In Chapter 2 we prove that all the spaces satisfying the curvature condition
4

(%) Vipjk + Vipkj + vkpij =0

for the Ricci tensor Pij are normal analytic. As all the Einstein metrics satisfy the
condition (*) so this is a generalization of the Kazdan—De Turck Theorem [1].

We show too, that the condition (%) holds if and only if the Laplacian A
commutes with the second Willmore’s operator A(z) = |:|§2) .

From these theorems, for example, the normal analycity of the D’Atri spaces
(where the geodesics involutions are volume preserving) follows. Furthermore a space is
D’Atri space if and only if the Laplacian commutes with the operators D‘E)k) .

Involving also the other invariants al()i)(q) of the Jacobian field in the
considerations, similar theorems are proved also for the so called (i)-D’Atri spaces.

The author would like to express many thanks to Professors U. Abresch,

J. Kazdan, N. Koiso for the valuable discussions while he was staying at Max—Planck—

Institut fiir Mathematik in Bonn in the academic year 1987—1988.

§ 1. The Basic Theorem of the higher order Laplacians

Let H(p,q):M®xM"—R bea C®kernel function on a C®—Riemannian

manifold M" . For a unit vector épe Tp(Mn) the ep(r) denotes the arc—wise
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parametrized geodesics with the tangent vector ép at p= ep(O) . In the first part of
this paper-series we introduced the averaging operator EH;p; r along the geodesics
spheres sp;r using the normalized function H(p,ep(r))/J H(p,e p(r))dép as weight
function, where dép means the normalized euclidean measure of the unit tangent

vectors in the tangent space T . The higher order Laplacians A]gk) w.rt. H were

Y
defined by the even derivatives w.r.t. r as follows:

(1.1) AISII;‘I))ga - ﬁrék [r=0,

where ¢ is a C®function on M".

In this paper we deal mostly with the unnormed averaging UEH-p°r defined by

(12) UBg . (#) = [ e ()E(e e, ,
and the operators uék) are defined by the 2k-th derivative:

#XUE

(1.3) D&];‘]))gp = TTEJP-E f1=0.

This operator can be written also in the following form:

2k
(1.4) Df&l;‘1)>= 2 [zk] J'Hga)vgzk—a) dép’

a=0 p °p
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where V(l) is the covariant derivative of i—th order furthermore

e
Hga) = Vga)H =VvV..V H(ép, ,ép) . Notice, that these operators are of the form

e €
p P

k) _ p(k) k)

(L5) of) =pf) +afH),
k) . . .

where D ? is a differential operator furthermore

(1.6) ,\]g[];‘l)) = J Hgm‘)dép
p

is a scalar operator (multiplication with the function Alg{k)) :

It is plain that the operators u,&k) are self adjoint in the L2(Mn)—Hilbert space
if and only if the kernel function H is symmetric : H(p,q) = H(q,p) .

Let f(r):R— R bea C®—even function (i.e. f(r) = f(—r)) . It defines the
radial kernel function F(p,q) = {(r(p,q)) on M" | where (p,q) = rp(q) means the

geodesics distance between p and q . For the product—kernel—function

(1.7) (fH)(p,q) := F(p,q)H(p,q9)
we have
k
8) fiy= 1 (] “oeg,
a=0

where {(2a)(0) is the (2a)—th derivativeof f at 0.
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In this chapter we investigate mainly the commutativity of the Laplacian A = VIVi
with the operators nﬁk) . We draw into these considerations also the convolution *

defined on functions as usual by.

(1.9) H+ ¢(p) = [ B(p.ale(a)da.

First notice that the Taylor formula gives the expression
) k
_y
(1.10) VER. .. (¢) = g 3 D;&;p(so)

for the unnormed averaging UEg. p_r((p) = J ga(ep(r))H(ep(r))dé D This formula is the
so called pre—Pizzetti—formula. If the functions ¢ and H are normal analytic, then the

right side converges for small values of 1.

Let wp(q) = ydet|g”| be the Riemannian density in 2 normal coordinate
neighbourhood around p . If f in (1.7) is a function of compact support whose
supporting radius (the infimum of the positive 0O—places) is less than the injectivity

radius of the manifold at a point p, then the function

F H
(1.11) f o, := _%;R

is well defined around the point p . In a normal coordinate neighbourhood around p we

get

(112) @) *lp) =0y [ 0" e (e 0)dé ar
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therefore by the Taylor series (1.10) we have

(1.13) (1 ) xo=2_, Y iy (J' i)t 2+ ) oKy,
k

where @, is the volume of the (n—1)-dimensional euclidean unit sphere. If the
functions ¢ and H are normal anylytic, then the right side of (1.13) is convergent for
the functions f with small supporting radius.

For a fixed radius r =R , the averaging operator UEH;p;R can be generated
from the convolutions operators of the form (f & ) *x as follows.

Let fn be a function—series which tends to the Dirac function

1
Qn—lR

Then the operator series (f J¥)* tends (on the continuous functions) to the

operator UEH'p-R .

Lemma 1.1 Let H(p,q) be a normal ané.lytic kernel function on a normal analytic
space. Then the Lapalcian A commutes with the operators né[k) ; k=0,123.. if

and only if it commutes with the convolution operators (f %) * for any f.

Proof It is enough to testify the commutativity on normal anylytic functions ¢ . In this

case the function

p:R = (ApUER.pp — UBg o pAL)0

is analytic w.r.t. the variable R at any point p .



.

If A commutes with the operators Dﬁk) , then ¢p;R =0 holds for any R by
the Pizzetti—formula (1.10). Therefore the A commuts with the operators UEH; iR
for any fixes R . Using Riemannian summs for the integral (f J¥) * = J f(r)UEH;p;rdr
we get the commutativity with the operators (f %) * as well.

Conversely, if A commuts with the operators (f o) * then it commutes also
with the operators UEH; iR by the approximation procedure described at (1.14).

Therefore the A commutes with the operators:

1) P VB o
(1.15) n&;p=WRI—IR=O

Q.ed.

Lemma 1.2 The Laplacian A commutes with a convolution operator G * if and only if

the kernel function G(x,y) satisfies the ultrahyperbolic equation

(1.16) (8,G)(c3) = (4,6)(x)
where A_ (resp. Ay) means the Laplacian’s action w.r.t. x (resp. w.r.t. y).

Proof The commutativity
[ 8,6(p)etv)dy = [ Gxp)a ely)dy

(117) Stokes | (&, G(xy)e(y)dy



satisfies if and only if (1.16) holds.
Q.ed.

Now we are in the position to formulate the Basic Theorem of the operators

ol

Theorem 1.1 Let H be a symmetric (H(x,y)= H(y,x)) normal analytic kernel
function on a normal analytic space such that H(p,p)#0 for any p . Then the

Laplacian commutes with the operators Dék) if and only if

1) for any geodesics <4 a function ¢,7 'R s R exists such that the function
H2(x,y)/w(x,y) is of the form ¢7(r(x,y)) on 7, ie. it depends only on the
geodesics distance r{x,y) on any geodesics,

2)  the kernel function H(x,y)/«(x,y) satisfies the ultrahyperbolic equation

(1.18) [Ax%](x,y) = [Ay %] (xy) .

Proof By the Lemmas 1.1 and 1.2 the A commutes with the operators oy’ if and
only if all the functions f J¥(x,y) satisfy the ultrahyperbolic equation

(1.19) (8,8 #)(x3) = (8,1 #)(xy)

On the other hand we have
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Ao(Fy () = (AF)(y) () + 2F L (y) H#  (y) + Fi(y)(8, H#)(y) =

(120) 7o) + 2 0] K+

wy(¥)

+1(x,(¥)) [[?f;(ﬂ] X (y) + 2% ,’[(Y)] +1(r (y))(8, H)()

where the coma means derivation from the radial direction furthermore we used also the

classical fofmula.

' n-1 w;(Y) ’
(1.21) (A F () = (1 (y)) + iy o m ' (r, (v)) -

Similarly we get

(7 )0 = | PE00) + r’;; ()| #700) +

(1.22)

+1(¥(x) [% H(x) + 2(#7)’ (x) | + f(ry(x))(Ayd?y)(x) ,

where ¥ (y) = XY (x) = H(x,y) . Notice that the second expression in (1.20) resp.
(1.22) can be written in the following form (using #(x,y) := H(x,y)/«(x,y))

o4 (9) B[ B’
(1.24) o) H(y) + 2K (y) = 7, (Y)[ £n “’_x] (¥)

(1.25) %ﬁl H(x) + 2KV (x) = E;I(E} [ ¢n (H—yﬁ] (x) .
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The w(x,y) is an analytic symmetric kernel function (see the remarks at (1.34))
therefore also the kernel{unctions #(x,y) and

2
— H™(x
(1.26) Z(x,y) :=&n x5

are smooth a symmetric kernel functions.

The equation (1.19) satisfies for any f if and only if
1) On any geodesics 7 the symmetric kernel function Z,y(x,y) satisfies the equation
(127) 2/, () = (@) ),
2)  the kernel function & satisfies the ultrahyperbolic equation
(8, F)xy) = (B, F)x.y)

If we write the kernel function Z » in an arc—wise parametrization of v in the form

Z7(t,s) :R x R— R, then (1.27) is equivalent with the equation

b7/ o7
(1.28) wL (4,8) = — 52 (£,9) -

The proof of the Theorem can be finished by the following Lemma
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Lemma 1.3 The general symmetric solution of (1.28) are just the functions of the form:
(129)  Z(es) =@ (]t -s]),

where ¢ - R +— R is a function of one variable.

Proof For the functions of the form (1.29) the equation (1.28) obviously holds.

Conversely, if Z’T is a symmetric solution of (1.28) then it satisfies also the

hyperbolic equation

a0 Ty Tl T Tl

as at

Therefore the Z » is of the form

(1.31) Z’y =¢(8—t)+ (s +t).

For such function the (1.28) gives

(1.32) ' (5=t)+ v (s+t)=¢'(8—t)—9 (s +1)

therefore ¢’ =0 ; = constant and so Z7(s,t) =¢ 7(s —t) follows. From the

symmetry Z7(s,t) = Z‘T(t’s) we get Z,y(s,t) = ¢7( |s —t|) , which proves the Lemma
completely.

Q.ed.
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The above theorem will be used mainly to the kernel functions defined by the
several invariants of the Jacobian field. More precisely let Ap't be the Jacobian

endomorphism field along a geodesics ep(x) defined by

A;;r'}' R,

— . — . , —
oA, =0; A g=0; Al =1d,
ep(r)

where R, ( )( .)=R(. ,ép(r))ép(r) is the Jacobian curvature operator field along
e (r
P

ep(r) acting in the (n — 1)—dimensional subspace standing orthogonal to e l)(r) . The

invariants aI()i)(ep(r)) = ol()i)(q) ; Q= ep(r) ;of A defined by

1
_ -1, (1), y,0-2 (n—-1)
det(Ap;q +Ald)=A" "+ 7 (@A “+ ... + 2 (q) ,

determine local kernel functions which are symmetric by the well known property

*
Apa=2qp

of the Jacobian. The al()n_l) = det Ap = Gp is the polar—density function, i.e.

up(@) = 55 (@), (a) ,

where w_ is the Riemannian density introduced earlier. The assymptotic behaviour of

aI()l)(ep(r)) is:

(1.33) al()i)(ep(r)) = [ n ; 1 ]ri + higher order terms .
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These functions are not smooth at the diagonal points (p;p) in general. But if we

normalize these functions in the following way:

(134) o) =—2— ol)a),

e

then the functions a (q) are smooth functions in a neighbourhood of the diagonal
{(p,p)} . Also the properties a( )(q) = a(l)(p) I(:’)(p) =1, a(n Doy satisfy
obviously.

The explicite expression of the operators o £18) can be computed by the power
o

series of the Jacobian field. Also notice, that for the constant kernel functions
H(p;q) = 1, the operators DI&:% are just the Willmore operators A(k) introduced in
the first part of this paper—series. Using the recursion formula (2.10) of this previous

paper as well as the power series method, we get the following formulags by an easy

computation

(1.35) A) =Ly,

(1.36) @) = —(m (342 + 2%V, v+ 2, POVAR
(1.37) Di(l =%[A g(rll—_UR] )

(1.38) ni(l)_ 2)+m[ ,E?Tm-%piivivj-%(vin)vﬁ

1 ab , 3 abed
t 5-T) [‘" 6AR + o0 + 3 RapegR ]] ’



1) _1. 1
(139) O g(n—l)=w =1 (A L] R) s
(1.40) old =a® 4 o1 [— 2RA — 40,7, - (VR)Y; -
- g' 4R + %R2 + g'pabpab + % Ra.bcdRab(:d] )

In these formulas R,y o =(V,V, -V .V, 8.,8,) is the curvature tensor furthermore
Pap = Rapbp resp. R = p: ig the Ricci curvature resp. the curvature scalar.
§ 2. Analycity at commuting higher order Laplacian

In this chapter we consider the Riemannian spaces satisfying the curvature

condition:

(2.1) Vipjk + ij’h + Vkpij =0

for the Ricci curvature p i All the Einstein manifolds satisfy this condition, so the

following theorem is a generalization of the Kazdan—De Turck theorem.

Theorem 2.1 All the Riemannian metrics satisfying the curvature condition (2.1) are

real analytic in the harmonic resp. normal coordinate neighbourhoods.

Proof Using the method of harmonic coordinates (developed in the proof of the
Kazdan—De Turck theorem [1]) we have to prove only that the symbol
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2 2 2
(2.2) hij_"gilgl hjk+fj|f| by + & 1€ hij
of the equation (2.1) is injective. This property obiously satisfies, as if
for any £, then

|€12%6% g = 0:21¢ 1%y + dleh g, =0
(2.3)
€120y + €'y + e by =0,

from which hjk =0 follows. This proves the injectivity of (2.2) and the theorem
completely.

Q.ed.

Theorem 2.2 A Riemannian space satisfies the condition (2.1) if and only if the
Laplacian commutes with the second Willmore’s operator A(z) .
The equation (2.1) holds also in the case, if the Laplacian commutes with the

operators O S)) , O S{?)) . More precisely this commutativity is equivalent with the
1 1
(7 o

conditions: (2.1) and A £2) = constant .

(1)

Proof By (1.36) the operators A , A(2) commutes if and only if the Laplacian

commutes with the operator

(24) V.01V, = o8, + (747, .
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Using the Ricci identities, this 1ast commutativity is equivalent with the equation
£i i £ g8 Li £s pi g €

(2.5) VB(Vsp T+ W S)Vivﬂ + V (V.V% 1_ R, ippl +/° pp)Vt =
The highest (third) order therm of the differential operator on the left side is
(2.6) (Vsp"'i + Vs 4 Vipsf')\?’a\?'ivs ,
so the equation (2.1) follows for the spaces satisfying the commutativity
242 = a2y .

Conversely, if (2.1) holds, then

) ]
(2.1 0=VR+2Vp,=2VR=Vpp,

§0 we have to prove, that A commutes with pQ’IViVQ . This commutativity is

equivalent with (2.1) and with the following equations

(2.8) V.Vt 4 2R b8 i+ 25 = 0
4 (v ij ij _

(2.9) E(Vp )Rf,ijs_2pjvf.pij—o'

We show (using the Ricci identities) that the equations (2.8) and (2.9) follow from (2.1).
In fact, the equation (2.8) follows from (2.1) by the following computation.
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i i i
0= viv Pegt V vP.psi + v'va‘:‘il’. =
(2.10) = Vivlpaa + 2p IR, P‘SJ + 2;32'4:1ls +V leb +V V Psi

Rf.s £

= Vivipf,s + 2" + 2p; Pl
because VSVipﬁ = Vtvipsi =0 by (2.7). The equation (2.9) follows from (2.1) by
(2.11) 0=VVVp, + VLTIV o + VEVIT 4,

= vivﬁvipu - pstpvif’tp +2V4(- pinif,sj + f’itf’;) =
= Vi7.7%,, + 4R, pﬁvip"£ —epPtyrpt

which is just (2.9) by (2.7). This proves the first statement completely.

For the second statement we have to notice, that the operator m(l_) is of the

+(1)
form PA + QR where P, and Q are constant; therefore from An(l) = n(l) A it
) 2(i)
R = constant follows. So the A commutes also with Df‘f)) iff it commutes with an
i
o

operator of the form
pabvavb + ¢(1) )

where the function ¢(i) is the constant time of the function A(z_) defined in (1.6).

(1)

From this commutativity we get an equation similar to (2.5), for which the highest order
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term on the left side is (2.6) again. So also the spaces with the properties

(2.12) aet) —a(1) 4, an(®) —g(2) 4
i) D) i) ()

satisfy the curvature condition (2.1). More precisely (2.12) satisfies iff beside (2.1) also

A(z) = constant holds.
* .
*(i)

Q.ed.

We have to mention that the half part of the theorem was proved also by O.
Kawalski in [7]. In fact, he proved that the commutativity AA(2) = A(2)A implies the
condition (2.1), but the equivalentness of these conditions (i.e. the conversed statement)

is not proved there.

§ 3. D’Atri spaces

A Riemannian space is called to be a D’Atri space if the geodesics involutions are
(2k+1)

e
P

volume preserving. In such spaces the odd order derivatives w of the density

function wp vanigh. Specially

(3.1) w§3)=-;[vé p][ép,ép] =0

°p D

follows, which is equivalent with the condition

(3.2) Vipjk + Vj P + Vkpij =0.
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Therefore the D’Atri spaces are normal analytic manifolds by Theorem 2.1.

Let wf}(y) be the restriction of the density function w_(y) onto the geodesics g .
. If these functions are of the form wg(y) = ¢g(r(x,y)) then the space is obviously a
D’Atri space. The conversed statement is also true, i.e. this property characterizes the
D’Atri spaces. |

In fact, a D’Atri space is a normal analytic therefore the function ufi(y) is an
analytic, symmetric and central symmetric kernel function (double function) on the
geodesics g . Such functions are always of the form u)g((y) =¢ g(r(x,y)) proved by O.
Kowalski and L. Vanhecke [8] (Theorem 2.5). So we have

Theorem 3.1 The D’Atri spaces are normal analytic manifolds and these are
characterized by the property, where the density function wi(y) depends only on
r(x,y) (i.e. it is of the form wi(y): ¢g(r(x,y)) on any geodesics g .

Combining this theorem with the Basic Theorem 1.1 we have

Theorem 3..2 A space is a D’Atri space if and only if the Laplacian commutes with the

operators D( k) .
5(0-1)

w=g
Proof If the space is a D’Atri space then it is normal analytic and also the density w is
normal analytic function (by the previous theorem). Furthermore the functions
w2/ w=w resp. wfw= 1 satisfy the conditions 1 resp. 2 of Theorem 1.1, therefore the

Laplacian commutes with the operators ng) .
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Conversely, if the A commutes with the operators D(Sk) , then the metric is
normal analytic by the Theorem 2.1 and 2.2 furthermore the w& is of the form

w%(q) = qbg(r(p,q)) by Theorem 1.1. Le. the space is a D’Atri space.

Q.ed.

A Riemannian manifold is defined to be an (i}—D'Atri space if the kernel functions

* [
(ol(’l))z/ w, are central symmetric at any point p.
Using the same argument as before we get

Theorem 3.3 The (i)-D’Atri spaces are normal analytic spaces. A space is an
ol
(i)-D’Atri space if and only if the kernel function (aj(cl)(y))2/w is of the form

¢7(I(XJ)) on any geodesics 7 .

Theorem 3.4 The Laplacian commutes with the operators nf‘](‘_) if and only if the
i
o

space is an (i)—D’Atri space satisfying the ultrahyperbolic equation

(33 8 2 ()= 8, I ().

The Willmore’s commutative spaces (or probabilistic commutative spaces) are defined
by commuting Willmore’s operators. All these spaces are D’Atri spaces by the following

theorem
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Theorem 3.5 The Laplacian commutes with the Willmore’s operator if and only if the

space i8 a D’Atri space satisfying the ultrahyperbolic equation

(3.4) By (xy) =8, 5 (xy).

F. Tricerri and L. Vanhecke investigated [10] homogeneous Riemannian manifolds
G/H with commuting invariant differential operators. They proved that all these spaces
are D’Atri spaces. This result is a special case of the above theorems, raather more a
stronger theorem can be stated: All these spaces are (i)—D’Atri spaces (for any index i)

satisfying also the ultrahyperbolic equations:

(3.5) A gg)— (xy) =4 # (x.y) -
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