HIGHER ORDER LAPLACIANS II. LAPLACIAN COMMUTING WITH THE HIGHER ORDERS

.

by

Z.I. Szabo

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 5300 Bonn 3 Federal Republic of Germany Elte University Department of Analysis Budapest Ungarn

. .

HIGHER ORDER LAPLACIANS II. LAPLACIAN COMMUTING WITH THE HIGHER ORDERS

by

Z.I. Szabo

Introduction

We continue the study of higher order Laplacians introduced in the previous paper [9]. We slightly modify this notion because now we use unnormed integrals w.r.t. a kernel function H(p,q). The infinitesimal generators (the higher order Laplacians) are denoted by $\Box_{H}^{(k)}$.

In this paper the normal analycity plays an important role. A Riemannian manifold is defined to be normal analytic if it is real analytic in the normal coordinates. A kernel function H(p,q) is normal analytic if, for any p, the kernel function $H_p(\cdot) = H(p, \cdot)$ is analytic in the normal coordinates defined around p.

In the first chapter we prove the <u>Basic Theorem</u> of the operators $\Box_{H}^{(k)}$ asserting that for a symmetric (H(p,q) = H(p,q)) normal analytic function H the Laplacian commutes with the operators $\Box_{H}^{(k)}$ if and only if:

1) on any geodesics γ the kernel function H^2/ω (where ω is the Riemann-density in normal coordinates) is depending on the geodesics distance r(p,q); i.e. a function ϕ_{γ} exists such that H^2/ω is of the form $\phi_{\gamma}(r(p,q))$ on γ , 2) the kernel function $\mathscr{K}(p,q) = H(p,q)/\omega(p,q)$ satisfies the ultrahyperbolic equation

$$(\Delta_{\mathbf{p}} \mathscr{K})(\mathbf{p},\mathbf{q}) = (\Delta_{\mathbf{q}} \mathscr{K})(\mathbf{p},\mathbf{q})$$

In Chapter 2 we prove that all the spaces satisfying the curvature condition

(*)
$$\nabla_{i} \rho_{jk} + \nabla_{i} \rho_{ki} + \nabla_{k} \rho_{ij} = 0$$

for the Ricci tensor ρ_{ij} are normal analytic. As all the Einstein metrics satisfy the condition (*) so this is a generalization of the Kazdan-De Turck Theorem [1].

We show too, that the condition (*) holds if and only if the Laplacian Δ commutes with the second Willmore's operator $\Delta^{(2)} = \Box_1^{(2)}$.

From these theorems, for example, the normal analycity of the D'Atri spaces (where the geodesics involutions are volume preserving) follows. Furthermore a space is D'Atri space if and only if the Laplacian commutes with the operators $\Box_{(k)}^{(k)}$.

Involving also the other invariants $\sigma_p^{(i)}(q)$ of the Jacobian field in the considerations, similar theorems are proved also for the so called (i)-D'Atri spaces.

The author would like to express many thanks to Professors U. Abresch,

J. Kazdan, N. Koiso for the valuable discussions while he was staying at Max-Planck-Institut für Mathematik in Bonn in the academic year 1987-1988.

§ 1. The Basic Theorem of the higher order Laplacians

Let $H(p,q): M^n \times M^n \longrightarrow \mathbb{R}$ be a C^{∞} -kernel function on a C^{∞} -Riemannian manifold M^n . For a unit vector $\dot{e}_p \in T_p(M^n)$ the $e_p(r)$ denotes the arc-wise

parametrized geodesics with the tangent vector \dot{e}_p at $p = e_p(0)$. In the first part of this paper-series we introduced the averaging operator $E_{H;p;r}$ along the geodesics spheres $S_{p;r}$ using the normalized function $H(p,e_p(r))/\int H(p,e_p(r))d\dot{e}_p$ as weight function, where $d\dot{e}_p$ means the normalized euclidean measure of the unit tangent vectors in the tangent space T_p . The higher order Laplacians $\Delta_H^{(k)}$ w.r.t. H were defined by the even derivatives w.r.t. r as follows:

(1.1)
$$\Delta_{\mathrm{H};\,\mathrm{p}}^{(\mathbf{k})}\varphi := \frac{\partial^{2\mathbf{k}}\mathrm{E}_{\mathrm{H};\,\mathrm{p};\,\mathrm{r}}(\varphi)}{\partial\,\mathrm{r}^{2\mathbf{k}}}/\mathrm{r} = 0,$$

where φ is a C^{∞}-function on Mⁿ.

In this paper we deal mostly with the unnormed averaging $UE_{H;p;r}$ defined by

(1.2)
$$UE_{\mathrm{H};p;r}(\varphi) = \int \varphi(e_{p}(r))H(p,e_{p}(r))d\dot{e}_{p},$$

and the operators $\Box_{\mathrm{H}}^{(k)}$ are defined by the 2k-th derivative:

(1.3)
$$\Box_{\mathrm{H};p}^{(\mathbf{k})}\varphi := \frac{\partial^{2\mathbf{k}}\mathrm{UE}_{\mathrm{H};p;r}}{\partial r^{2\mathbf{k}}} / r = 0.$$

This operator can be written also in the following form:

(1.4)
$$\Box_{\mathrm{H};p}^{(\mathbf{k})} = \sum_{\mathbf{a}=0}^{2\mathbf{k}} \begin{bmatrix} 2\mathbf{k} \\ \mathbf{a} \end{bmatrix} \int H_{\dot{\mathbf{e}}_{p}}^{(\mathbf{a})} \nabla_{\dot{\mathbf{e}}_{p}}^{(2\mathbf{k}-\mathbf{a})} d\dot{\mathbf{e}}_{p},$$

where $\nabla_{\dot{e}}^{(i)}$ is the covariant derivative of i-th order furthermore $H_{\dot{e}_p}^{(a)} := \nabla_{\dot{e}_p}^{(a)} H = \nabla \nabla \dots \nabla H(\dot{e}_p, \dots, \dot{e}_p)$. Notice, that these operators are of the form

(1.5)
$$\Box_{\mathbf{H};p}^{(\mathbf{k})} = D_{\mathbf{H};p}^{(\mathbf{k})} + \lambda_{\mathbf{H};p}^{(\mathbf{k})}$$

where $D_{\mathbf{H};p}^{(k)}$ is a differential operator furthermore

(1.6)
$$\lambda_{\rm H;p}^{(k)} = \int H_{\dot{e}_p}^{(2k)} d\dot{e}_p$$

is a scalar operator (multiplication with the function $\lambda_{H}^{(k)}$).

It is plain that the operators $\Box_{H}^{(k)}$ are self adjoint in the $L^{2}(M^{n})$ -Hilbert space if and only if the kernel function H is symmetric : H(p,q) = H(q,p).

Let $f(r): \mathbb{R} \longrightarrow \mathbb{R}$ be a C^{∞} -even function (i.e. f(r) = f(-r)). It defines the radial kernel function F(p,q) = f(r(p,q)) on M^n , where $r(p,q) = r_p(q)$ means the geodesics distance between p and q. For the product-kernel-function

(1.7)
$$(fH)(p,q) := F(p,q)H(p,q)$$

we have

(1.8)
$$\Box_{(\mathbf{fH})}^{(\mathbf{k})} = \sum_{\mathbf{a}=0}^{\mathbf{k}} \begin{bmatrix} 2\mathbf{k} \\ 2\mathbf{a} \end{bmatrix} \mathbf{f}^{(2\mathbf{a})}(0) \Box_{\mathbf{H}}^{(\mathbf{k}-\mathbf{a})},$$

where $f^{(2a)}(0)$ is the (2a)-th derivative of f at 0.

In this chapter we investigate mainly the commutativity of the Laplacian $\Delta = \nabla^i \nabla_i$ with the operators $\Box_H^{(k)}$. We draw into these considerations also the convolution * defined on functions as usual by.

(1.9)
$$H * \varphi(p) = \int H(p,q)\varphi(q)dq .$$

First notice that the Taylor formula gives the expression

(1.10)
$$UE_{\mathrm{H};p;r}(\varphi) = \sum_{\mathbf{k}} \frac{\mathbf{r}^{\mathbf{k}}}{\mathbf{k}!} \Box_{\mathrm{H};p}(\varphi)$$

for the unnormed averaging $UE_{H;p;r}(\varphi) = \int \varphi(e_p(r))H(e_p(r))d\dot{e}_p$. This formula is the so called <u>pre-Pizzetti-formula</u>. If the functions φ and H are normal analytic, then the right side converges for small values of r.

Let $\omega_p(q) = \sqrt{\det |g^{ij}|}$ be the Riemannian density in a normal coordinate neighbourhood around p. If f in (1.7) is a function of compact support whose supporting radius (the infimum of the positive 0-places) is less than the injectivity radius of the manifold at a point p, then the function

(1.11)
$$f \mathscr{H}_{p} := \frac{F_{p}H_{p}}{\omega_{p}}$$

is well defined around the point p. In a normal coordinate neighbourhood around p we get

(1.12)
$$(f \mathcal{H}) * \varphi(p) = \Omega_{n-1} \int f(r) r^{n-1} (\int \varphi(e_p(r)) H(e_p(r)) d\dot{e}_p) dr$$

therefore by the Taylor series (1.10) we have

where Ω_{n-1} is the volume of the (n-1)-dimensional euclidean unit sphere. If the functions φ and H are normal anylytic, then the right side of (1.13) is convergent for the functions f with small supporting radius.

For a fixed radius r = R, the averaging operator $UE_{H;p;R}$ can be generated from the convolutions operators of the form (f \mathcal{K}) * as follows.

Let f_n be a function-series which tends to the Dirac function

(1.14)
$$\frac{1}{\Omega_{n-1}R^{n-1}} \delta_{R}$$

Then the operator series $(f_n \mathscr{X}) *$ tends (on the continuous functions) to the operator $UE_{H;p;R}$.

<u>Lemma 1.1</u> Let H(p,q) be a normal analytic kernel function on a normal analytic space. Then the Lapalcian Δ commutes with the operators $\Box_{H}^{(k)}$; k = 0,1,2,3... if and only if it commutes with the convolution operators (f \mathcal{H}) * for any f.

<u>**Proof**</u> It is enough to testify the commutativity on normal anylytic functions φ . In this case the function

$$\phi_{\mathbf{p};\mathbf{R}} := (\Delta_{\mathbf{p}} \mathrm{UE}_{\mathbf{H};\mathbf{p};\mathbf{R}} - \mathrm{UE}_{\mathbf{H};\mathbf{p};\mathbf{R}} \Delta_{\mathbf{p}}) \varphi$$

is analytic w.r.t. the variable R at any point p.

If Δ commutes with the operators $\Box_{\mathrm{H}}^{(\mathbf{k})}$, then $\phi_{\mathbf{p};\mathbf{R}} = 0$ holds for any R by the Pizzetti-formula (1.10). Therefore the Δ commuts with the operators $UE_{\mathrm{H};\mathbf{p};\mathbf{R}}$ for any fixes R. Using Riemannian summs for the integral (f \mathscr{H}) $* = \int f(\mathbf{r})UE_{\mathrm{H};\mathbf{p};\mathbf{r}}d\mathbf{r}$ we get the commutativity with the operators (f \mathscr{H}) * as well.

Conversely, if Δ commuts with the operators (f \mathscr{H}) * then it commutes also with the operators UE_{H;p;R} by the approximation procedure described at (1.14).

Therefore the Δ commutes with the operators:

(1.15)
$$\Box_{\mathbf{H};\mathbf{p}}^{(\mathbf{k})} = \frac{\partial^{2\mathbf{k}} U E_{\mathbf{H};\mathbf{p};\mathbf{R}}}{\partial \mathbf{R}^{2\mathbf{k}}} / \mathbf{R} = 0$$

as well.

Q.e.d.

<u>Lemma 1.2</u> The Laplacian Δ commutes with a convolution operator G * if and only if the kernel function G(x,y) satisfies the ultrahyperbolic equation

(1.16)
$$(\Delta_{\mathbf{x}} \mathbf{G})(\mathbf{x},\mathbf{y}) = (\Delta_{\mathbf{y}} \mathbf{G})(\mathbf{x},\mathbf{y}) ,$$

where Δ_x (resp. Δ_y) means the Laplacian's action w.r.t. x (resp. w.r.t. y).

Proof The commutativity

(1.17)
$$\int \Delta_{\mathbf{x}} G(\mathbf{x}, \mathbf{y}) \varphi(\mathbf{y}) d\mathbf{y} = \int G(\mathbf{x}, \mathbf{y}) \Delta_{\mathbf{y}} \varphi(\mathbf{y}) d\mathbf{y}$$
$$\underbrace{\text{Stokes}}_{\mathbf{y}} \int (\Delta_{\mathbf{y}} G(\mathbf{x}, \mathbf{y})) \varphi(\mathbf{y}) d\mathbf{y}$$

satisfies if and only if (1.16) holds.

Q.e.d.

Now we are in the position to formulate the Basic Theorem of the operators $\Box_{H}^{(k)}$

<u>Theorem 1.1</u> Let H be a symmetric (H(x,y) = H(y,x)) normal analytic kernel function on a normal analytic space such that $H(p,p) \neq 0$ for any p. Then the Laplacian commutes with the operators $\Box_{H}^{(k)}$ if and only if

- 1) for any geodesics γ a function $\phi_{\gamma} : \mathbb{R}_{+} \longrightarrow \mathbb{R}$ exists such that the function $H^{2}(x,y)/\omega(x,y)$ is of the form $\phi_{\gamma}(r(x,y))$ on γ , i.e. it depends only on the geodesics distance r(x,y) on any geodesics,
- 2) the kernel function $H(x,y)/\omega(x,y)$ satisfies the ultrahyperbolic equation

(1.18)
$$\left[\Delta_{\mathbf{x}} \frac{\mathbf{H}}{\omega}\right](\mathbf{x},\mathbf{y}) = \left[\Delta_{\mathbf{y}} \frac{\mathbf{H}}{\omega}\right](\mathbf{x},\mathbf{y}) .$$

<u>Proof</u> By the Lemmas 1.1 and 1.2 the Δ commutes with the operators $\Box_{H}^{(k)}$ if and only if all the functions f $\mathscr{H}(\mathbf{x},\mathbf{y})$ satisfy the ultrahyperbolic equation

(1.19)
$$(\Delta_{\mathbf{x}} \mathbf{f} \ \mathscr{H})(\mathbf{x}, \mathbf{y}) = (\Delta_{\mathbf{y}} \mathbf{f} \ \mathscr{H})(\mathbf{x}, \mathbf{y}) \ .$$

On the other hand we have

$$\begin{split} \Delta_{\mathbf{y}}(\mathbf{F}_{\mathbf{x}}\,\mathscr{H}_{\mathbf{x}})(\mathbf{y}) &= (\Delta_{\mathbf{y}}\mathbf{F}_{\mathbf{x}})(\mathbf{y})\,\mathscr{H}_{\mathbf{x}}(\mathbf{y}) + 2\mathbf{F}_{\mathbf{x}}'(\mathbf{y})\,\mathscr{H}_{\mathbf{x}}'(\mathbf{y}) + \mathbf{F}_{\mathbf{x}}(\mathbf{y})(\Delta_{\mathbf{y}}\,\mathscr{H}_{\mathbf{x}})(\mathbf{y}) = \\ (1.20) \qquad \left[\mathbf{f}''(\mathbf{r}_{\mathbf{x}}(\mathbf{y})) + \frac{\mathbf{n}-1}{\mathbf{r}_{\mathbf{x}}'(\mathbf{y})} \mathbf{f}'(\mathbf{r}_{\mathbf{x}}(\mathbf{y})) \right] \mathscr{H}_{\mathbf{x}}'(\mathbf{y}) + \\ &+ \mathbf{f}'(\mathbf{r}_{\mathbf{x}}(\mathbf{y})) \left[\left[\frac{\omega_{\mathbf{x}}'(\mathbf{y})}{\omega_{\mathbf{x}}'(\mathbf{y})} \right] \,\mathscr{H}_{\mathbf{x}}'(\mathbf{y}) + 2\,\mathscr{H}_{\mathbf{x}}'(\mathbf{y}) \right] + \mathbf{f}(\mathbf{r}_{\mathbf{x}}(\mathbf{y}))(\Delta_{\mathbf{y}}\,\mathscr{H}_{\mathbf{x}})(\mathbf{y}) \end{split}$$

where the coma means derivation from the radial direction furthermore we used also the classical formula

(1.21)
$$(\Delta_{\mathbf{y}} \mathbf{F}_{\mathbf{x}})(\mathbf{y}) = \mathbf{f}''(\mathbf{r}_{\mathbf{x}}(\mathbf{y})) + \left[\frac{\mathbf{n}-1}{\mathbf{r}_{\mathbf{x}}(\mathbf{y})} + \frac{\omega_{\mathbf{x}}'(\mathbf{y})}{\omega_{\mathbf{x}}(\mathbf{y})} \right] \mathbf{f}'(\mathbf{r}_{\mathbf{x}}(\mathbf{y})) .$$

Similarly we get

۲

; '

$$(\Delta_{\mathbf{x}} \mathbf{F}^{\mathbf{y}} \mathscr{H}^{\mathbf{y}})(\mathbf{x}) = \left[\mathbf{f}''(\mathbf{r}^{\mathbf{y}}(\mathbf{x})) + \frac{\mathbf{n}-1}{\mathbf{r}^{\mathbf{y}}(\mathbf{x})} \mathbf{f}'(\mathbf{r}^{\mathbf{y}}(\mathbf{x})) \right] \mathscr{H}^{\mathbf{y}}(\mathbf{x}) +$$

$$(1.22)$$

$$+ \mathbf{f}'(\mathbf{r}^{\mathbf{y}}(\mathbf{x}) \left[\frac{(\omega^{\mathbf{y}})'(\mathbf{x})}{\omega^{\mathbf{y}}(\mathbf{x})} \mathscr{H}^{\mathbf{y}}(\mathbf{x}) + 2(\mathscr{H}^{\mathbf{y}})'(\mathbf{x}) \right] + \mathbf{f}(\mathbf{r}^{\mathbf{y}}(\mathbf{x}))(\Delta_{\mathbf{y}} \mathscr{H}^{\mathbf{y}})(\mathbf{x}) ,$$

where $\mathscr{K}_{\mathbf{x}}(\mathbf{y}) = \mathscr{K}^{\mathbf{y}}(\mathbf{x}) = \mathscr{K}(\mathbf{x},\mathbf{y})$. Notice that the second expression in (1.20) resp. (1.22) can be written in the following form (using $\mathscr{K}(\mathbf{x},\mathbf{y}) := \mathbf{H}(\mathbf{x},\mathbf{y})/\omega(\mathbf{x},\mathbf{y})$)

(1.24)
$$\frac{\omega'_{\mathbf{x}}(\mathbf{y})}{\omega_{\mathbf{x}}(\mathbf{y})} \, \mathscr{H}_{\mathbf{x}}(\mathbf{y}) + 2 \, \mathscr{H}_{\mathbf{x}}'(\mathbf{y}) = \frac{\mathbf{H}_{\mathbf{x}}}{\omega_{\mathbf{x}}} \left(\mathbf{y}\right) \left[\, \ell \mathbf{n} \, \frac{\mathbf{H}_{\mathbf{x}}^2}{\omega_{\mathbf{x}}} \right]'(\mathbf{y})$$

(1.25)
$$\frac{(\omega^{y})'(x)}{\omega^{y}(x)} \mathscr{H}^{y}(x) + 2(\mathscr{H}^{y})'(x) = \frac{\mathrm{H}^{y}(x)}{\omega^{y}(x)} \left[\ell n \, \frac{(\mathrm{H}^{y})^{2}}{\omega^{y}} \right]'(x) \, .$$

The $\omega(x,y)$ is an analytic symmetric kernel function (see the remarks at (1.34)) therefore also the kernel-functions $\mathscr{H}(x,y)$ and

(1.26)
$$Z(\mathbf{x},\mathbf{y}) := \ln \frac{\mathrm{H}^2(\mathbf{x},\mathbf{y})}{\omega(\mathbf{x},\mathbf{y})}$$

are smooth a symmetric kernel functions.

The equation (1.19) satisfies for any f if and only if

1) On any geodesics γ the symmetric kernel function $Z_{\gamma}(x,y)$ satisfies the equation

(1.27)
$$\mathbf{Z}_{\boldsymbol{\gamma}\mathbf{x}}^{\prime}(\mathbf{y}) = (\mathbf{Z}_{\boldsymbol{\gamma}}^{\mathbf{y}})^{\prime}(\mathbf{x}),$$

2) the kernel function \mathcal{X} satisfies the ultrahyperbolic equation

$$(\Delta_{\mathbf{x}} \mathscr{K})(\mathbf{x}, \mathbf{y}) = (\Delta_{\mathbf{y}} \mathscr{K})(\mathbf{x}, \mathbf{y}) .$$

If we write the kernel function Z_{γ} in an arc-wise parametrization of γ in the form $Z_{\gamma}(t,s): \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$, then (1.27) is equivalent with the equation

(1.28)
$$\frac{\partial Z}{\partial s}(t,s) = -\frac{\partial Z}{\partial t}(t,s) = -\frac{\partial Z}{\partial t}(t,s)$$

The proof of the Theorem can be finished by the following Lemma

Lemma 1.3 The general symmetric solution of (1.28) are just the functions of the form:

(1.29)
$$Z_{\gamma}(t,s) = \phi_{\gamma}(|t-s|),$$

where $\phi_{\gamma} : \mathbb{R}_{+} \longrightarrow \mathbb{R}$ is a function of one variable.

<u>Proof</u> For the functions of the form (1.29) the equation (1.28) obviously holds.

Conversely, if Z_{γ} is a symmetric solution of (1.28) then it satisfies also the hyperbolic equation

(1.30)
$$\frac{\partial^2 Z_{\gamma}}{\partial s^2} = -\frac{\partial^2 Z_{\gamma}}{\partial s \, \partial t} = -\frac{\partial^2 Z_{\gamma}}{\partial t \, \partial s} = \frac{\partial^2 Z_{\gamma}}{\partial t^2}$$

Therefore the \mathbf{Z}_{γ} is of the form

(1.31)
$$Z_{\gamma} = \phi(s-t) + \psi(s+t) .$$

For such function the (1.28) gives

(1.32)
$$\phi'(s-t) + \psi'(s+t) = \phi'(s-t) - \psi'(s+t)$$

therefore $\psi' = 0$; $\psi = \text{constant}$ and so $Z_{\gamma}(s,t) = \phi_{\gamma}(s-t)$ follows. From the symmetry $Z_{\gamma}(s,t) = Z_{\gamma}(t,s)$ we get $Z_{\gamma}(s,t) = \phi_{\gamma}(|s-t|)$, which proves the Lemma completely.

Q.e.d.

The above theorem will be used mainly to the kernel functions defined by the several invariants of the Jacobian field. More precisely let $A_{p;r}$ be the Jacobian endomorphism field along a geodesics $e_p(r)$ defined by

$$A_{p;r}^{"} + R_{\dot{e}_{p}(r)} \circ A_{p;r} = 0; A_{p;0} = 0; A_{p;0}' = Id,$$

where $R_{\dot{e}_p(r)}(.) = R(., \dot{e}_p(r))\dot{e}_p(r)$ is the Jacobian curvature operator field along $e_p(r)$ acting in the (n-1)-dimensional subspace standing orthogonal to $\dot{e}_p(r)$. The invariants $\sigma_p^{(i)}(e_p(r)) = \sigma_p^{(i)}(q)$; $q = e_p(r)$; of $A_{p;q}$, defined by

$$\det(\mathbf{A}_{\mathbf{p};\mathbf{q}} + \lambda \mathbf{Id}) = \lambda^{\mathbf{n}-1} + \sigma_{\mathbf{p}}^{(1)}(\mathbf{q})\lambda^{\mathbf{n}-2} + \dots + \sigma_{\mathbf{p}}^{(\mathbf{n}-1)}(\mathbf{q}) ,$$

determine local kernel functions which are symmetric by the well known property

$$A_{p,q} = A_{q;p}^*$$

of the Jacobian. The $\sigma_p^{(n-1)} = \det A_p = \theta_p$ is the polar-density function, i.e.

$$\omega_{\mathbf{p}}(\mathbf{q}) = \mathbf{r}_{\mathbf{p}}^{\mathbf{n}-1}(\mathbf{q})\theta_{\mathbf{p}}(\mathbf{q}) ,$$

where $\omega_{\rm p}$ is the Riemannian density introduced earlier. The assymptotic behaviour of $\sigma_{\rm p}^{(i)}(e_{\rm p}(r))$ is:

(1.33)
$$\sigma_{p}^{(i)}(e_{p}(r)) = \begin{bmatrix} n-1 \\ i \end{bmatrix} r^{i} + higher order terms.$$

These functions are not smooth at the diagonal points (p;p) in general. But if we normalize these functions in the following way:

(1.34)
$$\sigma_{\mathbf{p}}^{*(\mathbf{i})}(\mathbf{q}) := \frac{1}{\left[\begin{array}{c} \mathbf{n}-\mathbf{l} \\ \mathbf{i} \end{array} \right] \mathbf{r}_{\mathbf{p}}^{\mathbf{i}}(\mathbf{q})} \sigma_{\mathbf{p}}^{(\mathbf{i})}(\mathbf{q}) ,$$

then the functions $\sigma_p^{i}(q)$ are smooth functions in a neighbourhood of the diagonal $\{(p,p)\}$. Also the properties $\sigma_p^{i}(q) = \sigma_q^{i}(q)$; $\sigma_p^{i}(p) = 1$; $\sigma_q^{i}(n-1) = \omega$ satisfy obviously.

The explicite expression of the operators $\Box_{\sigma}^{(k)}(1)$ can be computed by the power series of the Jacobian field. Also notice, that for the constant kernel functions H(p;q) = 1, the operators $\Box_{H=1}^{(k)}$ are just the Willmore operators $\Delta^{(k)}$ introduced in the first part of this paper-series. Using the recursion formula (2.10) of this previous paper as well as the power series method, we get the following formulas by an easy computation

$$(1.35) \qquad \qquad \Delta^{(1)} = \frac{1}{n} \Delta ,$$

(1.36)
$$\Delta^{(2)} = \frac{1}{n(n+2)} \left(3\Delta^2 + 2\rho^{ij} \nabla_i \nabla_j + 2(\nabla_j \rho^{ij}) \nabla_i \right),$$

(1.37)
$$\Box_{\sigma(1)}^{(1)} = \frac{1}{n} \left[\Delta - \frac{1}{3(n-1)} R \right],$$

(1.38)
$$\Box_{\sigma(1)}^{(2)} = \Delta^{(2)} + \frac{1}{n(n+2)} \left[-\frac{2}{n-1} \operatorname{R}\Delta - \frac{4}{n-1} \rho^{ij} \nabla_{i} \nabla_{j} - \frac{1}{n-1} (\nabla^{i} R) \nabla_{i} + \right]$$

$$+\frac{1}{5(n-1)}\left[-6\Delta R+\rho_{ab}\rho^{ab}+\frac{3}{2}R_{abcd}R^{abcd}\right],$$

(1.39)
$$\Box_{\sigma}^{(1)}(n-1) = \omega = \frac{1}{n} \left(\Delta - \frac{1}{3} R\right),$$

(1.40)
$$\Box_{\omega}^{(2)} = \Delta^{(2)} + \frac{1}{n(n+2)} \left[-2R\Delta - 4\rho^{ij} \nabla_{i} \nabla_{j} - (\nabla^{i}R) \nabla_{i} - \frac{6}{5} \Delta R + \frac{1}{3} R^{2} + \frac{4}{5} \rho_{ab} \rho^{ab} + \frac{1}{5} R_{abcd} R^{abcd} \right].$$

In these formulas $R_{abcd} = \langle \nabla_b \nabla_a - \nabla_a \nabla_b \partial_c, \partial_d \rangle$ is the curvature tensor furthermore $\rho_{ab} = R_a^{\ p}_{\ bp}$ resp. $R = \rho_a^a$ is the Ricci curvature resp. the curvature scalar.

§ 2. Analycity at commuting higher order Laplacians

In this chapter we consider the Riemannian spaces satisfying the curvature condition:

(2.1)
$$\nabla_{\mathbf{i}}\rho_{\mathbf{j}\mathbf{k}} + \nabla_{\mathbf{j}}\rho_{\mathbf{k}\mathbf{i}} + \nabla_{\mathbf{k}}\rho_{\mathbf{i}\mathbf{j}} = 0$$

for the Ricci curvature ρ_{ij} . All the Einstein manifolds satisfy this condition, so the following theorem is a generalization of the Kazdan-De Turck theorem.

<u>Theorem 2.1</u> All the Riemannian metrics satisfying the curvature condition (2.1) are real analytic in the harmonic resp. normal coordinate neighbourhoods.

<u>Proof</u> Using the method of harmonic coordinates (developed in the proof of the Kazdan-De Turck theorem [1]) we have to prove only that the symbol

(2.2)
$$h_{ij} \longrightarrow \xi_i |\xi|^2 h_{jk} + \xi_j |\xi|^2 h_{ki} + \xi_k |\xi|^2 h_{ij}$$

of the equation (2.1) is injective. This property obiously satisfies, as if

$$\xi_{i}h_{jk} + \xi_{j}h_{ki} + \xi_{k}h_{ij} = 0$$

-15-

for any ξ , then

(2.3)
$$|\xi|^{2}\xi^{j}\xi^{k}h_{jk} = 0; 2|\xi|^{2}\xi^{j}h_{jk} + \xi^{i}\xi^{j}h_{ij}\xi_{k} = 0;$$
$$|\xi|^{2}h_{ik} + \xi^{i}\xi_{i}h_{ik} + \xi^{i}\xi_{k}h_{ii} = 0,$$

from which $h_{jk} = 0$ follows. This proves the injectivity of (2.2) and the theorem completely.

<u>Theorem 2.2</u> A Riemannian space satisfies the condition (2.1) if and only if the Laplacian commutes with the second Willmore's operator $\Delta^{(2)}$.

The equation (2.1) holds also in the case, if the Laplacian commutes with the operators $\Box \begin{pmatrix} 1 \\ * \\ \sigma(i) \end{pmatrix}$, $\Box \begin{pmatrix} 2 \\ * \\ \sigma(i) \end{pmatrix}$. More precisely this commutativity is equivalent with the conditions: (2.1) and $\bigwedge \begin{pmatrix} 2 \\ * \\ \sigma(i) \end{pmatrix} = \text{constant}$.

<u>Proof</u> By (1.36) the operators Δ , $\Delta^{(2)}$ commutes if and only if the Laplacian commutes with the operator

(2.4)
$$\nabla_{i}\rho^{\ell i}\nabla_{\ell} = \rho^{\ell i}\nabla_{i}\nabla_{\ell} + (\nabla_{i}\rho^{\ell i})\nabla_{\ell}.$$

Using the Ricci identities, this last commutativity is equivalent with the equation

(2.5)
$$\nabla_{\mathbf{g}} (\nabla^{\mathbf{g}} \rho^{\ell \mathbf{i}} + \nabla^{\mathbf{i}} \rho^{\ell \mathbf{g}}) \nabla_{\mathbf{i}} \nabla_{\boldsymbol{\ell}} + \nabla_{\mathbf{g}} (\nabla_{\mathbf{i}} \nabla^{\mathbf{g}} \rho^{\ell \mathbf{i}} - \mathbf{R}_{\mathbf{p}}{}^{\ell \mathbf{g}} \rho^{\mathbf{p}\mathbf{i}} + \rho^{\mathbf{p}\mathbf{g}} \rho^{\boldsymbol{\ell}}_{\mathbf{p}}) \nabla_{\boldsymbol{\ell}} = 0 .$$

The highest (third) order therm of the differential operator on the left side is

(2.6)
$$(\nabla^{\mathbf{s}}\rho^{\ell \mathbf{i}} + \nabla^{\ell}\rho^{\mathbf{i}\mathbf{s}} + \nabla^{\mathbf{i}}\rho^{\mathbf{s}\ell})\nabla_{\ell}\nabla_{\mathbf{i}}\nabla_{\mathbf{s}},$$

so the equation (2.1) follows for the spaces satisfying the commutativity $\Delta\Delta^{(2)} = \Delta^{(2)}\Delta$.

Conversely, if (2.1) holds, then

(2.7)
$$0 = \nabla_{\mathbf{s}} \mathbf{R} + 2\nabla^{\boldsymbol{\ell}} \rho_{\mathbf{s}\boldsymbol{\ell}} = 2\nabla_{\mathbf{s}} \mathbf{R} = \nabla_{\boldsymbol{\ell}} \rho_{\mathbf{s}}^{\boldsymbol{\ell}},$$

so we have to prove, that Δ commutes with $\rho^{\ell i} \nabla_i \nabla_{\ell}$. This commutativity is equivalent with (2.1) and with the following equations

(2.8)
$$\nabla_{\mathbf{i}}\nabla^{\mathbf{i}}\rho^{\boldsymbol{\ell}\mathbf{s}} + 2\rho^{\mathbf{i}\mathbf{j}}\mathbf{R}_{\mathbf{i}}^{\boldsymbol{\ell}\mathbf{s}}{}_{\mathbf{j}} + 2\rho^{\boldsymbol{\ell}}_{\mathbf{i}}\rho^{\mathbf{i}\mathbf{s}} = 0$$

(2.9)
$$\frac{4}{3} (\nabla^{s} \rho^{ij}) \mathbf{R}_{\ell ijs} - 2 \rho^{ij} \nabla_{\ell} \rho_{ij} = 0 .$$

We show (using the Ricci identities) that the equations (2.8) and (2.9) follow from (2.1). In fact, the equation (2.8) follows from (2.1) by the following computation.

because $\nabla_{\mathbf{s}} \nabla^{\mathbf{i}} \rho_{\boldsymbol{\ell} \mathbf{i}} = \nabla_{\boldsymbol{\ell}} \nabla^{\mathbf{i}} \rho_{\mathbf{s} \mathbf{i}} = 0$ by (2.7). The equation (2.9) follows from (2.1) by

$$(2.11) \qquad 0 = \nabla^{\ell} \nabla^{i} \nabla_{i} \rho_{\ell s} + \nabla^{\ell} \nabla^{i} \nabla_{\ell} \rho_{s i} + \nabla^{\ell} \nabla^{i} \nabla_{s} \rho_{i \ell} = = \nabla^{i} \nabla^{\ell} \nabla_{i} \rho_{\ell s} - R_{p s \ell p} \nabla^{i} \rho^{\ell p} + 2 \nabla^{\ell} (-\rho^{i j} R_{i \ell s j} + \rho_{i \ell} \rho_{s}^{i}) = = \nabla^{i} \nabla_{i} \nabla^{\ell} \rho_{\ell s} + 4 R_{s p \ell i} \nabla^{i} \rho^{p \ell} - 6 \rho^{p \ell} \nabla^{\rho} p^{\ell} ,$$

which is just (2.9) by (2.7). This proves the first statement completely.

For the second statement we have to notice, that the operator $\Box_{\sigma}^{(1)}$ is of the $\overset{*}{\sigma}_{\sigma}^{(i)}$ form $P_i \Delta + Q_i R$, where P_i and Q_i are constant; therefore from $\Delta \Box_{\sigma}^{(1)} = \Box_{\sigma}^{(1)} \Delta$ it $\overset{*}{\sigma}_{\sigma}^{(i)} = \overset{*}{\sigma}_{\sigma}^{(i)} \Delta$ it R = constant follows. So the Δ commutes also with $\Box_{\sigma}^{(2)}$ iff it commutes with an $\overset{*}{\sigma}_{\sigma}^{(i)}$ operator of the form

$$\rho^{ab} \nabla_a \nabla_b + \phi_{(i)},$$

where the function $\phi_{(i)}$ is the constant time of the function $\bigwedge_{\sigma}^{(2)}$ defined in (1.6).

From this commutativity we get an equation similar to (2.5), for which the highest order

-17 -

term on the left side is (2.6) again. So also the spaces with the properties

(2.12)
$$\Delta \Box_{\sigma(i)}^{(1)} = \Box_{\sigma(i)}^{(1)} \Delta; \quad \Delta \Box_{\sigma(i)}^{(2)} = \Box_{\sigma(i)}^{(2)} \Delta$$

satisfy the curvature condition (2.1). More precisely (2.12) satisfies iff beside (2.1) also $\Lambda^{(2)}_{\sigma(i)} = \text{constant holds.}$

Q.e.d.

We have to mention that the half part of the theorem was proved also by O. Kawalski in [7]. In fact, he proved that the commutativity $\Delta\Delta^{(2)} = \Delta^{(2)}\Delta$ implies the condition (2.1), but the equivalentness of these conditions (i.e. the conversed statement) is not proved there.

§ 3. <u>D'Atri spaces</u>

A Riemannian space is called to be a D'Atri space if the geodesics involutions are volume preserving. In such spaces the odd order derivatives $\omega_{p}^{(2k+1)}$ of the density \dot{e}_{p} function ω_{p} vanish. Specially

(3.1)
$$\omega_{\dot{e}_{p}}^{(3)} = -\frac{1}{2} \left[\nabla_{\dot{e}_{p}} \rho \right] \left[\dot{e}_{p}, \dot{e}_{p} \right] = 0$$

follows, which is equivalent with the condition

(3.2)
$$\nabla_{i}\rho_{jk} + \nabla_{j}\rho_{ki} + \nabla_{k}\rho_{ij} = 0$$

Therefore the D'Atri spaces are normal analytic manifolds by Theorem 2.1.

Let $\omega_{\mathbf{x}}^{\mathbf{g}}(\mathbf{y})$ be the restriction of the density function $\omega_{\mathbf{x}}(\mathbf{y})$ onto the geodesics \mathbf{g} . If these functions are of the form $\omega_{\mathbf{x}}^{\mathbf{g}}(\mathbf{y}) = \phi_{\mathbf{g}}(\mathbf{r}(\mathbf{x},\mathbf{y}))$ then the space is obviously a D'Atri space. The conversed statement is also true, i.e. this property characterizes the D'Atri spaces.

In fact, a D'Atri space is a normal analytic therefore the function $\omega_{\mathbf{x}}^{\mathbf{g}}(\mathbf{y})$ is an analytic, symmetric and central symmetric kernel function (double function) on the geodesics g. Such functions are always of the form $\omega_{\mathbf{x}}^{\mathbf{g}}(\mathbf{y}) = \phi_{\mathbf{g}}(\mathbf{r}(\mathbf{x},\mathbf{y}))$ proved by O. Kowalski and L. Vanhecke [8] (Theorem 2.5). So we have

<u>Theorem 3.1</u> The D'Atri spaces are normal analytic manifolds and these are characterized by the property, where the density function $\omega_{\mathbf{x}}^{\mathbf{g}}(\mathbf{y})$ depends only on $\mathbf{r}(\mathbf{x},\mathbf{y})$ (i.e. it is of the form $\omega_{\mathbf{x}}^{\mathbf{g}}(\mathbf{y}) = \phi_{\mathbf{g}}(\mathbf{r}(\mathbf{x},\mathbf{y}))$ on any geodesics g.

Combining this theorem with the Basic Theorem 1.1 we have

<u>Theorem 3..2</u> A space is a D'Atri space if and only if the Laplacian commutes with the operators $\Box^{(k)}_{\omega=\sigma^{*}(n-1)}$.

<u>Proof</u> If the space is a D'Atri space then it is normal analytic and also the density ω is normal analytic function (by the previous theorem). Furthermore the functions $\omega^2/\omega = \omega$ resp. $\omega/\omega = 1$ satisfy the conditions 1 resp. 2 of Theorem 1.1, therefore the Laplacian commutes with the operators $\Box_{\omega}^{(k)}$.

Conversely, if the Δ commutes with the operators $\Box_{\omega}^{(k)}$, then the metric is normal analytic by the Theorem 2.1 and 2.2 furthermore the ω^g is of the form $\omega_p^g(q) = \phi_g(r(p,q))$ by Theorem 1.1. I.e. the space is a D'Atri space.

A Riemannian manifold is defined to be an <u>(i)-D'Atri space</u> if the kernel functions $(\sigma_{\rm D}^{*})^2/\omega_{\rm D}$ are central symmetric at any point p.

Using the same argument as before we get

<u>Theorem 3.3</u> The (i)-D'Atri spaces are normal analytic spaces. A space is an (i)-D'Atri space if and only if the kernel function $(\sigma_x^{*(i)}(y))^2/\omega$ is of the form $\phi_{\gamma}(r(x,y))$ on any geodesics γ .

<u>Theorem 3.4</u> The Laplacian commutes with the operators $\Box_{\sigma}^{(k)}$ if and only if the $\overset{*}{\sigma}_{\sigma}^{(i)}$ space is an (i)-D'Atri space satisfying the ultrahyperbolic equation

(3.3)
$$\Delta_{\mathbf{x}} \frac{\overset{*}{\sigma}(\mathbf{i})}{\omega} (\mathbf{x},\mathbf{y}) = \Delta_{\mathbf{y}} \frac{\overset{*}{\sigma}(\mathbf{i})}{\omega} (\mathbf{x},\mathbf{y}) .$$

The Willmore's commutative spaces (or probabilistic commutative spaces) are defined by commuting Willmore's operators. All these spaces are D'Atri spaces by the following theorem <u>Theorem 3.5</u> The Laplacian commutes with the Willmore's operator if and only if the space is a D'Atri space satisfying the ultrahyperbolic equation

(3.4)
$$\Delta_{\mathbf{x}} \frac{1}{\omega} (\mathbf{x}, \mathbf{y}) = \Delta_{\mathbf{y}} \frac{1}{\omega} (\mathbf{x}, \mathbf{y}) .$$

F. Tricerri and L. Vanhecke investigated [10] homogeneous Riemannian manifolds G/H with commuting invariant differential operators. They proved that all these spaces are D'Atri spaces. This result is a special case of the above theorems, raather more a stronger theorem can be stated: All these spaces are (i)-D'Atri spaces (for any index i) satisfying also the ultrahyperbolic equations:

(3.5)
$$\Delta_{\mathbf{x}} \frac{\overset{*}{\sigma}(\mathbf{i})}{\omega}(\mathbf{x},\mathbf{y}) = \Delta_{\mathbf{y}} \frac{\overset{*}{\sigma}(\mathbf{i})}{\omega}(\mathbf{x},\mathbf{y}) .$$

- 22 -

<u>References</u>

•.

,

[1]	A.L. Besse, Einstein Manifolds, Springer-Verlag 1986.
[2]	J.E. D'Atri and H.K. Nickerson, Divergence-preserving geodesic symmetries, J. Differential Geometry 3/1969/, 467-476.
[3]	J.E. D'Atri and H. Nickerson, Geodesic symmetries in spaces with special curvature tensors, J. Differential Geometry 9/1974/, 251-262.
[4]	J.E. D'Atri, Geodesic spheres and symmetries in naturally reductive homogeneous spaces, Michigan Math. J. 22/1975/, 71-76.
[5]	J.E. D'Atri and W. Ziller, Naturally reductive metrics and Einstein metrics on compact Lie groups, Mem. Amer. Soc. vol. 18, 215/1979/.
[6]	S. Helgason, Groups and Geometric Analysis, Academic Press, I.N.C. 1984.
[7]	O. Kowalski, Some curvature identities for commutative spaces, Czech. Math. J. 32 (107) 1982, 89–396.
[8]	O. Kowalski-L. Vanhecke, Two point functions on Riemannian manifolds, Ann. of Global Analysis and Geom., (3) 1985, 95-119.
[9]	Z.I. Szabo, Higher order Laplacians I.
[10]	F. Tricerri–L. Vanhecke, Homogeneous structures on Riemannian manifolds, Cambridge Univ. Press, Cambridge, 1983.
[11]	T.J. Willmore, An extension of Pizzetti's formula to Riemannian manifolds, Analysis on manifolds, Asterisque 80, Soc. Math. France, Paris 1980.