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DIFFERENTIAL FORMS AND HYPERSURFACE SINGULARITIES

Alexandru Dimca.

One of the main tools in studying an isolated hypersurface singularity

(X,O) C ((n,O) is the use of the (holamorphie) differential forms in the language of the

Gauss-Manin connection [B], [Ma] , [G]. This language (in the more refined version

coming from the theory of ~-modules) has also been used to describe the (mixed)

Hodge filtration on the cohomology Hn- 1(F) of the Milnor fiber of (X,O) ,see [SS].

In this approach the differential forms are gradually replaced by same more ab­

stract objects and one looses much of the possibility of explicit computations which is

usually aBsociated with the differential forms. For instance, one is able in tbis way to

compute the Jordan normal form of the monodromy operat~r T acting on Hn-1(F)

see [Skl] , but one is unable to describe explicit bases for Hn- 1(F) in terDlB of diffe­

rential forms, with the exception of the weighted homogeneous singularities [OS],

[D2] .

In this paper we try to understand explicitly the cohomology of the complement

BE\X of a good. representative X for (X,O) in a small open ball BE J in terms of diffe­

rential forms on BE\X . This cohomology can be identified essentially to the eigenspace

in Hn-1(F) corresponding to the eigenvalue 1 of the monodromy operator T and

hence our problem is part of the unsolved problem mentionned above.

Due to a theorem of Grothendieck, we can work only with meromorphic forms on

BE having poles along X. The complex of these meromorphic forms has a natural wlM

filtration given by thc order of poles along X.
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This filtration gives rise to a spettral seguence which is the main technical object

of interest for us. We discuss various properties of the E2 and Eg terms of this

spectral sequence and give conditions for degeneracy at these stages.

In the final sections we treat in detail the curve singularities and the T sur-p,q,r

face singularities as weIl as their double suspensions. This leads to the next remarkable

fact. The polar filtration induced on Hn(Be\X) is related to some (naturally associa­

ted) Hodge filtration, but in general these two filtrations are different, see (2.5) and (5.4,

ü).

As main applications of our technique (the study of the spectral sequence and the

explicit description of Hn(Be\X) in terms of differential forms) we mention:

(i) new formulas for the Euler characteristic of the MUnor fiber (and of the

associated weighted projective hypersurface) of a weighted homogeneous polynomial

with a l-dimensional singular locus [02], .Prop. (3.19).

(ii) a better understanding of the dependence of the Betti numbers for hypersur­

faces in IPn with isolated singularities on the position of these singularities with respect

to some linear systems [03].

In the present paper we use some of our results in [02], [D3] and, conversely, we

complete and improve same of our results there.

For instance, (3.4) and (3.5) below give larger dasses of transversal singularity

types for which the Euler chara.cteristic formula in Prop. 3.19 [02] holds. In the same

time, (3.4, ii) shows that it is enough to take in this formula m = n + 2 for all these

classes of transversal singularities, a fact which is quite important for numerical

computations.

However, there are still a lot of provoking open questions, see (2.11), (3.3), (3.6),
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(4.5) and an obscure relation with some results by Arnold and Varchenko to clarify, see

(4.7), (4.9).
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§ 1. Topological and MHS preliminaries

Let X: f = 0 be an isolated hypersurface singularity at the origin of (n, with

n ~ 2 . Let K = X nSr' be the associated link, where S = aB and
~ e e

Be = {x e. (n; Ix I < e} for e > 0 small enough. Recall the well-known result of

Milnor (MJ.

(1.1) PROPOSITION

(i) The pair ((n ,X) has a conic strueture at the origin, Le. there exists a homeo-

morphism (Be,Be nX) ~ C(Se,K) .

(ii) For n = 2, K ia a disjoint union of circles SI, one for each irreducible com­

ponent of X.

(iii) For n > 2, K is a (n - 3)--eonnected manifold of dimension 2n - 3 .
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In ibis paper we are interested in ihe next (local) cohomology groups, always with

G:--roefficients:

(all the indicated isomorpbisms being straightforward).

There is a Gysin seguence relating these groups

*
(1.3) ... --t Hk(Be\ {O}) -..L.. Hk(Be\X)~ Hk- 1(X\ {O}) -L Hk+1(Be\ {O}) --t

where j: Be\X ---+ Be\ {O} is the indusion and R is the Poincare (or Leray) residue

map.

In particulu, for n > 2 we get an isomorphism

(1.4)

while for n = 2 we get an exact sequence

(1.4' )

By the work of Deligne [De] , Durfee [Df] and 8teenbrink [83J the cohomology
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group Bn- 1(K) has a MBS (mixed Badge structure) of weight 2: n (Le.

W
n

_1Hn- 1(K) = 0) .

Using (1.2), (1.4) and (1.4') we may transport this MBS on Bg(X) and

Bn(Be\X) respectively, such that J-1 : Hg(X)~ Hn- 1(K) becomes a morphism of

type (0,0) while R becomes a morphism of type (-1, -1) as usual [84].

(1.5) EXAMPLE8

(i) eIDe singularities (n = 2). Using essentially [DI], Example (3.12) it

follows that H1(K) is in this case pure of type (1,1).

N

(ü) Surface singularities (n = 3) . Let (X,D) --+ (X,O) be the resolution of the

singularity (X,O) with exceptional divisor D = U Di , Di smooth and intersecting

each other transversally. Then Example (3.13) in [D{] tells that the only (possibly)

nonzero Badge numbers of H2(K) are the next: h2,2 = number of cycles in D and

h2,1 = h1,2 = l g(Di) ,where g(Di) denotes the genus of the irreducible component Di
i

of D . In particular, if dim H2(K) = 1 it follows that the only nonzero Bodge number

is h2,2 = 1 . This holds for instance for the Tp,q,r surface singularities, defined by the

equation

f = xyz + xp + Yq + zr = ° for .!. + .!. + ! < 1 .p q r

Note that by duality [Df], one has for such singularities
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(ili) (X,O) is weighted homogeneous. In tbis case Hn- 1(K) is pure of weight n

and the computation of the corresponding Hadge numbers follows !rom [SlJ.

Gonsider next the Milnor fibration associated to I

and the corresponding Wang seguence [MJ:

where T denotes the monodromy operator.

Now Hn(Sc\K) = Hn(Bc\X) has a MHS by the above discussion, Steenbrink

[S2J and Varchenko [VI] have constructed MHS on Hn- 1(F) hut since T is not a

MHS rnorphism, we cannot use the sequence (1.6) to compute the MHS on Hn(Bc\X) .

However Ts ' the semisirnple part oi T , is a MHS morphism and let h~,q(F) denote

the (p,q) Hadge number oI the sub MH5 structure

ker(T
s

- AI) = Hn- 1(F)A( Hn- 1(F) . A slight variation of the sequence (1.6), namely

it is known to be a MHS sequence, see [53], p. 521. Since T - I = j Var , where

Var : Hn- 1(F) --t H~-l(F) is the variation map, it follows that auy element in

coker j = H~(X) can be represented hy sorne element in Hn- I (F)l .

Hence we have the next result

(1.7)
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(1.8) EXAMPLE

For the T surface singularities one has h i
l
tl = h2

1,2 = I according to [52],p,q,r

p. 554. Hence it is not true that the inequalities in (1.7) are equalities.

Finally we reca11 same facts about the double suspension. This is the process of pas­

sing !rom the singularity X: f = 0 in (n to the singularity X: f= 0 in (n+2, with

- 2 2
f = f(x) + t l + t2 .

Using the Thom-5ebastiani formula for Hadge numbers [55], it follows that

(1.9)

for any p,q and eigenvalue A of T = T . Here F (resp. T) denotes the Milnar fiber

(resp. monodromy operator) of the singularity (X,O) .

Note that under the identifieation Hn-l(F) ~ Hn+1(F) one has T - I = T - I

and hence eoker j ~ eoker j ,where j is the morphism in the sequence (1.6') eorrespon-

ding to (X,O). In this way we get the next equality

(1.10)

In conclusion, all these invariants behave nicely with respect to the double suspension.
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§ 2 Definition and first prQperties oI the soeetral sequenee

Let n· denole the still at the origin of the (holomorphie) de Rham complex on

(n . Let llf be the localization of the eomplex n· with respect to the multiplieative

system {f s ; s ~ O} .

Since Be\X is aStein manifold, Grothendieck Theorem (Thm. 2 in [Gk]) and an

obvious direet limit argument give the next result.

(2.1) PROPOSITION

Consider the polar filtration F on ni defined as {oilows:

FSn i = 0 for j - s < 0 ,where s E. 71. •

By the general theory of spectral sequenees we get an

(E (X,O),d) converging to H· (B \X) and such thatr r e

E1--fipeetral sequenee

•

This EI-term can be described more explicitly as foilows ([D2] , Lemma (3.3)).



-9-

(2.2) LEMMA

The nonzero terms in EI (X,O) are the following:

(1') ESl'O = n
8

r °U lor S = , ... ,n j

(ii) E~,l = n~ for 8 = 0, ... ,n-3 , there is an exact sequence

°----+ {} ~-2 ~ E~-2,1~ Kf --+°and E~-I,1 = OnIf On ;

(mOO
') En-t-l,t - K En-t,t n n T r t > 2

1 - f ' 1 = X = flor - .

Here n ~ = nkI(f nk + df Ank- 1) is the sta.lk at the origin of the sheaf of

k-differential forw on (X,O) [L] and Tf is just a simpler notation for n ~ ,

recalling the relation with the Tjurina algebra of the singularity f. And K f is defined

by

for same analytic germ h e. "n and with "'n = dxl A 00. A dxn ' the standard "volume

form". H Mf = "n/Jf is the Milnor algebra of the singularity f,

Jf = [8r ,... ,8f ] being the Jacobian ideal of r, it is easy to see that one can
Ox l 8xn

identify Kf with the ideal (f) 1 in Mf consisting of the elements annihilated by r in

Mf' This identification is given explicitly by
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with w and h as in the definition of Kf . The morphisms u and v above are given

by the next formulas.

u( [a] ) = [ ~ Aa] and v [[ TJ] = [w] .

The differentials d~: E~-l-t,t ----+ En-t,t (for t ~ 2) can be described easily using

this notations, namely

(2.3)

for w and h as above.

Now we describe ker d~ and coker d~ in more familiar terms.

Let A = im(u) and note that

N

T
f

= E~-l,l /d~(A) = nn j(f On + df Adnn- 2)

is a pr-dimensional vector space over (, where J1 = dim Mf = the MUnor number of

f , see [Ma] I p. 416. Consider now the induced map by d~, namely

N

Note that d~ is given again by the formula (2.3) with t = 1 , but the right hand side

class is in Tf this time and not in Tf .
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(2.4) PROPOSITION

(i)

NI

E~-2,1 = [ker d1 for

ker d~ EIl ( < ~ >

n>2

for n = 2

N

(]']') En-l,1 k dl2 = co er l'

PROOF

n-l1 1 NI d hOne clearly has E2 ' = coker d1 = eoker d i an hence we ave to prove only

the first claim, We treat only the case n > 2 J the other one being similar.

Note that En-I,I - ker di/B with2 - l'

On the other hand

NI ker d ~ + A ker d~
ker d = A = Anker d~ .

So it is enough to show that B = Anker d~ ,Let €V = ~"a be in ker d~ , Then it

follows thai df Ada = f • '1 for same '1 E. {} n . Consider now da as an element in

HO(X,dn ~-2) . The above relation shows that (da)x = ° for any x E. X\{O} and

hence da has the support contained in {O}. Bui the cohomology group

H{O}(X,dfl ~-2) is trivial by [L], p. 159 and hence da = 0 . Using the exactness of
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the de Rham complex (OX,d) at position (n - 2) [LJ loc. cit. it follows that Cl = dß

and hence ker di nA ( B . Since the converse inc1usion is trivial, we have got the re­

sult.

Again by exactness of de Rham complexes we have that the only possibly nonzero

E t EO'O EO,l 6" d En-1-t,t En-t,t {: t > 1 . .. al2- erms are 2 = 2 =,.,. an 2 ' 2 or _ , J.e. Dur spec"r

sequence ia essentially situated on two semilines: a + t = n -1, t ~ 1 and s + t = n ,

t ~ 1 .

Note that on Hk(Be\X) we have now two decreasing filtrations:

(i) the filtration F coming from the polar filtration on nf ' namely

(ii) the Bodge filtration FH which is part of the MHS on Bk(Bc\X) coming

from the MHS on Hk-1(X\{O}) = Hk-1(K) as explained in the first section (for

k = n).

(2.5) PROPOSITION

PROOF

Any isolated hypersurface aingularity (X,O) can be put on a projective hypersur­

face V C IPn of degree N arbitrarily large [B]. Let a be the only singular point of V

and such that (V,a) ~ (X,O) . Consider the diagram (we assume n > 2 but the case

n = 2 ia similar! )
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Hg-1 (V*) L H:(V) ----+ Hg(V) ---+ 0

1
l T6

R l Hn- 1(X\ {O})

lT R

Hn(U) -l!.-... Hn(Be\X)

*where U = IPn\ V ) V = V \{a}) Hg(V) denote the primitive cohomology of V and

we identify Be with a small neighbourhood W of a in IPn and X with W nV . For

more details see [D3].

For N = deg V large enough, it is known that Hg(V) = 0 [Sk2] , [D2]. Since

the Poincare residue maps R are hath i80morphisms of MHS of type (-1, -1), while

the morphisms 6 are of type (0,0), it follows that p is also a morphism of type (0,0)

(in fact p is induced by the inelusion Be\X = w\V c....+ U and hence it is natural to

expect type (O,O)!). It follows that

The cohomology group Hn(U) has also a polar filtration F in addition to its Hodge

filtration FH ' see [D2].

Moreover, it is dear that

The result now follows !rom the corresponding result for the filtrations F and FH on

H· (U) proved in [D2] , Prop. (2.2).
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(2.6) COROLLARY

Auy cohomology elass in Hn(B€\X) can be represented by a meromorphic

n-form having a pole &long X of order at most n.

(2.7) REMARK

Perhaps a similar re.sult holds for Hn- 1(Be\X) . Note that here aomething quite

new happens, since the restriction morphism

ia not in general an epimorphism. Indeed, Hn(V) haa a pure Bodge structure of weight

n [83] and by duality it fellows that Hn-I(U) has a pure Bodge structure of weight

n as well.

Since Hn- 2(K) has weights ~ n - 2 by [DiJ, it follows that Hn- 1(Be\X) has

weights 5 n and hence p is not surjective (for any N) as 800n as Hn- 2(K) ia not

pure of weight n - 2 . This ia the case for instance for the Tpqr-ßurface singularities as

explained in Example (1.5. ü).

Next we investigate the behaviour of the spectral sequence (Er(X),dr) with

respect to the double suspension.

First we look at the EI-term. It is convenient to work with an Itapproximationll

of this term, which forgets the difference between the case t = 1 and t ~ 2 . Namely we

define for Bl! t E. 71

E
A

n-I-t,t _ K E
A

n-t,t - T
I - f' I - f
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and let the differential d~ :E~-l-tJt~E~-t,t be given by the formula (2.3).

Let E ~,t denote the corresponding spaces for the singularity f.
Consider also the differential farms

Note that one has

- ( 2 2) A ( 2 2) -d'"1 = ""2 and d t l + t2 1\ '"1 = t l + t2 • ""2'

(2.8) PROPQSITIQN

The diagram

At
En-l-t, t d l En-t,t

1 • 1

~r 211/1
A A t+l A

E n-t,t+l
dl E n+l-t,t+l

I

with <p(a) = 0 A ""2 + (-l)nß A '"1 (where ß is determined by df A 0 = f · ß) and

1/1 (e) = e A ""2 is commutative for all t e. 1l. . Moreover cp and 1/1 are linear iso­

marphisms.
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PROOF

First note that cp (a) E. K_ sinee df Acp(a) = f/3 Aw2 . The eommutativity follows

f

by a direet computation. And cp and 1/J are i80morphisms sinee the Milnor and the

Tjurina algebras of f and f are isomorphie.

We ean next define (for any t E. IN) E~-l-t,t = ker d~, E~-t,t = eoker d1
A

and similarly for the singularity f the spateS E ~,t . We get !rom (2.8) a diagram

At
En-l-t, t

d 2 En-t+l,t-l
2 • 2

(2.9) <p12 lztp
A

A t+l A

E n-t,t+1
d2 E n-t+2,t

2 I 2

A

where the isomorphisms cp, 1{J are indueed by cp, 1/J and the differentials d2 are in-

dueed by the differentials d2 in the spettral sequenees Er(X) and Er(X).

(2.10) PROPOSITION

The diagram (2.9) is eommutative up-to the factor (t -1)t-1 for all t ~ 2 .

PROOF

For t ~ 2 , to say that [a] e. Kf is in ker d~ means that (possibly after

choosing another representant a of the class [a]!)
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A direet computation shows that

But this clearly implies that

d~+l(~o)) = (l-}):v,(d ~(o)).

(2.11) REMARJ{

Let {a/ti}id be a basis for Hn-1(Bc\X) 0 Then it is obvious that the classes

{cp(ao)f-ti-1} form a basis for Hn+ 1(B
e
\X), where Be = {i €. (n+2; lxi< e}

1 i€.1

is a small ball in (n+2 .

The similar statement for the top groups Hn(Be\X) and Hn+2(Bc\X) is still

open, see (5.4, i) below.

§ 3. Same results on the E2 ~ E3~

It was shown in [D2] that the spectral sequence (En(X),dr) degenerates at E2

if and only if (X,O) is a weighted homogeneous singularity and that in this case every-
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thing can be computed quite explicitly.

We &Bsume !rom now on that tbis is not the case and hence, according to Saito's

Theorem [St] we have f i Jf .

(3.1) LEMMA

Let m CTf (resp. m ( Tf) denote the subspace corresponding to the classes of

differential fonns h w with h e. () such that h(O) = 0 . Then im(dt1) (m for any
n n

NI
t ~ 1 . (For t = 1 the statement refers of course to d1).

PROOF

Let e:t e. Kf . Then the relation df Aa = f · h · wn can be written as

D(f) = h · f where D is the derivation of ()n given by

~

where ~ are the coefficients of the monomials dx! A... Ad xi A... Adxn in a (with

suitable signs). Ta prove that d~ [0] e. m it is enough to show that

8a.
Trace(D) = l:-af (0) = 0

1

since h(O) = 0 by Saito's Theorem. When ord(!) ~ 3 this follows direcily from [SW].

When ord(f) = 2 we can write by the Splitting Lemma

f = g(ul' ... ,uk) + U~+l + ... + u: with ord(g) ~ 3 . Then any element from Kf
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N

(thought as a derivation) may be obtained as follows. Let D be a derivation of

({ul' ... ,uk} such that D(g) = h • g . Then the derivation

satisfies D(f) =h • fand Trace(D) =Trace(D) =0 . To see that the correspondence
N

D ----+ D sets up an isomorphism Kg ----+ Kr ' reeall the identifieation Kf ~ (f) 1 .

(3.2) LEMMA

For t» 0 one has

dim E~-l-t,t = dim E~-t,t 5 codim((f) + (f)l)

where the eodimension ia taken with respect to the Milnor algebra Mr .

PROOF

Using the identification M
f
~ nnIdI Ann-l we have a canonical projeetion

p : Mf ----+ Tf with ker p = (f) . Recall the identification Kf ~ (f) 1 and let

Let S be a complement of the vector subspace K in Tf . And let

(f) 1 = ((f) 1 n(f)) + L be a direet sum deeomposition of (f) 1 .

Then dirn L = dim K = t .
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For t ~ 2 t the differential dl: (f) 1~ Tf has a block decompoaition (corres­

ponding to the above decompositiona) of tbe form

where A ia an t)( t - matrix. For el' ... ,el a basis for L we let p (el ), ... ,p (et)

be a basis for K and that is why the identity matrix I OCCUIS above.

It is dear that for t» 0 , the matrix At = A - tI is inverlible and hence

rank d~ ~ l. , which is equivalent to our claim.

(3.3) QUESTION

With the above notations it is easy to see that rank di = t. for all t >> 0if and

only if D = 0 and CAkB = 0 for all k ~ 0 . Are these conditions satisfied for any

singularity f?

(3.4) PROPOSITION

The next statements are equivalent.

(i) The E3-term of the spectral sequence Er(X) ia finite (i.e. has finitely many

non zero entries).

(ii) E~-t,t = 0 for t > n and E~-l-t,t = 0 for t > n + 1
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(iü) r e. Jf and rank d~ = 2". - P for all t» 0 ,where ". = r(f) = the Tjurina

number of f and J.' = J.' (f) = the Milnor number of f .

PROOF

(i) =} (iii). H j2 ~ Jf , then one has

Hence for t» 0 one has dim E~-l-t,t < J.' -". . Let V (pn be a projective hyper­

surface having just one singular point a and such that (V,a) ~ (X,O) . Then the

spectral sequence associated to V has a finite Eg - term by (i) and Theorem 3.9 in

[D2]. Using the computation of the Euler characteristic of V a.s in the proof of (3.19)

[D2] , one gets

dim E~-l-t,t + dim E~-t,t-1 = J.'

for all t » 0 . This is a eontradiction since dim E~-t,t-1 = ". .

In the same way one gets a contradiction if rank di > 2". - J' for t >> 0 . Note

that rank d~ becomes eonstant for t >> 0 and the esse rank d~ < 2". - J' ia excluded

by (3.2).

(iii) ~ (i) Recall the notations !rom the proof of (3.2). Let S ( Mf be a veetor

-
subspace such that p (8) = S and 8 + (f) J. = Mf is a direet sum. We may think cf B

aB a linear map (f) ----+ K and cf At as alinear map L ----t K . Then
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ker d~ = < u - At"IBu; u E. (f) > . It is clear that lim AtlBn = 0 for t ----t Q) and

hence ker d~ converges to (f) in the corresponding grassmannian.

We can identify S with ker d~ via the obvious maps

And the composition

gives again an isomorphism.

Via these two isomorphisms we regard d~ as an endomorphism of S . This endo­

morphism can be described explicitly as folIows: dl(af - AtIB(af)) = 0 means that

(a! - At'IB(af)) • wn = df Aa and da - tAt'IB(af) · wn = df A ." + Afwn for some

n-l
0,1] E. n and AE. On. But then one has

d [Cl ] _ A- ta _ dß + d [ ß ]rr -T wn (t - l)~-l (t - l)r-1 .

It follows that d~: S ----t S has a matrix of the nen form

for Borne fixed matrices P and Q.

From this formula it is clear that d~ is an isomorphism for t» 0 and hence the

Eg-term is finite.
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(i) & (iü) ~ (ii) Let s = max{t,d~ is not an isomorphism}. Using the pro­

jectivization V as above we get dim E~-l--8rS = J' - T . Note that rank d~ ::;; 2T - 11

for all t. It iollows that dim E~+l-S,S-l ~ J' - T . Since d~ is not an isomorphism, it

follows that E~+l-s,S-1 f 0 .

Hut one clearly has E~+l-s,S-l = E:+1-s,S-1 by the definition oi s .

Hence En+ 1-s,s-1 f 0 wbich is po8sible according to Proposition (2.5) only for
(J)

s - 1 ~ n . Finally (ii) ~ (i) is obvious and tbis ends the proof.

(3.5) EXAMPLES

(i) Singularities f ID1h J' - T = 1 .

The ideal (f) in Mf is l-dimensional and fl E. Jf . Moreover rank d! = T - 1 by

(3.1) and (3.2) for t >> 0 and hence all these singularities iulfill the condition (iii) in

(3.4).

(ü) Semiweighted homogeneous singularities of the form f = fO+ f' with fO

weighted homogeneou8 of type (wl' ... ,Wn;N) (and defining an isolated singularity at

the origin) and f' containing only monomials of degree > max(N,(n -l)N - 2 E wj)

with respect to the given weights YI. = (wl' ... ,wn) .

Consider the usual filtration G on n· given by deg(xi) = deg(d xi) = wi and

note that there are induced filtrations G on Kf and Tf . The differentials d~ are all

compatible with these filtrations G.

A more subtIe point is thai the identification Kr ~ (f) 1 ia compatible with the

filtrations, if we consider (f) 1 ( Mi = OnIelf Ann-l with the filtration induced by

that on On. This follows from the iact that the morphisID
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is strictly compatible with the filtration G J i.e. O{Gsn n- 1) = aS+Nnn nim 0 . This

result ia mentioned in [AGV], p. 211-212 and can be eagily proved.

Recall now that the hessian of f , namely

[
8

2f]hess(f) = det ax.lJX.
1 J i J'=l n, )

generates the minimal ideal in Mf [AGV] , p. 102. Clearly hess(!) has filtration order

ord(hess(f)) exaetly nN - :E wi . Recalling the notations !rom the prcof of (3.4), it

follows that S ean be generated by elements with order $ ord(hess(f)) - N .

Note that p: Mf ----+ Tf induees an isomorphism at the graded pieces

GSMf/GS+1Mf~ GSTf/GS+1Tf for 8 $ ord(hess(!)) - N (use the restrietion on

f'!) .

It follows that

dim eoker d~ ~ dim S = /l- T for all t ~ 2 .

Sinee for t» 0 , one has also the converse inequality by (3.2), it follows that these

singularities f satisfy the second condition in (iii) in (3.4). The first condition Le.

r E. Jf followB again !rom the assumption on f' .

(iii) Curve singularities with Newton nondegenerate eguations

The condition r E. Jf follows now !rom the Brian~on-SkodaTheorem [BS]. And the
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argument in (ii) above based on filtrationB can be repeated since in this case the mor­

phism (J is strictly compatible with the Newton filtrations on 0- by Kouchnirenko re­

sults [KJ) Thm. 4.1. ii.

(iv) Singularities with Jj - T = 2 Allil d~(m2 n(f) J.) ( m
2Tf ' where m denotes

the maximal ideal in Mf'

These singularities satisfy (f) J. J m2 (in particular f2 €. Jf) and an argument

similar (and simpler) to that in (ii) shows that they fulfill the condition (iii) in (3.4).

HoweverJ note that "the apparently natural condition on di above is !!Q1 satisfied

by all the singularities. It falls for instance for the bimodal singularities

3 2 2 k 3k+iQk . : f = x + yz + x Y + by
,1

with k > 1 J i > 0 and b = bO+ b1y + ... + bk_1yk-l where bO*0 . To see this,

one can use the relations among f, ~, Uand ~ listed by Scherk in [SkI], p. 75.

(3.6) QUESTIONS

Does the spectral sequence (Er(X),dr) degenerate at a finite step s(X) for auy

isolated hypersurface singularity (X,O) C ((n,O) ? Is it true that s(X) ~ n + 1 ?

§ 4 Plane curve singularities and their double suspensions

We consider in this section isolated curve singularities X: f = f1 ... fp = 0 in (2

having p branches.



-26-

(4.1) PROPOSITION

(i)

(ii) H
2
(Be\X) = ( < "'1' ... ''''p-l > where "'i = dfi Adfi+l / fifi+ l for

i = 1, ... ,p -1 .

PROOF

(i) Let H: YI'" Yp = 0 be the union of the coordinate hyperplanes in (p and let
N

f = (fl , ... ,fp) : Be\X --+ (P\H be the obvious map. It is known that

1 P\ _ (dYI ~)H (( H) - ( - , ... ,
Yl Yp

and that the induced map

N

HI(f) : H1(Be\X) ---t H1((P\H)

ia an epimorphisID (for the corresponding statement at ?r1-level see if necessary [DI] ,

Lemma (2.2)).

Since these two homology groups have the same rank p (use (1.2!) it follows that

N IN
H1(f) and H (f) are isomorphisms.



-27-

(ii) By (1.2) we know that b2(Be\X) =p - 1 (b2 being the second Betti

number) and hence it is enough to show that w1' ... ,wp-l are linearly independent.

By (1.4') it is enough to show that Rwl' ... ,Rwp-l are linearly independent. For
N

each branch Xi: fi =° choose a normallzation 'Pi: (Xi,O) = ((,0) ----+ (Xi'0) and

note that

N

'P = U CPi : U (Xi\{O}) --+ UXi\{O} = X\{O}

is a homeomorphism.

i i i

Rence we get an identification

* N

H1(X\{0}) ~SH1(Xi\{O})= (p.

*Let us compute 'P R(wi) = (al' ... ,ap) E. (p . When computing the component aj one

can replace the Poincare residue map R (along X\{O}) with the Poincare residue

*map Rj (along Xj\ {O}) and tbis gives aj = 'Pj Rj(wi) .

It follows that aj = °for j f i,i + 1 and ai = - ai+ 1 = (Xi'Xi+1)0 = the inter­

section multiplicity of the branches Xi and Xi+1 . Indeed

* [df i +1 J [dt]ai = 'Pi f i+1 = m r

if fi+1('Pi(t)) has order m in t. But tbis order m is precisely (Xi'Xi+1)0' see for

instance [BK], p. 411.
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*From tbis computation it follows that cp (R(wi)) for i = 1, ... ,p -1 are linearly

independent and tros ends the proof.

(4.2) COROLLARY

The nonzero terms of the limit ECI) of the spectral sequence Er(X) associated to

the plane curve singularity (X,O) are the following: E~'O = « 1 >

°1 df1 df 11
E ' = ( (~ , ... ,~) and E ' = ( ( w1' ... ,w 1).m 1 1 r;- CD P-

(4.3) COROLLARY (compare to (3.4)).

For plane CUIVe singularities (X,O) the next two statements are equivalent:

(i) The spectral sequence Er(X) degenerates at E3 j

(ii) The E3-term of the spectral sequence Er(X) is finite.

PROOF

Clearly we have to show only (ii) => (i). Hy the proof of (3.4), the condition (ii) im­

plies that rank d~ ~ 2r - p for any t ~ 2 .

Let a
t

= dim E~-t,t , b
t

= dim E~-t,t and note that
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Q. at = bt ~ P - T for any t ~ 2 .

ß . k d1 E O,1. a1 = p Slnce er 1 = (I)

1. b1 = P - T + P - 1 by (2.4).

Consider the number

s = min{t ~ 2, d~ is not injective} €. IN U {(I)} .

H s = m , i.e. all the differentials 4 are injective it is clear that the spectral sequence

Er(X) degenerates at E3 .

If 2 :5 s < (I) J then it follows using Q. , ß. and 1. and (4.2) that

in contramction with (4.2).

To investigate the spectral sequence Er(X,O) for the double suspension of our

curve singularity we need the next result.

(4.4) LEMMA

Assume that (X,O) satisfies one of the following conditions:
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(b) (X,O) ia semi weighted homogeneous;

(c) (X,O) has a Newton nondegenerate equation f =°.

Consider the diagram

NI 1'01

EI,I E1,1d
I/Tf = 1 I I

2

Kf ! !
Al~d1

Tf = E1,1 E1,1
1 •• 2

Then:

(i) The elements [WI] , ... ,[wp-I] are linearly independent in E~,I

(ii) There is a direct sum decomposition

1'\1,1 - . 1'\1
EI = S + 1m d1 + ( < "'1' ... ''''p-l > .

In particular dim (ker d~) = Ji - T + P - 1 . (The definition of Swill be given in the

proof).

PROOF

(i) We have to show that a relation
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implies cl = ... = cp = 0 .

Taking residue Rj along Xj \ {o} we get

These relations for j = I, ... ,p -1 (with Co = mO= 0) clearly give

cl = ... = cp-1 = 0 .

(ii) In the case (a) we take S = < 1 > , reep. S = < 1,t > , with t a generic

linear form. In the cases (b) and (c) we take S and S as in the proof of (3.4) and in

Examples (3.5. ii, iii).

Note that all the elements in S have orders < order(!) , while all the elements "'i

have orders equal to order (f) , since we can write

This remark combined with (i) shows that the sum in (ii) ia indeed mrect.

(4.5) QUESTION

Is it true that dim(ker d~) = p - T + P - I for any plane curve singularity?

Let now X: f = 0 be the double suspension in (4 of the curve singularity

X: f = 0 in (2.
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(4.6) PROPOSITION

Assume that (X,O) satisfies one of the conditions in (4.4). Then the spectral

sequence (Er(X),dr) degenerates at E3 and the limit term EID is described explicitly

as follows

E~JO =( < 1 >, E~Jl = ( (~ )
f

[
dfi ]r and

1

2,2 = (t/i..ß1) tJ.<ßp-l) )
E ( , ... , where ß· = f · w· .

m - - 1 1
f2 f2

PROOF Use (4.4) and (2.10).

(4.7) REMARK

Fot fJ E. (: consider the vector space D(f,ß) = nn/(df Adnn- 2 + K(f,ß)) with

K(f,ß) = (: < da + ß(df Aa)f-1 ; for a E. Kf > . These vector spaces were investigated

by Arnold [A] and Varchenko [V2] , who have evaluated dim D(f,ß) in terms of other

numerical invariants of the singularity f.

One has clearly an epimorhism D(f,- t) --+ E~-t,t for any positive integer

t ~ 1 . In the curve case one has even an isomorphism
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since both vector spaces have dimension p - T + P -1 by Arnold [A] and our results

NI
above (we need only dim ker d1 = P -1!) .

It follows that for any plane curve singularity f one has

(4.8) (f)w2 Cdf A dOO + K(f, - 1) .

The vector spaces D(f,ß) for ß= - p/q a (negative) rational number cau be related to

similar 8pectral sequences converging to

Hn- 1(F)A= ker(T - AI)

for ..\ = exp(21rip/q) .

However the deeper relations between these two points of view are not at all clear

to the author. In particular, one may &Bk

(4.9) QUESTION

What is the higher dimensional analogue of (4.8)?

§ 5. T - singularities and their double suspensions-p,q,r

Let X: f = xyz + xp + yq + zr = 0 [ ! + ! + ! < 1 ] be a T surfacep q r p,q,r

singularity. These singularities play an important role in the classification of
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singularities. They are unimodal in Arnold sense, see [AGV] , p. 246 and, on the other

hand, they are the surface tl!m singularities which embed in codimension 1 [L], p. 17.

They are interesting for us since they (or rather their double suspension) give

counterexamples to same Itnatural" conjectures. All the explicit computations in this

section are baaed on the computations done by Scherk in his thesis [SkI], p. 53 (when

computing the Gauss-Manin connection of a T - singularity). It is well-knownp,q,r

that

# = T + I = P + q + r - I and

_ ( p-I q-I r-I f (f)lMr - < I,x, ... ,x ,y, ... ,y ,z, ... ,z ,>, = m =the maximal ideal in

M T - 4: p-I q-I r-I . h - dx A d J. dzf f - < I,x, ... ,x ,y, ... ,y ,z, ... ,z > w3 Wlt ""3 - 1\ Y 1\ •

Let s =1- ~ - ~ -} and A= I + pqrxp-3yq-3zr-3 . To avoid discussion or

some special cases, we &Ssume that min(p,q,r) ~ 3 and then .-\ is an invertible element

in ()3 .

In particular, the elements

p-I q-I r-I .t\xA, ... ,x .-\,y.-\, ... ,y A,z.-\, ... ,Z A,1A

give a basis for (f) 1 .

Bf 8fUsing [SkI] one may derive the next relations among f, fx = 7JX' fy = 7JY and

Hf
fz = 7fi'
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() [
1 2 q-2 r-2 p-I q-3 r-3 JfAx : xAf = p x + qrsy z + qrx y z x +

[
1 r-I p-2 q-2 r-3 Jf+ Ci xy + rsz + prx y z y +

and two similar equations (A ) and (A) obtained !rom (Ax) by permuting cycli-
. y z

cally the letters x,y,z and p,q,r.

And another (even more tedious!) relation

() f2 [ 1 s 2 2 q-1 r-l p-1 q-2 r-2B :;\ = pxf + Px yz + qrs y z + qrsx y z +

p-2 q-1 r-2 p-3 q-2 r-3 ]+ prsx y z + prx y z f fy +

[
1 zf s 2 2 2 p-2 q-2 r-I p-3 q-3 r-2f Jf+ - + - xyz + S xyz + pqsx Y z + pqx y z .r r z

1t follows from (B) that dl(M) = 0 for all t ~ 1 . Moreover, im dl C m by Lemma

(3.1) and using (A ), (A ) and (A ) it follows thatx y z

We want to show that the map (f) 1 /(f) ----i m (m CTf the "maximal ideal" as in

(3.1)) induced by dl ia an isomorphism. By the above remark, it is enough to show that

the graded pieces
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are isoIDorphisIDS for all k ~ 1 .

Using (Ax) we get

for any k = 1, ... ,p - 1 . Using (Ay) and (Az) we get similar formulas for

d(k) [Ayk] and d(k) [AZk] .

These formulas clearly prove our claim.

Hence E~-t,t = 0: < Af>, Ert,t = ( < 1 > for all t 2: 1 .

N

Using the proof of (3.4) to identify d~: 0: ---+ 0: to the multiplication with a con-

stant c(t) , one can compute

In particular c(t) *Q for any t ~ 2 . These computations imply the next result.

(5.1) PROPOSITION

(i)
NI

There exists a differential form 0 E. Kr such that d1(0) = 0 .

(ii) The spectral sequence (Er(X,Q),dr ) associated to the Tpqr surface singu­

larity degenerates at E3 and the nonzero terms of the limit are E~,Q = ( < 1 > ,
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E~,l = ( ( !f!) , E~,l = G:( T) and E;,l = ( ( XY;"'3) with

6.13 = dx Ady A dz .

PROOF

The above computations show that E~-tlt = 0 for all t 2: 2 . Since we know that

b2(Bc\X) =1 in this case (recall1.5. ü), it follows that E~,l =( < T> =ker d~ .

Consider now the projection u: Tf -----+ Tf and note that xyzw3 generates

ker u.

NI Al NI
Since dim ker d1 = dim ker dl = 1 , it follows that xyzw3 is not in im( d1) .

Hence E~,l is spanned by the classes 6.13 and xyzw3 . Since ~ kills 6.13 by the

above computation of c(t) , it follows that

(5.2) REMARKS

N A

(i) Since ker d~ = ker d~ , it follows that the form a which occurs in (5.1) is

precisely the 2-form associated in an obvioUB way to the relation (B) above.

(ii) We would like to stress the fact thai the computation of the Gauss-Manin

connection for the Tp,q,r surface singularities in [Skl] or [88] gives no indication on

the explicit 3-form generating H3(Be\X) .
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Let now (X,O) ( ((5,0) be the double suspension of the Tpqr surface singularity

(X,O) .

(5.3) PROPOSITION

The spectral sequence (Er(X),dr) degenerates at E3 and the nonzero terms of

the limit are the following

tu
and E:,1 = ( S) with Ws = dx Ady Adz Adt1 Adt2 .

f

PROOF

_ _ N

Since we know that dim E;,2 = 1 = b4(Be\X) by (2.11), it follows that d~ is

61 N

injective and hence E~J1 = ( ( 2.) , aB coker d~ should be 1--dimensional and we use
T

also (3.1).

Next all E~-t,t and Ert,t for t ~ 2 are l-dimensional by the above properties

of the Tpqr 8urface singularity (X,O) and (2.8).

Using (2.10) it follows that d~ are isomorphisms for all t ~ 3 and this clearly

ends the proof.
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(5.4) REMARKS

(i) It is easy to see that one has the next equality of classes in H5(Be\X) :

Hence in this case again t/J induces an explicit basis, compare with (2.11).

(ii) Using (5.3) one gets

The last equallty comes from the fact that H5(Be\X) has a Hodge structure of type

(4,4) by (1.5. ii) and (1.10).

This shows that the inclusions in Prop. 2.5 may be strict and hence the filtration

F is a (subtler and more difficult to compute) filtration different !rom the Hodge

filtration F~ on Hn(Be\X) .

In condusion, our results say that on Hn- 1(Be\X) we know nothing about the

relations among F and FH but we have a good behaviour of the filtration F with re­

spect to the double suspension see (2.11), while on Hn(Be\X) we have an indusion

~ ) F~+1 but the filtration F here behaves badly with respect to the double suspen­

sion, see (5.4. i).
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