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DIFFERENTIAL FORMS AND HYPERSURFACE SINGULARITIES

Alexandru Dimca

One of the main tools in studying an isolated hypersurface singularity
(X,0) C (€%,0) is the use of the (holomorphic) differential forms in the language of the
Gauss—~Manin connection {B], [Ma], [G]. This language (in the more refined version
coming from the theory of “Z—modules) has also been used to describe the (mixed)
Hodge filtration on the cohomology Hn"l(F) of the Milnor fiber of (X,0) , see [SS].

In this approach the differential forms are gradually replaced by some more ab-
stract objects and one looses much of the possibility of explicit computations which is
usually associated with the differential forms. For instance, one is able in this way to
compute the Jordan normal form of the monodromy operator T acting on Hn_l(F)
see [Sk1] , but one is unable to describe explicit bases for Hn‘I(F) in terms of diffe-
rential forms, with the exception of the weighted homogeneous singularities [OS],
[D2].

In this paper we try to understand explicitly the cohomology of the complement
B E\X of a good representative X for (X,0) in a small open ball B ¢+ in terms of diffe-
rential forms on B E\X . This cohomology can be identified essentially to the eigenspace
in Hn_l(F) corresponding to the eigenvalue 1 of the monodromy operator T and
hence our problem is part of the unsolved problem mentionned above.

Due to a theorem of Grothendieck, we can work only with meromorphic forms on
B ¢ having poles along X . The complex of these meromorphic forms has a natural polar

filtration given by the order of poles along X .
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This filtration gives rise to a gpectral sequence which is the main technical object
of interest for us. We discuss various properties of the E2 and E3 terms of this
spectral sequence and give conditions for degeneracy at these stages.

In the final sections we treat in detail the curve singularities and the Tp’ qr S
face singularities as well as their double suspensions. This leads to the next remarkable
fact. The polar filtration induced on H"(B E\X) is related to some (naturally associa-
ted) Hodge filtration, but in general these two filtrations are different, see (2.5) and (5.4,
ii).

As main applications of our technique (the study of the spectral sequence and the

explicit description of Hn(BE\X) in terms of differential forms) we mention:

(i) new formulas for the Euler characteristic of the Milnor fiber (and of the
associated weighted projective hypersurface) of a weighted homogeneous polynomial
with a 1-dimensional singular locus [D2], Prop. (3.19).

(ii) a better understanding of the dependence of the Betti numbers for hypersur-
faces in P with isolated singularities on the position of these singularities with respect

to some linear systems [D3].

In the present paper we use some of our results in [D2], [D3] and, conversely, we
complete and improve some of our results there.

For instance, (3.4) and (3.5) below give larger classes of transversal singularity
types for which the Euler characteristic formula in Prop. 3.19 [D2] holds. In the same
time, (3.4, ii) shows that it i8 enough to take in this formula m =n + 2 for all these
classes of transversal singularities, a fact which is quite important for numerical
computations.

However, there are still a lot of provoking open questions, see (2.11), (3.3), (3.6),
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(4.5) and an obscure relation with some results by Arnold and Varchenko to clarify, see
(4.7), (4.9).
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1. Topological and MHS preliminari

Let X:f=0 be an isolated hypersurface singularity at the origin of C" , with

n>2 . Le¢ K=XN Se be the associated link, where Se =4 B, and
B, ={xe €%|x| <€} for £>0 small enough. Recall the well-known result of
Milnor [M].

(1.1) PROPOSITION

(i) The pair (€",X) has a conic structure at the origin, i.e. there exists a homeo-

morphism (Be’Be NX)«~ C(SE,K) .

(ii) For n =2, K is a disjoint union of circles sl , one for each irreducible com-

ponent of X .

(iii) For n > 2, K isa (n— 3)—connected manifold of dimension 2n—3.



In this paper we are interested in the next (local) cohomology groups, always with

C—coefficients:

3 ~ ~
(1.2) HE(X) = BX(X,X\{0}) —— E*}(x\{0}) ~ B*}(K)

b
k k ~
H (BE\X) ~ H (SE\K) x~Hy o (S,K)—Hy o (K)

(all the indicated isomorphisms being straightforward).

There is a Gysin sequence relating these groups

*
k j k R k-1 6 k+1
(1.3)... — BX(B,\{0}) -1 B(B,\X) = B* T (X\{0o}) - B**}(B_\{0}) —
where j: BE\X —B E\{O} is the inclusion and R is the Poincaré (or Leray) residue
map.
In particular, for n > 2 we get an isomorphism
n R n—1 _ g1
(1.4) 1(B,\X) -2 B*(x\ {0}) = B ()
while for n = 2 we get an exact sequence

(14°) 0 — B4(B_\x) 2 Bl(x\{0}) — ¢ —0.

By the work of Deligne [De], Durfee [Df] and Steenbrink [S3] the cohomology
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group Hn—l(K) has a MHS (mixed Hodge structure) of weight >n (i.e.
-1
w__H(K)=0).
Using (1.2), (1.4) and (14’) we may transport this MHS on Hy(X) and
H'(B S\X) respectively, such that L. HE(X) _— Hn_l(K) becomes a morphism of

type (0,0) while R becomes a morphism of type (—1,—1) as usual [54].

(1.5) EXAMPLES

(i) e gingularities (n=2) . Using essentially [Df], Example (3.12) it
follows that HI(K) is in this case pure of type (1,1).

(i) Surface singularities (n=3) . Let (X,D) — (X,0) be the resolution of the

singularity (X,0) with exceptional divisor D=UD, , D;

each other transversally. Then Example (3.13) in [Df] tells that the only (possibly)
2,2
h )

smooth and intersecting

nonzero Hodge numbers of Hz(K) are the next: = number of cycles in D and

n%! = pl? = 2 g(D,) , where g(D,) denotes the genus of the irreducible component D,

1

of D . In particular, if dim H2(K) =1 it follows that the only nonzero Hodge number
is h%2 =1 . This holds for instance for the T p.a,T surface singularities, defined by the
equation

f=xyz+xP +yl+2" =0 for %+%+%<1.

Note that by duality [Df], one has for such singularities

0wl (k) = n23@*(K)) = 1.
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(iii) (X,0) is weighted homogeneous. In this case Hn_l(K) is pure of weight n
and the computation of the corresponding Hodge numbers follows from [S1].

Consider next the Milnor fibration associated to f
F—S E:\K —_ S1

and the corresponding Wang sequence [M]:
(16) 0— B (s \K) — B 1(F) 2L, i"I(F) — B(S \K) — 0

where T denotes the monodromy operator.

Now H"(S,\K)=H"(B,)\X) has a MHS by the above discussion, Steenbrink
[S2] and Varchenko [V1] have constructed MHS on Hn—l(F) but since T is not a
MHS morphism, we cannot use the sequence (1.6) to compute the MHS on Hn(B E\X) .
However Ts , the semisimple part of T , is a MHS morphism and let hR’q(F) denote
the (p,9) Hodge number of the sub MHS  structure
ker(T, — AI) = E*(F), C B*'(F) . A slight variation of the sequence (1.6), namely

n—1 n—1 j. go—1 n
(1.6”) Hy (X) — H (F)-L H (F) — Hy(X) — 0
it is known to be a MHS sequence, see [S3], p. 521. Since T —1I=jVar , where
Var : Hn—l(F)——a H';—l(F) is the variation map, it follows that any element in -

coker j = HB(X) can be represented by some element in Hn_l(F)1 .

Hence we have the next result

(1.7) hp’q(Hg(X)) < hllJ'q forall p and q.



(1.8) EXAMPLE

For the Tp ar surface singularities one has hi'l = hf’z =1 according to [S2],

p. 554. Hence it is not true that the inequalities in (1.7) are equalities.

Finally we recall some facts about the double guspension. This is the process of pas-

Cn+2

sing from the singularity X:f=10 in €™ to the singularity X:f=0 in , with

f=1(x) + 12 +42.

Using the Thom—Sebastiani formula for Hodge numbers [SS], it follows that
1,9+
(1.9) bR Y(F) = BT+ (r)

for any p,q and eigenvalue A of T=T . Here F (resp. T) denotes the Milnor fiber
(resp. monodromy operator) of the singularity (X,0) .
TP n—1 n+l,o T
Note that under the identification H™ (F)~H " (F) one has T—-I=T-1I

and hence coker j ~ coker j, where j is the morphism in the sequence (1.6”) correspon-

ding to (X,0) . In this way we get the next equality

(1.10) WP YED(X)) = BPH LI ED (X))

In conclusion, all these invariants behave nicely with respect to the double suspension.



§ 2 Definition and firgt properties of the gpectral sequence

Let Q° denote the stalk at the origin of the (holomorphic) de Rham complex on
C" . Let ﬂ% be the localization of the complex ° with respect to the multiplicative
system {f%;s>0}.

Since B E\X is a Stein manifold, Grothendieck Theorem (Thm. 2 in {Gk]) and an

obvious direct limit argument give the next result.

(2.1) PROPOSITION

H'(B\X)=H"(2")).

Consider the polar filtration F on Qf defined as follows:

F"n%={ g’_ﬁ;weﬂj} for j—8>0 and
f

FSQ%':O for j—8< 0, where se Z.

By the general theory of spectral sequences we get an El—spectra.l sequence
(E(X,0),d,) converging to H"(B e\X) and such that

ESY(X,0) = BT (PP /Pt lq;) .

This E,;—term can be described more explicitly as follows ([D2], Lemma (3.3)).



(2.2) LEMM
The nonzero terms in E,(X,0) are the following:

(i) Eg’o =08 for s=0,..,n;
(ii) Eg’l = Q;( for §=0,..,n—3 , there iz an exact sequence
0— 03 2 LE¥ S Yk 0 and B} D= 0%i0,

1 1 x:Tffort_>_2.

Here Q3 =0F/(10% + afAQX) is the stalk at the origin of the sheaf of
k—differential forms on (X,0) [L] and T, is just a simpler notation for Q§ ;
recalling the relation with the Tjurina algebra of the singularity f. And K, is defined
by

-1
Ki={[w] eQy ; dfAw=1f-h-u}

for some analytic germ h e 2, and with w = dx, AA dx the standard "volume

form". If My;=0 /I, is the Milnor algebra of the singularity f |,

Jf= [%’ ,i] being the Jacobian ideal of f, it is easy to see that one can

1 n
identify K; with theideal (f)* in M, consisting of the elements annihilated by f in

M, . This identification is given explicitly by

K3 [w] = [h] e ('
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with » and h asin the definition of K. The morphisms u and v above are given

by the next formulas.

w([a]) = [%an] and v[[-‘;]] = [d] .

The differentials d!:EZ7"%* 4 E™ %% (for t22) can be described easily using

this notations, namely

t
(2.3) dy[w] = [do—thw ]
for w and h as above.

Now we describe ker d} and coker di in more familiar terms.

Let A =im(u) and note that

T, = EX 5L jdl(A) = @%/(1 0" + df A d0™2)

i8 a p—dimensional vector space over € , where pu= dim M, = the Milnor number of

f,see [Ma], p. 416. Consider now the induced map by di , namely
., _ w021 n—1,1,.1, 4y _ m
d} K= BV Bl A BV Vel ) = 1y

Note that d{ is given again by the formula (2.3) with t =1, but the right hand side
~
clags is in T, this time and not in T,.
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(2.4) PROPOSITION

kerdi for n>2

M  Ey=
kerdl®@C<¥>  for n=2
~
(i)  Ep ! =cokerd.
PROOF
One clearly has Eg_l’l = coker di = coker d} and hence we have to prove only

the first claim. We treat only the case n > 2, the other one being similaz.

Note that E5 "1 = ker d[/B , with

B= {[i‘f—'{‘—dg] ;ﬂeﬂ““""}.

On the other hand

kerdi+A ker di
A AN ker df

~1—_
kerdl—

So it is enough to show that B = A  ker di .Let w= %f Aa bein ker di . Then it
follows that df Ada=1f-~ for some ye Q™. Consider now da as an element in
HO(X,dQ §_2) . The above relation shows that (da) =0 for any xe X\{0} and
hence da has the support contained in {0} . But the cohomology group
H%O}(X,dﬂ 2%) s trivial by [L], p. 159 and hence da =0 . Using the exactness of
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the de Rham complex (f1y,d) at position (n—2) [L] loc. cit. it follows that a =dS
and hence ker di N A CB . Since the converse inclusion is trivial, we have got the re-
sult.

Again by exactness of de Rham complexes we have that the only possibly nonzero
E,—terms are Eg’o = Eg’l =C and Eg_l_t’t , Elzl-t’t for t > 1, i.e. our spectral
gequence is essentially situated on two semilines: s +t=n—1, t>1 and s+t=n,

t>21.
Note that on Hk(B E\X) we have now two decreasing filtrations:

(i) the filtration F coming from the polar filtration on Q¢ , namely
k . k . k- k
FHY(B,\X) = im{H*(F°0;) — H(Q;) = H'(B,\X)}
(i)  the Hodge filtration Fy which is part of the MHS on H¥(B_\X) coming
from the MHS on Hk_l(X\{O}) = Hk_l(K) as explained in the first section (for
k=n).
(2.5) PROPOSITION
1 0 1
FHY(B,\X) ) F§; " 'H"(B,\X) forany s and F’ = Fy = H'(B,\X).
PROOF
Any isolated hypersurface singularity (X,0) can be put on a projective hypersur-
face V CP® of degree N arbitrarily large [B]. Let a be the only singular point of V

and such that (V,a) =~ (X,0) . Consider the diagram (we assume n > 2 but the case

n = 2 is similar!)
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B3 (v") £ B3 (V) — EY(V) —0

0
2T 6

R |2 B (x\ {0})
TR

'(U) -£— H'(B,\X)

where U=P"\V, V' =V \{a}, HY(V) denote the primitive cohomology of V and
we identify B P with a small neighbourhood W of a in P" and X with W NV . For
more details see [D3].

For N =deg V large enough, it is known that Hg(V) =0 [Sk2], [D2]. Since
the Poincaré residue maps R are both isomorphisms of MHS of type (— 1, — 1), while
the morphisms § are of type (0,0), it follows that p is also a morphism of type (0,0)
(in fact p is induced by the inclusion BS\X = W\V = U and hence it is natural to
expect type (0,0)!) . It follows that

1 1
Pt EYB\X) = p (P HY(U)) .
The cohomology group Hn(U) has also a polar filtration F in addition to its Hodge

filtration Fyy , see [D2].

H ’
Moreover, it is clear that

p (FPE"(U)) C F*E(B,\X) .

The result now follows from the corresponding result for the filtrations F and Fy on
H"(U) proved in [D2], Prop. (2.2).
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(2.6) COROLLARY

Any cohomology class in H"(B e\X) can be represented by a meromorphic

n—form having a pole along X of order at most n .

(2.7) REMARK

n-1

Perhaps a similar result holds for H' (B_\X) . Note that here something quite

new happens, since the restriction morphism
_gh—1 n—1
p: E"(U) — H'(B,\X)

is not in general an epimorphism. Indeed, Hn(V) has a pure Hodge structure of weight
n [S3] and by duality it follows that Hn—l(U) has a pure Hodge structure of weight
n as well.

Since H™%(K) has weights <n—2 by [Df], it follows that E" (B \X) has
weights <n and hence p is not surjective (for any N) as soon as Hn_2(K) is not

pure of weight n — 2. Thig is the case for instance for the T —surface singularities as

explained in Example (1.5. ii). "
Next we investigate the behaviour of the spectral sequence (E (X),d) with
respect to the double suspension.
First we look at the El—term . It is convenient to work with an "approximation"
of this term, which forgets the difference between the case t =1 and t > 2 . Namely we
defineforall t € 7

Anlegt ~nt
Ey =Ky, By =Ty
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—1—,

and let the differential d i :E ) 111—t,t be given by the formula (2.3).

~

ol =

Let E i’t denote the corresponding spaces for the singularity f.
Consider also the differential forms

- 1
wy = dty A dt, and 7= 5(t,dt, —t,dt,) .
Note that one has
2

- 2 2 2 -
dy=w, and d(t] +t5) Ay=(t] +t5) - vy .

(2.8) PROPOSITION

The diagram

ot
d1 ﬁ n—t,t

1

zlw
A2 T

g 0-tt+l 1 g DHLt+1

with pla)=aA 32 +(—1)"8A~ (where B is determined by df Aa=1f- ) and
¥(e) =€ Aw, is commutative for all te Z . Moreover ¢ and ¢ are linear iso-

morphisms.
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PROOF

First note that ¢ (a) € K_ since df A p(a) = {8 A w, . The commutativity follows
f

by a direct computation. And ¢ and 4 are isomorphisms since the Milnor and the

Tjurina algebras of f and f are isomorphic.

A ~ A ~
We can next define (for any teN) ER M =jerd!, EN ' = cokerd!

A

and similarly for the singularity f the spaces E g,t . We get from (2.8) a diagram

t
A d ~
n—1-,t 2 n—t+1,t-1
E2 —_— E2
(2.9) 2’312 W
- 3 t+41 7
g D—tt+1 "2 g D—t+2,t
2 2

where the isomorphisms @, 7 are induced by ¢, 4 and the differentials d, arein-

duced by the differentials d, in the spectral sequences E (X) and E (X).

(2.10) PROPOSITION

The diagram (2.9) is commutative up—to the factor (t — l)t-1 forall t2>2.

PROOF

For 22, to say that [a] e K; is in ker di means that (possibly after

choosing another representant a of the class [a]!)
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A direct computation shows that

o[ e =(1_%)ﬂﬁ52+(_1)nd[r4~z] .

ft+1 ft tft

But this clearly implies that
d 3 @(a) = (1 - Wd §(@) -
(2.11) REMARK

_t_
Let {aif l]»i o be a basis for (B ¢\X) - Then it is obvious that the classes
-1 - — —
{w(ai)f ! } form a basis for Hn+1(B£\X) , where B, = {xe Cn+2; |x| <€}
iel
is a small ball in €272,

The similar statement for the top groups H'(B_\X) and Hn+2(B€\X) is still

open, see (5.4, i) below.

§ 3. Some results on the E2 and E3 ferms

It was shown in [D2] that the spectral sequence (E (X),d ) degenerates at E,

if and only if (X,0) is a weighted homogeneous singularity and that in this case every-
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thing can be computed quite explicitly.
We assume from now on that this is not the case and hence, according to Saito’s

Theorem [St] we have f ¢ J;.

(3.1) LEMMA

Let mCT, (resp. m C Tf) denote the subspace corresponding to the classes of
differential forms hw ~with he ¢ suchthat h(0)=0. Then im(di) Cm for any

~

t>1.(For t =1 the statement refers of course to di) .

PROQF

Let aer . Then the relation dfAa=f-h- w, ~can be written as

D(f) =h - f where D is the derivation of & given by

D=2“i7}%

1

. N
where a. are the coefficients of the monomials dx; A..Adx,A..Adx in a (with

suitable signs). To prove that d; [a] € m it is enough to show that

Trace(D) = ) -g% (0) =0

i
since h(0) =0 by Saito’s Theorem. When ord(f) > 3 this follows directly from [SW].
When ord(f) = 2 we can write by the Splitting Lemma

f= g(ul, e aly) + ul2:+1 + ..+ ui with ord(g) >3 . Then any element from K,
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~

(thought as a derivation) may be obtained as follows. Let D be a derivation of

C{ul, ,uk} such that D(g) = h + g . Then the derivation
_ .k 8
D=D+3 )  Ygr
j=k+1,n ]

~

satisfies D(f)=h - f and Trace(D) = Trace(D) = 0 . To see that the correspondence

D — D sets up an isomorphism Kg —K,, recall the identification Ke~ H*.

(3.2) LEMMA
For t >> 0 one has

dim B4 = dim BJ 4 < codim((f) + ()

where the codimension is taken with respect to the Milnor algebra M,.

PROOF

Using the identification M Qt/df A 0" 1 we have a canonical projection
p:M— T, with kerp=(f) . Recall the identification Kp~(f)" and let

K=p((D").
Let g be a complement of the vector subspace E in Tg. And let
(' =((H* N (D) + L be a direct sum decomposition of (f)* .

Then dimL = dim K = £ .
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For t> 2, the differential di ()t — T; has a block decomposition (corres-

ponding to the above decompositions) of the form

where A isan £ x £ —matrix . For €y - € 3 basis for L welet p (el), e P (et)

be a basis for K and that is why the identity matrix I occurs above.
It is clear that for t >> 0 , the matrix At = A —1tI is invertible and hence

rank di > £ , which is equivalent to our claim.

(3.3) QUESTION

With the above notations it is easy to see that rank di =¢ forall t >>0 if and
only if D=0 and CAkB =0 for all k>0 . Are these conditions satisfied for any
singularity f?

(3.4) PROPOSITION

The next statements are equivalent.

(i) The E,—term of the spectral sequence EI(X) ig finite (i.e. has finitely many

non zero entries).

(ii) Eg"t't =0 for t>n and Eg_l_t’t =0 for t>n+1
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(iii) £e Jg and rank d; =27—u forall t >> 0, where 7= 7(f) = the Tjurina
number of f and u = p (f) = the Milnor number of f.

PROQF
(i) = (ii). If £ ¢J,, then one has
codim((£) + (1)*) < codim(f)* = 1.
Hence for t >> 0 one has dim Eg_l-t’t <p—7.Let VCP" be a projective hyper-

surface having just one singular point a and such that (V,a)~(X,0) . Then the
spectral sequence associated to V has a finite E; —term by (i) and Theorem 3.9 in
[D2]. Using the computation of the Euler characteristic of V as in the proof of (3.19)
[D2], one gets

lil—t,t—l —r

for all t >> 0. This is a contradiction since dim E

In the same way one gets a contradiction if rank d} >27—u for t >> 0. Note
that rank di becomes constant for t >> 0 and the case rank di < 27— p is excluded
by (3.2).

(iii) 2 (i) Recall the notations from the proof of (3.2). Let 5 C M, be a vector
subspace such that p(S)=S and S + ())* = M, is a direct sum. We may think of B

as a linear map (f)— K and of A, as a linear map L— K . Then

t
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kerdd = <u—A;'Bu; ue(f)>.Itis clear that lim A7'Bu=0 for t — o and
hence ker di converges to (f) in the corresponding grassmannian.

We can identify S with ker di via the obvious maps
Sar—a-fe(f)— af—A;'B(af) e ker d! .
And the composition

S < M £ T; — coker di

gives again an isomorphism.

Via these two isomorphisms we regard d; as an endomorphism of S . This endo-
morphism can be described explicitly as follows: di(af—AIlB(a.f)) =0 means that
(af — AIIB(aI)) rw =dfAa and da- tA;lB(a.{) -w, =dfAq+ Mw ~ for some

Qn—l

a,n e and A e g, - But then one has

i e stk e g

It follows that d; : S —— S has a matrix of the next form
-1
—tI+P+(t—-1)"Q
for some fixed matrices P and Q.

From this formula it is clear that d; is an isomorphism for t >> 0 and hence the

E3—term is finite.
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i) & (iii) 2 (ii Let 8= max t,dt is not an isomorphism}. Using the pro-
2 g

jectivization V as above we get dim gR1-88 _ p— 7 . Note that rank at <2r—p
g 2 1

for all t .1t follows that dim Ejt' %> 4+ Since d} is not an isomorphism, it
follows that Eg"'l-s’s-l 0.

But one clearly has BT ®571 = ERFI857L 1y tpe definition of s .
Hence Eg+l—s,s—1 # 0 which is possible according to Proposition (2.5) only for

8 —1 < n. Finally (ii) (i) is obvious and this ends the proof.
(3.5) EXAMPLES

(i) Singularities f with p—-7=1.

The ideal (f) in M, is I-dimensional and f° e J;. Moreover rankd} =r-1 by
(3.1) and (3.2) for t >> 0 and hence all these singularities fulfill the condition (iii) in
(3.4).

(ii) Semiweighted homogeneous singularities of the form f={f, +{" with f,
weighted homogeneous of type (wl, ,wn;N) (and defining an isolated singularity at
the origin) and {’ containing only monomials of degree > max(N,(n—1)N -2 w;)

with respect to the given weights w = (wy, ... ,w ).

Consider the usual filtration G on Q" given by deg(x;) = deg(d x;) = w; and
note that there are induced filirations G on K, and T, . The differentials di are all
compatible with these filtrations G .

A more subtle point is that the identification K, (f)* is compatible with the
filtrations, if we consider (f)* C M, = Qt/df A Q"1 with the filtration induced by

that on Q" . This follows from the fact that the morphism
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g=dfA: Q"1 —— b

is strictly compatible with the filtration G , ie. 6(G*2% ) = GS*NQ" N im ¢ . This
result is mentioned in [AGV], p. 211-212 and can be easily proved.

Recall now that the hessian of f, namely

8%
bess(f) = det [m]
Vollij=1n

generates the minimal ideal in M [AGV], p. 102. Clearly hess(f) has filtration order
ord(hess(f)) exactly nN—Z¥ w; . Recalling the notations from the proof of (3.4), it
follows that S can be generated by elements with order < ord(hess(f)) — N .

Note that p: Mf——» Tf induces an isomorphism at the graded pieces
Gst/G8+1Mf—-+ GsTf/GsJ"lTf for s < ord(hess(f)) —N (use the restriction on
f'1).

It follows that

dim coker d} > dim § = p— 7 forall t>2.
Since for t >> 0, one has algo the converse inequality by (3.2), it follows that these
singularities f satisfy the second condition in (iii) in (3.4). The first condition i.e.

e J; follows again from the assumption on .

(iii) Curve singularities with Newton nondegener ion

The condition 1° ¢ J; follows now from the Briangon-Skoda Theorem [BS]. And the



—925—

argument in (ii) above based on filtrations can be repeated since in this case the mor-
phism @ is strictly compatible with the Newton filtrations on ©° by Kouchnirenko re-
sults [K], Thm. 4.1. ii.

(iv) Singularities with g—7=2 and di(m2 nH)c szf , where m denotes
the maximal ideal in M.

These singularities satisfy (f)* O m? (in particular £e Jy) and an argument
similar (and simpler) to that in (ii) shows that they fulfill the condition (iii) in (3.4).

However, note that the apparently natural condition on di above is not satisfied

by all the singularities. It fails for instance for the bimodal singularities

3 2 2

Qki:f=x + yz +xyk+by3k+l
r

. . _ k-1
with k>1, i>0 and b—b0+b1y+...+bk_1y

one can use the relations among f, %: % and % listed by Scherk in [Sk1], p. 75.

where b # 0 . To see this,

(3.6) QUESTIONS

Does the spectral sequence (E (X),d;) degenerate at a finite step 8(X) for any
isolated hypersurface singularity (X,0) C (€",0) 7 I it true that s(X)<n+17?
§ 4 Plane curve singularities and their doubl ion

We consider in this section isolated curve singularities X :f=1 ... fp =0 in €2

having p branches.
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(4.1) PROPOSITION

df
G  H(B\X)=C (Tl—l, ,322)

. 2
(ii) H (BE\X) =C<wp ooy >  where = dfAdf, /EE.,  for

i=1..p—1.
PROQF

(i) Let H:y;..y,=0 be the union of the coordinate hyperplanes in €P and let

f=(f}, .. f): B_\X — CP\H be the obvious map. It is known that
dy dy
LeP\g) = 1 _P
H("\H)=C{—, ...,
@\B=c (Gt 7R)

and that the induced map

H,(f): H,(B_\X) — H,(CP\H)
is an epimorphism (for the corresponding statement at x;evel see if necessary [D1],

Lemma (2.2)).

Since these two homology groups have the same rank p (use (1.2!) it follows that

~

H (f) and Hl(f) are isomorphisms.
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(ii) By (1.2) we know that by(B\X)=p—1 (b, being the second Betti
number) and hence it is enough to show that Wy - ""p—l are linearly independent.
By (1.47) it is enough to show that Rwy, ... ,pr_l are linearly independent. For

each branch X.:f =0 choose a normalization ¢, : (X;,0) = (€,0) — (X;,0) and

note that

o=110:11X\0})— | | X\{0} = X\{0}
i i i

1 1

is a homeomorphism.

Hence we get an identification

BL(X\(0}) £ @ X\ {0}) = €@

*

Let us compute ¢ R(w;) = (a3, ... ,a.p) ¢ CP . When computing the component a; one

can replace the Poincaré residue map R (along X\{0}) with the Poincaré residue
*

map Rj (along Xj\{O}) and this gives 3= 9; Rj(wi).

It follows that aj=0 for j#ii+ 1 and ai=—ai+1=(xix

, i+1)0 = the inter-

section multiplicity of the branches Xi and Xi 41 Indeed

« [df; 4y [dt]
a-=§0- =m
i I[Ii+1 T

if +1(qai(t)) has order m in t . But this order m is precisely (XX

, i+1)0 , see for

instance [BK], p. 411.
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*
From this computation it follows that ¢ (R(w;)) for i=1,.. ,p—1 are linearly

independent and this ends the proof.
(4.2) COROLLARY

The nonzero terms of the limit E_ of the spectral sequence EI(X) associated to

the plane curve singularity (X,0) are the following: Eg’o =(<1>

df daf
1 1 1.1
Eg’ =C<T1—-,...,T—pE> and Em' =€(w1,...,w 1)

H

(4.3) COROLLARY (compare to (3.4)).
For plane curve singularities (X,0) the next two statements are equivalent:
(i) The spectral sequence E (X) degenerates at E, ;
(ii) The Eg—term of the spectral sequence E (X) is finite.
PROOF

Clearly we have to show only (ii) 2 (i). By the proof of (3.4), the condition (ii) im-
plies that rank dil; <2r—p forany t>2.

1-t 4

Let a, = dim E2

, b, = dim E5 " and note that
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Q. at=bt2p—1'foranyt_>_2.
B. 3, =p since ker di = Eg’l
7. by=p—7+p—1 by (24)
Consider the number
s =min{t > 2, d; is not injective} € N U {o} .

If s =w, i.e. all the differentials d; are injective it is clear that the spectral sequence

E_(X) degenerates at E, .

If 2 <8< o, then it follows using a., 8. and 7. and (4.2) that

8 _ pl-8,8 _ 1-8,8
0=‘Eke:rd2--E3 —EuJ

in contradiction with (4.2).

To investigate the spectral sequence EI(X,O) for the double suspension of our

curve singularity we need the next result.
(4.4) LEMMA
Assume that (X,0) satisfies one of the following conditions:

2 2
() p—7=1o0r p—7=2 and di(m NH*)Cm Ty;
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(b) (X,0) is semi weighted homogeneous;
(¢) (X,0) has a Newton nondegenerate equation f =10 .

Consider the diagram

1 ~
d T i 1 E;,1

I S B

Then:

(i) The elements [v;], ... ,[wp_lj are linearly independent in f}%’l :
(it) There is a direct sum decomposition

YD U |
E] —S+1md1+€<w1,...,w

p_1>.

In particular dim (ker 3}) = p—7+ p—1. (The definition of S will be given in the

proof).

(i) We have to show that a relation
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Eciwi=a+¥l\ﬂ+d [:fl]

implies c1=...=cp=0.

Taking residue Rj along Xj\{O} we get

These relations for j=1,...,p—1 (with Co=m, = 0) clearly give

(i1) In the case (a) we take S=<1> ,resp. S=<1,£ >, with £ a generic

linear form. In the cases (b) and (c) we take S and S as in the proof of (3.4) and in

ooooo

Note that all the elements in S have orders < order(f) , while all the elements w;

have orders equal to order (f) , since we can write

wo=(f . L1

i1/t

This remark combined with (i) shows that the sum in (ii) is indeed direct.

(4.5) QUESTION

Is it true that dim(ker d}) = pu—7+ p—1 for any plane curve singularity?

Let now X:f=0 be the double suspension in ¢t of the curve singularity
X:f=0in €2.
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(4.6) PROPOSITION

Assume that (X,0) satisfies one of the conditions in (4.4). Then the spectral

sequence (Er(x)'dr) degenerates at E, and the limit term E_ is described explicitly

as follows

0,0 _ 01 _ ., df
E,S =C<1>, E_ _u:(?_)

a df.
Ei,2=c(@,... W(—L) where a; =1 - [r‘] and
1

£2 £2
B
E22—C(1[(1) ‘K—L> where B, =1 - w,
12 £2

PROOF Use (4.4) and (2.10).

(4.7) REMARK

For BeC consider the vector space D(f,8) = Q%/(df A a2 4 K({,0)) with
K(f,0) = € < da + df A a)f -1 ; for a e K, > . These vector spaces were investigated
by Arnold [A] and Varchenko [V2], who have evaluated dim D(f,) in terms of other
numerical invariants of the singularity f.

One has clearly an epimorhism D(f,—t) — Eg_t’t for any positive integer

t > 1. In the curve case one has even an isomorphism



-33-—
D(f, - 1) = ED

since both vector spaces have dimension g— 7+ p—1 by Arnold [A] and our results

above (we need only dim ker di =p-1).

It follows that for any plane curve singularity f one has
(4.8) (D, C df A d0” + K(f, - 1).

The vector spaces D(f,d) for 8= —p/q a (negative) rational number can be related to

similar spectral sequences converging to
B"}(F), = ker(T - AT)
for A = exp(27xip/q) .

However the deeper relations between these two points of view are not at all clear

to the author. In particular, one may ask

(4.9) QUESTION

What is the higher dimensional analogue of (4.8)?

5 T —gin ities and their 1 ngion
=p,q,t
o P, a, ,T_ 1,1.1 ]
Let X:f=xyz4+x"+y " +2 =0 [p+q+r<1 be a Tp,q'r surface

singularity. These singularities play an important role in the classification of
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singularities. They are unimodal in Arnold sense, see [AGV], p. 246 and, on the other
hand, they are the surface cusp singularities which embed in codimension 1 [L], p. 17.
They are interesting for us since they (or rather their double suspension) give
counterexamples to some "natural" conjectures. All the explicit computations in this
section are based on the computations done by Scherk in his thesis [Sk1], p. 53 (when

computing the Gauss—Manin connection of a T — singularity). It is well-known

p,q,r
that
pu=7+1=p+q+r-1 and
Me=C<1x .. Xy 397, >, () =m = the maximal ideal in
M T,=C<1x, ... ,xp_l,y, ,yqﬂl,z, ,zr“1 > wg with wy=dxAdyAdz.
Let 8= —%—%—% and A=1+ pqrxp_’syq—’:;zr_?‘ . To avoid discussion of

some special cases, we assume that min(p,q,r) >3 and then A is an invertible element
in 03.

In particular, the elements
XA, ... ,xp—lz\,y,\, ,yq—l,\,m\, ,zr-lz\,ﬁ\

give a basis for (f)* .

Using [Sk1] one may derive the next relations among f, f = -gé , fy = % and

of
fz=-£.
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(Ax) cxM = [%xz + qrﬂyq—2zr_2 + qrxp—lyq—szr_a ]fx +
+{
+{

and two similar equations (Ay) and (A)) obtained from (A ) by permuting cycli-

xy + sz’ 4 prxp_2yq—2zr_3 ]fy +

2

-

Xz + 8Xz + pqxp—2yq—321—3 ]fz

cally the letters x,y,z and p,q,r.
And another (even more tedious!) relation
(B): A2 = [%—xf + %xzyz + qrs23rq_1zr_1 + qup—lyq—-2zr—2 +
+ qrxp—2yq—3zr—3f] £ + [% vi+ % JW2z —rszyzr +
+ pl'sntp_2'qu_lzr_2 + prxp_ayq_zzr_af] fy +
+ [-}:zf + %quz2 + szxyz2 + pqsxp_zyq_zzr_l + pqxp_syq“szrﬁzf ] £ .

It follows from (B) that 3}()«1’) =0 for all t> 1. Moreover, im 811; Cm by Lemma
(3.1) and using (A,), (Ay) and (A)) it follows that

a0 (0*) C® forall k21.
We want to show that the map ())'/(f)—m (mC T, the "maximal ideal" as in

3.1)) induced by dt is an isomorphism. By the above remark, it is enough to show that
1
the graded pieces
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mf N+ mk
d(k).mk-l-ln(f)l +(f) i mk-{-l

are isomorphisms for all k > 1.

Using (A ) we get
40 [A] = (1 + £ - ¢) ["]

for any k=1,..,p—1 . Using (Ay) and (A)) we get similar formulas for
d(k) [Ay*] and d(k)[As¥] .

These formulas clearly prove our claim.

N2t

Hence E 3.t

g =0<A>, Ez =C<1> forall t21.

Using the proof of (3.4) to identify d; : € — € to the multiplication with a con-

stant c(t), one can compute

2
c(t)=3—2s—-t+—-28—{72%—+—-1—.

In particular ¢(t) # 0 for any t > 2. These computations imply the next result.

(5.1) PROPOSITION

(i) There exists a differential form a € K, such that di(a) =0.

(ii) The spectral sequence (E (X,0),d ) associated to the T surface singu-

par
larity degenerates at E, and the nonzero terms of the limit are Eg’o =0<1>,
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0,1 df 1,1 2,1 xyzo .
Bt =C(F), B =€ (%) and B2l =€ (—2) with
w3=dxl\dyl\dz.

PROOF

The above computations show that Eg_t't =0 forall t> 2. Since we know that

by(B,\X) = 1 in this case (recall 1.5. ii), it follows that E1"' = € < %> =kerd!.

Consider now the projection o : Tf-——-+ T; and note that Xyzws generates

ker o .

Since dim ker di = dim ker di =1, it follows that xyzw, is not in im(di) .

Hence Eg’l is spanned by the classes wq and Xyzwg . Since dg kills wq by the

above computation of c(t), it follows that
2,1 2,1
Eg"=E = = C< xyzw3/f > .

(5.2) REMARK

(i) Since ker di = ker di , it follows that the form « which occurs in (5.1) is

precisely the 2—form associated in an obvious way to the relation (B) above.

(ii) We would like to stress the fact that the computation of the Gauss—Manin

connection for the Tp ar surface singularities in [Sk1]} or [SS] gives no indication on
bhe

the explicit 3—form generating H(B A\X) -
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Let now (X,0) C (('.5,0) be the double suspension of the qu
(X,0) .

r surface singularity

(5.3) PROPOSITION

The spectral sequence (Er(x)'dr) degenerates at E, and the nonzero terms of

the limit are the following

Egs0=C<1>, Eg)]':(:(%), E§’2=C<ﬁ;%l)

41 _ 7Y%\ . _
and E_ _c(-?—) with w, = dc A dy Adz A dt) A dt, .

PROQF

Since we know that dim E2% = 1=1b,(B,\X) by (2.11), it follows that d] is
s 41 . 1Y% "1 L
injective and hence E," = C ( T_> , a8 coker d; should be 1-dimensional and we use

also (3.1).
4—t t 5-t,t . . .
Next all E2 * and E2 » for t 22 are 1-dimensional by the above properties

of the Tp surface singularity (X,0) and (2.8).

qr
Using (2.10) it follows that d; are isomorphisms for all t > 3 and this clearly

ends the proof.
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(5.4) REMARKS

(i) It is easy to see that one has the next equality of classes in H5(B£\X) :

E]=- G40

Hence in this case again 4 induces an explicit basis, compare with (2.11).

(ii) Using (5.3) one gets

13(8_\X) = F*E5(B,\X) : FIES(B\X) =0.

The last equality comes from the fact that H5(B E\X) has a Hodge structure of type

(4,4) by (1.5. ii) and (1.10).

This shows that the inclusions in Prop. 2.5 may be strict and hence the filtration

F is a (subtler and more difficult to compute) filtration different from the Hodge

filtration Fgy on H'(B_\X).

In conclusion, our results say that on Hn_l(B E\X) we know nothing about the

relations among F and Fy but we have a good behaviour of the filtration F with re-

spect to the double suspension see (2.11), while on H"(B E\X) we have an inclusion

) F]EBI+1 but the filtration F here behaves badly with respect to the double suspen-

sion, see (5.4. i).



[A]

— 40—

References

Arnold, V.I.: Normal forms of Poisson structures and of other powers of volume
forms, Tr. Sem. I.G. Petrovskogo, 12, 1—15 (1985).

[AGV] Arnold, V.I., Gusein—Zade, S.M., Varchenko, A.N.: Singularities of Differentiable

[BS]

[B]

[BK]

[De]

[D1]

(D2]

[D3]

[Df]

Maps, vol. I, Monographs in Math. 82, Birkh&user 1985.

Briangon, J., Skoda, H.: Sur la cloture intégrale d'un idéale de germes de

fonctions holomorphes en un point de €™, C.R. Acad. Sci. Paris 278, 948—951
(1974).

Brieskorn, E.: Die Monodromie der isolierten Singularititen von Hyperflichen,
Manuscripta math. 2, 103—161 (1970).

Brieskorn, E., Knorrer, H.: Plane Algebraic Curves, Birkhiduser 1986.

Deligne, P.: Theorie de Hodge II, III, Publ. Math. THES 40, 558 (1971) and 44,
577 (1974).

Dimca, A.: On analytic abelian coverings, Math. Ann. 279, 501-515 (1988).

Dimca, A.: On the Milnor fibrations of weighted homogeneous polynomials, Com-
positio Math. (to appear).

Dimca, A.: Betti numbers of hypersurfaces and defects of linear systems, Preprint
MPI/89-6.

Durfee, A.H.: Mixed Hodge structures on punctured neighborhoods, Duke Math.
J. 50, 1017—1040 (1983).



[G]

[Gk]

(K]

(L]

[Ma]

(M)

[0s]

[5t]

[SW]

[Sk1]

[Sk2]

[S5]

— 41—

Greuel, G.—M.: Der Gauss—Manin—Zusammenhang isolierter Singularititen von
vollstindigen Durchschnitten, Math. Ann. 214, 235-266 (1975).

Grothendieck, A.: On the de Rham cohomology of algebraic varieties, Publ. Math.
IHES 29, 351-358 (1966).

Kouchnirenko, A.G.: Polyeédres de Newton et nombres de Milnor, Invent. Math.
32, 1-31 (1976).

Looijenga, E.J.N.: Isolated Singular Points on Complete Intersections, London
Math. Soc. Lecture Note Series 77, Cambridge Univ. Press, 1984.

Malgrange, B.: Intégrales asymptotiques et monodromie, Ann. Sci. Ecole Norm.
Sup. 7, 405430 (1974).

Milnor, J.: Singular Points of Complex Hypersurfaces. Ann. of Math. Studies 61,
Princeton Univ. Press, 1968.

Orlik. P., Solomon, L.: Singularities I, Hypersurfaces with an isolated singularity,
Adv. in Math. 27, 256272 (1978).

Saito, K.: Quasihomogene isolierte Singularititen von Hyperflichen, Invent.
Math. 14, 123142 (1971).

Scheja, G., Wiebe, H.: Uber Derivationen in isolierten Singularititen auf vollstin-
digen Durchschnitten, Math. Ann. 225, 161-171 (1977).

Scherk, J.: Isolated Singular Points and the Gauss—Manin Connection, D. Ph.
Thesis, Oxford, 1977.

Scherk, J.: On the monodromy theorem for isolated hypersurface singularities,
Invent. Math. 58, 289—301 (1980). |

Scherk, J., Steenbrink, J.H.M.: On the mixed Hodge structure on the cohomology
of the Milnor fiber, Math. Ann. 271, 641665 (1985).



[51]

[s2]

[s3]

[54]

[vi]

[v2]

—42 —

Steenbrink, J.H.M.: Intersection form for quasihomogeneous singularities, Com-
positio Math. 34, 211223 (1977).

Steenbrink, J.H.M.: Mixed Hodge structure on the vanishing cohomology. In:
Holm, P. ed.: Real and Complex Singularities, pp. 525563, Oslo 1976, Alphen
aan de Rijn Sijthoff, Noordhoff 1977.

Steenbrink, J.H.M.: Mixed Hodge structures associated with isolated singularities,
Proc. Symp. Pure Math. 40, Part 2, pp. 513-536 (1983).

Steenbrink, J.H.M.: Mixed Hodge Structures and Singularities (book to appear).

Varchenko, A.N.: Asymptotic Hodge structure in the vanishing cohomology,
Math. USSR Izv. 18, 469512 (1982).

Varchenko, A.N.: Local classification of volume forms in the presence of a hyper-
surface, Funct. Anal. Appl. 19 (4), 269—276 (1985).



