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Abstract

Fix an integer g. The primes p such that g is a primitive root for p are called
Artin primes. Using a mixture of heuristics, well-known conjectures and
rigorous arguments an algorithm is given to find quadratics that produce
many Artin primes. Using this algorithm Y. Gallot has found a g and a
quadratic f such that the first 31082 primes produced by f have g as a
primitive root. There is a connection with finding integers d such that
L(2, (d/.)) is small.

1 Introduction

Given a non-zero integer g, let P(g) denote the set of primes p such that g is a
primitive root modulo p. Put G := {g ∈ Z : g 6= −1 and g 6= b2, b ∈ Z}. In
1927 Emil Artin conjectured that if g is in G, then the set P(g) is infinite. This
conjecture is commonly known as the Artin primitive root conjecture. Under the
Generalized Riemann Hypothesis (GRH) this was proved by C. Hooley in 1967.

A natural question that arises is to find an easy way to generate primes in
P(g). In this paper we study to which extent quadratic polynomials are suitable
for this. This problem goes back to the mathematical amateur Raymond Griffin
who in 1957 thought that all primes of the form 10X2 +7 belong to P(10). (Note
that the primes in P(10) can be alternatively characterized as those primes p
for which the decimal expansion of 1/p has period p − 1.) Having a computer
at his/her disposal the modern number theorist immediately disposes of Griffin’s
assertion: the first 16 primes p of the form 10X2 + 7 have indeed decimal period
p − 1, but this is not true for p = 7297, the 17th such prime. Nevertheless,
one can wonder whether there exists a quadratic polynomial such that the prime
values amongst f(0), f(1), f(2), · · · are all in P(g) (we call this Griffin’s dream).
To avoid trivialities one wants f to be such that, assuming the Bateman-Horn
conjecture (see next section), f assumes infinitely many distinct prime values.

D.H. Lehmer [14] was the first to seriously investigate Griffin’s dream (inspired
by a letter Griffin wrote him). He found the candidate 326X2 +3 for g = 326. At
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the time he did not have enough computational resources to find, as is trivial these
days, that 326 is a primitive root for the first 206 primes of the form 326X 2 + 3
(they satisfy 0 ≤ X ≤ 2374), but is not for p = 1838843753 = 326 · 23752 + 3.

In contrast to the polynomials of Griffin and Lehmer, Euler’s polynomial
X2 +X +41 enjoys cult status as virtually every number theorist is aware of the
fact that f(0), . . . , f(39) are all prime and that this is related to the celebrated
class number one problem. As will be worked out in some detail in this paper, the
problems of finding Artin prime producing quadratics (i.e. quadratics producing
many Artin primes) and prime producing quadratics (i.e. quadratics producing
many primes) are closely related. Indeed, since the latter quadratics are so well-
researched some of the results obtained on them can be used to our advantage.

The starting idea in finding prime producing quadratics is to choose f(X) ∈
Z[X] in such a way that for many small primes q the equation

f(X) ≡ 0(mod q) (1)

does not have a solution and that the values assumed by f do not grow too
quickly. Note that if q is odd the equation (1) does not have a solution iff
χ∆(q) := (∆

q
) 6= 1, where ∆ denotes the discriminant of f and (∆

q
) denotes the

Legendre symbol. Thus we are led to try to find a ∆ such that |∆| is small and
χ∆(q) 6= 1 for many consecutive odd primes q. Let us for simplicity assume that
∆ < 0. This then forces

πh(∆)

w
√

|∆|
= L(1, χ∆) =

∞
∑

n=1

χ∆(n)

n
=
∏

q

1

1 − χ∆(q)/q
(2)

to be small, where h(∆) is the class number of Q(
√

∆) and w the number of roots
of unity in this quadratic field. Thus we should find ∆ such that h(∆) is small.
Indeed, for Euler’s polynomial we have ∆ = −163 and h(∆) = 1 and it turns out
that (1) does not have a solution for the primes q = 2, 3, . . . , 37.

Define rp(g) := [(Z/pZ)∗ : 〈g〉] to be the residual index of g(mod p), that is
the index of the subgroup generated by g in (Z/pZ)∗. Since the residual index
is usually small, one way to produce Artin prime producing quadratics f is to
search for quadratics such that q - rp(g) for many consecutive primes q, where p
runs over the primes produced by f . For q = 2 we can ensure this if we can find
a quadratic f such that ( g

p
) = −1 for the primes p produced by f . This leads to

the question of studying the fraction of primes p of the form p = f(X) that are
inert in a prescribed quadratic number field (a problem of some interest by itself,
it seems). Using character sums this question is studied in Section 5.

Now let q be an odd prime. Since rp(g)|p − 1 we can ensure that q - rp(g) by
choosing f(X) in such a way that the equation f(X) ≡ 1(mod q) has no solution.
If ∆1 denotes the discriminant of the polynomial f(X) − 1, then by a reasoning
similar to the one for prime producing polynomials, we are interested in those
∆1 for which L(1, χ∆1) is small. The polynomial of Lehmer is in this way related
to the quadratic number field Q(

√
−163). The primes p it produces have the

property that if q|rp(g), then q ≥ 41. A more refined, partially heuristic, analysis
suggests that one should rather look for ∆1 such that L(2, χ∆1) is small. Since
these values being small are not unrelated, one can use values for which L(1, χ∆1)
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is small (exhaustively investigated) to produce values for which L(2, χ∆1) is small
(little investigated).

In order to briefly describe the contents of this paper, we have to be a little
bit more precise.

Definition 1 Given integers g and f(X) ∈ Z[X], let p1(g, f), p2(g, f), . . . be the
sequence of primes that is obtained on going through the sequence f(0), f(1), . . .
and writing down the primes not dividing g as they appear. We let r be the largest
integer r (if this exists) such that g is a primitive root mod p for all primes pj(g, f)
with 1 ≤ j ≤ r. We let cg(f) be the number of distinct primes amongst pj(g, f)
with 1 ≤ j ≤ r.

Thus, for example, c326(f) = 206, with f(X) = 326X2 + 3.

Problem 1 (Griffin’s dream). Find g and f such that cg(f) is unbounded.

A more modest variant of this problem is as follows:

Problem 2 Find g and quadratic f such that cg(f) is as large as possible.

Alternatively one could ask, given a prescribed integer g in G, to find a quadratic
f such that cg(f) is as large as possible. Since this is an easy variant of Problem
2, we will only discuss it briefly in the sequel.

By the Chinese Remainder Theorem we know that given any finite set of odd
primes one can find g such that g is a primitive root for each of these primes.
Thus one should require g to be small in comparison with the coefficients of f . We
say g is small in this context if |g| < 10cg(f)/3 (see Section 3 for an explanation).

It will be shown (Theorem 2), using some ideas due to A. Granville, that
under the prime k-tuplets conjecture (see next section), for every g in G and real
number m, there exists a quadratic f such that cg(f) > m. Based on a mixture
of heuristics, well-known conjectures and rigorous arguments an algorithm is
proposed in Section 8 to find f producing many Artin primes. This algorithm has
been implemented by Y. Gallot. Using it he found g and f producing many Artin
primes such that cg(f) = 31082 (the current record). Finally, some arguments are
presented that suggest that Griffin’s dream will be forever a dream for quadratic
polynomials...

Of course there is no need to restrict to quadratic polynomials, but this is
what we shall do in this paper (even less theoretical tools seem to be available in
the higher degree case). Since at present it is not even known whether n2 + 1 is
prime infinitely often, we can only expect to gain some insight on assuming certain
conjectures. In the next section we briefly recall some relevant conjectures.

As the words ‘lemma’ and ‘proposition’ do not have a universal definition,
I like to state that I use them to mean ‘intermediary result that is being used
further on to prove a theorem’ and ‘final result, deemed not deep or important
enough to be called theorem’.

Y. Gallot and A. Granville kindly permitted me to state their results. They
appear here for the first time in print.
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2 Prerequisites on two conjectures

Let f(X) be an irreducible polynomial of content 1 in Q[X] with integer coeffi-
cients. By a special case of a conjecture due to Bateman and Horn [2] πf (x), the
number of integers 0 ≤ n ≤ x such that f(n) is prime, should satisfy, as x tends
to infinity,

πf (x) ∼ H(f)

deg(f)

x

log x
, where H(f) =

∏

p

p − Np(f)

p − 1
,

and Np(f) = #{n(mod p) : f(n) ≡ 0(mod p)}. We say a congruence class
modulo an integer m is allowable if for any number r in it we have (f(r), m) = 1
and thus, e.g., p − Np(f) denotes the number of allowable congruence classes
modulo p.

Let F be the set of quadratic polynomials aX2 + bX + c with a > 0, b, c
integers such that gcd(a, b, c) = 1, d = b2 − 4ac is not a square and a + b and c
are not both even. Then, as x tends to infinity, Hardy-Littlewood’s Conjecture
F [10], a special case of the Bateman-Horn conjecture, asserts that

πf(x) ∼ ε
x

log x

∏

p>2
p|(a,b)

p

p − 1

∏

p>2
p-a

(

1 −
(d

p
)

p − 1

)

, (3)

where ε = 1 if a + b is even and ε = 1/2 otherwise. For f ∈ F it is easily shown
that

a

ϕ(a)L(1, (d/.))
� H(f) � a

ϕ(a)L(1, (d/.))
. (4)

For our purposes the following weaker conjecture, which is implied by Hardy-
Littlewood’s Conjecture F, will suffice.

Conjecture 1 Let m ≥ 2 be an integer. Suppose that f(X) ∈ Z[X] represents
infinitely many primes, then the n for which f(n) is prime are asymptotically
equidistributed over the allowable congruence classes modulo m.

Proof that Hardy-Littlewood’s conjecture F implies Conjecture 1. This can be done
by direct computation from (3), but this computation turns out to be a bit messy.
Instead we use the formula for H(f). Let r(mod m) be an allowable congruence
classes modulo m. We put fr(X) = f(mX + r) and will show that H(fr) does
not depend on r. If p - m, then Np(fr) = Np(f) as the map X → mX +r induces
a permuation of Zp then. If p|m, then f(mX + r) ≡ f(r) 6≡ 0(mod p) (since by
assumption r is not allowable) and thus Np(fr) = 0 in this case. It follows that

H(fr) =
∏

p

p − Np(fr)

p − 1
=
∏

p|m

p

p − 1

∏

p-m

p − Np(f)

p − 1
=

m

ϕ(m)

∏

p-m

p − Np(f)

p − 1
,

which is a constant not depending on r. 2
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Finally we recall the prime k-tuplets conjecture (TC(k)). This conjecture seems
to be due to Dickson (1904).

Conjecture 2 Let k ≥ 1 and let A1, . . . , Ak, B1, . . . , Bk be integers with Aj > 0
for j = 1, . . . , k. Suppose that for each prime p there exists an integer np such

that p does not divide
∏k

j=1(Ajnp + Bj), then there exist infinitely many integers
n such that Ajn + Bj is prime for 1 ≤ j ≤ k.

3 On the likelihood of finding cg(f) = m

Let p1 < · · · < ps be distinct primes and put P =
∏s

i=1 pi. There are
∏s

i ϕ(pi−1)
residue classes modulo P such that if g is in any of them it is a primitive root for
every prime dividing P . Assuming equidistribution we expect that the smallest
of them is roughly of size Q :=

∏s
i=1(pi − 1)/ϕ(pi − 1). It is an easy exercise in

analytic number theory to evaluate the average value of (p−1)/ϕ(p−1). To this
end note that

n

ϕ(n)
=
∑

d|n

µ(d)2

ϕ(d)
,

whence we infer that

∑

p≤x

p − 1

ϕ(p − 1)
=
∑

p≤x

∑

d|p−1

µ(d)2

ϕ(d)
=
∑

d≤x

µ(d)2

ϕ(d)
π(x; d, 1),

where π(x; d, 1) denotes the number of primes q ≤ x such that q ≡ 1(mod d) and
we swapped the order of summation in the double sum. Proceeding as in the
proof of Lemma 1 of [20] one then finds that for every C > 1 one has

∑

p≤x

p − 1

ϕ(p − 1)
= BLi(x) + O(

x

logC x
), with B =

∏

q prime

(

1 +
1

(q − 1)2

)

,

where the implied constant may depend on C and Li(x) denotes the logarithmic
integral. This improves on an estimate due to Murata [21]. Expressing B in
terms of zeta values, cf. [5, 19], one finds B = 2.826419997067 . . . . Thus Q
is roughly of size Bs ≈ 100.45s. This motivates the definition of small g in the
introduction.

Likewise one can wonder about the probability that a given g is a primitive
root for our finite set of primes. An estimate for this is given by 1/Q and should
be roughly 10−0.45s. Thus a measure for the likelihood of having cg(f) = m (by
random choice of f and g) is 10−m/2.

4 Lehmer’s polynomial reconsidered

In their celebrated book Ireland and Rosen [12] write (p. 47): ‘Lehmer discovered
the following curious result. The first prime of the form 326n2 + 3 for which 326
is not a primitive root must be bigger than 10 million. He mentions other results
of the same nature. It would be interesting to see what is responsible for this
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strange behavior’. What is responsible is the class number one phenomenon
(see introduction) in combination with the fact that ( 326

p
) = −1 for all primes p

represented by Lehmer’s polynomial (Proposition 1). In this section this will be
worked out in further detail.

In this context the following trivial result will play an important role.

Lemma 1 Let α ≥ 0 be an integer. Let p be a prime and g an integer coprime
with p. Define rp(g) := [(Z/pZ)∗ : 〈g〉] (the residual index of g(mod p)). Let
d1, d2 be positive integers. Let p be a prime of the form 2αd1n

2 + d22
α + 1. If q

is an odd prime with (−d1d2

q
) 6= 1 and q - d2, then q - rp(g).

Proof. The equation 2αd1X
2 + d22

α + 1 = 1 is solvable mod q if and only if
(−d1d2

q
) = 1 or q|d2. Since by assumption (−d1d2

q
) 6= 1 and q - d2, it follows that

p 6≡ 1(mod q). From this and rp(g)|p − 1, it then follows that q - rp(g). 2

Using Lemma 1 it is easy to deduce the following proposition.

Proposition 1 Let k be a non-zero integer. Let g ∈ {−163,−3, 6, 326}. If p is
a prime not dividing kg and p = 326n2 + 3, then (rp(k

2g), 2 · 3 · · ·37) = 1.

Proof. Using quadratic reciprocity one deduces that ( k2g
p

) = −1 and hence

2 - rp(k
2326). Let q be an odd prime not exceeding 37. It is easy to check (using

e.g. quadratic reciprocity) that (−163
q

) = −1 and thus, by Lemma 1, q - rp(k
2g). 2

Put L(X) = 326X2 + 3. The latter result shows that if 326 is not a primitive
root modulo a prime p = L(n), then rp(326) ≥ 41. Since this is rather unlikely
to happen, we expect to find a reasonably long string of primes of the form
L(n) before we find a prime p for which 326 is not a primitive root mod p.
This is precisely what happens: we have to wait until n = 2375 and hence
p = 1838843753, for 326 not to be a primitive root mod p (we have rp(326) = 83).

Supposing p = L(n) to be prime, one can wonder about the probability that
rp(326) > 1. For this to happen rp(326) must be divisible by some odd prime
q such that (−163

q
) = 1. In this case n has to be in one of two residue classes

mod q and, moreover, we need to have 326
p−1

q ≡ 1(mod p). Since 326
p−1

q is
merely one out of the q solutions of xq ≡ 1(mod p), one heuristically expects that

326
p−1

q ≡ 1(mod p) with probability 1/q. We thus expect that with probability

∏

(−163
q

)=1

(

1 − 2

q2

)

= 0.99337 . . . (5)

a prime of the form p = L(n) will have 326 as a primitive root. This argument is
taken from Lehmer’s paper. He implicitly assumes that the n for which f(n) is
prime are asymptotically equally distributed over the congruence classes modulo
q, instead of over the allowable congruence classes modulo q. On correcting for
this one arrives at a probability of

p1 :=
∏

(−163
q

)=1

(

1 − 2

q(q − 1 − (−978
q

))

)

= 0.99323 . . . . (6)
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For 0 ≤ n ≤ 5 · 106 there are 240862 primes p = L(n) of which 239239 have 326
as a primitive root. Note that 239239/240862 ≈ 0.99326 . . . .

Instead of taking 326 as base, Proposition 1 suggests we could take k2326 as
a base and vary over k. Assuming that each prime p = L(n) has a probability p1

of having k2326 as a primitive root we might expect that

lim
x→∞

1

x

∑

k≤x

gk2326(f) ≈
∞
∑

j=1

jpj
1(1 − p1) =

p1

1 − p1

,

that is equals about 150 (note that the ‘probability’ that gk2326(f) = j equals
pj

1−pj+1
1 = pj

1(1−p1)). For k ≤ 5000 it turns out that the average is around 180.
Note that in the averaging process there is a very strong bias towards the smallest
primes of the form p = L(n). This might explain the observed discrepancy.

The most interesting quantity for our purposes is max1≤k≤s gk2326(L). Since
one expects the probability that max1≤k≤s gk2326(L) ≤ j to be (1 − pj+1

1 )s, one
arrives at

M(p1, s) :=
∞
∑

j=1

j
(

(1 − pj+1
1 )s − (1 − pj

1)
s
)

.

It is not difficult to show that, as s tends to infinity,

M(p1, s) ∼
log s

log(1/p1)
, (7)

and that this holds more generally for any value of p1 satisfying 0 < p1 < 1 [18].
By more subtle techniques [4, 22] it can be shown that

M(p1, s) ≈
1

log(1/p1)

s
∑

r=1

1

r
− 1

2
,

where the approximation is remarkably good and 0 < p1 < 1. The interpre-
tation of the latter result is somewhat disappointing: if one has found M(s) :=
max1≤k≤s gk2326(L) with s = 106, say, then in order to find a k such that gk2326(L) ≥
2M one expects to have to compute gk2326(L) for all k up to around 1012 in order
to achieve this. The numerics seem to confirm the slow growth of M(s). For
example, M(350) = 1123 and M(25000) = 1614.

One can wonder how ‘special’ it is to find a given value of ck2326(L). An ob-
vious measure for this is the smallest integer s such that M(p1, s) = ck2g(L). For
1614 for example this is around 32500, i.e., one would expect to try around 32500
values of k before finding ck2326(L) ≥ 1614.

Griffin’s and Lehmer’s polynomial for g = 10, respectively g = 326 show that
there are quadratic polynomials f and integers g such that ( g

p
) 6= 1 for all primes

of the form f(n), i.e. all the primes p = f(n) are inert in Q(
√

g). In the next
section we investigate this situation further.

5 On the splitting of primes p = f(n) in a quadratic

field

This section is devoted to a conditional result on the splitting behaviour of primes
of the form p = f(n) in a prescribed quadratic field K. In the case where f is

7



quadratic we will make this result more explicit.
Let d > 1 be an odd squarefree integer. Put

ad(f) =

∑

r(mod d)

(

f(r)
d

)

#{r(mod d) : (f(r), d) = 1} . (8)

Note that −1 ≤ ad(f) ≤ 1. By the Chinese Remainder Theorem and the multi-
plicative property of the Jacobi symbol the quantity ad(f) is seen to be a multi-
plicative function on odd squarefree integers d. Thus ad(f) =

∏

p|d ap(f). Note

that if p > 2 and Np(f) is even, then ap(f) is odd and hence ap(f) 6= 0.

Theorem 1 Let D be a fundamental discriminant. Suppose that f(n) is prime
for infinitely many n and that the n for which f(n) is prime are equidistributed
over the residue classes a(mod D) with (f(a), D) = 1. The proportion τ−

D (f) of
primes p satisfying p = f(n) for some n that are, moreover, inert in a quadratic
field of discriminant D exists and is a rational number. Let D1 be the largest odd
prime divisor of D and assume that D1 > 1. For j = 1, 3, 5 and 7 put

αj =
#{s(mod 8) : f(s) ≡ j(mod 8)}
4#{s(mod 2) : f(s) ≡ 1(mod 2)} .

We have

2τ−
D (f) =















1 − aD1(f) if D is odd;
1 + (α3 + α7 − α1 − α5)aD1(f) if D ≡ 4(mod 8);
1 + (α3 + α5 − α1 − α7)aD1(f) if D ≡ 8(mod 32);
1 + (α5 + α7 − α1 − α3)aD1(f) if D ≡ 24(mod 32).

Moreover, aD1(f) =
∏

p|D1
ap(f), with

ap(f) =

∑p−1
j=0(

f(j)
p

)

p − Np(f)
.

Proof. Let us consider the case where D > 1 and D ≡ 1(mod 4) first. Note that
p is inert in K iff (D

p
) = −1. Since D ≡ 1(mod 4), we have (D

p
) = ( p

D
) and thus

only the value of p(mod D) matters. By assumption the corresponding values of
n are equidistributed asymptotically. Therefore τ−

D (f), the proportion of primes
of the form f(n) which are inert in K, satisfies

τ−
D (f) =

#{r(mod D) : ( D
f(r)

) = −1}
#{r(mod D) : (f(r), D) = 1} =

#{r(mod D) : ( f(r)
D

) = −1}
#{r(mod D) : (f(r), D) = 1} .

Let us denote the corresponding proportion of split primes by τ+
D (f). We have

τ−
D (f) + τ+

D (f) = 1 and τ+
D (f) − τ−

D (f) = aD(f), whence τ−
D (f) = (1 − aD(f))/2,

as required.
In case 2|D we consider the various congruence classes modulo 8 separately.

Each of them can then be dealt with as before (this involves quadratic reci-
procity). We find that

2τ−
D (f) =







τ−
D1

(f){α1 + α5} + τ+
D1

(f){α3 + α7} if D ≡ 4(mod 8);
τ−
D1

(f){α1 + α7} + τ+
D1

(f){α3 + α5} if D ≡ 8(mod 32);
τ−
D1

(f){α1 + α3} + τ+
D1

(f){α5 + α7} if D ≡ 24(mod 32).
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The remaining details are left to the interested reader. 2

Remark 1. Note that under the assumption of Hardy-Littlewood’s Conjecture F
the hypothesis of the result is satisfied. (For then Conjecture 1 holds true.)

Remark 2. Notice that the condition that f(n) represents infinitely many primes
ensures that αj exists for j = 1, 3, 5 and 7. These numbers can be explicitly
evaluated, but this requires a lot of case distinctions.

Remark 3. In case τ−
D (f) = 1, then it is unconditionally true that, with finitely

many exceptions, all primes represented by f are inert in Q(
√

D). In this case we
have that ( D

f(r)
) = −1 for all allowable congruence classes r(mod D). Since there

are at most finitely many primes represented by f for r that are not allowable,
the assertion follows. Similarly, if τ−

D (f) = 0, then it is unconditionally true that,
with finitely many exceptions, all primes represented by f split completely in
Q(

√
D).

5.1 The case where f is quadratic

Before we state the main result of this section (Proposition 2), we need some
preliminaries on certain simple character sums.

The following two lemmas are well-known, see [9, p. 79]. The proof of Lemma
2 given here (suggested by I. Shparlinski) is more natural than the one in [9, p.
79].

Lemma 2 Let p be an odd prime. Then

p−1
∑

m=0

(

m2 + a

p

)

=

{

p − 1 if p|a;
−1 otherwise.

Proof. Let νj(p) denote the number of 0 ≤ m ≤ p − 1 such that (m2+a
p

) = j.

The sum under consideration equals ν1(p)− ν−1(p) and so the result follows once
we compute ν1(p) and ν−1(p). If p|a the assertion is trivial. Next assume that
(−a

p
) = −1. Let us count the number of pairs (m, y) with 0 ≤ m, y ≤ p − 1 such

that m2 + a ≡ y2(mod p). Note that y = 0 does not occur. Equivalently we
want to have a ≡ (y − m)(y + m)(mod p). Write u = y − m and v = y + m.
There are p− 1 pairs (u, v) satisfying a ≡ uv(mod p). Using that the pairs (u, v)
are in bijection with the pairs (m, y) and that with each pair (m, y) there is a
pair (m, p − y), we infer that ν1(p) = p−1

2
. On noting that ν0(p) = 0, we infer

that p = ν−1(p) + ν0(p) + ν1(p) = ν−1(p) + p−1
2

and hence ν−1(p) = p+1
2

. Thus
ν1(p) − ν−1(p) = −1 and the result follows in this case. In the remaining case
(−a

p
) = 1 a similar argument shows that ν−1(p) = p−1

2
, ν0(p) = 2 and ν1(p) = p−3

2

and thus that ν1(p) − ν−1(p) = −1 again. 2

Let f(x) = ax2 + bx + c be a quadratic polynomial. Put d = b2 − 4ac and

Tp(f) =

p−1
∑

m=0

(

f(m)

p

)

.

9



Lemma 3 Let p be an odd prime. Then

Tp(f) =







−(a
p
) if p - ad;

p( c
p
) if p|(a, d);

(p − 1)(a
p
) otherwise.

Proof. If p - a, then

(
a

p
)Tp(f) = (

4a

p
)Tp(f) =

p−1
∑

m=0

(

(2am + b)2 − d

p

)

=

p−1
∑

m=0

(

k2 − d

p

)

,

where k = 2am + b. The proof is easily completed on invoking the previous
lemma. (For more details see, e.g., [9, p. 79], see also [1]). 2

Remark. S. Arms, Á. Lozano-Robledo and S.J. Miller [1] use Lemma 2 and 3 in
their method of constructing elliptic curves over Q(T ) with moderate rank.

Lemma 4 Let p be an odd prime. Then

ap(f) =



















−( a
p
)

p−1−( d
p
)

if p - ad;

0 if p|a, p - d;
(a

p
) if p - a, p|d;

( c
p
) if p|(a, d).

Proof. The denominator in (8) is easily evaluated in prime arguments. On com-
bining this computation with Lemma 3 the result follows. 2

The next result in the case where (D, a, d) = 1 was first established by Andrew
Granville (with a different proof).

Proposition 2 Let D1 > 0 be an odd squarefree integer. We have

aD1(f) =











(

c

(D1, a, d)

)(

a

D1/(D1, a)

)

∏

q|D1
q-ad

−1

q − 1 − (d
q
)

if (D1, a)|d;

0 if (D1, a) - d.

Alternatively,

aD1(f) =

(

c

(D1, a, d)

)(

a

D1/(D1, a, d)

)

∏

q|D1
q-ad

−1

q − 1 − (d
q
)
.

Proof. Note that aD1(f) =
∏

p|D1
ap(f). Then invoke the previous lemma. 2

Let F be as in Section 2. The latter result in combination with Theorem 1 gives:

Proposition 3 Assume Conjecture 1. Let f ∈ F and D be its discriminant.
1) If τ−

D (f) 6= 0, 1, then 1/3 ≤ τ−
D (f) ≤ 2/3.

2) If τ−
D (f) = 0 or τ−

D (f) = 1, then D|24ad.

10



Remark 1. We have τ−
5 (3X2 + 7) = 1/3 and τ−

5 (X2 + 1) = 2/3 (thus the bounds
in part 1 are sharp). One computes that τ−

−3(X
2 + 5) = 1 and thus D|24ad in

part 2 cannot be replaced by D|8ad.
Remark 2. It can happen for a given f ∈ F that there is no discriminant D for
which τ−

D (f) = 1, e.g. for f(X) = X2 + X + 41.

The latter proposition strongly suggests that in order to find large cg(f) we
have to ensure that τ−

D (f) = 1, where D denotes the discriminant of Q(
√

g).
This highly restricts the possible choices of D. For Lehmer’s polynomial L, for
example, one finds that τ−

D (L) = 1 iff D = −163,−3, 24 or 1304.

5.2 Higher degree f

If f induces a permutation of Fp (that is, is a permutation polynomial), then
clearly ap(f) = 0. E.g. if f(X) = Xn + k and (p − 1, n) = 1, then f induces a
permutation of Fp and hence ap(f) = 0.

Suppose that Y 2 = f(X) is the Weierstrass equation of an elliptic curve E
having conductor NE. Hasse’s inequality yields |ap(f)| ≤ 2

√
p/(p−3) for p > 3. It

is well-known that
∑p−1

j=0(
f(j)

p
) is the trace of Frobenius over Fp. In the remainder

of this section it is assumed that the conditions of Theorem 1 are satisfied, so that
Theorem 1 can be invoked. It follows that if D ≡ 1(mod 4) and (NE, D) = 1,
then τ−

D (f) = 1/2 iff there is prime p dividing D such that E is supersingular
at p. Since Deuring it is known that the number of supersingular primes p ≤ x
in case of a CM curve E grows asymptotically as π(x)/2 and hence for almost
all quadratic fields of odd discriminant D one has in this case τ−1

D (f) = 1/2
(again under the conditions of Theorem 1). On the other hand, if E does not
have complex multiplication one finds using the result of Serre that the number
of supersingular primes p ≤ x is then bounded by � x(log x)−5/4+ε that for
a positive proportion of the fundamental discriminants D ≡ 1(mod 4) one has
τ−
D (f) = 1/2.

6 Heuristics for the proportion of primitive roots

In the previous section we gave an heuristic for the proportion τ−
D (f) of primes

p = f(n) such that ( g
p
) = −1. In this section we do the same but with the more

stringent condition that g should be a primitive root modulo p. Numerical work
suggests the truth of:

Conjecture 3 Suppose that f(X) ∈ Z[X] represents infinitely many primes.
Then the quotient of

#{p ≤ x : f(m) = p for some m and g is a primitive root mod p}

and #{p ≤ x : f(m) = p for some m} tends to a limit as x tends to infinity, that
is the relative proportion of primes p such that g is a primitive root mod p and
moreover p is represented by f(x) exists. Let us denote this conjectural density
by δg(f).

11



In the remainder of this section it is assumed that the latter conjecture holds
true. It is also supposed that g is not an hth power of an integer for any h ≥ 2.

Suppose that g is such that τ−
D (f) = 1, where D is the discriminant of Q(

√
g)

(the most relevant case for our purposes). Then, by an argument similar to that
used in the derivation of (6), one is led to believe that a good approximation for
δg(f) should be

δ(f) :=
∏

q>2

(

1 − #{s(mod q) : f(s) ≡ 1(mod q)}
q#{s(mod q) : f(s) 6≡ 0(mod q)}

)

. (9)

In case f(X) = AX2 + B a short calculation shows that

δ(f) =
∏

q|(A,B−1)
q>2

(1 − 1

q
)
∏

q-2A



1 −
{1 +

(

−A(B−1)
q

)

}

q(q − 1 −
(

−AB
q

)

)



 .

If δ(f) is close to 1, then

δ1(f) :=
∏

q|(A,B−1)
q>2

(1 − 1

q
)
∏

q-2A



1 −
{1 +

(

−A(B−1)
q

)

}
q2



 ,

yields a quite good approximation to δ(f); compare (5) with (6). Clearly the idea
in finding a large value of cg(f) is to find f such that δ(f) is close to 1. For this
results from the theory of prime producing quadratics can be used. Note that
δ1(f) is a rational multiple of

∏

q≥3

(

1 −
{1 + (∆

q
)}

q2

)

=
3

4
ζ(2)

∏

q≥3

(

1 −
(∆

q
)

q2 − 1

)

, (10)

where ∆ = −A(B − 1). It is not difficult to show that for Re(s) ≥ 1

∏

q≥3

(

1 − χ∆(q)

qs − 1

)

= ε(s)
ζ(2s)

L(s, χ∆)

∏

q|∆

(1 − 1

q2s
)
∏

q≥3

(∆
q )=1

(

1 − 2

qs(qs − 1)

)

, (11)

where ε(s) = 1+2−s(∆
2
). On combining the latter two formulae one sees that the

behaviour of δ1(f) is very much determined by that of L(2, χ∆).
For a general quadratic f(X) = aX2 + bX + c one finds that

ϕ((a, b, c − 1))

(a, b, c − 1)L(2, (d/.))
� δ(f) � ϕ((a, b, c − 1))

(a, b, c − 1)L(2, (d/.))
, (12)

where d = b2 − 4a(c − 1).
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7 Prime producing quadratics

Let fA(X) = X2 +X +A, with A > 0 a positive integer. Euler discovered in 1772
that X2 +X +41 satisfies πf41(39) = 40. It can be shown that πfA

(A−2) = A−1
iff A ∈ {2, 3, 5, 11, 17, 41}, see Mollin [17], and that this is related to the class
number one problem. The connection with the class number one problem dates
back to Frobenius (1912) and Rabinowitsch (1913). The discriminant of fA(X) is
given by ∆ = 1−4A. Note that if A is even, then 2|fA(x) and so we may assume
that A is odd and hence ∆ ≡ 5(mod 8). If for a prime q, (∆

q
) = −1, then the

values of fA are not divisible by q. So if (∆
q
) = −1 for many consecutive primes

q, the values of fA have a better chance of being prime, in particular if ∆ is also
small. Thus we want

L(1, χ) =
∏

q

1

1 − χ(q)/q
, (13)

where χ∆(n) = (∆/n) and (./n) is the Kronecker symbol, to be small. Since with
two exceptions πh/

√

|∆| = L(1, χ∆), we want the class number h to be small.
By (3) one should have, as x tends to infinity, πfA

(x) ∼ C(∆)x/ log x, where

C(∆) =
∏

q≥3

(

1 −
(∆

q
)

q − 1

)

.

It is easy to show (using that (∆/2) = −1) that

C(∆) =
ζ(4)

2L(1, χ∆)L(2, χ∆)

∏

q|∆

(1 − 1

q4
)
∏

q≥3

(∆
q )=1

(

1 − 2

q(q − 1)2

)

. (14)

Shanks has computed C(−163) = 3.3197732 . . . and C(−111763) = 3.6319998 . . ..
Thus Beeger’s [3] polynomial X2+X+27941 should produce asymptotically more
primes than Euler’s. One computes that πf41(106) = 261080 and πf27941(106) =
286128. On the other hand πf41(39) = 40, whereas πf27941(39) = 30. The constant
C(∆) can become arbitrarily large: for every ε > 0 there are infinitely many ∆
such that

(1/2 + ε)eγ log log |∆| < C(∆) < (1 + ε)eγ log log |∆|,

where γ denotes Euler’s constant (see [13, p. 511-512]).
Quadratics that produce too many primes contradict the Generalized Rie-

mann Hypothesis. If there are lots of Siegel zeros this can be used to infer results
on the growth of πf (x). This is akin to Heath-Brown’s result that if there are
many Siegel zeros, then the twin primes behave as expected. For more on the
analytic aspects of prime-producing polynomials, see [8].

In order to find ∆ with (∆
q
) = −1 for many consecutive primes q, special

purpose devices have been built (some even involving bicycle chains !). For a
nice account of this see Lukes, Patterson and Williams [15].

In searching for good prime producing quadratics it is thus tantamount to
find ∆ for which C(∆) is large. Similarly, for Problem 2 we want δ(f) to be close
to 1. Equation (14) shows that finding a large value of C(∆) amounts to finding
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∆ such that L(1, χ∆) is small. For s = 1 identity (11) gives an expression for
C(∆) and for s = 2 we obtain an expression closely related to δ1(f) (which on
its turn gives a good approximation to δ(f)). However, in case s = 1 the latter
product in the expression does not converge very well and preference is to be
given to expression (14). In contrast, in case s = 2 the expression (11) is quite
usable. The special value L(2, χ∆) involved can be evaluated with high precision,
see [13].

Let α ≥ 1. If f(X) is a prime producing quadratic, then gα(X) = 2αf(X)+1
is likely to be Artin prime producing for those g satisfying τ−

D (gα) = 1, with
D the discriminant of Q(

√
g). Conversely, if g(X) is a Artin prime producing

quadratic, then we can write g(X) − 1 = 2α(aX2 + bX + c) with α ≥ 0 and
(a, b, c) = 1. Write h(X) = aX2 + bX + c. If N2(h) = 0, then h is likely to
be prime producing. Thus the connection between Artin prime producing and
prime producing quadratics is rather intimate.

8 Finding Artin prime producing quadratics

In general an approach to Problem 2 is to find an integer d such that |d| is small
and (d

q
) 6= 1 for as many small odd primes q as possible. Thus we hope to ensure

that δ(f) (the quality of f) is very close to 1. We factorize d as d1d2 and choose a
small α. Then we consider primes p of the form 2αd1n

2 +2αd2 +1. Since we want
(g

p
) 6= 1 for all primes of the latter form, the choice of g is rather restricted: under

Conjecture 1 the discriminant Q(
√

g) has to be a divisor of 24d1(2
αd2 + 1) by

Proposition 3. It can happen that no suitable g can be found and then α can be
adjusted. If g has the required property, so has k2g for every integer k. Now we
vary over k in the hope of finding a large value of ck2g(2

αd1X
2+2αd2+1). Another

variation option we have is to consider primes p of the form 2αd1r1n
2 +2αd2r2 +1

with r1r2 a square and with r1r2 having only large prime factors. The correspond-
ing value of δ(f) changes little by this and again we can search for a large value
of cg(2

αd1r1X
2 + 2αd2r2 + 1). (In this variation g remains fixed and thus it can

be used in dealing with the variation of Problem 2 discussed in the introduction.)
Since we want ( g

p
) 6= 1 usually some mild congruence conditions on r1 and r2 have

to be imposed. A further variation possibility is to replace n by γn+ δ. However,
computational practice suggests this is only effective when γ = 1.

The asymptotic (7) suggests that it is crucial to get a large value of δ(f): if
this value is not close enough to 1, then there is not much to be gained by letting
k run over a large range (note that in general p1 = δg(f)).

Example 1. The number d = 4472988326827347533 satisfies (d/p) = −1 for the
primes p = 3, . . . , 283 by Table 4.3 of [13]. A factor of d is d1 = 252017. Let
d2 = d/d1. Let f(X) = 1008068X2 + 16921429448X + 15753313937. (This is
4d1(X + 8393)2 − 4d2 + 1.) The first ‘bad’ prime equals 432050978399143373. It
turns out that c170363492(f) = 22779. One finds that δ(f) ≈ 0.999453 and that
M(δ(f), 145700) ≈ 22779.
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Example 2. (Y. Gallot). We let d be as in Example 1, d1 = 230849 and d2 = d/d1.
Let f(X) = 64d1(X + 728069)2 − 64d2 + 1 and g = 172 · 230849 = 66715361.
Then cg(f) = 25581. This is the presently largest known value of cg(f) for
an f having positive discriminant. One finds that δ(f) ≈ 0.999453 and that
M(δ(f), 675200) ≈ 25581.

Let f(X) = 64d1(X + 56943)2 − 64d2 + 1. Then d24(f) = 21690. This is the
record for cg(f) with |g| < 100.

Example 3. The number d = 9828323860172600203 satisfies (−d/p) = −1 for the
primes p = 3, . . . , 277 by Table 4.1 of [13]. A factor of d is d1 = 54151. Let d2 =
d/d1. Let f(X) = 866416X2 + 2903975582404049. (This is 16d1X

2 + 16d2 + 1.)
It turns out that c23731350844(f) = 18176. Let f1(X) = f(X + 599206). One
computes that c72922(f1) = 29083. Let f2(X) = d1(X + 1484224)2 + d2 +1. Then
c17431902(f2) = 31082. This is the presently largest known value of cg(f) for an f
having negative discriminant and was discovered by Yves Gallot. One finds that
δ(f2) ≈ 0.999535 and that M(δ(f2), 1066000) ≈ 31082.

9 On the (un)boundedness of cg(f)

A tool in investigating this is an extension of a criterion of Chebyshev which is
discussed in the next section.

9.1 Extension of a primitive root criterion of

Chebyshev

It is an old result of Chebyshev that if p1 ≡ 1(mod 4) is prime and p2 = 2p1 +1 is
also prime, then g = 2 is a primitive root modulo p2. Under TC(2) it then follows
that 2 is a primitive root for infinitely many primes. Unconditionally it is not
known whether there are infinitely many primes satisfying Chebyshev’s criterion,
but it can be shown that there are infinitely many primes satisfying a somewhat
weaker version of it. This can then be used to show, e.g., that at least one of the
numbers 2, 3 and 5 is a primitive root for infinitely many primes [11].

Already in the 19th century Chebyshev’s criterion was extended to some num-
bers other than 2, see e.g. [23]. In this section an analogue of Chebyshev’s cri-
terion is derived for every integer g in G. This criterion plays a keyrole in the
proof of Theorem 2.

Lemma 5 Let g ≥ 3 be an odd squarefree integer. There exists an integer a such
that (a, g) = 1 and ( 8a+1

g
) = −1.

Proof. It is easy to see that the result holds true in case g is an odd prime. In
case g ≥ 5 is an odd prime, likewise there exists an integer b such that (b, g) = 1
and (8b+1

g
) = 1. From these two observations the result follows on invoking the

Chinese Remainder Theorem. 2
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Lemma 6 Suppose that g ∈ G. Write g = g0
2g1 with g1 squarefree. Let g2 = |g1|

if g1 is odd and g2 = |g1/2| otherwise.
For parts 1 and 2 it is assumed that g1 6= ±2.

1) Let a be any integer such that (a, g2) = 1 and (8a+1
g2

) = −1 (by Lemma 5 at

least one such integer exists). If p1 is a prime of the form g2k + a such that
p2 := 8p1 + 1 is also a prime and g8 6≡ 0, 1(mod p2), then g is a primitive root
modulo p2.
2) Under TC(2) there are infinitely many primes p1 satisfying the conditions of
part 1.
3) Assume that g1 = ±2. If p1 is a prime and p2 := 2p1 + 1 is a prime, then g
is a primitive root modulo p2 if p1 ≡ sgn(g)(mod 4) and g2 6≡ 0, 1(mod p2). If
TC(2) holds true, there are infinitely many primes p such that g is a primitive
root modulo p.

Proof. 1) The assumption g8 6≡ 0, 1(mod p2) ensures that the order of g modulo
p2 exists and is a multiple of p2. Since

(
g

p2
) = (

g1

p2
) = (

g2

p2
) = (

p2

g2
) = (

8a + 1

g2
) = −1,

and −1 = ( g
p2

) ≡ g4p1(mod p2), the order must be 8p1 = p2 − 1.

2) We have to show that for each prime p there exists k for which

(g2k + a)(8g2k + 8a + 1) 6≡ 0(mod p). (15)

For p = 2 this is clear. In case p|g2 this follows since we have (a, g2) = 1 and
(8a + 1, g2) = 1. For the remaining primes p there are at least p − 2 ≥ 1 choices
of 0 ≤ k < p such that (15) is satisfied.
3) Similar to the proof of parts 2 and 3. 2

Corollary 1 Artin’s primitive root conjecture is true, assuming TC(2).

Another generalisation of Chebyshev’s criterion is in the direction of cubic reci-
procity. For example, if p is an odd prime such that q = 1 + 6p is a prime then 3
is not a primitive root mod q iff we can write 4p = n2 +243m2 with n, m integers.
This criterion is due to Fueter [6].

9.2 A conditional result on cg(f)

Lemma 6 will be used in the proof of the following theorem, the basic idea of
which is due to Andrew Granville.

Theorem 2 Let N ≥ 1 be an integer. Assume TC(2N). Suppose that g ∈ G.
Then there exist integers A1 and C1 such that A1n

2+C1 is prime for n = 1, . . . , N
and g is a primitive root for each of these primes.

Here and in the sequel A1 and C1 are allowed to depend on N .

Corollary 2 Assume TC(2N) for every N ≥ 1. Let g ∈ G be fixed. The number
cg(AX2 + C) can be larger than any prescribed number.
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Remark. Let N ≥ 1 be an integer and g ∈ G. Perhaps it is possible to show
under TC that there exist integers A1 and C1 such that A1n

2 + C1 is prime for
n = 1, 2, . . . , N + 1 and g is a primitive root for the first N of these primes,
but not for the (N + 1)th. This would show that cg(AX2 + C) can assume any
prescribed natural number as value under TC.

Proof of Theorem 2. We adopt the notation of Lemma 6 and assume that g1 6= ±2
(the remaining case being similar).

Let A =
∏

p≤2N p and C be the smallest integer > 2N with C ≡ a(mod g2)
for which C and 8C + 1 are both primes (C exists by part 2 of Lemma 6).
Consider the 2N -tuplet of numbers g2At + C + g2An2 for n = 1, . . . , N and
8g2At + 8C + 1 + 8g2An2 for n = 1, . . . , N for integer t. TC(2N) predicts that
there will be infinitely many t for which these are all prime, provided there is no
obstruction modulo a prime p (i.e. it is not true that for every t at least one of
the forms is divisble by p). (We will take A1 = 8g2A and C1 = 8g2At + 8C + 1
above for one of these t’s such that, moreover, none of the primes p(n) of the form
A1n

2 + C1 with n = 1, . . . , N satisfies g8 ≡ 0, 1(mod p(n))). Now for p ≤ 2N , we
see that p|A and p - C(8C + 1), so p never divides any of the forms. If p|g2 the
first N forms are ≡ a(mod p) and the second N forms are ≡ 8a+1(mod p). The
conditions on a ensure that a(8a + 1) 6≡ 0(mod p). In general there are at most
2N values of t for which at least one of our 2N linear forms is divisible by p, so
if p > 2N and p - g2, there exists an integer t such that none of them is divisible
by p.

Let p(n) = A1n
2 + C1. Now for 1 ≤ n ≤ N each p(n) is a prime for which

(p(n)−1)/8 is also a prime and satisfies the conditions of part 1 of Lemma 6 and
hence g is a primitive root modulo p(n). 2

Lemma 7 Suppose that gi 6= −1 for i = 1, . . . , s and that

(
g1

p
) = . . . = (

gs

p
) = −1 (16)

for infinitely many primes p ≡ 2(mod 3), then there exists 1 ≤ m ≤ 2, a and f
with (a, f) = 1, such that for every prime q satisfying q ≡ a(mod f) for which
q1 = 2mq + 1 is also a prime and g2m

i 6≡ 0, 1(mod q1) for i = 1, . . . , s, then the
integers g1, . . . , gs are simultaneously primitive roots modulo q1.

Proof. Let Q = {q1, . . . , qt} be the set of odd primes dividing the discriminant of
Q(

√
gi) for some 1 ≤ i ≤ s. Let A+1(q) be the set of non-zero quadratic residues

modulo q and A−1(q) the set of quadratic non-residues. It is a consequence of
quadratic reciprocity that there exist εi ∈ {−1, 1} with the property that for each
choice of elements α(εi) ∈ Aεi

(q), there are infinitely many primes p satisfying
(16) such that, moreover, p ≡ α(εi)(mod qi) for 1 ≤ i ≤ t. The condition that
p ≡ 2(mod 3) now ensures that we can pick α(εi) 6= 1. The argument can easily be
extended to take the behaviour at the prime two into account. One sees one can
pick β ∈ {3, 5, 7} such that there are infinitely many primes p satisfying (16) such
that p ≡ β(mod 8) and p ≡ α(εi)(mod qi) for 1 ≤ i ≤ t. Setting f = 8q1 · · · qt,
one then finds that a with 2ma + 1 ≡ β(mod 8) and 2ma + 1 ≡ α(εi)(mod qi) for
1 ≤ i ≤ t exists and satisfies the requirement (a, f) = 1, provided we set m = 2
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if β = 5 and m = 1 otherwise. The proof is then finished by an argument as used
in the proof of Lemma 6. 2

The following result generalizes Theorem 2.

Theorem 3 Let s ≥ 1 be an integer and let g1, . . . , gs be integers 6= −1, 0, 1.
Let 0 ≤ e1, . . . , es ≤ 1. Suppose that

∏s
i=1 gei

i is not a square if e1 + . . . + es is
odd. Suppose furthermore that the discriminant of each of the fields Q(

√
gi) is

not divisible by 3. Then there exist integers A and C such that p(j) = Aj2 + C
is prime for 1 ≤ j ≤ n and each of the gi is a primitive root modulo p(j).

Proof. Using the argument at p. 37 of Heath-Brown [11], one easily infers that
the conditions of Lemma 7 are satisfied. Thus there exist numbers a, f and m as
in that lemma. Now proceed as in the proof of Theorem 2. Thus take C to be
the smallest integer > 2N with C ≡ a(mod f) and replace 8C + 1 by 2mC + 1.
The rest of the argument is left as a (copy) exercise to the interested reader. 2

Remark. I do not see how to prove this result with for example g1 = −25 and
g2 = 3, although in this case under GRH it can be shown that there are infinitely
many primes p such that both are primitive roots [16]. In essence the question
amounts to this one: for each N ≥ 1 are there A and C such that p(j) = Aj2+C ≡
7(mod 12) are all prime and 3 is a primitive root mod p(j) for 1 ≤ j ≤ N ? One
seems to be forced to use cubic reciprocity, cf. Fueter’s criterion (Section 9.1).

10 Conclusion

The above arguments and experiments suggest the following conjecture.

Conjecture 4
1) For quadratic f Griffin’s dream cannot be realized, i.e. cg(f) < ∞.
2) Let m ≥ 1 be arbitrary. For g ∈ G there exist f such that cg(f) > m.

I base part 1 on the following proposition and the observation that if an event
occurs with positive probability it will eventually occur (after enough repetition).

Proposition 4 Let f ∈ Z[X] be quadratic. Then δ(f) < 1.

Proof. Suppose that δ(f) = 1. Then from (9) one infers the existence of a fun-
damental discriminant ∆ such that (∆

q
) = −1 for all but finitely many primes q.

Since
∏

p≤x(1+1/p) ∼ eγ log x/ζ(2) by a result of Mertens (1874), it then follows
from (13) that L(1, χ∆) = 0. However, L(1, χ∆) > 0 by (2). 2

The motivation for part 2 of Conjecture 4 is provided by Theorem 2. If the prime
k-tuplets conjecture holds true, then by Theorem 2 part 2 of the conjecture
also holds true. Whereas the problem of finding prime producing polynomials
amounts to finding D for which L(1, χD) is small (cf. the estimate (4)), the
problem of finding Artin prime producing polynomials amounts to finding D for
which L(2, χD) is small (cf. the estimate (12)).
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