Victor S. Kulikov

The Alexander Polynomials Of Plane Algebraic Curves : II

Chair "Applied Mathematics II"	Max-Planck-Institut für Mathematik
Moscow Institute of Railroad Engineers	Gotffried-Claren-Straße 26
ul. Obraztsova 15	D-5300 Bonn 3
101475 Moscow, A-55	
Russia	Germany

0. Let $\bar{D} \subset \mathbb{P}^{2}$ be an algebraic curve and let $\bar{D}=\bar{D}_{1} \cap \ldots \cap \bar{D}_{n}$ be the decomposition of \bar{D} into the irreducible components. Let $L_{\infty} \subset \mathbb{P}^{2}$ be a straight line and define $\mathbb{C}^{2}=\mathbb{P}^{2} \backslash L_{\infty}, D_{i}=\bar{D}_{\mathrm{i}} \cap \mathbb{C}^{2}$. By $f_{i}(x, y)=0$ denote an equation of D_{i}, where $f_{i}(x, y) \in \mathbb{C}[x, y]$ is an irreducible polynomial.

Let $\bar{m}=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{N}^{n}$ be a vector with positive integer coordinates. Put $m_{0}=G C D\left(m_{1}, \ldots, m_{n}\right)$ and $m_{i}^{\prime}=m_{i} / m_{0}$.

The vector $\bar{m}_{p r i m}=\left(m_{1}^{\prime}, \ldots, m_{n}^{\prime}\right)$ is called primitive.
By

$$
\begin{equation*}
F_{\bar{m}}: X=\mathbb{C}^{2} \backslash D \rightarrow \mathbb{C}^{*}=\mathbb{C} \backslash\{0\} \tag{1}
\end{equation*}
$$

denote the morphism defined by the equation

$$
z=\prod_{i=1}^{n} f_{i}^{m_{i}^{\prime}}(x, y)
$$

We shall assume that the following condition is satisfied:
$\left(^{*}\right)$ A generic fiber $F_{\bar{m}}^{-1}(z)=Y_{z}$ is connected.
If D is connected in \mathbb{C}^{2}, then $F_{\bar{m}}$ satisfies the condition (*).
In the paper [K3], some properties of the \bar{m}-Alexander polynomial of a curve D (see the definition of the \bar{m}-Alexander polynomial in n.1.2) were described in the case of $\bar{m}=(1, \ldots, 1)$. Also in [K3], the irregularity $q\left(\bar{X}_{k}\right)$ of a nonsingular surface \bar{X}_{k}, which is birationally isomorphic to the surface defined by the equation

$$
z^{k}=\prod_{i=1}^{n} f_{i}(x, y)
$$

was calculated in the case of transversal intersections of curves D_{i}.
The purpose of this paper is to extend the results of [K3] to the case of general \bar{m}.

The basic references for this subject are [Z1], [Z2], [M1], [S-S], [Lib].

Acknowledgement. I would like to thank Max-Planck-Institut für Mathematik (Bonn) for hospitalily and support during the preparation of this paper.

1. It is well known that there exists a finite subset

$$
\left\{z_{1}, \ldots, z_{k}\right\} \subset \mathbb{C}^{*}
$$

such that

$$
F_{\bar{m}}: X \backslash F_{\bar{m}}^{-1}\left(\left\{z_{1}, \ldots, z_{k}\right\}\right) \rightarrow \mathbb{C}^{*} \backslash\left\{z_{1}, \ldots z_{k}\right\}
$$

is a locally trivial fibering of class C^{∞}. As in [K3], let B_{i} be a disk of center z_{i} and radius $r_{i} \ll 1$, and let ∂B_{i} be its boundary. Choose two distinct points $z_{i, 1}$, $z_{i, 2}$ belonging to ∂B_{i}. The points $z_{i, 1}, z_{i, 2}$ divide ∂B_{i} into two arcs $\gamma_{i, 1}$ and $\gamma_{i, 2}$. Choose non-intersecting paths γ_{i} connecting the points $z_{i, 1}$ and $z_{i+1,2}\left(z_{n+1,2}=z_{1,2}\right.$), and let $\gamma_{i, 1}$ be the arc of ∂B_{i} such that $l_{i n}=\left(\cup \gamma_{i, 1}\right) \cup\left(\cup \gamma_{i}\right)$ is the boundary of a restricted set V containing the origin $o \in \mathbb{C}^{1}$, and such that $z_{i} \notin V$ for all $i, 1 \leq i \leq n$. Let $l_{c x}$ be the boundary of the set $V \cup\left(\cup B_{i}\right)$. Put $T=\left(\cup B_{i}\right) \cup\left(\cup \gamma_{i}\right)$. The set $Z=F_{\bar{m}}^{-1}(T)$ is called an \bar{m}-necklace of D.

Since T is a retract of C^{*} and the fibering $F_{\bar{m}}: X \backslash Z \rightarrow \mathbb{C}^{*} \backslash T$ is a locally trivial of class C^{∞}, we have the following
Proposition 1. If D and \bar{m} satisfy the condition (*), then $X=\mathbb{C}^{2} \backslash D$ and the necklace Z of D are homotopic.

Thus $\pi_{1}\left(\mathbb{C}^{2} \backslash D\right) \simeq \pi_{1}(Z)$ and moreover we have the following commutative diagram

where \mathbb{F}_{1} is a free group, $r g \mathbb{F}_{1}=1$.
If \bar{m} is a primitive vector, then $F_{\bar{m} *}$ is an epimorphism.
Let $z_{0} \in \gamma \subset T \cup l_{i n} \cup l_{e x}$ be a point and let $Y=F_{\bar{m}}^{-1}\left(z_{0}\right)$ be the fiber over z_{0}. The embedding $Y \subset Z$ induces the homomorphism $\psi: \pi_{1}(Y) \rightarrow \pi_{1}(Z)$. Obviously, $I m \psi \subset K e r F_{\bar{m} *}$. As in [K3], it is easy to show, that the following theorem is true.

Theorem 1. If $D \subset \mathbb{C}^{2}$ and a vector \bar{m} satisfy the condition (*), then the following sequence

$$
\pi_{1}(Y) \xrightarrow{\psi} \pi_{1}\left(\mathbb{C}^{2} \backslash D\right) \xrightarrow{F_{\bar{m} *}} \mathbb{F}_{1} \longrightarrow 1
$$

is exact.
Corollary 1. If $D \subset \mathbb{C}^{2}$ and a vector \bar{m} satisfy the condition $\left(^{*}\right)$, then

$$
N=K e r F_{\bar{m} *}
$$

is a finitely generated group.
1.2. The inclusions $Y \subset Z_{i n(e x)} \subset Z$ and the morphism $F_{\vec{m}}$ give the following commutative diagram

The maps $F_{\bar{m}}: Z_{i n} \rightarrow l_{i n}$ and $F_{\bar{m}}: Z_{e x} \rightarrow l_{e x}$ are locally trivial fiberings. Thus all rows in this diagram are exact.

Let $N^{\prime}=[N, N]$ be the commutator subgroup of $N,\left(N / N^{\prime}\right)_{T o r}$ the subgroup of N / N^{\prime} consisting of all elements of finite order, and let $\left(N / N^{\prime}\right)_{\text {Free }}=$ $\left(N / N^{\prime}\right) /\left(N / N^{\prime}\right)_{\text {Tor }}$ be the factor group.

The middle row of (2) determines the action of a generator $\tau \in \mathbb{F}_{1}$ on N / N^{\prime}, and, consequently, determines the action of τ on $\left(N / N^{\prime}\right)_{\text {Frec }}$. We shall denote this automorphism by $h_{\bar{m}}$.

Similarly, the upper and lower rows in (2) define the action of $\tau \in \mathbb{F}_{1}$ on $H_{1}(Y)$. We shall denote these automorphisms by $h_{\bar{m}, \text { in }}$ and $h_{\bar{m}, e x}$, respectively.

Definition. The polynomial $\Delta_{\bar{m}}(t)=\operatorname{det}(h-t I d)$ is called the \bar{m}-Alexander polynomial of a curve D. The polynomials $\Delta_{\bar{m}, \text { in }}=\operatorname{det}\left(h_{\bar{m}, \text { in }}-t I d\right)$ and $\Delta_{\bar{m}, e x}=$ $\operatorname{det}\left(h_{\bar{m}, e x}-t I d\right)$ are called the internal and external polynomials of a curve D, respectively.
Theorem 2. The polynomial $\Delta_{\bar{m}, D}(t)$ is a divisor of $\operatorname{GCD}\left(\Delta_{\bar{m}, i n}(t), \Delta_{\bar{m}, e x}(t)\right)$.
Proof. The same as the proof of Theorem 4 in [K3].
1.3. The morphism $F_{\bar{m}}$ defines a rational map

$$
F_{\bar{m}}: \mathbb{P}^{2}=\mathbb{C}^{2} \cup L_{\infty} \rightarrow \mathbb{P}^{1}=\mathbb{C}^{1} \cup\{\infty\}
$$

Let $\sigma: \overline{\mathbb{P}}^{2} \rightarrow \mathbf{P}^{2}$ be a composition of σ-processes such that the following conditions are satisfied:
(i) $\bar{F}_{\bar{m}}=F_{\bar{m}} \cdot \sigma: \overline{\mathbb{P}}^{2} \rightarrow \mathbf{P}^{1}$ is a morphism;
(ii) the reduced fibers $\bar{Y}_{0, \text { red }}=\bar{F}_{\bar{m}}{ }^{-1}(0)_{\text {red }}, \bar{Y}_{\infty, \text { red }}=\bar{F}_{\bar{m}}{ }^{-1}(\infty)_{\text {red }}$ are divisors with normal crossings;
(iii) the divisor $\sigma^{-1}\left(L_{\infty}\right)_{\text {red }}$ is a divisor with normal crossings.

Let $\sigma^{-1}\left(L_{\infty}\right)_{\text {red }}=\bar{L}_{\infty} \cup R$ be a decomposition such that for each component R_{i} of R the image $\bar{F}\left(R_{i}\right)$ is a point and $\bar{F}\left(L_{\infty, i}\right)=\mathbb{P}^{1}$ for each component $L_{\infty, i}$ of \bar{L}_{∞}.

Let $Y_{0}=\bar{F}_{\bar{m}}{ }^{-1}(0) \backslash \bar{L}_{\infty}$ and $Y_{\infty}=\bar{F}_{\bar{m}}{ }^{-1}(\infty) \backslash \bar{L}_{\infty}$ be the fibers of the morphism $\bar{F}_{\bar{m}}: \overline{\mathbb{P}}^{2} \backslash \bar{L}_{\infty} \rightarrow \mathbb{P}^{\mathbf{1}}$, and let

$$
Y_{0}=\sum_{i=1}^{N_{0}} m_{i} D_{i}, \quad Y_{\infty}=\sum_{i=1}^{N_{\infty}} r_{i} R_{i}
$$

be the decompositions into irreducible components. Put

$$
\begin{aligned}
D_{i}^{0} & =D_{i} \backslash\left(\cup_{j \neq i}\left(D_{i} \cap D_{j}\right)\right) \\
R_{i}^{0} & =R_{i} \backslash\left(\cup_{j \neq i}\left(R_{i} \cap R_{j}\right)\right)
\end{aligned}
$$

Evidently, $h_{i n, \bar{m}}$ and $h_{e x, \bar{m}}$ are the monodromy operators induced by circuits around the fibers Y_{0} and Y_{∞}, respectively.

It is well known (see, for instance, $\left[\mathrm{A}^{\prime} \mathrm{C}\right]$), that

$$
\begin{align*}
& \Delta_{\bar{m}, \mathrm{in}}(t)=(t-1) \prod_{i=1}^{N_{0}}\left(t^{m_{i}}-1\right)^{-\chi\left(D_{i}^{0}\right)} \tag{3}\\
& \Delta_{\bar{m}, e x}(t)=(t-1) \prod_{i=1}^{N_{\infty}}\left(t^{r_{i}}-1\right)^{-\chi\left(R_{i}^{0}\right)} \tag{4}
\end{align*}
$$

where $\chi(M)$ is Euler characteristic of a space M.
Corollary 2. The roots of the polynomial $\Delta_{\bar{m}, D}(t)$ are roots of unity.
Remark 1. If $\bar{D}=\bar{D}_{1} \cup \ldots \cup \bar{D}_{n}$ intersects transversally with L_{∞}, then

$$
\Delta_{\bar{m}, e x}(t)=(t-1)\left(t^{\sum d_{i} m_{i}^{\prime}}-1\right)^{\sum d_{i}-2}
$$

where $d_{i}=\operatorname{deg} \bar{D}_{i}$.
2. In this section we shall describe a purely algebraic approach to the definition of \bar{m}-Alexander polynomials. This approach coincides with the geometric one described above.

Let $I_{q}=\{1,2, \ldots, q\}$ be a segment of $\mathbb{N}, M \subset I_{q}^{3}=I_{q} \times I_{q} \times I_{q}$ a subset and $|M|=\# M$ the cardinality of M.

Definition. A group G is called a C-group of type M, if G possesses the following corepresentation

$$
\begin{equation*}
G=<x_{1}, \ldots, x_{q} \mid\left\{R_{\alpha}(x)\right\}_{\alpha \in M}> \tag{5}
\end{equation*}
$$

where for $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ the relation

$$
R_{\alpha}(x)=x_{\alpha_{1}} x_{\alpha_{2}} x_{\alpha_{1}}^{-1} x_{\alpha_{3}}^{-1}
$$

is a conjugation (the letter "C" in "C-group" is the first letter of the word "conjugation").

2.1. Examples of C-groups:

(1) The free group \mathbb{F}_{n}.
(2) The free abelian group $A b_{n}$.
(3) The braid group B_{n}.
(4) Groups of knots and links (with the Wirtinger corepresentation).
(5) The fundamental groups $\pi_{1}\left(\mathbb{C}^{2} \backslash D\right)$ of complements of plane algebraic curves D (with the corepresentation from [K1]).
2.2. To any C-corepresentation of type M we can associate an oriented graph Γ_{M} with verteces v_{1}, \ldots, v_{q}, and with edges $e_{\alpha}, \alpha \in M$. The edge e_{α} connects the vertex $v_{\alpha_{2}}$ with $v_{\alpha_{3}}$, where $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$.

It is easy to prove the following

Lemma 1. (cf. [K3]) Let G be a C-group of type M, and $G^{\prime}=[G, G]$. Then $G / G^{\prime}=\mathbb{Z}^{n}$, where n is the number of connected components of the graph Γ_{M}.

A C-group G of type M is called an irreducible C-group if its graph Γ_{M} is connected.

Let $\Gamma_{M}=\Gamma_{1} \cup \ldots \cup \Gamma_{n}$ be a decomposition into connected components. For each Γ_{j}, let $I(j)=\left\{i \in I_{q} \mid v_{i} \notin \Gamma_{j}\right\}$. The group

$$
G_{j}=<x_{1}, \ldots, x_{q} \mid\left\{R_{\alpha}\right\}_{\alpha \in M} \cup\left\{x_{i}\right\}_{i \in I(j)}>
$$

is called an irreducible component of a C-group G of type M, and we shall say that the C-group G is composed of n irreducible components G_{j}.

Let G be a C-group composed of n irreducible components. Then for $\bar{m}=$ $\left(m_{1}, \ldots, m_{n}\right)$, let

$$
\begin{equation*}
F_{\bar{m}_{*}}: G \rightarrow \mathbb{F}_{1}=\langle\tau \mid \emptyset\rangle \tag{6}
\end{equation*}
$$

be the homomorphism such that

$$
F_{\bar{m} *}\left(x_{j}\right)=\tau^{m(j)}
$$

for each generator x_{j} of G, where $m(j)=m_{i}$ for $j \in I_{q} \backslash I(i)$. Obviously, $F_{\bar{m} *}$ is an epimorphism if and only if $m_{0}=G C D\left(m_{1}, \ldots, m_{n}\right)=1$. In general

$$
F_{\bar{m} *}=\left(m_{0}\right) \cdot F_{\bar{m}_{p r i m}},
$$

where $\left(m_{0}\right): \mathbf{F}_{1} \rightarrow \boldsymbol{F}_{1}$ is defined by $\left(m_{0}\right)(\tau)=\tau^{m_{0}}$. Put $N=K e r F_{\bar{m}_{*}}$, the kernel of $F_{\bar{m}}$.

Remark 2. If $G=\pi_{1}\left(\mathbb{C}^{2} \backslash D\right)$ and the corepresentation of G coincides with the corepresentation from [K1], then the homomorphism (6) coincides with the homomorphism induced by the morphism (1) in the case $\bar{m}=\bar{m}_{\text {prim }}$.
2.3. Following [M2], to each C-group G we associate a two-dimentional finite connected simplicial complex K with a single vertex x_{0} and 1 -skeleton of which is a union of q oriented loops s_{i}. The loops s_{i} are in one to one correspondence with the generators x_{i} of G. The complement

$$
K \backslash\left(\vee s_{i}\right)=\bigsqcup_{\alpha \in M} S_{\alpha}^{0}
$$

is a disjoint union of open disks. For $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ the disk S_{α} is glued to the 1 -skeleton along the path $s_{\alpha_{1}} s_{\alpha_{2}} s_{\alpha_{1}}^{-1} s_{\alpha_{3}}^{-1}$. Evidently, $\pi_{1}\left(K, x_{0}\right) \simeq G$.

The homomorphism $F_{\bar{m} *}: G \rightarrow \mathbf{F}_{1}$ defines an infinite cyclic covering $f: \widetilde{K} \rightarrow K$ such that $\pi_{1}(\widetilde{K})=N$ and $H_{1}(\widetilde{K}, \mathbb{Z})=N / N^{\prime}$ (here we are assuming that \bar{m} is a primitive vector).

Let $\widetilde{K}_{0}=f^{-1}\left(x_{o}\right)$ and \widetilde{K}_{1} be the 1 -skeleton of \widetilde{K}. We have the following exact sequences:

$$
\begin{aligned}
& \text { (7) } \\
& H_{2}\left(\tilde{K}, \widetilde{K}_{1}\right) \xrightarrow{\mu} H_{1}\left(\tilde{K}_{1}, \tilde{K}_{0}\right) \xrightarrow{\nu} H_{1}\left(\tilde{K}, \tilde{K}_{0}\right) \longrightarrow 0 \\
& 0 \longrightarrow H_{1}(\widetilde{K}) \longrightarrow H_{1}\left(\widetilde{K}, \widetilde{K}_{0}\right) \longrightarrow H_{0}\left(\widetilde{K}_{0}\right) \longrightarrow H_{0}(\tilde{K}) \\
& \| \\
& N / N^{\prime}
\end{aligned}
$$

The action of \mathbf{F}_{1} on \widetilde{K} defines the structure of a $\mathbb{Z}\left[t, t^{-1}\right]$-module on each term of these sequences.

We shall describe these actions. For this we fix p_{0}, which is one of vertices of \widetilde{K}. Let $p_{i}=t^{i} p_{0}$ be the image of the action of $\tau^{i} \in \mathbb{F}_{1}$ at the point p_{0}. Then $\bar{v}_{j}, j=1, \ldots, q$, are the generators of a free $\mathbb{Z}\left[t, t^{-1}\right]$-module $H_{1}\left(\widetilde{K}_{1}, \widetilde{K}_{0}\right)$, where \bar{s}_{j} is an edge starting at the point p_{0}, ending at the point $p_{m(j)}$ and covering the loop s_{j}. The image $t^{i} \bar{s}_{j}$ of the action of τ^{i} at \bar{s}_{j} is the edge starting at the point p_{i} and covering s_{j}.

The description of the action of \mathbf{F}_{1} on $H_{1}(\tilde{K})$ is the same as the description of the action on $H_{1}\left(\widetilde{K}_{1}, \widetilde{K}_{0}\right)$.
Remark 3. It is easy to see that the action of \mathbb{F}_{1} on $H_{1}(\tilde{K}) \simeq N / N^{\prime}$, described above, is the same as the action on N / N^{\prime} induced by the exact sequence

$$
1 \longrightarrow N / N^{\prime} \longrightarrow G / N^{\prime} \xrightarrow{F_{\bar{m} *}} \mathbb{F}_{1} \longrightarrow 1
$$

The generators of the free $\mathbb{Z}\left[t, t^{-1}\right]$-module $H_{2}\left(\widetilde{K}, \widetilde{K}_{1}\right)$ are disks \bar{S}_{α} glued to the 1-skeleton along the paths $\bar{s}_{\alpha_{1}} \cup t^{m\left(\alpha_{1}\right)} \bar{s}_{\alpha_{2}} \cup t^{m\left(\alpha_{2}\right)} \bar{s}_{\alpha_{1}}^{-1} \cup \bar{s}_{\alpha_{3}}^{-1}$.

It is easy to see that $\mu\left(\bar{S}_{\alpha}\right) \in H_{1}\left(\tilde{K}_{1}, \widetilde{K}_{0}\right)$, in the basis $\bar{s}_{1}, \ldots, \bar{s}_{q}$, is equal to either

$$
\begin{equation*}
A_{\alpha}=\left(0, \ldots, 0,1-t^{m\left(\alpha_{2}\right)}, 0, \ldots, 0, t^{m\left(\alpha_{1}\right)}-1,0, \ldots, 0\right) \tag{8}
\end{equation*}
$$

for $\alpha_{1} \neq \alpha_{2}=\alpha_{3} \neq \alpha_{1}$ or

$$
\begin{equation*}
A_{\alpha}=\left(0, \ldots, 0,1-t^{m\left(\alpha_{2}\right)}, 0, \ldots, 0, t^{m\left(\alpha_{1}\right)}, 0, \ldots, 0,-1,0, \ldots, 0\right) \tag{9}
\end{equation*}
$$

for $\alpha_{1} \neq \alpha_{2} \neq \alpha_{3} \neq \alpha_{1}$. Moreover in the first case $1-t^{m\left(\alpha_{2}\right)}$ is in the α_{1}-st place, $t^{m\left(\alpha_{1}\right)}$ is in the α_{2}-nd place; and in the second case $1-t^{m\left(\alpha_{2}\right)}$ is in the α_{1}-st place, $t^{m\left(\alpha_{1}\right)}$ is in the α_{2}-nd place and -1 is in the α_{3}-rd place. Denote by $A_{\bar{m}, G}(t)$ the matrix formed by the rows $A_{\alpha}, \alpha \in M$.

From (7) we have

$$
\partial\left(\nu\left(\bar{s}_{j}\right)\right)=\left(t^{m(j)}-1\right) p_{0}
$$

and moreover $\operatorname{Im} \partial$ is a free $\mathbb{Z}\left[t, t^{-1}\right]$-module generated by $(t-1) p_{0}$ (here we are assuming that $m_{0}=1$).

Let $s \in H_{1}\left(\widetilde{K}_{1}, \widetilde{K}_{0}\right)$ be an element such that $\partial(\nu(s))=(t-1) p_{0}$. Then $H_{1}\left(\widetilde{K}_{1}, \widetilde{K}_{0}\right)$ is decomposed into the direct sum

$$
H_{1}\left(\widetilde{K}_{1}, \widetilde{K}_{0}\right) \simeq K e r(\partial \cdot \nu) \oplus \mathbb{E}\left[t, t^{-1}\right] s
$$

It follows from (8) and (9) that

$$
\operatorname{Im} \mu \subset K e r(\partial \cdot \nu)
$$

and we obtain from (7) that

$$
H_{1}(\tilde{K})=K e r(\partial \cdot \nu) / I m \mu
$$

and

$$
\operatorname{rg} A_{\bar{m}}(G) \leqslant q-1 .
$$

Definition. A C-group G of type $M \subset I_{q}$ is called \bar{m}-connected, if

$$
\operatorname{rg} A_{\bar{m}}(G)=q-1
$$

By $E_{\bar{m}, G, i}(t), 0 \leqslant i \leqslant q$, denote the ideals of $\mathbb{Z}\left[t, t^{-1}\right]$, where

$$
E_{\bar{m}, G, i}(t)= \begin{cases}(0), & \text { if } q-i>|M| \\ \mathbb{Z}\left[t, t^{-1}\right], & \text { if } q-i<0, \\ \text { is generated by all }(q-i) \text {-minors of } A_{\bar{m}, G}(t), & \text { if } 0 \leq q-i \leq|M|\end{cases}
$$

Let $\Delta_{\bar{m}, G, i}(t)$ be a generator of the minimal principal ideal which contains $E_{\bar{m}, G, i}(t)$. If $\Delta_{\bar{m}, G, i}(t) \not \equiv 0$, then after multiplying $\Delta_{\bar{m}, G, i}(t)$ by an invertible element in $\mathbb{Z}\left[t, t^{-1}\right]$, we can assume that

$$
\Delta_{\bar{m}, G, i}(t) \in \mathbb{Z}[t] \quad \text { and } \quad \Delta_{\bar{m}, G, i}(0) \neq 0
$$

Remark 4. These ideals $E_{\bar{m}, G, i}(t)$ and polynomials $\Delta_{\bar{m}, G, i}(t)$ can be obtained using Fox's free calculus (see [C-F]).

If we apply the proof of Theorem 5 from [L, chapter XV] to the finitely generated submodules $I m \mu \otimes \mathbb{Q}$ and $\operatorname{Ker}(\partial \cdot \nu) \otimes \mathbb{Q}$ of the free $\mathbb{Q}\left[t, t^{-1}\right]$-module $H_{1}\left(\widetilde{K}, \widetilde{K}_{0}\right) \otimes \mathbb{Q}$, then we obtain that there exist a basis g_{1}, \ldots, g_{q} of $H_{1}\left(\widetilde{K}, \widetilde{K}_{0}\right) \otimes \mathbb{Q}$ and non-zero elements $\lambda_{1}(t), \ldots, \lambda_{r}(t) \in \mathbb{Q}\left(t, t^{-1}\right)$, where $0 \leq r \leq q-1$, such that:
(i) g_{1}, \ldots, g_{q-1} form a basis of $\operatorname{Ker}(\partial \cdot \nu) \otimes \mathbb{Q}$ over $\mathbb{Q}\left[t, t^{-1}\right]$;
(ii) $\lambda_{1}(t) g_{1}, \ldots, \lambda_{r}(t) g_{\mathrm{r}}$ form a basis of $\operatorname{Im} \mu \otimes \mathbb{Q}$ over $\mathbb{Q}\left[t, t^{-1}\right]$;
(iii) $\lambda_{i} \mid \lambda_{i+1}$ for $i=1, \ldots, r-1$;
(iiii) the module

$$
\begin{align*}
\left(N / N^{\prime}\right) \otimes \mathbb{Q} & =H_{1}(\tilde{K}, \mathbb{Q}) \simeq \\
& \simeq \mathbb{Q}\left[t, t_{-1}\right] /\left(\lambda_{1}(t)\right) \oplus \ldots \oplus \mathbb{Q}\left[t, t^{-1}\right] /\left(\lambda_{1}(t)\right) \oplus\left(\mathbb{Q}\left[t, t_{-1}\right]\right)^{q-r-1} \tag{10}
\end{align*}
$$

and moreover we have that the generators $\Delta_{\bar{m}, i, G, \mathbf{Q}}(t)$ of the minimal principal ideals, containing $E_{\bar{m}, G, i}(t) \otimes \mathbb{Q}$, are

$$
\Delta_{\bar{m}, G, i, \mathbf{Q}}(t)=\left\{\begin{array}{cr}
0 & \text {, if } i<q-r \\
\lambda_{1}(t) \cdot \ldots \cdot \lambda_{q-\mathbf{i}}(t), \text { if } i \geq q-r
\end{array}\right.
$$

After multiplying $\lambda_{i}(t)$ by invertible elements in $\mathbb{Q}\left[t, t^{-1}\right]$ we can assume that

$$
\Delta_{\bar{m}, G, i, \mathbf{Q}}(t)=\Delta_{\bar{m}, G, i}(t)
$$

It is easy to see from (10) that $\left(N / N^{\prime}\right) \otimes \mathbb{Q}$ is a finitely generated \mathbb{Q}-module if and only if $\Delta_{\bar{m}, G, i}(t) \not \equiv 0$.

Let G be \bar{m}-connected. From (10) we have that $\Delta_{\bar{m}, 1, G}(t)$ coincides with the characteristic polynomial of the automorphism $h \in A u t\left[\left(N / N^{\prime}\right) \otimes \mathbb{Q}\right]$, which is defined by the action of the generator $\tau \in \mathbb{F}_{1}$ on $H_{1}(\widetilde{K}, \mathbb{Q})$. By virtue of stated above this action is reduced to the multiplication by t in (10).

Now let us consider the field \mathbb{Z}_{p} instead of \mathbb{Q}. As above we obtain that the coefficients of $\Delta_{m, G, 1}(t)$ are relatively prime for a finitely generated group N / N^{\prime}.

On the other hand, if N / N^{\prime} is a finitely generated group, then any choice of basis of $\left(N / N^{\prime}\right)_{\text {Free }}$ determines a basis of $\left(N / N^{\prime}\right)_{\text {Free }} \otimes \mathbb{Q}$. The matrix of h in the choosen basis is integral and det $h=1$, because h is an automorphism of $\left(N / N^{\prime}\right)_{F r e c}$. Thus, in this case $\Delta_{\bar{m}, G, 1}(t)$ coincides up to a sign with the characteristic polynomial of h, because the coefficients of $\Delta_{\bar{m}, G, 1}(t)$ are relatively prime.

Let us gather the previous considerations into the following
Proposition 2. Let G be C-group and $N=K e r F_{\bar{m} *}$. Then:
(i) $\left(N / N^{\prime}\right) \otimes \mathbb{Q}$ is a finitely generated \mathbb{Q}-module if and only if G is \bar{m}-connected. In this case $\Delta_{\bar{m}_{\text {prim }}, G, 1}(t)$ coincides (up to a constant multiplier) with the characteristic polynomial of $h \in A u t\left[\left(N / N^{\prime}\right) \otimes \mathbb{Q}\right]$, which is induced by the action of the generator $\tau \in \mathbb{F}_{1}$ on $\left(N / N^{\prime}\right) \otimes \mathbb{Q}$;
(ii) If N / N^{\prime} is a finitely generated group, then

$$
\Delta_{\bar{m}_{\text {Prim }}, G, 1}(t)= \pm \operatorname{det}(h-t I d) .
$$

In particular, $\left|\Delta_{\bar{m}, G, 1}(0)\right|=1$.
Corollary. If a curve $D \subset \mathbb{C}^{2}$ and \bar{m} satisfy the condition (*), then

$$
\Delta_{\bar{m}, D}(t)= \pm \Delta_{\bar{m}_{p r i m}, G, 1}(t),
$$

where $G=\pi_{1}\left(\mathbb{C}^{2} \backslash D\right)$.
From Lemma 1 and from the exact sequence ([M2])

$$
\longrightarrow H_{1}(\tilde{K}, \mathbb{Q}) \xrightarrow{h-I d} H_{1}(\tilde{K}, \mathbb{Q}) \longrightarrow H_{1}(K, \mathbb{Q}) \longrightarrow H_{0}(\tilde{K}, \mathbb{Q}) \longrightarrow 0
$$

we obtain the following

Proposition 3. Let G be an \bar{m}-connected C-group. Then

$$
\Delta_{\bar{m}, G, 1}(t)=(t-1)^{n-1} \Delta^{\prime}(t)
$$

where n is the number of irreducible components of G and $\Delta^{\prime}(t)$ is a polynomial such that $\Delta^{\prime}(1) \neq 0$.

2.4.

Proposition 4. Let $G=G_{1} \times \ldots \times G_{n}$ be the direct product of irreducible C groups, $n>1$, and $\bar{m}=\left(m_{1}, \ldots, m_{n}\right)$ be a vector such that each coordinate m_{i} is equal to $p_{i}^{r_{i}}$, where p_{i} is prime and $r_{i} \in \mathbb{N}$. Then

$$
\Delta_{\bar{m}, G, i}(t)=\left(t^{m_{0}}-1\right)^{n-i}
$$

for $1 \leq i \leq n$, where $m_{0}=\operatorname{GCD}\left(m_{1}, \ldots, m_{n}\right)$.
Remark 5. In the statement of Proposition 4 we do not assume that the Alexander matrix $A_{\bar{m}, G}(t)$ satisfies the condition $m_{0}=1$.

Proof. By induction over n.
First, note that

$$
\Delta_{\bar{m}, G, i}(t)=\Delta_{\bar{m}_{p r i m}, G, i}\left(t^{m_{0}}\right)
$$

In the case $n=2$, for $1 \leq i \leq q_{1}$, let the edges $v_{i} \in \Gamma_{M}$ correspond to the generators x_{i} of G_{1}, and for $q_{1}<i \leq q_{1}+q_{2}=q$, let the edges v_{i} correspond to the generators of G_{2}. Numerate the relations R_{α} such that the first s_{1} relations are the relations of the C-group G_{1}, the relations with index $i, s_{1}<i \leq s_{1}+s_{2}$, are the relations of the C-group G_{2} and the last $q_{1} \cdot q_{2}$ relations are the relations of commutation.

Put

$$
\bar{m}=\left(m_{1}, m_{2}\right), \quad m_{0}=G C D\left(m_{1}, m_{2}\right), \quad m_{i}^{\prime}=m_{i} / m_{0}
$$

It is easy to see that the Alexander matrix $A_{\bar{m}, G}(t)$ is of order $\left(s_{1}+s_{2}+q_{1} q_{2}\right) \times$ ($q_{1}+q_{2}$) and has the form

$$
A_{\bar{m}, G}(t)=\left(\begin{array}{cc}
A_{1, G_{1}}\left(t^{m_{1}}\right) & 0 \\
0 & A_{1, G_{2}}\left(t^{m_{2}}\right) \\
E_{1}\left(t^{m_{2}}\right) & E_{2}\left(t^{m_{1}}\right)
\end{array}\right)
$$

where $A_{1, G_{i}}(t)$ is the Alexander matrix of G_{i}, the matrices $E_{i}(t)$ are of order $\left(q_{1} q_{2}\right) \times$ s_{i} and are composed of the rows of the form

$$
(0, \ldots, 0, \pm(t-1), 0, \ldots, 0)
$$

Add the first $q_{1}-1$ columns to the column q_{1} and add columns with index i, $q_{1}+1 \leq i \leq q_{1}+q_{2}-1$, to the column $\left(q_{1}+q_{2}\right)$. We get a matrix $\widetilde{A}_{m, G}(t)$ which is equivalent to $A_{\bar{m}, G}(t)$. The columns q_{1} and $\left(q_{1}+q_{2}\right)$ of $\widetilde{A}_{\bar{m}, G}(t)$ are of the form

$$
\left(0, \ldots, 0, \pm\left(t^{m_{i}}-1\right), \ldots, \pm\left(t^{m_{i}}-1\right)\right)
$$

where " 0 " stand in the first $s_{1}+s_{2}$ places.
Consider the $\left(q_{1}+q_{2}-1\right)$-minors of $\widetilde{A}_{\bar{m}, G}(t)$ formed by rows taken from the first $\left(s_{1}+s_{2}+1\right)$ rows of $\widetilde{A}_{\bar{m}, G}(t)$. These minors have the following form:

$$
\phi_{1}\left(t^{m_{1}}\right) \phi_{2}\left(t^{m_{2}}\right)\left(t^{m_{i}}-1\right)
$$

where $\phi_{i}(t)$ are some $\left(q_{i}-1\right)$-minors of the matrix $A_{1, G_{i}}(t)$.
Note that by Lemma 6 in [K3] the polynomials $\Delta_{1, G_{i}, 1}(t)$ satisfy the following condition:

$$
\Delta_{1, G_{i}, 1}(1)= \pm 1 .
$$

Thus the greatest common divisor of the minors of $A_{\bar{m}, G}(t)$ considered above is equal to

$$
\begin{equation*}
\Delta_{1, G_{1}, 1}\left(t^{m_{1}}\right) \Delta_{1, G_{2,1}}\left(t^{m_{2}}\right)\left(t^{m_{0}}-1\right) \tag{11}
\end{equation*}
$$

On the other hand, it is easy to show that the greatest common divisor of the ($q_{1}+q_{2}-1$)-minors, which are formed by rows taken from the last $q_{1} q_{2}$ rows of $A_{\bar{m}, G}(t)$, is equal to

$$
\begin{equation*}
\left(t^{m_{1}}-1\right)^{q_{2}-1}\left(t^{m_{2}}-1\right)^{q_{1}-1}\left(t^{m_{0}}-1\right) . \tag{12}
\end{equation*}
$$

From [K3] it follows that the p^{r}-th root of unity is not a root of the polynomial $\Delta_{1, G_{i}, 1}(t)$. Thus, combining (11) and (12) we obtain that

$$
\Delta_{\bar{m}, G_{1} \times G_{2}, 1}(t)=\left(t^{m_{0}}-1\right) .
$$

Obviously,

$$
\Delta_{\bar{m}, G_{1} \times G_{2}, 2}(t) \equiv 1 .
$$

The general case. Suppose the proposition is true for $n \leq l$. Consider a group $G=G_{1} \times \ldots \times G_{l+1}$ and a vector $\bar{m}=\left(m_{1}, \ldots, m_{l+1}\right)$. Fix the number $j, j \leq l+1$, and introduce the following notation

$$
\begin{gathered}
\widetilde{G}_{1}=G_{j}, \quad \widetilde{G}_{2}=G_{1} \times \ldots \times \widehat{G}_{j} \times \ldots \times G_{l+1}, \\
m_{0}^{j}=G C D\left(m_{1}, \ldots, \hat{m}_{j}, \ldots, m_{l+1}\right), \quad \bar{m}_{j}=\left(m_{1}, \ldots, \hat{m}_{j}, \ldots, m_{l+1}\right)
\end{gathered}
$$

Let q_{i} be the number of generators and s_{i} be the number of relations of the C-group $\widetilde{G}_{i}, i=1,2$. Denote by $A_{\bar{m}_{j}, \bar{G}_{1} \times \bar{G}_{2}}(t)$ the matrix with the same properties (with respect to \widetilde{G}_{1} and \widetilde{G}_{2}) as in the case $n=2$.

First let us show that each $\left(q_{1}+q_{2}-i\right)$-minor of $A_{\bar{m}_{j}, \tilde{G}_{1} \times \tilde{G}_{2}}(t)$ is divisible by $\left(t^{m_{0}^{j}}-1\right)^{l+1-j}$. Note for this that each $\left(q_{1}+q_{2}-i\right)$-minor \mathcal{M} can be decomposed into the sum of products:

$$
\mathcal{M}=\sum \mathcal{M}_{1, \alpha} \mathcal{M}_{2, \beta} \mathcal{M}_{3, \gamma}
$$

where $\mathcal{M}_{1, \alpha}$ are $\left(q_{1}-i_{1}\right)$-minors of $A_{m_{j}, \bar{G}_{1}}(t), \mathcal{M}_{2, \beta}$ are $\left(q_{2}-i_{2}\right)$-minors of $A_{\bar{m}_{j}, \bar{G}_{2}}(t)$ and $\mathcal{M}_{3, \gamma}$ are minors of order $i_{1}+i_{2}-i$ generated by some rows with indices $>s_{1}+s_{2}$. It is easy to see that $\mathcal{M}_{3, \gamma}$ is divisible by $\left(t^{m_{0}}-1\right)^{i_{1}+i_{2}-i}$.

If $i_{2}>l$, then $\mathcal{M}_{3, \gamma}$ is divisible by $\left(t^{m_{0}}-1\right)^{l+1-i}$.
If $i_{2} \leq l$, then $\mathcal{M}_{2, \beta}$ is divisible by $\left(t^{m_{0}}-1\right)^{l-i_{2}}$ by the inductive assumption. In this case $\mathcal{M}_{2, \beta} \mathcal{M}_{3, \gamma}$ is divisible by $\left(t^{m_{0}}-1\right)^{l+i_{1}-i}$. If $i_{1}=0$, then $\mathcal{M}_{1, \alpha} \equiv 0$. Thus in all cases $\mathcal{M}_{1, \alpha} \mathcal{M}_{2, \beta} \mathcal{M}_{3, \gamma}$ are divisible by $\left(t^{m_{0}}-1\right)^{l+1-i}$.

Now, on the one hand, by induction assumptions we can choose a ($q_{2}-1$)-minor \mathcal{M}_{2} of $A_{\bar{m}_{j}, \widetilde{G}_{2}}(t)$ such that $\mathcal{M}_{2}=\left(t^{m_{0}^{j}}-1\right)^{i-i} \widetilde{\mathcal{M}}_{2}$, where $\widetilde{\mathcal{M}}_{2}$ and $\left(t^{m_{0}^{j}}-1\right)$ are relatively prime.

We can choose a $\left(q_{1}-1\right)$-minor \mathcal{M}_{1} of $A_{m_{j}, \tilde{G}_{1}}(t)$ such that \mathcal{M}_{1} and $\left(t^{m^{j}}-1\right)$ are relatively prime. Moreover by [K3] the p^{r}-th roots of unity are not the roots of the polynomial $\mathcal{M}_{1}(t)$ for each prime number p.

Add one more row with index $>s_{1}+s_{2}$ and one more column with index $>q_{1}$ which not contained \mathcal{M}_{2} to the rows and columns contained in \mathcal{M}_{1} and \mathcal{M}_{2}. We find a ($q_{1}+q_{2}-i$)-minor \mathcal{M} of the matrix $A_{\bar{m}, G}(t)$ such that

$$
\mathcal{M}= \pm\left(t^{m_{0}^{j}}-1\right)^{i-i} \widetilde{\mathcal{M}}_{2} \mathcal{M}_{1}\left(t^{m_{j}}-1\right)
$$

It is easy to see that the greatest common divisor of all these minors is equal to

$$
\begin{equation*}
\left(t^{m_{o}^{j}}-1\right)^{l+1-i} \mathcal{M}^{\prime}(t) \tag{13}
\end{equation*}
$$

where $\mathcal{M}^{\prime}(t)$ has no p^{r}-th roots of unity in its roots.
On the other hand, there exists a $\left(q_{1}+q_{2}-i\right)$-minor $\mathcal{M}(t)$ of $A_{\bar{m}, G}(t)$, which is formed by rows with indexes $>s_{1}+s_{2}$ (these rows correspond to the relations of commutation). The roots of $\mathcal{M}(t)$ are the roots of unity of orders $m_{i}=p_{i}^{r_{i}}$. From this and (13) it follows that $\Delta_{\bar{m}, G, i}(t)$ divides $\left(t^{m_{0}^{j}}-1\right)^{i+1-i}$.

Finally, $\Delta_{\bar{m}, G, i}(t)$ divides

$$
G C D\left(\left(t^{m_{0}^{1}}-1\right)^{l+1-i}, \ldots,\left(t^{m_{0}^{l+1}}-1\right)^{l+1-i}\right)=\left(t^{m_{0}}-1\right)^{l+1-i}
$$

Combining this with the fact that $\Delta_{\bar{m}, G, i}(t)$ is divisible by $\left(t^{m_{0}}-1\right)^{1+1-i}$, we that Proposition 4 is proven.
Proposition 5. Let $G=G_{1} \times \ldots \times G_{n}, n>1$, be a direct product of irreducible C-groups such that $\Delta_{1, G_{i}, 1}(t) \equiv 1$ for all i. Then for any $\bar{m}=\left(m_{1}, \ldots, m_{n}\right)$

$$
\Delta_{\bar{m}, G, i}=\left(t^{m_{0}}-1\right)^{n-i}
$$

Proof. The same as the proof of Proposition 4.
Corollary. Let $G=\mathbb{Z}^{n}$ be a free abelian group. Then

$$
\Delta_{\bar{m}, G, i}(t)=\left(t^{m_{0}}-1\right)^{n-i}
$$

for $1 \leq i \leq n$ and for each $\bar{m} \in \mathbb{N}^{n}$.

Example. Let G_{1} and G_{2} be two copies of

$$
G=<x_{1}, x_{2}, x_{3}\left|x_{1} x_{2} x_{1}^{-1} x_{3}^{-1}, x_{2} x_{3} x_{2}^{-1} x_{1}^{-1}\right\rangle
$$

(G is the group of a clover-leaf knot). Then direct calculations give that

$$
\Delta_{(6,1), G_{1} \times G_{2}, 1}(t)=(t-1)\left(t^{2}-t+1\right) .
$$

3. In this section we shall apply the results obtained above to calculation of the irregularity of cyclic coverings of \mathbb{P}^{2}.
3.1. In notations of $n .1$ denote by $X_{k, m}^{0}$ the surface in \mathbb{C}^{3} defined by equation

$$
\begin{equation*}
z^{k}=f_{1}^{m_{1}}(x, y) \cdot \ldots \cdot f_{n}^{m_{n}}(x, y) . \tag{14}
\end{equation*}
$$

Let $\phi^{\prime}: X_{k, m}^{0} \rightarrow \mathbb{C}^{2}$ be the restriction of the projection \mathbb{C}^{3} onto \mathbb{C}^{2} defined by $(x, y, z) \longmapsto(x, y)$.

From now we shall assume that $\operatorname{GCD}\left(m_{1}, \ldots, m_{n}, k\right)=1$ (this is nothing but the condition that $X_{k, m}^{0}$ is irreducible). Let $X_{k, m}$ be a projective closure of $X_{k, m}^{0}$, and $\pi: \bar{X}_{k, \bar{m}} \rightarrow X_{k, \bar{m}}$ be a desingularisation. We can assume that $\phi=\phi^{\prime} \cdot \pi: \bar{X}_{k, \bar{m}} \rightarrow$ \mathbb{P}^{2} is a regular morphism.

The irregularity $q_{k, \bar{m}}=q\left(\bar{X}_{k, \bar{m}}\right)$ on $\bar{X}_{k, \bar{m}}$ has three equivalent expressions:

$$
q_{k, \bar{m}}=\operatorname{dim} H^{1}\left(\bar{X}_{k, \bar{m}}, \mathcal{O}\right)=\operatorname{dim} H^{0}\left(\bar{X}_{\left.k, \bar{m}, \Omega^{1}\right)}=\frac{1}{2} \operatorname{dim} H^{1}\left(\bar{X}_{k, \bar{m}}, \mathbb{R}\right)=\frac{1}{2} b_{1}\left(\bar{X}_{k, \bar{m}}\right) .\right.
$$

Remark 6. The surfaces $\bar{X}_{k, \bar{m}}, \bar{X}_{k, \bar{m}_{\mathrm{red}}}, \bar{X}_{k, \bar{m}+\bar{k}}$ are birationally isomorphic, where $\bar{m}+\bar{k}=\left(m_{1}+k, \ldots, m_{n}+k\right)$. Thus these surfaces have one and the same irregularity $q_{k, \bar{m}}$.

Put $U_{k, \bar{m}}=\bar{X}_{k, \bar{m}} \backslash \phi^{-1}\left(\bar{D} \cup L_{\infty}\right)$.
From now we shall assume that k does not divide m_{i} for all i. This is nothing but the condition that ϕ is ramified along each component D_{i} of D.

The inclusion $\alpha: U_{k, m} \rightarrow \bar{X}_{k, \bar{m}}$ defines an epimorphism

$$
\alpha_{*}: H_{1}\left(U_{k, \bar{m}}, \mathbb{Q}\right) \rightarrow H_{1}\left(\bar{X}_{k, \bar{m}}, \mathbb{Q}\right) .
$$

Thus

$$
\begin{equation*}
b_{1}\left(\bar{X}_{k, \bar{m}}\right)=b_{1}\left(U_{k, \bar{m}}\right)-\operatorname{dim} \operatorname{Ker} \alpha_{*} \tag{15}
\end{equation*}
$$

Lemma 3. (cf.[S])
$\operatorname{dim} K e r \alpha_{*} \geq n=\#\{$ the irreducible components of the curve $D\}$
Proof. The homomorphism $\phi_{*}: H_{1}\left(U_{k, \bar{m}}, \mathbb{Q}\right) \rightarrow H_{1}\left(\mathbb{C}^{2} \backslash D, \mathbb{Q}\right)$ is an epimorphism. Indeed, $H_{1}\left(\mathbb{C}^{2} \backslash D, \mathbb{Z}\right)$ is generated by γ_{i}, which are simple circuits around D_{i}. It is easy to see that $\left(k / G C D\left(m_{i}, k\right)\right) \gamma_{i}$ can be lifted up to $H_{1}\left(U_{k, m}, \mathbb{Z}\right)$ and this cycle $\tilde{\gamma}_{i}$ is a simple circuit around one of irreducible components of $\phi^{-1}\left(D_{i}\right)$. The cycles $\tilde{\gamma}_{1}, \ldots, \tilde{\gamma}_{n}$ are lineary independent in $H_{1}\left(U_{k, \bar{m}}, \mathbb{Z}\right)$, because $\gamma_{1}, \ldots, \gamma_{n}$ form a basis of $H_{1}\left(\mathbb{C}^{2} \backslash D, \mathbb{Z}\right)$.

Obviously, $\tilde{\gamma}_{1}, \ldots, \tilde{\gamma}_{n} \in \operatorname{Ker} \alpha_{*}$.

3.2. Put

$$
N(k, \bar{m})=\sum \#\left\{\text { distinct } k \text {-th roots of unity which are roots of } \lambda_{j}(t)\right\}
$$

where $\lambda_{j}(t)$ are the elementary divisors of $\Delta_{\bar{m}_{p r i m}, G, 1}(t)$ defined by (10) for $G=\pi_{1}\left(\mathbb{C}^{2} \backslash D\right)$.
Theorem 3. ([Lib], $[S])$ Let $D \subset \mathbb{C}^{2}$ and \bar{m} satisfy the condition (*). Then

$$
b_{1}\left(U_{k, \bar{m}}\right)=1+N(k, \bar{m})
$$

3.3. Combining this theorem, Propositions 4 and 5 with [K2] we obtain the following theorems:
Theorem 4. Let a curve $\bar{D}=\bar{D}_{1} \cup \ldots \cup \bar{D}_{n}, n>1$, satisfy the following conditions:
(i) for all $i, j, i \neq j$, the intersections $\left(\bar{D}_{i} \cap \bar{D}_{j}\right) \cap L_{\infty}=\varnothing$;
(ii) locally the divisor $D=D_{1}+\ldots+D_{n}$ is a divisor with normal crossings at each point $x \in \bigcup_{i \neq j}\left(D_{i} \cap D_{j}\right)$.

Then

$$
q\left(\bar{X}_{k, \bar{m}}\right)=0
$$

for $\bar{m}=\left(m_{1}, \ldots, m_{n}\right)$ with $m_{i}=p_{i}^{r_{i}}$, where p_{i} are primes and $r_{i} \in \mathbb{N}$.
Theorem 5. Let \bar{D} be as in Theorem 4 and let $\Delta_{\bar{m}, D}(t) \equiv 1$ for all i, where $G_{i}=\pi_{1}\left(\mathbb{C}^{2} \backslash D_{i}\right)$. Then for any $\bar{m}=\left(m_{1}, \ldots, m_{n}\right)$

$$
q\left(\bar{X}_{k, \bar{m}}\right)=0 .
$$

In particular, if $\pi_{1}\left(\mathbb{C}^{2} \backslash D_{i}\right) \simeq \mathbb{F}_{1}$ for all i and if $\bar{D}=\bar{D}_{1} \cup \ldots \cup \bar{D}_{n}$ satisfies the assumptions of Theorem 4, then for any \bar{m} the irregularity $q\left(\bar{X}_{k, \bar{m}}\right)=0$.
Theorem 6. Let \bar{D} be as in Theorem 4, and let the following conditions be satisfied:
(i) \bar{D} meets L_{∞} transversally;
(ii) $\sum d_{i} m_{i}^{\prime}=p^{r}$, where p is prime, $r \in \mathbb{N}$ and $d_{i}=\operatorname{deg} D_{i}$.

Then $q\left(\bar{X}_{k, \bar{m}}\right)=0$.
Proof. From Theorem 2 and Remark 1 it follows that the roots of $\Delta_{\bar{m}, D}(t)$ are the p^{r}-th roots of unity.

On the other hand, it follows from the proof of Proposition 4 that

$$
\Delta_{\bar{m}, D}(t)=(t-1)^{n-1} \Delta^{\prime}(t)
$$

where $\Delta^{\prime}(t)$ is a divisor of the polynomial

$$
\Delta=\prod_{i=1}^{n} \Delta_{1, D_{i}}\left(t^{m_{i}^{\prime}}\right)
$$

By Theorem 7 in [K3] the roots of $\Delta(t)$ are not the p^{r}-th roots of unity. Thus $\Delta^{\prime}(t) \equiv$ const and Theorem 6 follows from (15) and from Theorem 3.
3.4. Recall $([\mathrm{N}])$ that $\pi_{1}\left(\mathbb{C}^{2} \backslash D_{i}\right)=\mathbf{F}_{1}$, if the proper pre-image $\sigma^{-1}\left(\bar{D}_{\mathbf{i}}\right)$ has positive index of self-intersection, where $\sigma: \overline{\mathbb{P}}^{2} \rightarrow \mathbf{P}^{2}$ is a composition of σ-processes such that $\sigma^{*}\left(\bar{D}_{i} \cup L_{\infty}\right)$ is a divisor with normal crossings.

There exists another criterion for commutativity of the fundamental group of the complement of an algebraic curve in \mathbb{C}^{2}.
Theorem 7. Let $\left\{C_{b}\right\}_{b \in B}$ be a family of plane affine algebraic curves such that
(i) $C_{0}=D_{1}+\ldots+D_{n}$ is a reduced divisor and satisfies the conditions of Theorem 4;
(ii) a generic member C_{b} of this family is irreducible.

Then $\pi_{1}\left(\mathbb{C}^{2} \backslash C_{b}\right)=\mathbb{F}_{1}$.
Proof. According to the well-known "semicontinuity" principle there exists an epimorphism of C-groups

$$
\pi_{1}\left(\mathbb{C}^{2} \backslash C_{0}\right) \rightarrow \pi_{1}\left(\mathbb{C}^{2} \backslash C_{b}\right)
$$

Denote it by ν. Moreover, if x_{i} is a generator of the C-group $\pi_{1}\left(\mathbb{C}^{2} \backslash C_{0}\right)$, then $\nu\left(x_{i}\right)$ is a generator of the C-group $\pi_{1}\left(\mathbb{C}^{2} \backslash C_{b}\right)$.

From [K2] we have that $\pi_{1}\left(\mathbb{C}^{2} \backslash C_{0}\right) \cong \pi_{1}\left(\mathbb{C}^{2} \backslash D_{1}\right) \times \ldots \times \pi_{1}\left(\mathbb{C}^{2} \backslash D_{n}\right)$. Let x_{1} and x_{2} be two generators of $\pi_{1}\left(\mathbb{C}^{2} \backslash C_{0}\right)$ which belong to different subgroups $\pi_{1}\left(\mathbb{C}^{2} \backslash D_{i}\right)$. We can assume without loss of generality that x_{1} is a generator of $\pi_{1}\left(\mathbb{C}^{2} \backslash D_{1}\right)$ and x_{2} is a generator of $\pi_{1}\left(\mathbb{C}^{2} \backslash D_{2}\right)$.

We have that $\nu\left(x_{1}\right)$ and $\nu\left(x_{2}\right)$ are conjugated to each other, because C_{b} is irreducible. Let $\nu\left(x_{2}\right)=\nu\left(x_{3}\right) \nu\left(x_{1}\right) \nu\left(x_{3}\right)^{-1}$, where x_{3} is a generator of one of the subgroups $\pi_{1}\left(\mathbb{C}^{2} \backslash D_{i}\right)$.

If $x_{3} \notin \pi_{1}\left(\mathbb{C}^{2} \backslash D_{1}\right)$, then $\nu\left(x_{2}\right)=\nu\left(x_{1}\right)$, because in this case x_{1} and x_{3} commute.
If $x_{3} \in \pi_{1}\left(\mathbb{C}^{2} \backslash D_{1}\right)$, then $\nu\left(x_{1}\right)=\nu\left(x_{3}\right)^{-1} \nu\left(x_{2}\right) \nu\left(x_{3}\right)=\nu\left(x_{2}\right)$. Thus in all cases $\nu\left(x_{1}\right)=\nu\left(x_{2}\right)$ for all generators x_{1} of the C-group $\pi_{1}\left(\mathbb{C}^{2} \backslash D_{1}\right)$ and for all generators x_{2} of the C-group $\pi_{1}\left(\mathbb{C}^{2} \backslash D_{2}\right)$. This means that $\operatorname{Im} \nu \cong \mathbb{F}_{1}$. Theorem 7 is proven.
3.5. We say that a vector $\bar{m}=\left(m_{1}, \ldots m_{n}\right)$ is k-admissible, if k is not a divisor of m_{i} for all i. Two vectors $\bar{m}_{1}=\left(m_{1}, \ldots m_{n}\right)$ and $\bar{m}_{2}=\left(\tilde{m}_{1}, \ldots, \tilde{m}_{n}\right)$ are called k-equivalent, if it is possible to transform \bar{m}_{1} into \bar{m}_{2} by a sequence of the following transformations:

1) $\bar{m} \longmapsto \bar{m} \pm \bar{k}$;
2) $\bar{m} \longmapsto p \bar{m}=\left(p m_{1}, \ldots, p m_{n}\right)$, if the vector $p \bar{m}$ is k-admissible;
3) $\bar{m} \longmapsto \bar{m}_{\text {prim }}$.

Example. The vectors $\bar{m}_{1}=(1,3)$ and $\bar{m}_{2}=(3,4)$ are 5 -equivalent, because

$$
\bar{m}_{1}=(1,3) \longmapsto(6,8) \longmapsto(3,4)=\bar{m}_{2} .
$$

Proposition 6. Let D and \bar{m}_{1} satisfy the condition (*), and let \bar{m}_{1} and \bar{m}_{2} be k-equvialent. Then
\# $\left(\bigcup_{j}\{\right.$ distinct k-th roots of unity which are roots of the elementary divisor $\lambda_{j}(t)$ of $\left.\left.\Delta_{\bar{m}_{1 \text { prim, }}}(t)\right\}\right)=$
$=\#\left(\bigcup_{j}\{\right.$ distinct k-th roots of unity which are roots of the elementary divisor $\lambda_{j}(t)$ of $\left.\left.\Delta \bar{m}_{\text {2prim,D }}(t)\right\}\right)$.
Proof. The surfaces $U_{k, \bar{m}_{1}}$ and $U_{k, \bar{m}_{2}}$ are isomorphic. Proposition 6 follows from this and from Theorem 3.

References

[A'C] N. A'Campo, La fanction zeta d'une monodromie, Commentarii Mathematici Helveticia 32, N. 2 (1979), 318-327.
[C-F] R.H. Crowell and R.H. Fox, Introduction to knot theory, Springer-Verlag, 1963.
[K1] Vic.S. Kulikov, On the fundamental group of the complement of a hypersurface in \mathbb{C}^{n}, Lect. Notes in Math. 1479 (1991), 122-130.
[K2] Vic.S. Kulikov, On the structure of the fundamental group of the complement of algebraic curves in \mathbb{C}^{2}, Izv. RAN, ser. math. (in Russian) 56, N. 2 (1992), 469-481.
[K3] Vic.S. Kulikov, The Alexander polynomials of plane algebraic curves, Izv. RAN, ser. math. (in Russian) 57, N. 1 (1993), 76-101.
[L] S. Lang, Algebra, Addison - Wesley Publ. Company, 1977.
[Lib] A. Libgober, Alexander polynomias of plane algebraic curves and cyclic multiple planes, Duke Math. J. 49 (1982), 833-851.
[M1] J. Milnor, Infinite cyclic covers, Topology of manifolds (1968), 115-133.
[M2] J. Milnor, Singular points of complex hypersurfaces, Ann. Math. Studies 61. Princeton Univ. Press, 1968.
[N] M. Nori, Zariski's conjecture and related problems, Ann. Sci. Ec. Norm. Sup. ser. 416 (1983), 305-344.
[S] F. Sakai, On the irregularity of cyclic coverings of the projective plane, (Preprint) (1992).
[S-S] Y. Shinohara and D. W. Sumners, Homology invariants of cyclic coverings with applications to links, Trans. A.M.S. 163 (1972), 101-121.
[Z1] O. Zariski, On the linear connection index of the algebraic surface $z^{n}=f(x, y)$, Proc. Nat. Acad. Sci. 15 (1929), 494-501.
[Z2] O. Zariski, On the irregularity of cyclic multiple planes, Ann. of Math. 32 (1931), 485-511.

