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0. Let D C P2 be an algebraic curve and let D =D;N...nD, be the decomposition
of D into the irreducible components. Let Lo, C P? be a straight line and define
C? =P\ Ly ,D; =D;nC? By fi(z,y) = 0 denote an equation of D;, where
fi(z,y) € Clz,y] is an irreducible polynomial.

Let m = (my,...,m,) € N" be a vector with positive integer coordinates. Put
mo = GCD(my,...,m,) and m} = m;/my.

The vector Miprim = (my,...,m;,) is called primitive.

By

(1) Fm:X=C2\D—C"=C\ {0}

denote the morphism defined by the equation
n '
=[] (=)
i=1

We shall assume that the following condition is satisfied:
(*) A generic fiber F='(z) =Y, is connected.

If D is connected in C? , then Fi; satisfies the condition (*).

In the paper [K3], some properties of the 7i-Alexander polynomial of a curve D
(see the definition of the 7i-Alexander polynomial in n.1.2) were described in the
case of m = (1,...,1). Also in [K3], the irregularity ¢(X ) of a nonsingular surface
X i, which is birationally isomorphic to the surface defined by the equation

2* = Hfffz,y),

was calculated in the case of transversal intersections of curves D;.
The purpose of this paper is to extend the results of [K3] to the case of general
m

The basic references for this subject are [21], [22], [M1], [S-S], [Lib].

Acknowledgement. I would like to thank Max-Planck-Institut fiir Mathematik
(Bonn) for hospitalily and support during the preparation of this paper.

1. It is well known that there exists a finite subset
{z1,..,z} C C*

such that
Fr: X\ FZ'({z1, ., 2x}) = C*\ {21, ...2¢}

—
m
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is a locally trivial fibering of class C°°. As in [K3], let B; be a disk of center z;
and radius r; € 1, and let 0B; be its boundary. Choose two distinct points z;; ,
z; 2 belonging to dB;. The points z;1 , 2;, divide B, into two arcs v;; and 7; 3.
Choose non-intersecting paths v; connecting the points z; ; and z;41 2 (Zn+1,2 = 21,2
), and let v;1 be the arc of 0B; such that l;, = (Uvi1) U (Uy;) is the boundary
of a restricted set V' containing the origin o € C' , and such that z; € V for all
i, 1 <i<n. Let I, be the boundary of the set VU(UB;). Put T = (UB;)U (U¥y;)
. The set Z = Fz'(T) is called an Fi-necklace of D .

Since T is a retract of C* and the fibering iz : X \ Z — C* \ T is a locally
trivial of class C'™, we have the following

Proposition 1. If D and ™ satisfy the condition (*), then X = C*\ D and the
necklace Z of D are homotopic.

Thus m1(C? \ D) ~ m(Z) and moreover we have the following commutative
diagram

1r1(C2 \ D) A m(Z)

Fr, 1 l Fima

m(C) — ml) — h

where I is a free group, rgf; = 1.

If 77 is a primitive vector, then F3, is an epimorphism.

Let zp € ¥ C TUl;, Ul be a point and let Y = F—'(z,) be the fiber over z; .
The embedding ¥ C Z induces the homomorphism 3 : 71(Y) — m(Z). Obviously,
Imy C KerFm, . As in [K3), it is easy to show, that the following theorem is true.

Theorem 1. If D C C? and a vector T satisfy the condition (*), then the following

sequence

Fe
‘bFl )1

TI'](Y) L& W](C2 \D)
15 exact,

Corollary 1. If D C C? and a vector m satisfy the condition (*), then
N = KerFs.,

1s a finitely generated group.

1.2. The inclusions ¥ C Zin(ez) C Z and the morphism F give the following
commutative diagram

Fig. N

] — W](Y) — Tl'l(Z,n) ]F] 1
'ib lﬂl’n f
(2) 1 —— N — m(2) =5 F 1
-
v Tﬂ.. s
Uoex 'F_m't
1 —— m(Y) —— m(2Z.:) y Fy 1



The maps Fyr: Zin — lLin and Fr: Z., — [l are locally trivial fiberings. Thus all
rows in this diagram are exact.

Let N' = [N,N] be the commutator subgroup of N , (N/N')r,. the sub-
group of N/N' consisting of all elements of finite order, and let (N/N')pree =
(N/N")/(N/N')ror be the factor group.

The middle row of (2) determines the action of a generator 7 € Fy on N/N' |
and, consequently, determines the action of 7 on (N/N')py... We shall denote this
automorphism by h#. '

Similarly, the upper and lower rows in (2) define the action of 7 € F; on H;(Y).
We shall denote these automorphisms by ks i, and hz .. , respectively.

Definition. The polynomial Aw(t) = det(h —tId) is called the m-Alexander poly-
nomial of a curve D. The polynomials A in = det(hm,in — tId) and Awm ez =
det(hwm .: — tId) are called the internal and external polynomials of a curve D
respectively.

Theorem 2. The polynomial Az p(t) is a divisor of GCD(Asz in(t), A ez()).
Proof. The same as the proof of Theorem 4 in [K3].

1.3. The morphism F%; defines a rational map
Fm:PP=C*ULyp = P' =C' U {o0}.

Let o : P — P2 bea composition of o-processes such that the following condi-
tions are satisfied:

(YFm=Fm-o P°SPlisa morphism;

(i1) the reduced fibers ?D,rcd = ?ﬁ_l (0)red » ?oo,,.ed = f,—n-_l(oo),.ed are divisors
with normal crossings;

(iii) the divisor 7! (Leo )red is a divisor with normal crossings.

Let 07 (Loo )red = Lo UR be a decomposition such that for each component R;
of R the image FH(R,-) is a point and -F_W(Lc,o,.-) = P! for each component Lo ; of
Loo.

Let Yo = Far  (0)\Too and Yoo = Fiorr
?n—,:ﬁz \ Loo — P!, and let

- (00)}\ Loo be the fibers of the morphism

Ny Noo
Yo=Y miD;, Yo = ZriRi
i=1 =1
be the decompositions into irreducible components. Put
D} = Di\ (U;(Di N Dy)),
R} = Ri\ (Uji(Ri N Ry)).

Evidently, hinm and h.. 7 are the monodromy operators induced by circuits
around the fibers Yy and Y, respectively.
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It is well known (see, for instance, [A’C]), that
No \
(3) Amin(t)=(t-1) H(t"‘-‘ — 1)~x(P)
i=1

Noo
(4) A ea(t) = (¢ = 1) JJ (27 — 1)~

=1
where x(M) is Euler characteristic of a space M.
Corollary 2. The roots of the polynomial Az p(t) are roots of unity.

Remark 1. If D =D, U...U D, intersects transversally with L, then
A?ﬁ.cz(t) = (t - 1)(t2d‘ms - ]_)Z d.‘—2,

where d; = degD;.

2. In this section we shall describe a purely algebraic approach to the definition
of m-Alexander polynomials. This approach coincides with the geometric one de-
scribed above.

Let I, = {1,2,...,q} be a segment of N, M C I} = I, x I, x I, a subset and
|M| = #M the cardinality of M.

Definition. A group G is called a C-group of type M, if G possesses the following
corepresentation

(5) G =<z1,...,%¢ | {Ra()}oerm >

where for a = (ai, a3, a3) the relation

Ro(z) = xalxaz.?:;:m;:.
is a conjugation (the letter "C” in ”C-group” is the first letter of the word ”conju-
gation”).

2.1. Ezamples of C-groups:

(1) The free group F,,.

(2) The free abelian group Ab,.

(3) The braid group B,. :

(4) Groups of knots and links (with the Wirtinger corepresentation).

(5) The fundamental groups 7 (C%\ D) of complements of plane algebraic curves
D (with the corepresentation from [K1]).

2.2. To any C-corepresentation of type M we can associate an oriented graph Iy
with verteces vy, ..., vg, and with edges e,, @ € M. The edge ¢, connects the vertex
Vo, With ve, , where a = (a1, a3, a3) .

It is easy to prove the following



Lemma 1. (cf. [K3]) Let G be a C-group of type M , and G' = [G,G]. Then
G/G' = Z", where n is the number of connected components of the graph T'ps.

A C-group G of type M is called an irreducible C-group if its graph I'ps is
connected.

Let T'p =T U...UT, be a decomposition into connected components. For each
T, let I(j) = {i € I;jv; ¢ T';}. The group

Gj =<z1,.4%3¢ | {Ra}aenm U{zitics(j) >

is called an irreducible component of a C-group G of type M, and we shall say that
the C-group G is composed of n irreducible components G;.

Let G be a C-group composed of n irreducible components. Then for 7 =
(my,...,my), let

(6) Fr.,:GoF =<7|0>

be the homomorphism such that

Fu(a;) = 7"

for each generator z; of G, where m(j) = m; for j € I, \ I(i). Obviously, F, is
an epimorphism if and only if m¢ = GCD(m,,...,m,) = 1. In general

Fﬁ# = (mO) ' Fﬁpr;m*)
where (my) : Fy — F; is defined by (mg)(7) = 7™°. Put N = KerF5,, the kernel
of Fﬁ..

Remark 2. If G = 7 (C? \ D) and the corepresentation of G coincides with the
corepresentation from [K1], then the homomorphism (6) coincides with the homo-
morphism induced by the morphism (1) in the case & = Miprim.

2.3. Following [M2], to each C-group G we associate a two-dimentional finite con-
nected simplicial complex K with a single vertex z, and 1-skeleton of which is a
union of ¢ oriented loops s;. The loops s; are in one to one correspondence with
the generators z; of G. The complement

K\ (vsi) = |__| Se

aEM

is a disjoint union of open disks. For a = (a;, a2, a3) the disk S, is glued to the
1-skeleton along the path sq, $a,851s51. Evidently, m (K, o) ~ G.

1 Og
The homomorphism Fs, : G — F, defines an infinite cyclic covering f: K- K
such that m(K) = N and H{(K,Z) = N/N' (here we are assuming that 7 is a

primitive vector).



Let Ko = f ~(z,) and K1 be the 1-skeleton of K. We have the following exact
sequences:

()
H2(I?7IA{’1) B Hl(f{'la-f{.()) — H](fé,ﬁo) —_ 0

0 —  H(K) —— H\(K,K) — Hy(Ko) —— Ho(K)

N/N'

The action of F; on K defines the structure of a Z[t,t~1)-module on each term of
these sequences.

We shall describe these actions. For this we fix Po, which is one of vertices of
K. Let pi = t'pe be the image of the action of 7° € F; at the > point pp. Then
vj, 7 = 1,...,q, are the generators of a free Z[t,t~!]-module H; (KI,KO) where 3;
is an edge starting at the point py, ending at the point p,,(;) and covering the loop
s;. The image t'5; of the action of 7' at 3; is the edge starting at the point p; and
covering s;.

The description of the action of F; on H, (I:’ ) is the same as the description of
the action on HI(I?I,I?O).

Remark 3. It is easy to see that the action of Fy on Hy(K) ~ N/N', described
above, is the same as the action on N/N' induced by the exact sequence

1-——+N/N'——»G/N’E'—>IE‘1-——-+1

The generators of the free Z[t,t!]-module Hy(K, K, ) are disks 5o glued to the
1-skeleton along the paths 3., Ut™1)5,, U t"‘("’)ﬁgll uUs;).
It is easy to see that (S ) € Hi (K1, Ko), in the basis 5, ..., 5y, is equal to either

(8) Aq = (0, .. —tm™ed) g 0,e™(@) _1)0,...,0)
for ) # a2 = a3 # a; or
(9) Ao =(0,...,0,1— ™ o . 0,™) 0 .. 0 -1,0,..,0)

for a; # a2 # a3 # a;. Moreover in the first case 1 — $™(°2) is in the a;-st place,
t™(@1) s in the a,-nd place; and in the second case 1 — t™(2) is in the a;-st place,
t™(e1) is in the az-nd place and —1 is in the as-rd place. Denote by Am g(t) the
matrix formed by the rows A,,a € M.

From (7) we have

3(v(3;)) = (t™ = 1)pq

and moreover Imd is a free Z[t,t™!]-module generated by (¢t — 1)py (here we are
assuming that mg = 1).



Let s € Hi(Ky,Ko) be an element such that d(v(s)) = (t — 1)po. Then
H,(K,, Ky) is decomposed into the direct sum

Hi(Ky, Ko) ~ Ker(8-v) @ Z[t,t™Y)s.
It follows from (8) and (9) that
Imp C Ker(9 - v),
and we obtain from (7) that
H\(K)=Ker(d-v)/Imu

and
rgAm=(G) € ¢—-1.

Definition. A C-group G of type M C I is called m-connected, if

rgAm(G) = q— 1.
By Fm.6,i(t),0 € i £ g, denote the ideals of Z[¢t,t~!], where

(0), if g —i>|M|
Emci(t) = { Z[t,t71), if g —i <0,
is generated by all (¢ — ¢)-minors of Am (), f 0 < g—1i < |M|.

Let Az ,i(t) be a generator of the minimal principal ideal which contains
Fgi(t). If Amgi(t) # 0, then after multiplying A ,i(t) by an invertible
element in Z[t,t7!], we can assume that

Awq,i(t) € Z[t] and Awm ,i{(0) #0.

Remark 4. These ideals Fq ¢ i(t) and polynomials Aw g,i(t) can be obtained
using Fox’s free calculus (see [C-F)).

If we apply the proof of Theorem 5 from [L, chapter XV] to the finitely generated
submodules Imu®@Q and Ker(9-v)QQ of the free Q[t,t~!]-module H; (IA{', I?o)®Q,
then we obtain that there exist a basis gy, ...,9, of H; (I?,f{'o) ® Q and non-zero
elements A(t),..., A (t) € Q(t,t~!), where 0 < r < g — 1, such that:

(i) g1,--.,9q—1 form a basis of Ker(d-v)® Q over Q[t,t™1];

(i) A1 (8)g1, .-, A-(#)gr form a basis of Imu @ Q over Q[t,17}];

(11]) /\i‘A,‘_'_] for 1 = 1, ey T — 1,

(iiii) the module

(N/N)® Q= H,(K,Q) ~
(10) 2 Qlt,t-1)/ (M () ® . & Qlt,t ™)/ (M (#)) @ (Qlt, t-1])7 "
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and moreover we have that the generators Awm i ¢,0(t) of the minimal principal
ideals, containing Fr ¢,i(t) ® Q, are

. t 0 Jf e < g — 1y
Tn’,G,i,Q( )= {'\1 (t)- ... /\q_,'(t),if'-‘: 2g-—T.

After multiplying A;(t) by invertible elements in Q[¢,t~!] we can assume that
Aw,6,i,0(t) = Bmg,i(t)-

It is easy to see from (10) that (N/N') ® Q is a finitely generated Q-module if
and only if AF{’G'i(t) $ 0.

Let G be T-connected. From (10) we have that Asw,1,6(t) coincides with the
characteristic polynomial of the automorphism h € Aut[(N/N'} ® Q], which is
defined by the action of the generator 7 € Fy on H, (I? ,Q). By virtue of stated
above this action is reduced to the multiplication by t in (10).

Now let us consider the field Z, instead of Q. As above we obtain that the
coefficients of Az ¢,1(t) are relatively prime for a finitely generated group N/N'.

On the other hand, if N/N' is a finitely generated group, then any choice of basis
of (N/N')Free determines a basis of (N/N')pre. ® Q. The matrix of & in the choosen
basis is integral and det h = 1, because h is an automorphism of (N/N')pre.. Thus,
in this case A, G,1(t) coincides up to a sign with the characteristic polynomial of
h , because the coefficients of A7 ¢ 1(¢) are relatively prime.

Let us gather the previous considerations into the following

Proposition 2. Let G be C-group and N = KerFgy. Then:

(i) (N/N"Y® Q is a finitely generated Q-module if and only if G is M-connected.
In this case Aw,,;,,,G,1(t) coincides (up to a constant multiplier) with the charac-
teristic polynomial of h € Aut[(N/N') ® Q], which is induced by the action of the
generator r € Fy on (N/N')® Q,

(ii) If N/N' is a finitely generated group, then

Avs, G (t) = 2det(h — tId).

In particular, |Aw,G1(0)] = 1.
Corollary. If a curve D C C® and ™ satisfy the condition (*), then

A?ﬁvD(t) = :i:A,_nlprim )le (t)’

where G = m;(C*\ D).

From Lemma 1 and from the exact sequence ([M2])

—— H(K,Q) 22X H(K,Q) —— Hy(K,Q) —— Ho(K,Q) —— 0

we obtain the following



Proposition 3. Let G be an W-connected C-group. Then
Amaalt) = (- 1) A'(),

where n is the number of irreducible components of G and A'(t) is a polynomial
such that A'(1) # 0.

2.4.

Proposition 4. Let G = Gy x ... Xx G, be the direct product of irreducible C-
groups, n > 1, and 7t = (m,,...,my,) be a vector such that each coordinate m; is
equal to p;*, where p; is prime and r; € N. Then

A ,i(t) = (t™ - 1)

for1 <i < n, where my = GCD(m,,...,my,).

Remark 5. In the statement of Proposition 4 we do not assume that the Alexander
matrix Aw,g(t) satisfies the condition mg = 1.

Proof. By induction over n.
First, note that

AﬁjG’|(t) - Amprimvcsi(tmo)'

In the case n = 2, for 1 < < ¢, let the edges v; € I'ps correspond to the
generators z; of G, and for ¢; < ¢ < ¢; + ¢2 = ¢, let the edges v; correspond to
the generators of GG;. Numerate the relations R, such that the first s; relations
are the relations of the C-group G, the relations with index 1, sy < 1 < 81 + 32,
are the relations of the C-group G, and the last ¢ - g2 relations are the relations
of commutation.

Put
m o= (ml,mg), Mg = GCD(ml,mg), mi = m,-/mg.

It is easy to see that the Alexander matrix Am g(t) is of order (s; + 83 + q1¢2) X
(¢1 + g2) and has the form

Al,Gl(fm‘) 0
Amc(t) = 0 A6, (7)) |,
E,(t™?) Ep(t™)

where A, ¢,(t) is the Alexander matrix of G;, the matrices E;(t) are of order (g142) X
s; and are composed of the rows of the form

0, ...,0,£(t — 1),0,...,0).

Add the first q; — 1 columns to the column ¢; and add columns with index i,
q1+1<i<¢q +qz~1, to the column (¢; + g2). We get a matrix A ¢(¢) which
is equivalent to Az g(t). The columns ¢; and (gq; + ¢2) of /’i’m,a(t) are of the form

(0, ..., 0, £(t™ — 1), ..., (™ — 1)),
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where 70" stand in the first s; + s pla_(ies.
Consider the (g; + g2 — 1)-minors of Az g(t) formed by rows taken from the first
(s1 + s2 + 1) rows of A, g(t). These minors have the following form:

G1(t™ )2 (2™ — 1),

where ¢;(t) are some (g; — 1)-minors of the matrix A4, g, (?).
Note that by Lemma 6 in [K3] the polynomials A g, 1(t) satisfy the following
condition:
AI,G.',I(I) = =+1.

Thus the greatest common divisor of the minors of A (t) considered above is
equal to

(11) Ay,G (") A1,6,,1 (7)™ - 1),

On the other hand, it is easy to show that the greatest common divisor of the
(¢1 + g2 — 1)-minors, which are formed by rows taken from the last ¢i¢, rows of
Awc(t), is equal to

(12) (™ —1)B= (g™ —1yn (™ — 1),

From [K3] it follows that the p"-th root of unity is not a root of the polynomial
Aj,¢;1(t). Thus, combining (11) and (12) we obtain that

A, G xGya(t) = (™ = 1).

Obviously,
Am,Gﬁ XGz,z(t) =1
The general case. Suppose the proposition is true for n < I. Consider a group

G = G x ... X G143 and a vector 7 = (my, ...,my41). Fix the number 7, y <141,
and introduce the following notation

§1=GJ-, G, =G, x...x@jx...xG;.H,

m(’, = GCD(ml,...,ﬁ'zj,...,m¢+1), 'f'n"j = (ml,...,ﬁzj,...,mIH)

~

Let ¢; be the number of generators and s; be the number of relations of the C-group
G;,1 = 1, 2. Denote by Aﬁj & x 52(t) the matrix with the same properties (with

respect to 61 and ég) as in the case n = 2.
First let us show that each (¢; + g2 — #)-minor of A G, x&,(t) is divisible by

(t'"{' — 1)*17J, Note for this that each (g; 4 ¢; — i)-minor M can be decomposed
into the sum of products:

M=) My oM;zpMs .,

11



where M  are (g1 —t; )-minors of A, & (t), M2, g are (g2 —%2)-minors of Aﬁj (1)
and M3 ., are minors of order ¢; +7, —% generated by some rows with indices > s;+33.
It is easy to see that Mj . is divisible by (¢™0 — 1)f1+i2=%,

If i, > I, then M3 ., is divisible by (t™e — 1)!+1-%,

If i, < 1, then M; g is divisible by (t™° —1)!~"2 by the inductive assumption. In
this case My g M3 - is divisible by (¢™° — 1)!*#17%, If i; = 0, then M, o = 0. Thus
in all cases M, o M3 g M3 , are divisible by (t™° — 1)”’1"“.

Now, on the one hand, by induction assumptions we can choose a (g; — 1)-minor
M, of Aﬁ;,é,(t) such that M, = (™o — 1)"‘M2 , where M, and (t™ — 1) are
relatively prime. .

We can choose a (g1 — 1)-minor M, of A~ = (%) such that M; and ™ - 1)
are relatively prime. Moreover by [K3] the p™-th roots of unity are not the roots of
the polynomial M;(t) for each prime number p.

Add one more row with index > s; + s, and one more column with index > ¢,
which not contained M, to the rows and columns contained in M; and M,. We
find a (g1 + g2 — 1)-minor M of the matrix A g(t) such that

M = £(t™ — 1) MM, (t™ - 1).
It is easy to see that the greatest common divisor of all these minors is equal to
(13) (tm{, _ 1)l+1—|'MI(t)’

where M'(t) has no p”-th roots of unity in its roots.

On the other hand, there exists a (¢; + g2 — ¢)-minor M(t) of Aw (t), which is
formed by rows with indexes > s; + sz (these rows correspond to the relations of
commutation). The roots of M(t) are the roots of unity of orders m; = p{*. From

this and (13) it follows that Az g i(t) divides (t™o — 1)i+1-%,
Finally, Am ¢,i(t) divides

GCD((t’"3 - 1)"*‘1“, ,,,,(t’"i»“ — 1)‘+1—i) = (t™ — 1)t+1-.‘_

Combining this with the fact that A« g ;(2) is divisible by (t™° — 1)1~ we that
Proposition 4 is proven.

Proposition 5. Let G = Gy X ... X Gu, n > 1, be a direct product of irreducible
C-groups such that Ay g, 1(t) =1 for all i. Then for any m = (m,,...,my,)

AH,G,:‘ = (tm'o — 1)"_i.

Proof. The same as the proof of Proposition 4.
Corollary. Let G = Z" be a free abelian group. Then

B i(t) = (t™ = 1)

for 1 <1 < n and for each m € N".

12



Example. Let Gy and G, be two copies of

1

-1_-1 -1_-
G =< ry, T2, T3 I TiT2Ty T3 , T2%3T9 T, >

(G is the group of a clover-leaf knot). Then direct calculations give that
D6,1),61xG,,1(t) = (t — 1)(t2 —t4+1).

3. In this section we shall apply the results obtained above to calculation of the
irregularity of cyclic coverings of P2.

3.1. In notations of n.1 denote by X E’ﬁ the surface in C* defined by equation

(14) 2t = lml(x'ry)""'fr?"(m’y)'
Let ¢' : X? & — C? be the restriction of the projection C* onto C? defined by

(z,y,2) — (z,9).

From now we shall assume that GCD(m,,...,my, k) = 1 (this is nothing but the
condition that X} - is irreducible). Let X 7 be a projective closure of X} -, and
T Yk,—,,-,- — X 7 be a desingularisation. We can assume that ¢ = ¢' - : Yk,ﬁ —
P? is a regular morphism.

The irregularity ¢ 7 = ¢(X x 75) on X s 7 has three equivalent expressions:

—_— — — 1. —
gk = dimH (X g, 0) = dimH* (X 7, Q') = %dimHI(Xk,ﬁ, R) = 5b1(Xim).

Remark 6. The surfaces Xk, X k7iess Yk,ﬁ +F are birationally isomorphic,
where m+ k = (m1 + k,...,mu + k). Thus these surfaces have one and the same
irregularity qi 7.

Put Ure = Xk \ ¢ (DU Lo ).

From now we shall assume that k does not divide m; for all :. This is nothing
but the condition that ¢ is ramified along each component D; of D.

The inclusion « : Uy — fk,ﬁ defines an epimorphism

o Hy(Uk,m, Q) -» Hi1 (X7, Q).
Thus
(15) b (Yk'm) = b (Urw) — dim Kera,
Lemma 3. (cf.[S])
dim Kera, > n = #{the irreducible components of the curve D}
Proof. The homomorphism ¢, : Hy (Ui, Q) — H1(C*\ D, Q) is an epimorphism.
Indeed, H,(C?\ D, Z) is generated by «;, which are simple circuits around D;. It is
easy to see that (k/GCD(m;, k))y; can be lifted up to H (U 7, Z) and this cycle

%: is a simple circuit around one of irreducible components of ¢~1(D;). The cycles
H1y - ¥n are lineary independent in Hy (U 7, Z), because 71, ..., v, form a basis of

H,(C?\D,Z).
Obviously, 41, ..., € Kera,.
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3.2. Put

N(k,m) =) #{distinct k-th roots of unity which are roots of ;(t)},

where Aj(t) are the elementary divisors of As,,; . ¢ 1(t) defined by (10) for
G = m (C2 \ D )

Theorem 3. ([Lib],[S]} Let D C C? and @ satisfy the condition (*). Then

bl(Uk,},—,) =1+ N(k,ﬁ).

3.3. Combining this theorem, Propositions 4 and 5 with [K2] we obtain the fol-
lowing theorems:

Theorem 4. Let acurve D = D, U... Uﬁﬂ n > 1, satisfy the following conditions:
(1) for all ¢, j, ¢ # j, the intersections (D; N D;) N Lo, = @;
(ii) locally the divisor D = Dy + ... + D, is a divisor with normal crossings at
Then .
¢(Xem) =0
for m = (my,...,my) with m; = p[*, where p; are primes and r; € N.
Theorem 5. Let D be as in Theorem 4 and let Awm p(t) = 1 for all i, where
G; = m(C%\ D;). Then for any 7 = (my,...,my)

q(yk,m) = (.

In particular, if 7, (C? \ D;) >~ F; for all { and if D = D; U ... U D,, satisfies the
assumptions of Theorem 4, then for any ™ the irregularity ¢(X 7) = 0.

Theorem 6. Let D be as in Theorem 4, and let the following conditions be satis-
fied:

(i) D meets Lo, transversally;

(ii) 3 dim! = p" , where p is prime, r € N and d; = deg D;.

Then ¢(Xim) = 0.

Proof. From Theorem 2 and Remark 1 it follows that the roots of A p(t) are the
p"-th roots of unity.
On the other hand, it follows from the proof of Proposition 4 that

A p(t) = (t - 1)"TA'(1),
where A'(t) is a divisor of the polynomial

A =T[ Aup, ™).

1=1

By Theorem 7 in [K3] the roots of A(t) are not the p"-th roots of unity. Thus
A'(t) = const and Theorem 6 follows from (15) and from Theorem 3.

14



3.4. Recall ([N]) that =, (C*\ D;) = Fi, if the proper pre-image o~*(D;) has
positive index of self-intersection, where o : P S Plisa composition of o-processes
such that o*(D; U L) is a divisor with normal crossings.

There exists another criterion for commutativity of the fundamental group of
the complement of an algebraic curve in C2.

Theorem 7. Let {C)}rep be a family of plane affine algebraic curves such that
(i) Co = D1+ ... + D, is a reduced divisor and satisfies the conditions of Theorem
4;
(ii) a generic member Cy of this family is irreducible.
Then m(C?\ Cy) = Fy.

Proof. According to the well-known "semicontinuity” principle there exists an epi-
morphism of C-groups

71'1(C2 \ Co) -+ 71'1((:2 \Cb)

Denote it by v. Moreover, if z; is a generator of the C-group m(C? \ Cp), then
v(z;) is a generator of the C-group m (C? \ C}).

From [K2] we have that m;(C? \ Cp) = m(C?\ Dy) x ... x m(C?\ D,). Let
7y and z, be two generators of m;(C? \ Cy) which belong to different subgroups
7 (C? \ D;). We can assume without loss of generality that z; is a generator of
7(C? \ D;) and z; is a generator of m (C? \ Dy).

We have that v(z;) and v(z,) are conjugated to each other, because Cj is ir-
reducible. Let v(z2) = v{z3)v(z,)v(z3)~?, where z;3 is a generator of one of the
subgroups m (C? \ D;).

If z3 & m(C?\ Dy), then v(z3) = v(z;), because in this case z; and z3 commute.

If 23 € m(C?\ Dy), then v(z1) = v(z3) ' v(z2)v(z3) = v(z2). Thus in all cases
v(z,) = v(z,) for all generators =, of the C-group my(C?\ D;) and for all generators
z2 of the C-group 7, (C? \ D;). This means that Imv = F;. Theorem 7 is proven.

3.5. We say that a vector W = (my, ...my) is k-admissible, if k is not a divisor
of m; for all i. Two vectors ; = (m,,...m,} and My = (Ay,...,M,) are called
k-equivalent, if it is possible to transform 7, into 7y by a sequence of the following
transformations:

)m+—m*x ;

2) m — pm = (pmy, ..., pmy), if the vector pm is k-admissible;

3) mr— ﬁprim-

Example. The vectors iy = (1, 3) and Tz = (3, 4) are 5-equivalent, because

m; = (1, 3) — (6, 8) — (3, 4) = 7s.

Proposition 6. Let D and T, satisfy the condition (*), and let T, and T, be
k-equvialent. Then
# (U,{ distinct k-th roots of unity which are roots of the elementary divisor

Aj(t) of Agy i 0 (t)}) =
= # (U;{ distinct k-th roots of unity which are roots of the elementary divisor

Aj(t) Of Aﬁﬂprl'm,D (t)})'
Proof. The surfaces Ui m, and Uiz, are isomorphic. Proposition 6 follows from
this and from Theorem 3.
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