Victor S. Kulikov

The Alexander Polynomials Of Plane Algebraic Curves : II

Chair "Applied Mathematics II" Moscow Institute of Railroad Engineers ul. Obraztsova 15 101475 Moscow, A-55

Russia

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-5300 Bonn 3

Germany

0. Let $\overline{D} \subset \mathbb{P}^2$ be an algebraic curve and let $\overline{D} = \overline{D}_1 \cap ... \cap \overline{D}_n$ be the decomposition of \overline{D} into the irreducible components. Let $L_{\infty} \subset \mathbb{P}^2$ be a straight line and define $\mathbb{C}^2 = \mathbb{P}^2 \setminus L_{\infty}$, $D_i = \overline{D}_i \cap \mathbb{C}^2$. By $f_i(x, y) = 0$ denote an equation of D_i , where $f_i(x, y) \in \mathbb{C}[x, y]$ is an irreducible polynomial.

Let $\overline{m} = (m_1, ..., m_n) \in \mathbb{N}^n$ be a vector with positive integer coordinates. Put $m_0 = GCD(m_1, ..., m_n)$ and $m'_i = m_i/m_0$.

The vector $\overline{m}_{prim} = (m'_1, ..., m'_n)$ is called primitive. By

(1)
$$F_{\overline{m}}: X = \mathbb{C}^2 \setminus D \to \mathbb{C}^* = \mathbb{C} \setminus \{0\}$$

denote the morphism defined by the equation

$$z = \prod_{i=1}^{n} f_i^{m_i'}(x, y)$$

We shall assume that the following condition is satisfied:

(*) A generic fiber $F_{\overline{m}}^{-1}(z) = Y_z$ is connected.

If D is connected in \mathbb{C}^2 , then $F_{\overline{m}}$ satisfies the condition (*).

In the paper [K3], some properties of the \overline{m} -Alexander polynomial of a curve D (see the definition of the \overline{m} -Alexander polynomial in n.1.2) were described in the case of $\overline{m} = (1, ..., 1)$. Also in [K3], the irregularity $q(\overline{X}_k)$ of a nonsingular surface \overline{X}_k , which is birationally isomorphic to the surface defined by the equation

$$z^k = \prod_{i=1}^n f_i(x, y),$$

was calculated in the case of transversal intersections of curves D_i .

The purpose of this paper is to extend the results of [K3] to the case of general \overline{m} .

The basic references for this subject are [Z1], [Z2], [M1], [S-S], [Lib].

Acknowledgement. I would like to thank Max-Planck-Institut für Mathematik (Bonn) for hospitalily and support during the preparation of this paper.

1. It is well known that there exists a finite subset

$$\{z_1,...,z_k\} \subset \mathbb{C}^*$$

such that

$$F_{\overline{m}}: X \setminus F_{\overline{m}}^{-1}(\{z_1, ..., z_k\}) \to \mathbb{C}^* \setminus \{z_1, ... z_k\}$$

is a locally trivial fibering of class C^{∞} . As in [K3], let B_i be a disk of center z_i and radius $r_i \ll 1$, and let ∂B_i be its boundary. Choose two distinct points $z_{i,1}$, $z_{i,2}$ belonging to ∂B_i . The points $z_{i,1}$, $z_{i,2}$ divide ∂B_i into two arcs $\gamma_{i,1}$ and $\gamma_{i,2}$. Choose non-intersecting paths γ_i connecting the points $z_{i,1}$ and $z_{i+1,2}$ ($z_{n+1,2} = z_{1,2}$), and let $\gamma_{i,1}$ be the arc of ∂B_i such that $l_{in} = (\cup \gamma_{i,1}) \cup (\cup \gamma_i)$ is the boundary of a restricted set V containing the origin $o \in \mathbb{C}^1$, and such that $z_i \notin V$ for all $i, 1 \leq i \leq n$. Let l_{ex} be the boundary of the set $V \cup (\cup B_i)$. Put $T = (\cup B_i) \cup (\cup \gamma_i)$. The set $Z = F_{\overline{m}}^{-1}(T)$ is called an \overline{m} -necklace of D. Since T is a retract of C^* and the fibering $F_{\overline{m}} : X \setminus Z \to \mathbb{C}^* \setminus T$ is a locally

Since T is a retract of C^* and the fibering $F_{\overline{m}} : X \setminus Z \to \mathbb{C}^* \setminus T$ is a locally trivial of class C^{∞} , we have the following

Proposition 1. If D and \overline{m} satisfy the condition (*), then $X = \mathbb{C}^2 \setminus D$ and the necklace Z of D are homotopic.

Thus $\pi_1(\mathbb{C}^2 \setminus D) \simeq \pi_1(Z)$ and moreover we have the following commutative diagram

$$\pi_1(\mathbb{C}^2 \setminus D) \xleftarrow{} \pi_1(Z)$$

$$F_{\overline{m}} \downarrow \qquad \qquad \qquad \downarrow F_{\overline{m}},$$

$$\pi_1(\mathbb{C}^*) \xleftarrow{} \pi_1(T) \xrightarrow{} \mathbb{F}_1$$

where \mathbb{F}_1 is a free group, $rg\mathbb{F}_1 = 1$.

If \overline{m} is a primitive vector, then $F_{\overline{m}*}$ is an epimorphism.

Let $z_0 \in \gamma \subset T \cup l_{in} \cup l_{ex}$ be a point and let $Y = F_{\overline{m}}^{-1}(z_0)$ be the fiber over z_0 . The embedding $Y \subset Z$ induces the homomorphism $\psi : \pi_1(Y) \to \pi_1(Z)$. Obviously, $Im\psi \subset KerF_{\overline{m}*}$. As in [K3], it is easy to show, that the following theorem is true.

Theorem 1. If $D \subset \mathbb{C}^2$ and a vector \overline{m} satisfy the condition (*), then the following sequence

$$\pi_1(Y) \xrightarrow{\psi} \pi_1(\mathbb{C}^2 \setminus D) \xrightarrow{F_{\overline{m}}} \mathbb{F}_1 \longrightarrow 1$$

is exact.

Corollary 1. If $D \subset \mathbb{C}^2$ and a vector \overline{m} satisfy the condition (*), then

$$N = Ker F_{\overline{m}*}$$

is a finitely generated group.

1.2. The inclusions $Y \subset Z_{in(ex)} \subset Z$ and the morphism $F_{\overline{m}}$ give the following commutative diagram

The maps $F_{\overline{m}}: Z_{in} \to l_{in}$ and $F_{\overline{m}}: Z_{ex} \to l_{ex}$ are locally trivial fiberings. Thus all rows in this diagram are exact.

Let N' = [N, N] be the commutator subgroup of N, $(N/N')_{Tor}$ the subgroup of N/N' consisting of all elements of finite order, and let $(N/N')_{Free} = (N/N')/(N/N')_{Tor}$ be the factor group.

The middle row of (2) determines the action of a generator $\tau \in \mathbb{F}_1$ on N/N', and, consequently, determines the action of τ on $(N/N')_{Free}$. We shall denote this automorphism by $h_{\overline{m}}$.

Similarly, the upper and lower rows in (2) define the action of $\tau \in \mathbb{F}_1$ on $H_1(Y)$. We shall denote these automorphisms by $h_{\overline{m},in}$ and $h_{\overline{m},ex}$, respectively.

Definition. The polynomial $\Delta_{\overline{m}}(t) = det(h - tId)$ is called the \overline{m} -Alexander polynomial of a curve D. The polynomials $\Delta_{\overline{m},in} = det(h_{\overline{m},in} - tId)$ and $\Delta_{\overline{m},ex} = det(h_{\overline{m},ex} - tId)$ are called the internal and external polynomials of a curve D, respectively.

Theorem 2. The polynomial $\Delta_{\overline{m},D}(t)$ is a divisor of $GCD(\Delta_{\overline{m},in}(t), \Delta_{\overline{m},ex}(t))$.

Proof. The same as the proof of Theorem 4 in [K3].

1.3. The morphism $F_{\overline{m}}$ defines a rational map

$$F_{\overline{m}}: \mathbb{P}^2 = \mathbb{C}^2 \cup L_{\infty} \to \mathbb{P}^1 = \mathbb{C}^1 \cup \{\infty\}.$$

Let $\sigma: \overline{\mathbb{P}}^2 \to \mathbb{P}^2$ be a composition of σ -processes such that the following conditions are satisfied:

(i) $\overline{F}_{\overline{m}} = F_{\overline{m}} \cdot \sigma : \overline{\mathbb{P}}^2 \to \mathbb{P}^1$ is a morphism;

(ii) the reduced fibers $\overline{Y}_{0,red} = \overline{F}_{\overline{m}}^{-1}(0)_{red}$, $\overline{Y}_{\infty,red} = \overline{F}_{\overline{m}}^{-1}(\infty)_{red}$ are divisors with normal crossings;

(iii) the divisor $\sigma^{-1}(L_{\infty})_{red}$ is a divisor with normal crossings.

Let $\sigma^{-1}(L_{\infty})_{red} = \overline{L}_{\infty} \cup R$ be a decomposition such that for each component R_i of R the image $\overline{F}_{\overline{m}}(R_i)$ is a point and $\overline{F}_{\overline{m}}(L_{\infty,i}) = \mathbb{P}^1$ for each component $L_{\infty,i}$ of \overline{L}_{∞} .

Let $Y_0 = \overline{F_m}^{-1}(0) \setminus \overline{L}_{\infty}$ and $Y_{\infty} = \overline{F_m}^{-1}(\infty) \setminus \overline{L}_{\infty}$ be the fibers of the morphism $\overline{F_m} : \overline{\mathbf{P}}^2 \setminus \overline{L}_{\infty} \to \mathbb{P}^1$, and let

$$Y_0 = \sum_{i=1}^{N_0} m_i D_i, \qquad Y_\infty = \sum_{i=1}^{N_\infty} r_i R_i$$

be the decompositions into irreducible components. Put

$$D_i^0 = D_i \setminus (\bigcup_{j \neq i} (D_i \cap D_j)),$$

$$R_i^0 = R_i \setminus (\bigcup_{j \neq i} (R_i \cap R_j)).$$

Evidently, $h_{in,\overline{m}}$ and $h_{ex,\overline{m}}$ are the monodromy operators induced by circuits around the fibers Y_0 and Y_{∞} , respectively.

It is well known (see, for instance, [A'C]), that

(3)
$$\Delta_{\overline{m},in}(t) = (t-1) \prod_{i=1}^{N_0} (t^{m_i} - 1)^{-\chi(D_i^0)},$$

(4)
$$\Delta_{\overline{m},ex}(t) = (t-1) \prod_{i=1}^{N_{\infty}} (t^{r_i} - 1)^{-\chi(R_i^0)},$$

where $\chi(M)$ is Euler characteristic of a space M.

Corollary 2. The roots of the polynomial $\Delta_{\overline{m},D}(t)$ are roots of unity.

Remark 1. If $\overline{D} = \overline{D}_1 \cup ... \cup \overline{D}_n$ intersects transversally with L_{∞} , then

$$\Delta_{\overline{m},ex}(t) = (t-1)(t^{\sum d_i m'_i} - 1)^{\sum d_i - 2},$$

where $d_i = deg \overline{D}_i$.

2. In this section we shall describe a purely algebraic approach to the definition of \overline{m} -Alexander polynomials. This approach coincides with the geometric one described above.

Let $I_q = \{1, 2, ..., q\}$ be a segment of \mathbb{N} , $M \subset I_q^3 = I_q \times I_q \times I_q$ a subset and |M| = #M the cardinality of M.

Definition. A group G is called a C-group of type M, if G possesses the following corepresentation

(5)
$$G = \langle x_1, \dots, x_q \mid \{R_\alpha(x)\}_{\alpha \in M} \rangle,$$

where for $\alpha = (\alpha_1, \alpha_2, \alpha_3)$ the relation

$$R_{\alpha}(x) = x_{\alpha_1} x_{\alpha_2} x_{\alpha_1}^{-1} x_{\alpha_3}^{-1}$$

is a conjugation (the letter "C" in "C-group" is the first letter of the word "conjugation").

2.1. Examples of C-groups:

- (1) The free group \mathbb{F}_n .
- (2) The free abelian group Ab_n .
- (3) The braid group B_n .
- (4) Groups of knots and links (with the Wirtinger corepresentation).

(5) The fundamental groups $\pi_1(\mathbb{C}^2 \setminus D)$ of complements of plane algebraic curves D (with the corepresentation from [K1]).

2.2. To any *C*-corepresentation of type *M* we can associate an oriented graph Γ_M with verteces $v_1, ..., v_q$, and with edges $e_{\alpha}, \alpha \in M$. The edge e_{α} connects the vertex v_{α_2} with v_{α_3} , where $\alpha = (\alpha_1, \alpha_2, \alpha_3)$.

It is easy to prove the following

Lemma 1. (cf. [K3]) Let G be a C-group of type M, and G' = [G, G]. Then $G/G' = \mathbb{Z}^n$, where n is the number of connected components of the graph Γ_M .

A C-group G of type M is called an irreducible C-group if its graph Γ_M is connected.

Let $\Gamma_M = \Gamma_1 \cup ... \cup \Gamma_n$ be a decomposition into connected components. For each Γ_j , let $I(j) = \{i \in I_q | v_i \notin \Gamma_j\}$. The group

$$G_j = \langle x_1, ..., x_q \mid \{R_\alpha\}_{\alpha \in M} \cup \{x_i\}_{i \in I(j)} >$$

is called an irreducible component of a C-group G of type M, and we shall say that the C-group G is composed of n irreducible components G_i .

Let G be a C-group composed of n irreducible components. Then for $\overline{m} = (m_1, ..., m_n)$, let

(6)
$$F_{\overline{m}_*}: G \to \mathbb{F}_1 = < \tau \mid \emptyset >$$

be the homomorphism such that

1

$$F_{\overline{m}*}(x_j) = \tau^{m(j)}$$

for each generator x_j of G, where $m(j) = m_i$ for $j \in I_q \setminus I(i)$. Obviously, $F_{\overline{m}*}$ is an epimorphism if and only if $m_0 = GCD(m_1, ..., m_n) = 1$. In general

$$F_{\overline{m}*} = (m_0) \cdot F_{\overline{m}_{prim}*},$$

where $(m_0): \mathbf{F}_1 \to \mathbf{F}_1$ is defined by $(m_0)(\tau) = \tau^{m_0}$. Put $N = Ker F_{\overline{m}*}$, the kernel of $F_{\overline{m}*}$.

Remark 2. If $G = \pi_1(\mathbb{C}^2 \setminus D)$ and the corepresentation of G coincides with the corepresentation from [K1], then the homomorphism (6) coincides with the homomorphism induced by the morphism (1) in the case $\overline{m} = \overline{m}_{prim}$.

2.3. Following [M2], to each C-group G we associate a two-dimensional finite connected simplicial complex K with a single vertex x_o and 1-skeleton of which is a union of q oriented loops s_i . The loops s_i are in one to one correspondence with the generators x_i of G. The complement

$$K \setminus (\forall s_i) = \bigsqcup_{\alpha \in M} S^0_{\alpha}$$

is a disjoint union of open disks. For $\alpha = (\alpha_1, \alpha_2, \alpha_3)$ the disk S_{α} is glued to the 1-skeleton along the path $s_{\alpha_1}s_{\alpha_2}s_{\alpha_1}^{-1}s_{\alpha_3}^{-1}$. Evidently, $\pi_1(K, x_0) \simeq G$.

The homomorphism $F_{\overline{m}*}: G \to \mathbb{F}_1$ defines an infinite cyclic covering $f: \widetilde{K} \to K$ such that $\pi_1(\widetilde{K}) = N$ and $H_1(\widetilde{K}, \mathbb{Z}) = N/N'$ (here we are assuming that \overline{m} is a primitive vector).

Let $\widetilde{K}_0 = f^{-1}(x_o)$ and \widetilde{K}_1 be the 1-skeleton of \widetilde{K} . We have the following exact sequences:

The action of \mathbf{F}_1 on \widetilde{K} defines the structure of a $\mathbb{Z}[t, t^{-1}]$ -module on each term of these sequences.

We shall describe these actions. For this we fix p_0 , which is one of vertices of \widetilde{K} . Let $p_i = t^i p_0$ be the image of the action of $\tau^i \in \mathbb{F}_1$ at the point p_0 . Then $\overline{v}_j, j = 1, ..., q$, are the generators of a free $\mathbb{Z}[t, t^{-1}]$ -module $H_1(\widetilde{K}_1, \widetilde{K}_0)$, where \overline{s}_j is an edge starting at the point p_0 , ending at the point $p_{m(j)}$ and covering the loop s_j . The image $t^i \overline{s}_j$ of the action of τ^i at \overline{s}_j is the edge starting at the point p_i and covering s_j .

The description of the action of \mathbf{F}_1 on $H_1(\widetilde{K})$ is the same as the description of the action on $H_1(\widetilde{K}_1, \widetilde{K}_0)$.

Remark 3. It is easy to see that the action of \mathbb{F}_1 on $H_1(\widetilde{K}) \simeq N/N'$, described above, is the same as the action on N/N' induced by the exact sequence

$$1 \longrightarrow N/N' \longrightarrow G/N' \xrightarrow{F_{\overline{m}*}} \mathbb{F}_1 \longrightarrow 1$$

The generators of the free $\mathbb{Z}[t, t^{-1}]$ -module $H_2(\widetilde{K}, \widetilde{K}_1)$ are disks \overline{S}_{α} glued to the 1-skeleton along the paths $\overline{s}_{\alpha_1} \cup t^{m(\alpha_1)} \overline{s}_{\alpha_2} \cup t^{m(\alpha_2)} \overline{s}_{\alpha_1}^{-1} \cup \overline{s}_{\alpha_3}^{-1}$.

It is easy to see that $\mu(\overline{S}_{\alpha}) \in H_1(K_1, K_0)$, in the basis $\overline{s}_1, ..., \overline{s}_q$, is equal to either

(8)
$$A_{\alpha} = (0, ..., 0, 1 - t^{m(\alpha_2)}, 0, ..., 0, t^{m(\alpha_1)} - 1, 0, ..., 0)$$

for $\alpha_1 \neq \alpha_2 = \alpha_3 \neq \alpha_1$ or

(9)
$$A_{\alpha} = (0, ..., 0, 1 - t^{m(\alpha_2)}, 0, ..., 0, t^{m(\alpha_1)}, 0, ..., 0, -1, 0, ..., 0)$$

for $\alpha_1 \neq \alpha_2 \neq \alpha_3 \neq \alpha_1$. Moreover in the first case $1 - t^{m(\alpha_2)}$ is in the α_1 -st place, $t^{m(\alpha_1)}$ is in the α_2 -nd place; and in the second case $1 - t^{m(\alpha_2)}$ is in the α_1 -st place, $t^{m(\alpha_1)}$ is in the α_2 -nd place and -1 is in the α_3 -rd place. Denote by $A_{\overline{m},G}(t)$ the matrix formed by the rows $A_{\alpha}, \alpha \in M$.

From (7) we have

$$\partial(\nu(\overline{s}_j)) = (t^{m(j)} - 1)p_0$$

and moreover $Im\partial$ is a free $\mathbb{Z}[t, t^{-1}]$ -module generated by $(t-1)p_0$ (here we are assuming that $m_0 = 1$).

Let $s \in H_1(\widetilde{K}_1, \widetilde{K}_0)$ be an element such that $\partial(\nu(s)) = (t-1)p_0$. Then $H_1(\widetilde{K}_1, \widetilde{K}_0)$ is decomposed into the direct sum

$$H_1(\widetilde{K}_1,\widetilde{K}_0)\simeq Ker(\partial\cdot\nu)\oplus\mathbb{Z}[t,t^{-1}]s.$$

It follows from (8) and (9) that

$$Im\mu \subset Ker(\partial \cdot \nu),$$

and we obtain from (7) that

$$H_1(\widetilde{K}) = Ker(\partial \cdot \nu)/Im\mu$$

 and

$$rgA_{\overline{m}}(G) \leqslant q-1.$$

Definition. A C-group G of type $M \subset I_q$ is called \overline{m} -connected, if

$$rgA_{\overline{m}}(G) = q - 1$$

By $E_{\overline{m},G,i}(t), 0 \leq i \leq q$, denote the ideals of $\mathbb{Z}[t, t^{-1}]$, where

$$E_{\overline{m},G,i}(t) = \begin{cases} (0), & \text{if } q - i > |M|, \\ \mathbb{Z}[t,t^{-1}], & \text{if } q - i < 0, \\ \text{is generated by all } (q-i)\text{-minors of } A_{\overline{m},G}(t), \text{ if } 0 \le q - i \le |M| \end{cases}$$

Let $\Delta_{\overline{m},G,i}(t)$ be a generator of the minimal principal ideal which contains $E_{\overline{m},G,i}(t)$. If $\Delta_{\overline{m},G,i}(t) \neq 0$, then after multiplying $\Delta_{\overline{m},G,i}(t)$ by an invertible element in $\mathbb{Z}[t,t^{-1}]$, we can assume that

$$\Delta_{\overline{m},G,i}(t) \in \mathbb{Z}[t] \quad ext{ and } \quad \Delta_{\overline{m},G,i}(0)
eq 0.$$

Remark 4. These ideals $E_{\overline{m},G,i}(t)$ and polynomials $\Delta_{\overline{m},G,i}(t)$ can be obtained using Fox's free calculus (see [C-F]).

If we apply the proof of Theorem 5 from [L, chapter XV] to the finitely generated submodules $Im\mu \otimes \mathbb{Q}$ and $Ker(\partial \cdot \nu) \otimes \mathbb{Q}$ of the free $\mathbb{Q}[t, t^{-1}]$ -module $H_1(\tilde{K}, \tilde{K}_0) \otimes \mathbb{Q}$, then we obtain that there exist a basis $g_1, ..., g_q$ of $H_1(\tilde{K}, \tilde{K}_0) \otimes \mathbb{Q}$ and non-zero elements $\lambda_1(t), ..., \lambda_r(t) \in \mathbb{Q}(t, t^{-1})$, where $0 \leq r \leq q - 1$, such that:

(i) $g_1, ..., g_{q-1}$ form a basis of $Ker(\partial \cdot \nu) \otimes \mathbb{Q}$ over $\mathbb{Q}[t, t^{-1}]$;

(ii) $\lambda_1(t)g_1, ..., \lambda_r(t)g_r$ form a basis of $Im\mu \otimes \mathbb{Q}$ over $\mathbb{Q}[t, t^{-1}]$;

(iii) $\lambda_i | \lambda_{i+1}$ for i = 1, ..., r-1;

(iiii) the module

$$(N/N') \otimes \mathbb{Q} = H_1(\widetilde{K}, \mathbb{Q}) \simeq$$

$$(10) \qquad \simeq \mathbb{Q}[t, t_{-1}]/(\lambda_1(t)) \oplus \dots \oplus \mathbb{Q}[t, t^{-1}]/(\lambda_1(t)) \oplus (\mathbb{Q}[t, t_{-1}])^{q-r-1}$$

and moreover we have that the generators $\Delta_{\overline{m},i,G,\mathbf{Q}}(t)$ of the minimal principal ideals, containing $E_{\overline{m},G,i}(t) \otimes \mathbb{Q}$, are

$$\Delta_{\overline{m},G,i,\mathbf{Q}}(t) = \begin{cases} 0 & , \text{if } i < q-r; \\ \lambda_1(t) \cdot \ldots \cdot \lambda_{q-i}(t), \text{if } i \ge q-r. \end{cases}$$

After multiplying $\lambda_i(t)$ by invertible elements in $\mathbb{Q}[t, t^{-1}]$ we can assume that

$$\Delta_{\overline{m},G,i,\mathbf{Q}}(t) = \Delta_{\overline{m},G,i}(t).$$

It is easy to see from (10) that $(N/N') \otimes \mathbb{Q}$ is a finitely generated \mathbb{Q} -module if and only if $\Delta_{\overline{m},G,i}(t) \neq 0$.

Let G be \overline{m} -connected. From (10) we have that $\Delta_{\overline{m},1,G}(t)$ coincides with the characteristic polynomial of the automorphism $h \in Aut[(N/N') \otimes \mathbb{Q}]$, which is defined by the action of the generator $\tau \in \mathbb{F}_1$ on $H_1(\widetilde{K}, \mathbb{Q})$. By virtue of stated above this action is reduced to the multiplication by t in (10).

Now let us consider the field \mathbb{Z}_p instead of \mathbb{Q} . As above we obtain that the coefficients of $\Delta_{\overline{m},G,1}(t)$ are relatively prime for a finitely generated group N/N'.

On the other hand, if N/N' is a finitely generated group, then any choice of basis of $(N/N')_{Free}$ determines a basis of $(N/N')_{Free} \otimes \mathbb{Q}$. The matrix of h in the choosen basis is integral and det h = 1, because h is an automorphism of $(N/N')_{Free}$. Thus, in this case $\Delta_{\overline{m},G,1}(t)$ coincides up to a sign with the characteristic polynomial of h, because the coefficients of $\Delta_{\overline{m},G,1}(t)$ are relatively prime.

Let us gather the previous considerations into the following

Proposition 2. Let G be C-group and $N = Ker F_{\overline{m}*}$. Then:

(i) $(N/N') \otimes \mathbb{Q}$ is a finitely generated \mathbb{Q} -module if and only if G is \overline{m} -connected. In this case $\Delta_{\overline{m}_{prim},G,1}(t)$ coincides (up to a constant multiplier) with the characteristic polynomial of $h \in Aut[(N/N') \otimes \mathbb{Q}]$, which is induced by the action of the generator $\tau \in \mathbb{F}_1$ on $(N/N') \otimes \mathbb{Q}$;

(ii) If N/N' is a finitely generated group, then

$$\Delta_{\overline{m}_{prim},G,1}(t) = \pm det(h - tId).$$

In particular, $|\Delta_{\overline{m},G,1}(0)| = 1$.

Corollary. If a curve $D \subset \mathbb{C}^2$ and \overline{m} satisfy the condition (*), then

$$\Delta_{\overline{m},D}(t) = \pm \Delta_{\overline{m}_{\mathrm{prim}},G,1}(t),$$

where $G = \pi_1(\mathbb{C}^2 \setminus D)$.

From Lemma 1 and from the exact sequence ([M2])

$$\longrightarrow H_1(\widetilde{K}, \mathbb{Q}) \xrightarrow{h-Id} H_1(\widetilde{K}, \mathbb{Q}) \xrightarrow{} H_1(K, \mathbb{Q}) \longrightarrow H_0(\widetilde{K}, \mathbb{Q}) \longrightarrow 0$$

we obtain the following

Proposition 3. Let G be an \overline{m} -connected C-group. Then

$$\Delta_{\overline{m},G,1}(t) = (t-1)^{n-1} \Delta'(t),$$

where n is the number of irreducible components of G and $\Delta'(t)$ is a polynomial such that $\Delta'(1) \neq 0$.

2.4.

Proposition 4. Let $G = G_1 \times ... \times G_n$ be the direct product of irreducible Cgroups, n > 1, and $\overline{m} = (m_1, ..., m_n)$ be a vector such that each coordinate m_i is equal to $p_i^{r_i}$, where p_i is prime and $r_i \in \mathbb{N}$. Then

$$\Delta_{\overline{m},G,i}(t) = (t^{m_0} - 1)^{n-i}$$

for $1 \leq i \leq n$, where $m_0 = GCD(m_1, ..., m_n)$.

Remark 5. In the statement of Proposition 4 we do not assume that the Alexander matrix $A_{\overline{m},G}(t)$ satisfies the condition $m_0 = 1$.

Proof. By induction over n.

First, note that

$$\Delta_{\overline{m},G,i}(t) = \Delta_{\overline{m}_{prim},G,i}(t^{m_0})$$

In the case n = 2, for $1 \le i \le q_1$, let the edges $v_i \in \Gamma_M$ correspond to the generators x_i of G_1 , and for $q_1 < i \le q_1 + q_2 = q$, let the edges v_i correspond to the generators of G_2 . Numerate the relations R_{α} such that the first s_1 relations are the relations of the C-group G_1 , the relations with index $i, s_1 < i \le s_1 + s_2$, are the relations of the C-group G_2 and the last $q_1 \cdot q_2$ relations are the relations of commutation.

 \mathbf{Put}

$$\overline{m} = (m_1, m_2), \qquad m_0 = GCD(m_1, m_2), \qquad m'_i = m_i/m_0.$$

It is easy to see that the Alexander matrix $A_{\overline{m},G}(t)$ is of order $(s_1 + s_2 + q_1q_2) \times (q_1 + q_2)$ and has the form

$$A_{\overline{m},G}(t) = \begin{pmatrix} A_{1,G_1}(t^{m_1}) & 0\\ 0 & A_{1,G_2}(t^{m_2})\\ E_1(t^{m_2}) & E_2(t^{m_1}) \end{pmatrix},$$

where $A_{1,G_i}(t)$ is the Alexander matrix of G_i , the matrices $E_i(t)$ are of order $(q_1q_2) \times s_i$ and are composed of the rows of the form

$$(0, ..., 0, \pm (t-1), 0, ..., 0).$$

Add the first $q_1 - 1$ columns to the column q_1 and add columns with index i, $q_1 + 1 \le i \le q_1 + q_2 - 1$, to the column $(q_1 + q_2)$. We get a matrix $\widetilde{A}_{\overline{m},G}(t)$ which is equivalent to $A_{\overline{m},G}(t)$. The columns q_1 and $(q_1 + q_2)$ of $\widetilde{A}_{\overline{m},G}(t)$ are of the form

$$(0,...,0,\pm(t^{m_i}-1),\ldots,\pm(t^{m_i}-1)),$$

where "0" stand in the first $s_1 + s_2$ places.

Consider the $(q_1 + q_2 - 1)$ -minors of $\widetilde{A}_{\overline{m},G}(t)$ formed by rows taken from the first $(s_1 + s_2 + 1)$ rows of $\widetilde{A}_{\overline{m},G}(t)$. These minors have the following form:

$$\phi_1(t^{m_1})\phi_2(t^{m_2})(t^{m_i}-1),$$

where $\phi_i(t)$ are some $(q_i - 1)$ -minors of the matrix $A_{1,G_i}(t)$.

Note that by Lemma 6 in [K3] the polynomials $\Delta_{1,G_{i},1}(t)$ satisfy the following condition:

$$\Delta_{1,G_{i},1}(1) = \pm 1.$$

Thus the greatest common divisor of the minors of $A_{\overline{m},G}(t)$ considered above is equal to

(11)
$$\Delta_{1,G_{1},1}(t^{m_{1}})\Delta_{1,G_{2},1}(t^{m_{2}})(t^{m_{0}}-1),$$

On the other hand, it is easy to show that the greatest common divisor of the $(q_1 + q_2 - 1)$ -minors, which are formed by rows taken from the last q_1q_2 rows of $A_{\overline{m},G}(t)$, is equal to

(12)
$$(t^{m_1}-1)^{q_2-1}(t^{m_2}-1)^{q_1-1}(t^{m_0}-1).$$

From [K3] it follows that the p^r -th root of unity is not a root of the polynomial $\Delta_{1,G_{i,1}}(t)$. Thus, combining (11) and (12) we obtain that

$$\Delta_{\overline{m},G_1\times G_2,1}(t)=(t^{m_0}-1).$$

Obviously,

$$\Delta_{\overline{m},G_1\times G_2,2}(t)\equiv 1.$$

The general case. Suppose the proposition is true for $n \leq l$. Consider a group $G = G_1 \times \ldots \times G_{l+1}$ and a vector $\overline{m} = (m_1, \ldots, m_{l+1})$. Fix the number $j, j \leq l+1$, and introduce the following notation

$$\begin{split} \widetilde{G}_1 &= G_j, \qquad \widetilde{G}_2 = G_1 \times \ldots \times \widehat{G}_j \times \ldots \times G_{l+1}, \\ m_0^j &= GCD(m_1, \ldots, \hat{m}_j, \ldots, m_{l+1}), \qquad \overline{m}_j = (m_1, \ldots, \hat{m}_j, \ldots, m_{l+1}) \end{split}$$

Let q_i be the number of generators and s_i be the number of relations of the *C*-group \tilde{G}_i , i = 1, 2. Denote by $A_{\overline{m}_i, \tilde{G}_1 \times \tilde{G}_2}(t)$ the matrix with the same properties (with respect to \tilde{G}_1 and \tilde{G}_2) as in the case n = 2.

First let us show that each $(q_1 + q_2 - i)$ -minor of $A_{\overline{m}_j, \widetilde{G}_1 \times \widetilde{G}_2}(t)$ is divisible by $(t^{m_0^j} - 1)^{l+1-j}$. Note for this that each $(q_1 + q_2 - i)$ -minor \mathcal{M} can be decomposed into the sum of products:

$$\mathcal{M} = \sum \mathcal{M}_{1,lpha} \mathcal{M}_{2,eta} \mathcal{M}_{3,\gamma}$$

where $\mathcal{M}_{1,\alpha}$ are (q_1-i_1) -minors of $A_{m_j,\tilde{G}_1}(t)$, $\mathcal{M}_{2,\beta}$ are (q_2-i_2) -minors of $A_{\overline{m}_j,\tilde{G}_2}(t)$ and $\mathcal{M}_{3,\gamma}$ are minors of order i_1+i_2-i generated by some rows with indices $> s_1+s_2$. It is easy to see that $\mathcal{M}_{3,\gamma}$ is divisible by $(t^{m_0}-1)^{i_1+i_2-i}$.

If $i_2 > l$, then $\mathcal{M}_{3,\gamma}$ is divisible by $(t^{m_0} - 1)^{l+1-i}$.

If $i_2 \leq l$, then $\mathcal{M}_{2,\beta}$ is divisible by $(t^{m_0}-1)^{l-i_2}$ by the inductive assumption. In this case $\mathcal{M}_{2,\beta}\mathcal{M}_{3,\gamma}$ is divisible by $(t^{m_0}-1)^{l+i_1-i}$. If $i_1 = 0$, then $\mathcal{M}_{1,\alpha} \equiv 0$. Thus in all cases $\mathcal{M}_{1,\alpha}\mathcal{M}_{2,\beta}\mathcal{M}_{3,\gamma}$ are divisible by $(t^{m_0}-1)^{l+1-i}$.

Now, on the one hand, by induction assumptions we can choose a (q_2-1) -minor \mathcal{M}_2 of $A_{\overline{m}_j,\widetilde{G}_2}(t)$ such that $\mathcal{M}_2 = (t^{m_0^j}-1)^{l-i}\widetilde{\mathcal{M}}_2$, where $\widetilde{\mathcal{M}}_2$ and $(t^{m_0^j}-1)$ are relatively prime.

We can choose a $(q_1 - 1)$ -minor \mathcal{M}_1 of $A_{m_j,\tilde{G}_1}(t)$ such that \mathcal{M}_1 and $(t^{m^j} - 1)$ are relatively prime. Moreover by [K3] the p^r -th roots of unity are not the roots of the polynomial $\mathcal{M}_1(t)$ for each prime number p.

Add one more row with index $> s_1 + s_2$ and one more column with index $> q_1$ which not contained \mathcal{M}_2 to the rows and columns contained in \mathcal{M}_1 and \mathcal{M}_2 . We find a $(q_1 + q_2 - i)$ -minor \mathcal{M} of the matrix $A_{\overline{m},G}(t)$ such that

$$\mathcal{M} = \pm (t^{m_0^j} - 1)^{l-i} \widetilde{\mathcal{M}}_2 \mathcal{M}_1(t^{m_j} - 1).$$

It is easy to see that the greatest common divisor of all these minors is equal to

(13)
$$(t^{m_0^i}-1)^{l+1-i}\mathcal{M}'(t),$$

where $\mathcal{M}'(t)$ has no p^r -th roots of unity in its roots.

On the other hand, there exists a $(q_1 + q_2 - i)$ -minor $\mathcal{M}(t)$ of $A_{\overline{m},G}(t)$, which is formed by rows with indexes $> s_1 + s_2$ (these rows correspond to the relations of commutation). The roots of $\mathcal{M}(t)$ are the roots of unity of orders $m_i = p_i^{r_i}$. From this and (13) it follows that $\Delta_{\overline{m},G,i}(t)$ divides $(t^{m_0^i} - 1)^{l+1-i}$.

Finally, $\Delta_{\overline{m},G,i}(t)$ divides

$$GCD((t^{m_0^1}-1)^{l+1-i},...,(t^{m_0^{l+1}}-1)^{l+1-i}) = (t^{m_0}-1)^{l+1-i}.$$

Combining this with the fact that $\Delta_{\overline{m},G,i}(t)$ is divisible by $(t^{m_0}-1)^{l+1-i}$, we that Proposition 4 is proven.

Proposition 5. Let $G = G_1 \times ... \times G_n$, n > 1, be a direct product of irreducible C-groups such that $\Delta_{1,G_i,1}(t) \equiv 1$ for all *i*. Then for any $\overline{m} = (m_1, ..., m_n)$

$$\Delta_{\overline{m},G,i} = (t^{m_0} - 1)^{n-i}.$$

Proof. The same as the proof of Proposition 4.

Corollary. Let $G = \mathbb{Z}^n$ be a free abelian group. Then

$$\Delta_{\overline{m},G,i}(t) = (t^{m_0} - 1)^{n-i}$$

for $1 \leq i \leq n$ and for each $\overline{m} \in \mathbb{N}^n$.

Example. Let G_1 and G_2 be two copies of

$$G = \langle x_1, x_2, x_3 | x_1 x_2 x_1^{-1} x_3^{-1}, x_2 x_3 x_2^{-1} x_1^{-1} \rangle$$

(G is the group of a clover-leaf knot). Then direct calculations give that

$$\Delta_{(6,1),G_1 \times G_2,1}(t) = (t-1)(t^2 - t + 1).$$

3. In this section we shall apply the results obtained above to calculation of the irregularity of cyclic coverings of \mathbb{P}^2 .

3.1. In notations of n.1 denote by $X^0_{k,\overline{m}}$ the surface in \mathbb{C}^3 defined by equation

(14)
$$z^{k} = f_{1}^{m_{1}}(x, y) \cdot \dots \cdot f_{n}^{m_{n}}(x, y).$$

Let $\phi' : X_{k,\overline{m}}^0 \to \mathbb{C}^2$ be the restriction of the projection \mathbb{C}^3 onto \mathbb{C}^2 defined by $(x, y, z) \longmapsto (x, y)$.

From now we shall assume that $GCD(m_1, ..., m_n, k) = 1$ (this is nothing but the condition that $X_{k,\overline{m}}^0$ is irreducible). Let $X_{k,\overline{m}}$ be a projective closure of $X_{k,\overline{m}}^0$, and $\pi: \overline{X}_{k,\overline{m}} \to X_{k,\overline{m}}$ be a desingularisation. We can assume that $\phi = \phi' \cdot \pi: \overline{X}_{k,\overline{m}} \to \mathbb{P}^2$ is a regular morphism.

The irregularity $q_{k,\overline{m}} = q(\overline{X}_{k,\overline{m}})$ on $\overline{X}_{k,\overline{m}}$ has three equivalent expressions:

$$q_{k,\overline{m}} = \dim H^1(\overline{X}_{k,\overline{m}}, \mathcal{O}) = \dim H^0(\overline{X}_{k,\overline{m}}, \Omega^1) = \frac{1}{2}\dim H^1(\overline{X}_{k,\overline{m}}, \mathbb{R}) = \frac{1}{2}b_1(\overline{X}_{k,\overline{m}}).$$

Remark 6. The surfaces $\overline{X}_{k,\overline{m}}$, $\overline{X}_{k,\overline{m}_{red}}$, $\overline{X}_{k,\overline{m}+\overline{k}}$ are birationally isomorphic, where $\overline{m} + \overline{k} = (m_1 + k, ..., m_n + k)$. Thus these surfaces have one and the same irregularity $q_{k,\overline{m}}$.

Put $U_{k,\overline{m}} = \overline{X}_{k,\overline{m}} \setminus \phi^{-1}(\overline{D} \cup L_{\infty}).$

From now we shall assume that k does not divide m_i for all i. This is nothing but the condition that ϕ is ramified along each component D_i of D.

The inclusion $\alpha: U_{k,\overline{m}} \to \overline{X}_{k,\overline{m}}$ defines an epimorphism

$$\alpha_*: H_1(U_{k,\overline{m}},\mathbb{Q}) \twoheadrightarrow H_1(X_{k,\overline{m}},\mathbb{Q}).$$

Thus

(15)
$$b_1(\overline{X}_{k,\overline{m}}) = b_1(U_{k,\overline{m}}) - \dim \operatorname{Ker} \alpha_*$$

Lemma 3. (cf.[S])

 $\dim Ker\alpha_* \ge n = \#\{\text{the irreducible components of the curve } D\}$

Proof. The homomorphism $\phi_* : H_1(U_{k,\overline{m}}, \mathbb{Q}) \to H_1(\mathbb{C}^2 \setminus D, \mathbb{Q})$ is an epimorphism. Indeed, $H_1(\mathbb{C}^2 \setminus D, \mathbb{Z})$ is generated by γ_i , which are simple circuits around D_i . It is easy to see that $(k/GCD(m_i, k))\gamma_i$ can be lifted up to $H_1(U_{k,\overline{m}}, \mathbb{Z})$ and this cycle $\tilde{\gamma}_i$ is a simple circuit around one of irreducible components of $\phi^{-1}(D_i)$. The cycles $\tilde{\gamma}_1, ..., \tilde{\gamma}_n$ are lineary independent in $H_1(U_{k,\overline{m}}, \mathbb{Z})$, because $\gamma_1, ..., \gamma_n$ form a basis of $H_1(\mathbb{C}^2 \setminus D, \mathbb{Z})$.

Obviously, $\tilde{\gamma}_1, ..., \tilde{\gamma}_n \in Ker\alpha_*$.

3.2. Put

 $N(k,\overline{m}) = \sum \# \{ \text{distinct } k \text{-th roots of unity which are roots of } \lambda_j(t) \},$

where $\lambda_j(t)$ are the elementary divisors of $\Delta_{\overline{m}_{prim},G,1}(t)$ defined by (10) for $G = \pi_1 (\mathbb{C}^2 \setminus D)$.

Theorem 3. ([Lib],[S]) Let $D \subset \mathbb{C}^2$ and \overline{m} satisfy the condition (*). Then

$$b_1(U_{k,\overline{m}}) = 1 + N(k,\overline{m}).$$

3.3. Combining this theorem, Propositions 4 and 5 with [K2] we obtain the following theorems:

Theorem 4. Let a curve $\overline{D} = \overline{D}_1 \cup ... \cup \overline{D}_n$, n > 1, satisfy the following conditions: (i) for all $i, j, i \neq j$, the intersections $(\overline{D}_i \cap \overline{D}_j) \cap L_{\infty} = \emptyset$;

(ii) locally the divisor $D = D_1 + ... + D_n$ is a divisor with normal crossings at each point $x \in \bigcup_{i \neq j} (D_i \cap D_j)$.

Then

$$q(\overline{X}_{k,\overline{m}})=0$$

for $\overline{m} = (m_1, ..., m_n)$ with $m_i = p_i^{r_i}$, where p_i are primes and $r_i \in \mathbb{N}$.

Theorem 5. Let \overline{D} be as in Theorem 4 and let $\Delta_{\overline{m},D}(t) \equiv 1$ for all *i*, where $G_i = \pi_1(\mathbb{C}^2 \setminus D_i)$. Then for any $\overline{m} = (m_1, ..., m_n)$

$$q(\overline{X}_{k,\overline{m}})=0.$$

In particular, if $\pi_1(\mathbb{C}^2 \setminus D_i) \simeq \mathbb{F}_1$ for all *i* and if $\overline{D} = \overline{D}_1 \cup ... \cup \overline{D}_n$ satisfies the assumptions of Theorem 4, then for any \overline{m} the irregularity $q(\overline{X}_{k,\overline{m}}) = 0$.

Theorem 6. Let \overline{D} be as in Theorem 4, and let the following conditions be satisfied:

(i) \overline{D} meets L_{∞} transversally;

(ii) $\sum d_i m'_i = p^r$, where p is prime, $r \in \mathbb{N}$ and $d_i = \deg D_i$. Then $q(\overline{X}_{k,\overline{m}}) = 0$.

Proof. From Theorem 2 and Remark 1 it follows that the roots of $\Delta_{\overline{m},D}(t)$ are the p^r -th roots of unity.

On the other hand, it follows from the proof of Proposition 4 that

$$\Delta_{\overline{m},D}(t) = (t-1)^{n-1} \Delta'(t),$$

where $\Delta'(t)$ is a divisor of the polynomial

$$\Delta = \prod_{i=1}^{n} \Delta_{1,D_i}(t^{m'_i}).$$

By Theorem 7 in [K3] the roots of $\Delta(t)$ are not the p^r -th roots of unity. Thus $\Delta'(t) \equiv const$ and Theorem 6 follows from (15) and from Theorem 3.

3.4. Recall ([N]) that $\pi_1(\mathbb{C}^2 \setminus D_i) = \mathbb{F}_1$, if the proper pre-image $\sigma^{-1}(\overline{D}_i)$ has positive index of self-intersection, where $\sigma : \overline{\mathbb{P}}^2 \to \mathbb{P}^2$ is a composition of σ -processes such that $\sigma^*(\overline{D}_i \cup L_\infty)$ is a divisor with normal crossings.

There exists another criterion for commutativity of the fundamental group of the complement of an algebraic curve in \mathbb{C}^2 .

Theorem 7. Let {C_b}_{b∈B} be a family of plane affine algebraic curves such that
(i) C₀ = D₁ + ... + D_n is a reduced divisor and satisfies the conditions of Theorem 4;

(ii) a generic member C_b of this family is irreducible. Then $\pi_1(\mathbb{C}^2 \setminus C_b) = \mathbb{F}_1$.

Proof. According to the well-known "semicontinuity" principle there exists an epimorphism of C-groups

$$\pi_1(\mathbb{C}^2 \setminus C_0) \twoheadrightarrow \pi_1(\mathbb{C}^2 \setminus C_b).$$

Denote it by ν . Moreover, if x_i is a generator of the C-group $\pi_1(\mathbb{C}^2 \setminus C_0)$, then $\nu(x_i)$ is a generator of the C-group $\pi_1(\mathbb{C}^2 \setminus C_b)$.

From [K2] we have that $\pi_1(\mathbb{C}^2 \setminus C_0) \cong \pi_1(\mathbb{C}^2 \setminus D_1) \times ... \times \pi_1(\mathbb{C}^2 \setminus D_n)$. Let x_1 and x_2 be two generators of $\pi_1(\mathbb{C}^2 \setminus C_0)$ which belong to different subgroups $\pi_1(\mathbb{C}^2 \setminus D_i)$. We can assume without loss of generality that x_1 is a generator of $\pi_1(\mathbb{C}^2 \setminus D_1)$ and x_2 is a generator of $\pi_1(\mathbb{C}^2 \setminus D_2)$.

We have that $\nu(x_1)$ and $\nu(x_2)$ are conjugated to each other, because C_b is irreducible. Let $\nu(x_2) = \nu(x_3)\nu(x_1)\nu(x_3)^{-1}$, where x_3 is a generator of one of the subgroups $\pi_1(\mathbb{C}^2 \setminus D_i)$.

If $x_3 \notin \pi_1(\mathbb{C}^2 \setminus D_1)$, then $\nu(x_2) = \nu(x_1)$, because in this case x_1 and x_3 commute.

If $x_3 \in \pi_1(\mathbb{C}^2 \setminus D_1)$, then $\nu(x_1) = \nu(x_3)^{-1}\nu(x_2)\nu(x_3) = \nu(x_2)$. Thus in all cases $\nu(x_1) = \nu(x_2)$ for all generators x_1 of the *C*-group $\pi_1(\mathbb{C}^2 \setminus D_1)$ and for all generators x_2 of the *C*-group $\pi_1(\mathbb{C}^2 \setminus D_2)$. This means that $Im \nu \cong \mathbb{F}_1$. Theorem 7 is proven.

3.5. We say that a vector $\overline{m} = (m_1, ..., m_n)$ is k-admissible, if k is not a divisor of m_i for all i. Two vectors $\overline{m}_1 = (m_1, ..., m_n)$ and $\overline{m}_2 = (\tilde{m}_1, ..., \tilde{m}_n)$ are called k-equivalent, if it is possible to transform \overline{m}_1 into \overline{m}_2 by a sequence of the following transformations:

- 1) $\overline{m} \longrightarrow \overline{m} \pm \overline{k};$
- 2) $\overline{m} \mapsto p\overline{m} = (pm_1, ..., pm_n)$, if the vector $p\overline{m}$ is k-admissible;
- 3) $\overline{m} \longmapsto \overline{m}_{prim}$.

Example. The vectors $\overline{m}_1 = (1, 3)$ and $\overline{m}_2 = (3, 4)$ are 5-equivalent, because

 $\overline{m}_1 = (1, 3) \longmapsto (6, 8) \longmapsto (3, 4) = \overline{m}_2.$

Proposition 6. Let D and \overline{m}_1 satisfy the condition (*), and let \overline{m}_1 and \overline{m}_2 be k-equivalent. Then

$(\bigcup_{j} \{ \text{ distinct } k \text{-th roots of unity which are roots of the elementary divisor } \lambda_{j}(t) \text{ of } \Delta_{\overline{m}_{1} \text{prim}, D}(t) \}) =$

= # $(\bigcup_{j} \{ \text{ distinct } k \text{-th roots of unity which are roots of the elementary divisor } \lambda_{j}(t) \text{ of } \Delta_{\overline{m}_{2prim,D}}(t) \}).$

Proof. The surfaces U_{k,\overline{m}_1} and U_{k,\overline{m}_2} are isomorphic. Proposition 6 follows from this and from Theorem 3.

References

- [A'C] N. A'Campo, La fanction zeta d'une monodromie, Commentarii Mathematici Helveticia 32, N.2 (1979), 318-327.
- [C-F] R.H. Crowell and R.H. Fox, Introduction to knot theory, Springer-Verlag, 1963.
- [K1] Vic.S. Kulikov, On the fundamental group of the complement of a hypersurface in \mathbb{C}^n , Lect. Notes in Math. 1479 (1991), 122-130.
- [K2] Vic.S. Kulikov, On the structure of the fundamental group of the complement of algebraic curves in C², Izv. RAN, ser. math. (in Russian) 56, N. 2 (1992), 469-481.
- [K3] Vic.S. Kulikov, The Alexander polynomials of plane algebraic curves, Izv. RAN, ser. math. (in Russian) 57, N. 1 (1993), 76–101.
- [L] S. Lang, Algebra, Addison Wesley Publ. Company, 1977.
- [Lib] A. Libgober, Alexander polynomias of plane algebraic curves and cyclic multiple planes, Duke Math. J. 49 (1982), 833-851.
- [M1] J. Milnor, Infinite cyclic covers, Topology of manifolds (1968), 115-133.
- [M2] J. Milnor, Singular points of complex hypersurfaces, Ann. Math. Studies 61. Princeton Univ. Press, 1968.
- [N] M. Nori, Zariski's conjecture and related problems, Ann. Sci. Ec. Norm. Sup. ser. 4 16 (1983), 305-344.
- [S] F. Sakai, On the irregularity of cyclic coverings of the projective plane, (Preprint) (1992).
- [S-S] Y. Shinohara and D. W. Sumners, Homology invariants of cyclic coverings with applications to links, Trans. A.M.S. 163 (1972), 101-121.
- [Z1] O. Zariski, On the linear connection index of the algebraic surface $z^n = f(x, y)$, Proc. Nat. Acad. Sci. 15 (1929), 494-501.
- [22] O. Zariski, On the irregularity of cyclic multiple planes, Ann. of Math. 32 (1931), 485-511.