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Abstract. We derive sharp upper bounds on the dimension of a variation of Hodge structure.

1. Introduction.
A variation of Hodge structure is a holomorphic map with values in a Griffiths period
domain which satisfies the differential equation

(1.1) OF? [8z; C FP™.

The purpose of this paper is to give a general (and sharp) bound on the rank of such
mappings. That a bound exists is clear from general principles. Equation (1.1) defines a
subbundle T* of the holomorphic tangent bundle of the period domain to which the image
of a variation f is tangent, and its fiber dimension gives a first bound on the rank of f
[8]. In general, however, the distribution defined by the horizontal tangent bundle T" is
nonintegrable, so that additional restrictions must hold. This is the case whenever D is
not of hermitian type. In the simplest case (weight two with A2:° > 1) one has the result
of [1, 5] :

(1.2) rank df < % dim T,
or, more explicitly,
(1.3) rank df < %hz’ohl’l.

The general bound is similar to this: it is given by a piecewise quadratic function of the
Hodge numbers for domains of fixed Lie type.

To give a precise statement, fix a period domain D which classifies structures of weight

w, let h? stand for h?9, and set a
m = [w/2]
m = [(w = 1)/2]
d' = h'A*t! for i < m*
(1.4) = %h""(h"" +1) for w odd (Type C)
d™ = —;—h"‘. R™ L for w even, h™™ even (Type D)
dm = %h""(h""“ ~1)41 for w even, k™™ odd (Type B)
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Define
(1.5) g(LR)y=max{ Y d |j<m*, jel=j+1¢I},
JeI
where & is the ‘vector’ of Hodge numbers h?'9, and where the formula for d™ depends on
the Lie type L. Then we have:

THEOREM 1.6. Let f : X — T'\D be a period mapping. Then rankdf < q(L, ).
The theorem implies the bound (1.3) and in fact sharpens it for the case of h'! odd:

rankdf < %hz'o(hl'1 -1+1.

Since the proof relies on local arguments, the natures of X and I' are irrelevant. X can be
a polydisk and I" may consist of the identity alone. The bound is sharp for mappings of
polydisks and, except for one case, is also sharp for mappings of quasi-projective varieties
(see §7).

Let us now sketch the proof. Denote by g the complexified Lie algebra of infinitesimal
isometries of D, fix a reference point H € D, and define subspaces

(1.7) 6P = { ¢ € ge | (H™*) C H*"PH*? for all (a,b) }

to obtain a Hodge structure [10]. Then the horizontality condition becomes df (T1:%) C
=11 where T1? is the holomorphic tangent space, so that rankdf < dimg~!?!. The
integrability condition can then be expressed by saying that the image a = df(T'°) is
abelian. Since g~!! is generally nonabelian, this is a nontrivial restriction. Thus, if we
define

(1.8) a(g™"!) = max{ dima | a C g~ is abelian },
then
(1.9) rank df < a(g™"").

To compute this quantity, we shall construct a root space decomposition of g which refines
the Hodge decomposition (1.7). Next, we apply an argument of Malcev to show that to each
abelian a C g~1! there is an associated vector space A(a) C g~!+, also abelian, satisfying
dim a = dim A(a), which splits as a direct sum of positive root spaces. It therefore suffices
to bound the dimension of abelian subspaces of g='! which are spanned by a set of root
vectors { 7o | & € C }. The set of roots C is commutative, meaning that

for all a,8 € C, a + f is not a root.
Therefore

(1.10)  a(g™"') = max{ card C | C is a commutative set of roots of type (—1,1) }.

By the type of a root we shall mean the Hodge type of the associated root vector. The
problem is therefore reduced to a purely combinatorial one. Sharpness is demonstrated by
constructing suitable examples.

The root decomposition is calculated from a description of the Lie algebra in terms of
block matrices. From this description we also obtain a a distinguished system of simple
roots, as in the figure below.
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Figure 1.

The white nodes correspond to compact simple roots, the black to noncompact ones. The
former are of type (0,0), and for gap-free period domains the latter are of type (—1,1).
Here a gap means an integer p such that AP*1:9=1 =£ 0, h?:¢ = 0, and hP~19%1 % 0. There
are precisely [(£+1)/2] noncompact simple roots, where £ is the level of the Hodge structure
(if {a, b] be the smallest interval such that H?? = 0 for p € [a,}], then £ = b — a; if there
are no gaps, then £ = w).

As a corollary of the preceding description of the simple roots one has the following:

THEOREM 1.11. Let D be a gap-free period domain. Then any two points of D are
accessible through the horizontal distribution.

By accessibility we meant that any two points can be joined by a piecewise holomorphic
horizontal curve. The proof is based on a theorem of Chow 7] which asserts that accessi-
bility holds for a distribution if the ambient tangent space is generated under Lie bracket
by vector fields belonging to the distribution. In the case at hand the holomorphic tangent
space may be identified with g~, the span of the root vectors of type (p, —p), where p is
negative. From the fact that all simple roots are of type (0,0) or (—1,1) one deduces that
g~ 1! generates g~, so that Chow’s theorem applies.

The authors would like to thank Nathan Jacobson for bringing Malcev’s article to their
attention.

2. Abelian subspaces.

In the introduction we claimed that the image under df of a tangent space to a variation
of Hodge structure can be identified with an abelian subspace a of g71:!, with a abelian.
To see this, consider the compact dual D of D. If G is the (transitive) isometry group of
D, then the associated complex group Ge¢ acts transitively on D. Fix a reference Hodge
structure H, € D, let V and B be the corresponding isotropy subgroups of G and G¢,
and let v and b be the associated Lie algebras. Then

v®C=g"",
b=Fg=Y ¢g",
p20

and if we set

g-=Flg=>) g7,
p<o0

then the Hodge-theoretic splitting
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g=F'oFi=bag

is a decomposition into subalgebras. We shall let G~ denote the unipotent group corre-
sponding to g~ 5
The holomorphic tangent bundle of D is homogeneous, given by the formula

Tp=Ge xp g/b.
Since Lie bracket is compatible with the Hodge decomposition,
2.1) (6777, 6" C grHeTrY,
the space g~11 @ b is Adp-stable, and so the homogeneous bundle
T} =Ge xp (g~ +b)/b

is defined. This is Griffiths’ horizontal tangent bundle [8] .

Consider now the map exp : g~ — D given by sending £ in g~ to e F* in D. Restricted
to a small enough ball g~(¢) about the origin, this gives a univalent parametrization of
a neighborhood U(e) in D of the reference structure. Consequently the map eéF} s ef
gives a lifting n : U(e) — G, and the associated Maurer-Cartan form w = n™1dn takes
values in g~ ® £, where £P denotes the space of smooth p-forms. Now let f: V — D be
the inclusion for a variation of Hodge structure, and set

a = fru(T,V).

We shall call this the canonical lift of T, to g. Then we have

PROPOSITION 2.2. Let V be a variation of Hodge structure, o a point of V, and a the
canonical lift of T,V to g. Then a is an abelian subspace of g~1:1.

PRrROOF: The horizontality condition can be written as
ftw(X) € g—],l ®€0’

for any vector field X on U NV, so that a C g~"!. To show that a is abelian, pull the
integrability condition dw ~w Aw = 0 back to U along f and evaluate on a pair of vector
fields (X,Y) to get

Xfru(Y) = Y fu(X) - fru(lX, Y]) = [f*w(X), fru(¥)] = 0.

Since the first three terms are in g71! @ £°, so must be the last. Therefore [a,a] C g~
But the relations a C g~ [g~1!, g™ C g~2? force [a,a] = 0, since g~1»! and g=2?
are complementary. This completes the proof.

Proposition 2.2 may be thought of as a lifting to g of the corresponding commutativity
condition for infinitesimal variations of Hodge structure [3, §2 formula (iv)].
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3. Malcev’s theorem.

According to last proposition, the problem of bounding the dimension of a variation of
Hodge structure leads to that of bounding the dimension of a space of commuting matrices.
The first result of this kind was obtained in 1905 [14] by I. Schur: a commutative space of
gl, is dimension at most 1 + [n/2]. In 1945 Malcev generalized this result to the case of
abelian subalgebras of an arbitrary complex simple Lie algebra [12]. His method was quite
different from that of Schur, and it is central to our treatment of the present problem.

The fundamental difficulty is that a general abelian subspace a is invariant for no Cartan
subalgebra of g, and therefore cannot be written as a direct sum of root spaces. To
construct examples of such it suffices to take spaces of commuting matrices for which the
minimum rank of an element is large. Since root vectors have small rank, such a space
cannot be a sum of root spaces. However, we have the following:

THEOREM 3.1 (MALCEV). Let a be an abelian subspace of a semisimple Lie algebra g
which consists entirely of nilpotent elements. Then there is a Cartan subalgebra b, a
system A, of positive roots, and an auxiliary space A(a), the space of leading roots, with
the properties

a) A(a) is abelian,

b) dim A(a) = dima, and

c) A(a) is a direct sum of positive root spaces.

Nay= 3 g°

atlC

We may therefore write

for a commutative subset C of A,.

PROOF: The argument is quite simple. Let b be a Borel subalgebra containing a, and let
b = b + n, where h is a Cartan subalgebra and n is the nilradical of b. Write X € a as
H + N, where H € h and N € n. Since this is the decomposition into semisimple and
nilpotent parts of X, H = 0. Therefore a C n. Now choose a system of positive roots

Ay ={ay,...,a, } so that
n= ) 0%

CIEA+

and choose an ordering on A, compatible with addition, so that its set of positive roots is
Ay4. Let X; be the root vector associated with «;, let { Uy,...Ux } be a basis for a, and
let C = (Cjj) be the matrix which expresses the U; in terms of the X;:

U; = Z Ci; X

Apply Gaussian elimination to bring the matrix C to echelon form. Let A(U;) be the first
Xi in the ordering which appears in the expression of U; with nonzero coefficient, i.e., let it
be the leading root in the expression of U; in terms of positive roots. Now consider the Lie
bracket of two basis vectors, [U;, U;], which we may write as a sum of positive root vectors
Xi. The first potentially nonzero term is [A(U;), A(U;)], and this term is less than the other

S



root vectors in the expression under study. But [U;, U;} = 0, so that [A(U;), A(Uj)] = 0 as
well. Therefore the space A(a) = span{ A(U;) ,..., A(Uyx) } fulfills the requirements of
the Theorem.

Let us now consider Malcev’s theorem in the context of Hodge theory. According to the
results of §5, g has a Cartan subalgebra b contained in g%°. It then follows (by relation
(2.1)) that the g7P? are h-stable, so that the root decomposition of g relative to h refines
the Hodge decomposition. Moreover, there is an ordering of the roots compatible with
addition such that g~ is a sum of positive root spaces. Such an ordered system of roots
will be called compatible with the Hodge decomposition. The next result shows that the
construction a — A(a) respects the Hodge decomposition:

THEOREM 3.2. Let a be an abelian subspace of g~!*! and let A be an ordered system of
roots compatible with the Hodge decomposition. Then A(a) exists and is a subspace of
g1,

PROOF: In the light of the discussion above, it suffices to show that aisa space'of nilpotent
transformations, so that Malcev’s argument applies. But a C g~, which (by (2.1)) is a
space of nilpotents. T

4. Block decompositions.
Fix a Hodge structure H € D and consider the subspaces

(1) 037 ={d€g™ | gHY)=0 5 =0}

for p > 0, and set

(4.2) g =8t ={degPP|HH"T)=0 = $=0).

These give a refinement of the Hodge decomposition:

n(p)

(4.3) gTPP = @ s 2”,
i=0

where

(4.4) n(p) = [(w — p)/2},

and where the restriction on the range of j comes from the antisymmetry condition on
elements of g. Let g(j) = @,9;]”, and note that these give a real decomposition of g. The

purpose of this section is to give an explicit description of the g(_j’)’”’ ’s in terms of block
matrices. From this one easily obtains the required root structure.
To begin, define an adapted frame of H to be a set of bases

B={B!|j=1,..h)}
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such that B? spans HP9. The matrix of an endomorphism of H¢ relative to such a frame
has a natural decomposition ) A;;, where A;; denotes the block in position (%,7) and the
indices range from 0 to the weight w. A;; represents a homomorphism from H¥~% to
H¥=4i and so is a block of size h*hl.

Define the support of a matrix A to be the set of indices |A| = { (i,7) | Aij # 0 }. Define
sets D, = { (¢,i+p) } (the p-th diagonal), D' = { (¢,w —1t) } (the principal antidiagonal),
and M = {(4,5) |t =w/2 or j = w/2 } (the middle). Then matrices representing elements
of g~P+* are supported in the —p-th diagonal D_,, and elements of g(_j’)’ * are supported in
a pair of blocks j units from the extremities of the —p-th diagonal, each lying in positions
symmetric relative to the principal antidiagonal. If 2§ + p = w then this pair is degenerate,
i.e., is supported in the principal antidiagonal D’

Denote by C[ij] a matrix whose only nonzero block is C in the (i,j) position, and
abbreviate C[i7] to C[i]. The algebra of blocks follows the rules ¥(C[ij]) = *Cl[ji] and
Alij|B[k!]} = 6;s AB[il]. In this notation a typical element of g(_j’)”p for p > 0 takes the form

(4.5) XUP) = Afj +p,j]+ Blw - j,w - j - p]
and the polarization becomes |

w

ivS =3 (~1)*Si[k,w — k].
k=0

Since every X UP) is a Y(*7) with j + k = w— p, we may assume 0 < j < n(p) = {(w—p)/2]
forp=0,...,w.

When the S) are identity matrices, the adapted frame is a so-called Hodge frame. In
the case of even weight we also use this term if the middle component M = S/, takes

one of the forms below.
_ (0 I
w=(3 0

Case of h™™ = 2¢ even:
0, I, 0
M={I 0 0
0 0 1

In both cases the subscripts indicates the size of the given (square) matrix, and ¢t =
[A™™ /2] where m = [w/2].

(4.6) Example Consider a Hodge structure of weight 4. The polarization in a Hodge
frame takes the form

Case of h™™ =2t + 1 odd:

0 0 0 o0 I
0 0 0 -I 0
S=10 0 M 0 O
0o -I 0 0 O
I 0 0 0 O



Consider also a general element X € g~ . The support condition and the S-antisymmetry

imply that X is block-lower triangular and ‘graded symmetric’ with respect to the principal
antidiagonal:
0 0 0 0 0
A 0 0 0 0
X=|C B 0 0 0
E D- ‘B 0 0
F~- ‘B -'C 'A 0
where the superscript minus indicates antisymmetry. In the notation just introduced, the
Hodge components of X take the form

X7 = (AL 0]+ 4f4,3) + (B2, 1] + ‘B3,2)) € 0} © o)

X2 = (C[2,0) - 'C[4,2)) + D™(3,1] € 9y @ 81, ", ete.,

with X PP on the ~p-th diagonal. For Hodge structures of odd weight, the blocks on the

principal antidiagonal are symmetric rather than antisymmetric.
To determine the general form of an element of g ['? relative to an adapted frame,

compute the relation ‘XUP)S 4+ SX0UP) = 0 to obtain
(4.7) ‘AS;4p +(-1)*S;B =0.

When the A and B blocks are distinct, which is to say not on the principal antidiagonal,
there are no restrictions on A, so that dim gaf‘)’ P = hIhI*P_ In the contrary case, A satisfies

the graded symmetry condition ‘4 = (—1)P+IS;]AS,-+,,, from which one calculates the
dimension of dim g(-j’; P

dim g7 BF = h7RI*P for 2j + p # w,
dim g(_j‘)”p = %hj(hj — 1) for 2j + p = w and p even,
dim g §* = %hj(hj + 1) for 25 + p = w and p odd.
In particular, one obtains
ny
dimg™"! = ) " dim 8"
=0
= hORY - RIRZ . MR (w even)
=RhORY F RIRZ 4 AR 4 %hm(hm + 1) (w odd) ,

where m = [w/2].



5. Roots and the Hodge decomposition.

A Hodge frame determines both a Cartan subalgebra f of g contained in g*? and a
distinguished basis of h. To see this, fix such a frame and define, for j # m = [w/2], the
elements

(5.1) Ei(j) 7=, Eelil - Bilw ~j] € a7},

where Ej is a matrix with a 1 in position (k, k) and with no other nonzero entries. Note
that Ex(j) = —Ex(w — j). For w even, set

(5.2) Bi(m) = Eufm) = Ecalml,

where t = [h™™/2]. Let I; = {1,..., hj }forj<m,let I, ={1,..., t}, and define
by =span{ Ex(j) | k € I; },

m
h=> bg)-
Jj=0
Then b is a Cartan subalbegra and h(;, = h N g(;y.

Because b is of type (0,0), it preserves the Hodge decomposition under the adjoint
representation, and so the g7P? decompose into root spaces. Moreover, the multiplicative
properties of block matrices imply that the g(_j’)’ P are stable under the adjoint action of the
B(x), so that they decompose as well. Consequently there is a partition

— —PP
a=Jag",
hp

such that
=P _ a
0FT= > o
e
for p # 0, and such that
g0,0 =ho E g®
GGAD’B

)
for p = 0. Moreover, in the natural ordering, relative to which upper triangular blocks
correspond to positive roots, the root spaces for g7P? are negative:

A™PP C A_forp> 0.
We shall say that « in A(_j’)"” is of
Typel f2j+pFwandj+p#m

(5.3) Type I' if 25 + p # w and j + p = m, with w even
Type IT if 25 +p=w.

Let { ex(7) } be the basis dual to { Ex(j) }. Then one has the following description of the

roots:



THEOREM 5.4. Let g be the Lie algebra of a period domain. Then all type I roots are
given by

ARP={-eali)+e(i+p)la€lj b€}
where p > 0 and j < [(w — p)/2]. The remaining roots, of types I' and II, depend on the
Lie type:

Lie Type C,. The remaining roots are of type II and take the form
AP = { —eali) — es(i) | a,bE I} ),
Lie Type D,,. The remaining roots are of types I' and II and take the form
AR? = {—eali)kes(m) |a€ ;, bELn )} (typel)
A(_j’)"p ={ —e,(j)—e(j) | a,b€I;, wherea#b} (typell).
Lie Type B,,. The remaining roots are of types I' and II and take the form
ARP ={—ea(i)tes(m) |a€lj, b€ In YU{ —ea(j) |a€ L} (typel')
A(_jg’p ={ —ej)—es(j) | a,b € Ij, wherea#b}, (typell)

The complex conjugation operator of g acts on the roots by change of sign.

REMARK 5.5. For j #m, e,(j) = —es(w — j), so that for j + p > m one has
A(_J.’)"p ={—-e(j)—e(w—j—p)la€el;, b€ ly-j },

for the type I roots.

PROOFS: The necessary verifications are straightforward: we exhibit the root vectors and
calculate the adjoint action of the E,(7). To this end let E;p be the matrix with a 1 in
position {a, b) and zeroes elsewhere, and let E,;(jp) be the matrix whose block in position
(4,7 +p) is E,p and whose complementary block is determinded by (4.7). These give a basis
of g}’ consisting of root vectors. Viewing the conditions (5.1) on roots as conditions on
root vectors, we see that a vector of type I has support outside the principal antidiagonal
D' and outside the middle row and colum M, a vector of type I' has support outside the
principal antidiagonal but inside M, and a vector of type IT has support in the principal
antidiagonal. Let us check that the roots are as claimed.

Roots of Type I. In this case E,3(jp) consists of a pair of blocks off the principal
antidiagonal:

Eﬂb(jp) = EabU +p).7] + (_1)p+1Eab[w _j)w _J _p]
Then

[Ex(5), Eas(ip)] = —bxs Eas(ip),
[Ex(j + P), Eas(7P)] = bxa Eas(3p),
and
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[Ex(3), Eap(ip)] = 0 for s # 5,7 +p,
so that
E.s(jp) is a root vector with root —e,(7) + es(s + p)-

It remains to consider the root vectors of types I' and II for each of the Lie types B, C,
D.
Lie type Cp,: Odd weight. The remaining root vectors are of type II:

Eab(jp) = (Eab + Eba)[j +P,j]-

The only nontrivial action by elements in the Cartan subalgebra is by those in f(;), for
which we obtain

[Ek(]), Eab(JP)] - ‘_(6ka + 6kb)Eab(jp))

so that
E(jp) is a root vector with root — eq(7) — es(7)).

Lie Type D,: Even weight, h™™ even. There are two remaining root types, I' and II.
The type II root vectors are of the form

Eu(jp) = (Eas — Eba)[i + 0,71,

and a calculation similar to that for Lie type C, shows its root is also —e,(7) — ep(7).
However, since the block E,j — Ej, is antisymmetric instead of symmetric, there is no root
vector when a = b, and hence no root in this case. The type I’ root vectors are of the form

Ew(jp) = Eali + p,5] + (-1)" "' M Epa[w — j,w — j - p].
Since the basis elements for §,,,) are slightly different (see (5.2)), one finds

[Ex(m), Eas(7P)] = (6k,8 — St4k,8)Ear(7p)-

Thenforbe I, ={1,..., t}, E;(jp) has root —e,(7)+es(m) and E; p4m(jp) has root
—eq(j) — es(m), as required.
Lie Type B,: Even weight, h™™ odd. The analysis is similiar to that of the preceding
case. However, one new kind of type I' root appears. Since the Cartan elements Ex(m),
=1,...,t, act trivially on E; 2,41(jp), these latter have —e,(j) as root.

6. Proof of the bound.
We can now prove Theorem (1.6). According to the discussion of the introduction, it
suffices to compute the quantity
max{ card C | C C g~!! is a commutative set of roots }.

This we shall do using the root structure given by the results of the preceding section.

11



Type C,, (odd weight). The ‘horizontal roots’ are given by
AL ={—eali) +es(f+1) |a€ L be i forj=0,...,m—1.}

and 1
A ={ —eali) = &s(j) | 8,5 € Im }

Fix a commutative set of roots C C g~1! and define the following: For j =0,... ,m —1,
set

I ={a€l;| —ei(j)t+es(j +1) € C for some b }.
For j =1,...,m, set
IJ'-" ={bel;| —eisj —1)+es(y) € C for some a },
and set Ij = 0. Finally, set
In={a€ln]| —esm)~ey(m)€C forsomebd}.
The condition that C be commutative is then
+AT- = .
I'nl;y =49 forj=0,...,m.
(For j = m we use remark (5.5)). By enlarging C if necessary we may assume that
—rtur
for y =0,... ,m. Again enlarging C if necessary, we have a bijection
ColyxIf UITxIF u.-. U I._ xIt U Sym?(I;),

where Sym? (A) denotes the set of unordered pairs of elements of A. Let z; = card I7,
and set

m-—1

: 1
f(@1yeo @m) = RO(R —21) + Y (B —zi) + 5&m(m +1).

t=1

Then f(z) is the cardinality of C for given values of the parameters, and so
a=max{ f(z) |z € Jy X -+ X J;m, z hasinteger entries },

where Ji = [0,... ,h?]. Let us consider the maximum value problem for all values of z in
the given rectangle. The function f is quadratic with never negative semi-definite Hessian,
and so has an interior maximum only if it is negative definite, which it is not (consider
Z.,). Therefore the maximum must occur on one of the faces. But the restriction to a
face is a function of similar form: it is either a) linear, or b) quadratic with nondegenerate

12
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but nonnegative Hessian. Applying this argument repeatedly to faces, one finds that the
maximum value must occur at a vertex, in particular, at a point with integer coordinates.
From the form of f we conclude that f(vertez) is a sum of non-consecutive elements of
the sequence

BB, BIR2 ... Rmlpm %h"‘(h'"+1).

Therefore maz card C is given by the function a defined above, as claimed.
Type D, (even weight, h™™ even). The sets A(_j;’l of horizontal roots are the same as
in the preceding case for § = 0,...m ~ 2. For j = m — 1 we have

Aty ={ —ea(m—1)xey(m) | a € In-1,b € In }.

The sets I; are as before, except that I, = { 1,...,t }, where t = ™™ /2. Define sets I}
and I;-" as before for j =0,...,m — 1, and set

IZ={bel, | —esm—1)=%es(m) € C for some a }.
Arguing as before, and enlarging C if necesséry, we obtain a bijection
CeolyxIf UIrxIf U Ul ,xIt_ uI;_ xItuI._, xI;,
where the sets I Ji partition I;. The cardinality of such a set is given by the function
m—2 ‘ ' 1
f(z) = h°(h' —z)) + ; 2B = 2i00) + 5Ema ™,

since card I,, = h™™ /2. Considerations of quadratic programming analogous to those of
the preceding section show that the maximum occurs at a vertex, from which we obtain
the required computation of maz card C.

Type B, (even weight, h™™ odd). The sets A(_j;’l of horizontal roots in this case are
the same as in the preceding one for j = 0,...m — 2. For j = m — 1 we have

Aty ={—ea(m-1)tes(m) | a€In-1,€In } U { —€a(§) | 6 € Im-1 },
where as before I, = { 1,...,t }, with t = [h™™/2]. Arguing as above, one finds
ColyxIf UIrxIF U -~ Ul  xIt Ul xI;,uUlI,_ xIXu{a},

where the last term is a singleton corresponding to the root —egs(m — 1). The cardinality
of such a set is given by

m-2

. 1
f@) =Rk =2} + Y wi(h™ = zin) + 52ma (B - 1) + 1,

=1

and the usual quadratic programming argument completes the proof.
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7. Sharpness.

We shall now describe certain basic variations of Hodge structure from which variations
of maximal dimension are constructed. Each of the basic variations is highly degenerate
in the sense that all but one part of the Hodge filtration is constant. We shall denote this
part by F¢, and we shall refer to the associated variation as V(a). The variations of type
II are classical, those of types I and III were introduced in {1], and that of type IV, which
is the only one not parametrized by a hermitian symmetric space, is new.

Type I: a > m + 2. Let H, be a reference Hodge structure of type { (a,b),{a —1,b+
1),(b,a),(b+1,a—1) }, where a + b = w. By ‘type’ we mean a'subset of Z x Z such that
HP4 =0 for (p,q) &€ S. Consider the set V(a) of all subspaces F® of T = F2~! which are
of dimension A% and are positive for the indefinite Hermitian form

h(z,y) = S(z,¥).

Since F*~1 is constant, dF®/dt C F*~! for any one-parameter family F?(¢) in V(a). This
makes sense because if U(t) = span{ u1(t) ,..., u,(t) } is a family of subspaces, then the
subspace dU/dt = span{ u;(t) ,..., un(t) } makes sense modulo U(t). Horizontality is
therefore satisfied, so that V(a) is a variation of Hodge structure.

Let G be the isometry group of the ambient period domain D, let N(T) be the normalizer
of T in G, let Z(T) be the centralizer, and let G(T'} be the quotient group. Then V(a) is
a G(T)-orbit in D. Since one may identify G(T) with SU(p,q), where p = A*® and ¢ =
het1.8=1 the parameter space for the variation is identified with the Hermitian symmetric
domain

By, ={Z | Z apxqmatrix with Z*Z < I},

where Z* denotes the hermitian conjugate.

Type II: a = m+1and w = 2m+1 odd. Let H, be the Siegel upper half-space of genus
g, and let V(1) be the natural variation of weight one Hodge structures, with A0 = g¢.
Let A, be any Hodge structure of dimension one and type (m,m). Then the map

defines the required basic variation V(m + 1) of weight w =2m + 1.

Type IIl: a = m + 1, w = 2m even, and A™™ even. Consider first the case of m = 1.
Choose a decomposition He = I @ I with I isotropic and contained in F!. Let V(2) be
the set of all h-positive subspaces F? of I of dimension h?°. Let F?(t) be a curve in V(2)
and let ¢(t) be a vector-valued function with ¢(t) € F?(t). Because of the the relation

(7.1.) FPcI=Itc(FH)'=F",

one has d¢/dt € I C F', so that horizontality holds. Therefore V(2) is a variation. By
considerations similar to those of the first case, one sees that it arises as an SU(p, ¢)-orbit,
where p = h%° and ¢ = h"?/2, and so can be identified with the Hermitian symmetric
domain B,,. Now define V(m + 1) by sending H € V(2) to H ® Apn3.

Type IV:a=m+ 1, w = 2m even, and A"™™ odd. As in the preceding case, it suffices
to define V'(2), since V(m + 1) can be obtained as a tensor product of V(2) with a trivial
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variation. To begin the construction, fix a reference structure of the form H, = A @ B,
where
B =span{ a,3,a },

where a has type (2,0) with (a,&) = 1, and £ is real and of type (1,1) and {8,8) = —1.
Set P
a(t) =a+tf+ - &

and note that

(a(t),a(t)) = 0

(a(t),a(t)) = (1 - ¢[*/2)".
One verifies that Fg(t) = (a(t)) defines a variation of Hodge structure over the disk |¢] <
V2. Since dim A is even, there is a subspace J4 such that A = J4 @ J4, J4 = Ji’o ®Jy,

and Ji = J4, so that J4 is maximal isotropic. Define a pencil of maximal isotropic
subspaces of He by setting

J(t) = J4 & (a(t)).

Because J4 is fixed and aft) defines a variation of Hodge structure, one has
dJ/dt C Ja @ {a(t) " = T+,

Let V(2) be the set of all Hodge filtrations with F2 C J(¢) for some ¢. This condition is
equivalent to the requirement that F? be a subspace of some J(t) of dimension p = h??
which is h-positive. To see that V(2) is a variation, we note that

FPcJ@)cJ)yt c(FH* = F,

generalizing (7.1). If F?(z) is a one-parameter family of filtrations contained in J(t(z))
for some function #(z), then we have

dF?/dz c dJ/dz C J* C F*,

as required.

By introducing explicit parameters for 2, one may present V(2) as a domain in CV,
one of whose connected components fibers over over the disk |t| < v/2. To see this, let C
denote the Weil operator, which acts on HP'? by multiplication by i?~9, and let hc(z,y) =
(Cz,7) be the positive Hermitian form defined by the polarization (and the choice of
Hodge structure). Let ¢; ,..., ¢, be an hc-unitary basis of Ji’o and let ¥; ,..., ¥, be
an hc-unitary basis of Ji'. Then one may write

F2(t,y,2) = span{ o(t) + ) _yjth;,bi + 3 zijtj }
; ;

The condition that h be positive on F? gives a system of inequalities that exhibits as a
domain in complex (t,y, z)-space. One may also present V(2) as a Siegel domain of type
ML
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The infinitesimal character of V(2), i.e., the nature of the abelian subspaces g, is easily
determined. To this end note that the partial derivatives relative to the parameters ¢, y;, z;;
define velocity vectors in a space of filtrations, and so are represented by homomorphisms.
We calculate these and observe that they can be identified with root vectors:

Tangent Vector Homomorphism Root Vector

3/315 (4 e 4 ,B —ep+1(0)
0/0y; a — P, —ep41(0) + €i(1)
0/0z;; ¢i — Y; —e;(0) + €;(1)

The ordering used for the Hodge frame is

{QS] 1ttty ¢p$a; ¢i 3ty 1’1bqat;i E v‘j’q:ﬂ; J’l Yoty q-sp)&}

Similar calcuations show that tangent spaces to all of the basic variations lift canonically
to direct sums of root spaces. For the a type III variation of weight two, for example, the
roots spanning a are those appearing in the last row of the table above. The present
case, however, is distinguished by the fact that the complexified tangent space of V| which
may be identified with a @ d, is not closed under triple brackets. To see this, set p; =
—e,(0)+ei(1), p2 = —€p41(0)+€1(1), and p3 = —ep41(0). Denote by p = —p the conjugate
root, and observe that although the partial sums in the expression below are roots, the
total sum is not in a § a:

(p1 4 p2) + pa = —¢,(0)

Indeed, the only short roots in this space are e,41(0) and —ep41(0). It follows that type
IV variations are not equivariantly imbedded hermitian symmetric domains, as are those
of types I, II, and IIl. One can show more: the parameter space for a variation of type
IV is a bounded but non-symmetric domain. This is because the singularity structure and
Levi form of the boundary does not match that of any of the symmetric domains.

Let us examine in detail the type IV parameter space in the lowest-dimensional case,
that with A%? = 2, h1»1 = 3, for which dimV = 3 and

(7.2) F? = span{ 71,7 } = span{ a(t) + yb, 6 + 29 }

The condition that F? define a polarized structure is given by the positivity of the matrix
of hermitian inner products of the basis vectors: G = h¢(7i, ;) > 0, which is equivalent
to 4det G = (1 — |2]2)(|¢]? — 2)? — 4|y|® > 0. The connected component of the solution set
which contains the origin is a domain in C® bounded by [t| < v/2, |y| < 1, and |z} < 1.
It can be shown that this domain has no quasi-projective quotients. This follows from a
computation of the automorphism group, shown to us by Dan Burns.

The geometry of this domain is more easily understood in an unbounded model, which
we now describe. The essence of this presentation is to write the filtration in terms of
vectors corresponding to a mixed Hodge structure in the boundary of the period domain.
To this end, let E = Z{ e;,€eq } be the standard symplectic lattice with {e;,eq) = 1. Set
w(z) = e; + zep and note that i (w(z),o(z)) = 2Im(z), so that F!(z) = Cw(z) defines a
polarized variation of Hodge structure for Imz > 0 — the simplest SL,-orbit, i.e., the one
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associated to the unique irreducible representation of dimension 2. Note that the e; frame
a mixed Hodge structure, with e, of weight (p,p). Standard linear algebra constructions
give variations on the symmetric and tensor squares:

F*(T)S*E = C(w(T))?
FYZ)EQ® E = Cw(Z) @w(i)

Since fyw(Z) ®w(i) = eg ®w(i), the space span{ w(Z) ®w(i), FHw(Z)Qw(i) } = E@w(:)
is maximal isotropic in E ® E. One can therefore define a variation as above (7.2):

(7.3) F? = span{ (w(T))* + Yep @ w(i),w(2) @ w(i) }
The associated matrix of hermitian inner products is
_ o (4(ImT)? —iY
G=2 ( iY 2Im Z) ’

and G > 0 is equivalent to :

1 |Y)?
- = >

8 (ImT')?

If one replaces T € { ImT > 0 } by r € { |r| < 1} where T = —iIX! replaces ¥ by
Y/(T +1)?, then the last expression becomes

1+ |72\?
mZ -+ (-—+—|-T—|-) Y[ > 0.
— |7

These are the defining inequalities of a Siegel domain of type III [13, page 32).
To relate the bounded and unbounded models, set v = w(z), and write w(T) = ¢(v +1t7),
where t = —(T' —1)/(T + 1) and ¢(T') = (T +1)/2:. Then

ImZ

F? =span{ v* + 2tvi + 0 4 yi Qv, vQv+ 25 Qv },

where y = —c"2(T)Y(1 + 2)/2¢ and Z stands in the same relation to z as T does to t.
This is essentially the family of subspaces defined in (7.2). To make the correspondence
precise, replace t by t/v/2, set v? = a, v/2vi = §, etc.

From the basic variations just described one can form composite variations. To describe
their construction, consider a Hodge structure in D which splits as

H=PH T,

where the type of Hy is H; = { (w —4,8),(w—t = 1,1+ 1), + 1w~ ¢ — 1),(7,w — 1) }.
Let V; be a basic variation on H; and set

v=(vieT
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For an appropriate choice of split reference structure V realizes the bound of Theorem 1.6.
Let o = (d° ,..., d*) be the sequence which attains the maximum in the definition of the
function q(L,E), let S = {i|d €0} be the corresponding set of indices, and let H be
a splitting with summands H; whose Hodge numbers are { h* =% pw—i=1itl pitlw=i=1
R%¥=f}, Then V = Vg is of dimenision ¢(L, k).

Note that the variations described above are, with the exception of those which are pure
type 11, degenerate in the sense that they admit fixed subspaces. For example, if S is
an admissible sequence consisting of even integers for a variation Vs of odd weight, then
F? is constant for p odd. Naturally occuring variations of Hodge structure, e.g. those of
hypersurfaces, tend to be nondegenerate, with rankdf « dim g~!"!. Nonetheless, these
are almost always maximal in the sense of inclusion [2].

As noted above, the basic variations V(b) of types I, II, III have a hermitian symmetric
parameter space. In fact, they occur, for suitable choice of the reference filtration, as
‘Shimura varieties’, i.e., as an irreducible constituent of the variation defined by the w-th
cohomology of a family of abelian varieties with special symmetry properties [4]. For type
IV variations we do not believe that an algebro-geometric realization is possible. We note,
however, that geometric variations of dimension one less than maximal do exist (the fibers
t = const of the type IV variations are SU(p, ¢)-homogeneous).

8. Simple roots.

In this section we shall describe simple root systems for period domains which are
adapted to a Hodge structure on the Lie algebra. For the weight two case, see [6]. We
shall assume that period domains are normalized in the sense that h?? = 0 for p or ¢
negative, and h%"® # 0. This is not a significant restriction, since one may always shift
weights to obtain a normalized structure. The basic result is then:

THEOREM 8.1. Let D be a normalized gap-free period domain of weight w and let g be
its Lie algebra of infinitesimal isometries, endowed with a Hodge structure relative to a
reference point in D. Then there is a set of simple roots A, = { a1 ,..., a, } and a
decomposition

Ay = ASUAT®

into compact and noncompact roots such that
a) AS C A®Y,
b) Are C A™M,
c) [AF] = [(w+1)/2].

The Theorem fails for period domains with gaps: Consider structures H = H"% g HO"
with n > 1, for which the associated classifying spaces are D = SO(2n)/U(n) for n even
and D = Sp(n,R)/U(n) for n odd. Both are Hermitian symmetric. For n even, D is
compact, so there are no noncompact roots, and for n odd the Dynkin diagram (see figure
5) has a single noncompact root of type (—n,n). In both cases the horizontal distribition
is zero. Thus neither the statement about the number of noncompact roots nor about their
type holds.

Below are three typical cases of such simple root systems. White dots indicate compact
roots, and black dots, noncompact roots (the B; to be defined later).
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A0 -1,1 0,0 -1,1 A00 A=l
.+ Am A(l).+ A(u o+ 3]

Figure 2. Type C, (weight 5).

A A N 2

a0.0 -11 0,0 -1, 0,0
O+ Ap) A(1)+ Au) Aan

Figure 3. Type B, (weight 4, h*? odd).

B, B
1
LR
@3- 6, €., -9 85179
oO0—-O= « - Douulp—-0 -~ O—HOPp—0- - -
\/ e +8
A%P -1,1 0,0 11 n ¥ Fnet
.+ A(U) A(1)."' A(l)
0,0
Aﬂ)d’

Figure 4. Type D, (weight 4, h%? even).
OO = = -O——O—®
¢-n,n)

Figure 5. Degenerate period domain.

As the figures suggest, more detailed information is available. Write

A:C={ﬁ01"'a le‘ }a
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where m* = {(w —1)/2], and where the order defined by the subscripts is the same as that
of the Dynkin diagram. For notational convenience set S_; = 0 and let 8,41 be a vector
greater than any positive root. Then

0,0 _ A00
A(J)+ A(.1)“‘5“‘

is the set of positive roots corresponding to the j-th canonical factor of the isotropy sub-

group. Define A?,()) A? J(; 4 to be the corresponding set of simple roots. Then we have
the following:

PROPOSITION 8.2. The noncompact roots define a partition of the compact roots which
determines the canonical summands of the isotropy subalgebra:

A?J?J—{Ot@&,|ﬂj<&<ﬂj+1}

PROOF: We shall give a full argument of both the theorem and the proposition for Lie
algebras of type Cp; one treats the remaining cases in the same way. Begin by writing the
standard basis for the dual of the Cartan subalgebra as

{er(0),..., eno(0); e1(1),..., ent(1); ...} ={ €py r--vs €goi €py s-vvy Equ} - by

where e,, = ¢; and ¢, = e, are the first and last basis vectors. The ordering determined
by this basis (hence, by the Hodge frame) determines a system of simple roots,

Ay, ={ex—€1,..., en—en_1, —2¢, }.

Define a partition of the interval K = [0,n], where n = dim H/2, by K; = [p;, ¢;], with the
pi and g; as above. Define a corresponding partition of A, into subsets

A,(j) = { Ci+1 — € | ie I\’J }
and

A:={180a--'s ﬂm}

where

Bi = eq+1 — ¢y
for 0 < j < m, and

Bm = —2¢4,, = —2e,.

Write the e;’s in terms of the e;(7)’s to obtain

om0 = ealj) - eali) € A%

for any r, s € K; and for suitable a and b. Proceed in the same way to obtain
ﬁ] = ep,’+1 —€q; = el(] + 1) = €hi (.7) € A(_;)
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for j < m and

Bm = —2epm(m) € A(_,:‘il.

Then the roots in the A,(j)’s — those with ‘support’ in a single subinterval K; — are of
type (0,0) and the roots in A/, — those with support in a pair of adjacent subintervals —
are of type (—1,1).

According to [10], a (complexified) Cartan decomposition of g is given by

te= Y g7

p even

pec = Z g Pr.

p odd

Consequently the sets A,(j) and A, consist of compact and noncompact roots, respectively,
so that

Ai = Uas(J)
and
AV = A

Moreover, A,(j) is a basis for A?}()) ={e —e | rs € K;}, and the f’s separate the
A,(7)’s, as required.

REMARK 8.3. From the proof of the theorem in the case C,, it is apparent that the
greatest noncompact simple root 3,,« must be the right-most node of the Dynkin diagram.
In case D, the right-most noncompact simple root satisfies S+ < v, where v defines the
Y -junction of the Dynkin diagram. There are no other restriction on the position of the
non-compact roots.

There is a further decomposition pe¢ = p~ @ p* into mutually conjugate subspaces. One
such is according to the sign of the root:

(8.4) pT= > gt

If D is non-hermitian, then this space is nonabelian. In the hermitian symmetric case, it
coincides with g=!! and is abelian. Another such decomposition is obtained by twisting
according to the parity of j:

(8.5) PT= D 6T @ Y e = P @b
30 gia

The properties of this decomposition are given by next result:
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PROPOSITION 8.6. Let p = p~ @ p* be the twisted decomposition defined by (8.5), and
let X = G/K be the symmetric space associated to D. If the weight is even, then p~ is
generally nonabelian. If the weight is odd then p~ is abelian and defines the holomorphic
tangent bundle of X.

PROOF: The assertion to be proved in the case of even weight follows from proposition (9.1)
below. In the odd case one must show that p = p~ @p* is a t-invariant decomposition into
mutually conjugate abelian subspaces, for then p~ defines an integrable almost complex
structure.

Elements of p_, are represented by block matrices with support { (j +p,7), (w — j,w —
j —p) }, where p is odd and j is even. If w is odd, then both blocks appear in positions
of the form (odd,even). Elements of p_;, are represented by block matrices with support
{G,7+p),(w—3j—p,w—7)}, where p is odd and j is odd. If w is odd, then both blocks
appear in positions of the form (odd,even), as before. Let A and B be any two block
matrices with support in the set §~ = { (odd,even) }. Then AB = 0. Therefore p~ is
abelian.

Observe next that pt, since it consists of matrices conjugate to those in p~, has support
in the set S* = { (even, odd) }. Therefore ¥ must have support in S° = { (even,even) } U
{ (odd,odd) }. Now if A and B have support in §~ and §°, then AB and BA have support
in §7, so that [¢,p~] C p~, as required.

9. Accessibility.

Using the root structure given in the preceding section, we shall verify the hypothesis of
Chow’s theorem, thereby proving Theorem (1.11). We note that the theorem fails if the
Hodge type of D has a gap. Indeed, if p is a gap, then then FP*! = FP so that Frt!
is constant, by horizontality. Therefore Hodge structures which differ at level p cannot
be joined by a piecewise horizontal curve: accessibility fails. An extreme example of this
degenerate behavior occurs for sturctures of the form H = H**@H%™ with n > 1. Because

the horizontal distribution is zero, there are no non-constant variations. The result to be
established is:

PROPOSITION 9.1. The horizontal component g~'"! generates the holomorphic tangent
space
g_ = Z g_p»P.
p>0

Note that this Proposition also fails for domains with gaps. For the proof we require a
small fact about roots of the classical Lie algebras. Call a sequence 0 = (a; ,..., am)
good if all consecutive partial sums formed from ¢ are roots. Then we have:

LEMMA 9.2. Let A, be system of simple roots for a classical Lie algebra. Then every
positive root « can be written as a sum of at most two good sequences in A,. For SL,
one good sequence suffices.

PROOF: The argument is an easy exercise based on the standard form of the root system.
For Lie type C;, one has A = { e;te; }withA, = {ai=¢€i—¢j |[i<n}U{a,=¢€, }.
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Then
ei—e=oa;+- -+ a3

eite;j=(ai++an)+(aj+- - +an-1)

The calculations for types B and D are similar, and that for SL is contained in the first
of the above pair of equations.

PROOF OF THE PROPOSITION: Let a be a root of type (—p,p). Consider first the case
in which « is the sum of a single good sequence containing k noncompact simple roots.
Partition the sequence into k consecutive subsequences s; with sum ;. By the lemma the «;
are roots, as are all consecutive sums of the 4’s. Let X be the root vector corresponding to
a, and let X; be the root vector corresponding to ;. Then X is of type (—1,1), and X is,
up to a constant, a k-fold bracket of vectors of type (—1,1): X = ¢[- - [[X; X2]X3] - - - Xi].
Therefore k = p, and the proposition holds.

For the remaining case apply the preceding argument to each of the two good sequences
o; associated to X. Let Y, be the corresponding root vectors, and let k; denote the
number of noncompact roots in ;. Then Y; is of type (—k;, k;) and X = ¢[Y},Y>]. If both
k; and kp are positive, then we are done, since p = k; + k2 must hold. If k; = 0, then
X =[[---[X1[X2,X3]- - - ]Y2]. Rewrite the right-hand side using the Jacobi identity so that
when Y2 occurs, it occurs in a factor [X,Y>]. Since this last expression is of type (—1,1),

X is of type (—ki, k) = (—p,p), and we are done. The case of k; = 0 is treated in the
same way.
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