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Sheng-Li Tan •

Introd uction

Selnistable reduction of pencils of curves has been studiecl by Inany authors in
various ways. (cf. [AvVJ, [De], [D NI], [X3]). In this part of the series, we sha11
investigate selnistable reduction [roln the point of view of numerical invariants.
As an application, we obtain two nunlerical criterions for a base change to be
stahlizing, and for a fibration to be isotrivial. We also obtain a canonical dass
inequality for any fibrations. S01l1e other applications are presented.

Let f : S --t C be a fibration of a snl00th conlplex projective surface S over a
curve C, and clenote by 9 the genus of a general fiber of f. VVe assllllle that 9 > 0
anel S is relatively Inil1ilnal with rcspect to f, i.c., S has no (-1 )-curves cOl1tainecl
in a fiber of f. The basic relative nunlerical invariants of f clJ:e defined as follows,

XI = X(Os) - (9 - l)(g(C) - 1),

J(J = J(~ - 8(g - l)(g(C) - 1),

ef = Xtop(S) - 4(g - l)(g(C) - 1).

These invariants are nonnegative integers satisfying thc Nocther equality 12XI =
J(J + ef· Vle denote by wS/c = ws ® f·wc the relative canonical sheaf of f, ancl
J(s/c the relative canonical divisor corresponding to ws/co Then XI = degf.ws/c
ancl J(J = J(~/c· If 9 > 1 anel f is not locally trivial, then X/ anel J(} are posi tive
([Ar), [Be2], [Pa]' 01' [BPV], Theorelll 18.2), in this case, we definc the slope of f
as

A/ = J(Jlx/.

ef = L: F eF = L: F(Xt.OP( F) - (2 - 29)) is zero iff f is snlooth.

* The author would like to thank the hospitality and financinl support of Max-Planck-Institut
für Mathematik in Bonn eluring this research. This research is partially support.ed by thc National
Natural Science Fou nelat ion of eh ina an d by thc Sciencc Foundntion of the Uni versi ty Doetoral
Program of CNEC.

Typesct by AMS-'I)~



2 S.-L. Tan

A fiber of f is called senlistable if it consists of sirnple conlponellts rneetillg
norrnally. / ....is said to be sernistable if every fiber of it is sernistable.
~ L!t 1f ; ~C --+ Gf be a base change of clegree d. Then the puH-back fibration
f ; S --+ C of f with respect to 1r is defined as the relative ruillirnalruodcl of the
desingularization of S x c C --+ C. (cf. Sect. 1.3) . Since 9 > 0, so the relative
minirnal ruodel is anique, hence f is elcterruineel uniqucly by fand 1r. Duc to
Kodaira's classification of singular fibers, the senlistable reeluction of an eHiptic
fibration is quite clear, so we always assurne that 9 2:: 2.

\"Te define

1
X11' = XI - dXj, 1_"2 1-2 11-,.2

~11' = ~ f - d ~ f'

as the basic nurnerical invariants of 1r with respect to f. Obviously, they are
rational numbers satisfying 12X11' = I(; + C11" Xiao [X4] anel I [Ta] proved that
these invariants are nonnegative, anel one of theru vanishes if anel only if 7f is an
inva7'iant base change. (See Definition 1.7).

Deftniti~l I. \-Ve 8hall call 1r a stablizing (resp. trivial) base change if all of thc

fibers of .f (re8p. f) over the ramification locus R11' (rcsp. thc branch locus B11') of
7f are selllistable. \Ve shall also call 7f the semistable reduction 0/ the fibers over

B11"

The well-known seruistable reductior:., theorern says that for any fibration f,
there exists a base change 1r such that / is seruistable. In particular, let 1r be a
base change totally rarnified over F (i.e., over f(F)) anel sorne other seruistable
fibers, ancl let F' be the rninirnal ernbe~ldeel resolution of F. If thc elcgrec of 1r is
exactly the greatest COllllllon divisor of the rnultiplicities of the con1ponents in F ' ,
then it is well-known that 7f is stablizing. \"Te shall call 7f the canonical semistable
red'lLction of F, anel denote it by <PF.

Definition II. For any fiber F of f, we define its basic invariants to be the basic
invariants of <P = <PF, anel elenote thern respectively by

\'\Te shall show that these invariallts are independent of the choice of the base
changes (Lernma 2.3). They ar'e nonnegative rational nurnbers satisfying the
Noether equality

12X F = ci(F) + c2(F).

\\Te can see also that one of theru vanishes iff F is sernistable. In fact, these in
variants can be cornputcd directly frorn the embedeled resolution of F (see Propo
sition 3.1 for the fonnulas). For sirnplicity, if B = Fr + ... + Ffj, then we define
ci(B) = ci(F1 ) + ... + ci(F~). Siruilarly, wc ean definc c2(B) anel XB·

Definition III. A fibration f ; S --+ C is trivial if S is ison10rphic to F x Cover
C. It is isotrivial if it beeorues trivial after a finite base change.

If f is a sellustable ruodel of f uuder a sernistable reduction 1r, then a natural
probleln is:
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What is the effect 0/ a non-semistable fiber on the invariants 0/ f ?

([X2], Problem 7). In this paper the effect is eOlnpletely cletennined.
In wha~ follows, we denote by B1t" = f *(B1r) the loeus of branehecl fib ers, and

by R1t" = f* (R1t") the loeus of ralnifiecl fibers.
The Inain results of this paper 3J:e the following.

Theorenl A. Let f : S -t C be a fibration) and let 7r : C ---+ Gf be a base change
of dcgree d. Then

1
X1l" = XB.,.. - "dX·R.,...

Corollary. For any fibration f : S ---+ C and anv base change 1r : C-t C) we
have

1)

and one 0/ the equalities holds iff 1r is stablizing.
2)

L ci(F) ::; ](;,
F

where F runs over all 0/ thc non-scrnistable fibcrs 0/ f. Furtherrnore, one 0/
the first two equalities holds iff f is isotrivial, and the last equality holds iff the

semistable model 0/ f is smooth.
S) If f is non-iso trivial, then we have

\ I't--=-PJ_-_c_i(_B_1r_)

, I - XI - XB
1f

HCllce thc slope 0/ f is cornpletely detcrmincd by the branched non-semistable fibcrs.

Due to this theoreln, the study of the invariants of stablizing base ehanges ean
be redueed to the Ioeal study of ci(F) anel c2(F). First of all, from definition, it
is trivial to see that

c2(F) :::; CF (=: Xtop(F) - (2 - 2g)),

with equality iff the selnistablc model of F is a snl00th fiber. In Seet. 3.3, we
obtain

Theorenl B.
ci(F) :::; 2C2(F),

with equality ijJ F = nFred and F red has at worst ordinary d01.Lble points as its
singularities. Hcnce for any stablizing base change 7r, we have

Vve show that cr (F) is in fact bounded by the genus g, i.e.,
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ci(F) ~ 4g - 4.

As an application of this inequality, we obtain the fo11owing canonical dass
inequality.

Theorenl D. // f is a fibrotion 0/ genus 9 2: 2, thcn

I{~/c ~ (2g - 2)(2g(C) - 2 + 38),

whcre 8 is the nU7nber 0/ singnlar fibcrs 0/ f.

Note that other canonical class inequalities are already known for seluistablc
fibrations:

I(~/c ~ (2g - 2)(2g( C) - 2 + s);

I(~/c < 4g(g - 1)(2g(C) - 2 + s);

I(~/c ~ 8(g - 1?(2g(C) - 2 + 8).

These inequalities are due respectively to Vojta [Vo], Szpiro [Sz) and Esnault and
\Tiehweg [E\T]. In a later paper, by using the results of this paper wc sha11 give
a linear (in g) and effective height inequality for algebraic points on a curve over
functional fielcls.

As another application, we find sonle new phenolnena for fibrations. (Sect.:....4.1).
For exarnple, froln the corollary above, we can see that every stable Inodel f of f
has the salne slope A detenninecl by

J{J - AXf = L ci(F) - AL XF,
F F

where F runs over a11 of thc non-scluistablc fibers of f. FrOill Thcorenl B wc
know that if ).. f > 8, then any non-trivial stablizing basc change Jr nlakes the slopc
increase. \Ve have also found sOine relationships between non-scll1istable fibers
and the slope of a fibration.

Finally, in Sect. 4.3, we consider the COlllputation of the Horikawa nUlnber of
a genus 3 non-senlistable fiber F through s':lllistable reductions. \Ve reduce it to
the cOluputation for its seIl1istable lllodels F.

Acknowledgeluent. Pd like to thallk Prof. Xiao for encouraging me to find the
best inequalities between the invariants of base changes.

Notations. If D is a local curve and p E D, thcn we denote by IJp the lllUltiplicity
of D at p, and denote rcspectively by fL p, op, k1) thc Milnor nllluber, gcoilletric genus
and the nllluber of loeal branches of (Dred,]J). Henec PI) = 20p - k I ) + 1. If F is a
curve on a sInooth surface, then we denote by fl F the total Milnor nlllllber of thc
singulari ties of F.

If a, bare two naturalnlllllbers, then we denote by (a, b) the greatest COlll111011

divisor of a anel b, anel let [a, b] = (a~~)2. [x] is tbe greatest integer ~ x
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1 Prelhninaries and technical lenuuas

1.1 Em.bedded resolution 0/ C'llrVe singularities

5

Let (B, p) c te2 be a loeal eurve (not lleeessarily reduced) in a neighborhood
Uo of p = (0,0). Assulne that (Bred,p) is a singular point, we say also that p is a
singular point of B.

Definition 1.1. The en1bedded resolution of curve singularity (B,p) = (Bo,po)
IS a sequence

(Uo,Bo) P. (U1,B1) ~ ... ~ (Ur,Br )

satisfying the followillg eonditions.
(1) (Ti is the blowing-up of Ui-1 at a singular point pi-l E B i - t with J--lPi-l > 1.
(2) Br,recl has at worst orclinary double points as its singularities.
(3) Bi is the total transfonnation of Bi-I.

It is well-known that embeddcd resolution exists and is unique for any curve
singularity (B,]J) C C2 .

We denote by 1TIi the the 111Ultiplicity of (Bi,red, Pi). Let

r-l

O:p = L(1'71.i - 2)2.
i=O

(1 )

If q E Er is a double point, and aq 1 bq are the 111ultiplicities of the two COIUpOl1el1ts
of (B r , q), then we let

Lelnlna 1.2.

ßp = L (a q , bq ].

qEBr

,"-I

J--lp = L(1ni - l)(m'i - 2) + kp - 1,
i=O

1 r-l

op = 2?=(111i - 1)(111i - 2) + kp - 1.
l=O

(2)

(3)

(4)

Proof. In the elubeclclecl resolution, we let EI n (B l - Ed = PI,' .. ,]Jfj' Then by
([Ta], Lemn1a 1.3) we have

fj

J--l p = (111P - 1) (111 p - 2) - 1 +L IlPi'

i=1

0.n the other hand, it is obvious that

fj

k p = L(kpi - 1),
i=l

(5)

(6)

hence (3) can be obtained easily by using induetion on T, and (4) follows from (3)
and J--l1' = 28p - (kp - 1). Q.E.D.
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LenUlla 1.3. For any singular point (B,p), we haue

(7)

Proof. First we prove (7) for thc case 1n,]' = 2, i.c., (B red , p) is a double point.
Assume that (B,p) is defined by f(x, y) = °at 0.

If f = xa(x + yk)b and k = 1, then 0]' = 0, f-lp = 1 anel ßp = [a, b], (7) is
obvious. If k > 1, then by the cOlnputation of thc clnbeeldccI resolution, we have

1
O'p = k-l, I"p = 2k -1, ßp = 1- k + [a,k(a+b)] + [b,k(a+b)] S; 1,

hence (7) holds strictly.
If f = (x 2 + y2k+l)n, then

thus we ean see that 0'1' + ßp ~ /lp'
Now we asSlllne that 1Hp 2:: 3. In this case, we shall prove (7) by using incluction

on /-lp' Froln (5) we know /-lPi < P", by incluetion hypothesis, we havc ['(Pi + ßPi <
IL pi ' On the other hancl, we know

s

from (5), (7) follows inunediately.

s

a p = (n1. p - 2) 2 + L a]'i ,
i=1

Q.E.D.

1.2 On the resol'ntion 0/ the sing7tlarity 01 zd = f( x, y)

Now we asslllne that (B, p) is clefined by f(x, y) = °at ]J = (0,0). Let ~ C Cl
be a loeal surfacc clefinecI by zd = f (x, y), anel let Va be thc nornlalization of ~.

Then, Va is a d-cyclic cover 1ro : Va ~ UD, the singular points of l/o (lying over
p) ean be resohred by the eUlbedded resolution of (B,p), it goes as follows.

Let l/r be the normalization of U,> x Va Va, anel let 1] : lvI~ Vr be the lninilnal
resolution of the singularities of Vr.

Va
T

1~>
TI

(

rro1 rrr1
Uo ( Ur

er

lvI

1rrr I}

u,>

Then 1r,. is a cyclie covering branched along B,>, If near q E B r , B,> is defined by
xayb = 0, then v,. is locally the nonnalization of zd = xayb, which are eyclic quo
tient singularities, hence can be resolvecl by .June-Hirzebruch 111ethocI (cf. [BPV],
p.83). Hence <p = Tl] : A1 ---+ Fa is the resolution of Va, we shall call <p the
embedded resol7ttion 01 Va.



Invariant,s of base chnngcs, 11 7

Denote by E p = 2:;=1 Ei the exceptional curves of 4>, anel let 1(4) = 2:;=1 1'iE i
be the rational canonical divisor of E p , which is detcrnünecl uniquely by thc adjunc
tion fornlttla 1CpEi +Er = 2pa (Ed - 2. Then 1{~ is an invariant of the resolution <p.
If 4> is minilnal, then I{~ = 1(; ::; 0 is an invariant of thc singularities of Va, which

is independent of the resolution. ](; = 0 iff Va has at worst rational double points
as its singularities. ",·.,Te denote by b2 (Ep ) the nUI11ber of cOlnponents of E p • Thc
following Lelnma can be obtained by a dircct cOlnputation of the 110nnalization.
(cf. Sect. 5 01' [X3])

Lenll11a 1.4. 11 (B,p) is defined by xayb = 0, alld d is divided by a und b, then
E p is dp = (a, b) curves of type An, where

(8)

Lenll11a 1.5. Assume that d is divided by all 01 the m'ulti]Jlicities 01 the compo
nents in the embedded resolution B r . Then

(9)

The proof of this lenlma will be given in Sect. 5.
Now we recall the nornlalization of E. (cf. [Ta], Lelnlna 2.1).

Lenulla 1.6. For any point p E B, 1rÖ
l (p) consists 01 dp = gccl( d, nl, ... ,11 8 )

points if there are exactly s components r 1, ... ,r8 pa.~sing through p.

1.3 The constl1tction of base changcs

~

In this section, we recall the construction of the pullback fibratiol1 1 of f : 5 ---t
C under a base change.
~ L..,:t 1r : ~C -----t C be a base change of degrec d. Then thc pull-back fibration
f : S --+ C of f with resp~t to 1rjs definecl as thc relative ll1inilnal n20d~1 of th~

desingularization of 5 x c C ---t C. In fact, the pull-back fi bration f : 5 ---t C
can bc constructed as follows.

Let PI : 51 --+ 5 Xc C be the nornlalization of 5 Xc C, let P2 : 52 --+ ~1
be the Inininlal ~esil1gularizationof 51. Thcn we have a fibratio"':l 13,..: 52 ~ C.
Let p : 52 -7 S be thc contractiol1 of (-1 )-curves such that 1 : 5 ---t C is a.

~la!.ivc m~nlallnodel. Since we have assunlecl that 9 > 1, so pis unique. Hence
f : 5 --+ C is detennined uniquely by f ancl 1r.

S( P
52

P2
SI

PI 5 xcC
rJl

5) )

11 112 111 1 11

C C C C C
11"

Let II2 = II' 0 PI 0 pz : 52 --+ 5.
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D efl ni t ion 1.7. If 7r : C ---t C is a base change satisfying

p!{sie == 11;!{5IC,

then we shall call it an invariant base change.

In fact if 9 ~ 2, then I is invariant iff the fibers F in the branch locus are reeluceel
anel F has at worst elF-simple singularities, where elF is the greatest raruification
index of 7r over f (F). A d-simpIe singulari ty is a sinlpIe curve singulari ty I (x, y) =
o such that zd = f(x, y) is a siruple surface singularity. Hence 2-siruple is ADE,
3-siruple is Al, ... , A4 , 4 anel 5-siruple are Al, Az, cl-siluple is Al if cl > 5.

Let F be a singular fiber. Vle always denote by F ' the erubecleleel resolution
of F, anel denote by A1F the greatest corunlon divisor of the untltiplicities of the
cOluponents in P'.

2 On the invariants of a base change

2.1 Local computations 0/ 1(;

In this section, we first considcr thc coulputation of the invariant 1(; for a base

change 7r : C ---t C. \Vithout loss of generality, we assulue that 1r is totally
rarnified over PI,' .. ,Ps' Let pz be the eInbedcled resolution of singularities, let
FI , •.. ,Fs be the fibers of I corrcsponeling to ])1 ,... ,Ps, anel let 8 1r = 2:::=1 Pi =
2.:r nrf. Fron1 Lenuua 1.6, it is easy to see that

l'~ 11* (1'· '" ( (cl, n r )) r) T..~\ 52 = 2 \ S + L 1 - d + Ü P2 .

rCBl'r

(10)

where !(P2 is the rational canonical divisor of the exceptional set of pz. On the
other hand, we have

(11)

Note that 127r* = TIil*, hencc froln (10) anel (11) we can obtain

where Hj = L:rcF; hr f , hr = nr - 1 - ~(nr - (d, nr)). Hence

s

elI{J - !(J2 = cl 2:(2HF;I{s - H}j) - I{;'2'
i=J

If we let !(;(!z) = Ir} - jI(/2' then

1(; = ](;(12) - ~#{ (-l)-curves contracted by pT
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Proposition 2.1. With the notations above J we haue

~ ~

](;(12) = '2:)2HFJ(S - H}J - L L ~J(;,
i=l i= 1 pEP;

9

(12)

111 the case when tr is the base change of F I , . .. ,F~, if d is divided by AlPi ,

i = 1,' .. S, we can see that Hp; = Fi - Fi,red. Note that we have (cf. [Ta], (7))

eF = Xtop(F) - (2 - 2g) = 21VF + PP,

where f-.lF = 9 - Pa (Fred ) = t( (F - Fred)I(s - Fr
2
ed ) is an invariant of F. From

Lenuna 1.5 \ve have

Proposition 2.2. 1/ d is diuided by A1F; for all 'i, then

~ ~

/(;(/2) = L(41VF; + Fi~red) + L L apo

j=I i=I pEF;

Note that the right hand side of (13) is independent of d.

2.2 Proo/ 0/ Theorem A

(13)

\Ve consider first the cOlnp<.:.sition of base changes.
Let trI : Cl ------t C and 7fz : C ------t C\ be two base changes, let 11 be the pullback

fibration of 1 under trI, andlet 12 be that cf 11 under tr2. By the universal property
of fiber product anel the uniqueness of the relative~cHnonicallllodel (when 9 > 0),

we know Iz is nothing but the pnllback fibration 1 of 1 nnder 'Tr = 'TrI 07f2. Hence
we have the basic equalities:

(14)

Lenllna 2.3. Let 1 : S ------t C be a fibration J and let F t , ... 1 F~ be fibers 0/ f.
Considering all 0/ the semistable red'/l.ction 7f 0/ F t ,' .. ,F~I we haue that I(;] eTI"

and X11' are independent 0/ 7f.

Proof. Let 7fI ; Cl ------t C and 'Tr2 : C2 ------t C be two seinistable reduction of
PI, ... ,F~, let deg 7f i = dj, i = 1, 2, anel let Ir be the pullback fibration of f nnder
trj. V\fe shall prove that

} ,-2 T.,-2
\. TI" 1 = 1 \. TI"2 •

For this, we consider thc pullback cf trI anel 7f2,

tr = 7fI Xc 7fz : C = Cl Xc Cz ------t C.
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Note that if necessary, we cau choose C to be the nonnalization of a cornpollent of

Cl Xc C2 . Let Pi : C --+ Ci be thc i-th projection, it is obvious that degpl = d2 ,

deg P2 = d1. Then we have 'Tr = PI 0 'Tr t =]J2 0 'Tr2 (conlposition of base ehanges).
Since 'TrI and 'Tr2 are sernistable reductions, so the fibers of fi over Fl , •.• ,Fs are
senlistable, and thus Pi is an invariant base change. It iruplies that I(l~i = 0 for
i = 1,2. Then by using the basic equalities (14), we have

}.~2 1~2 1,"2
\.rr = \.rrl = \.rr2'

hence, we have 1(;1 = 1(;"J,'
The proof for Xrr, err is thc same as above.

Lenuua 2.4. In the situation 0/ Lemrna 2.9, we have

Q.E.D.

s s 8

1(; = Lci(Fd, err = LcdFd, Xrr = LXFi'
i=1 i=l i=1

Proof. By Lelnnla 2.3, we can assurlle that 7f is the pullback of the callonical
selnistable recluctions 'Tri = cPFi : Ci --+ C, i = 1,'" ,s. We can aSSUllle that 'Tri is
unralnified over the fibers Pj for j =j=. i. \iVithout loss of generality, we aSSUlllC also
that s = 2. As in the proof of Lelulua 2.3, we have

1-~2 _ } ~2 1 1-"2
\.rr- \.rrl +- \.P·cl l 1

Since Pt is totally raJ.llified senlistable reduction, hence 1(1~2 cau be COl1lputed
loeally froln the branchecl 110n-senlistable fibers, which aJ.'e the pullback of Fz
under 7ft. Henee we know

; ,,2 I },"2
\.Pl = (1 \.rr2·

By definition, 1(;j = ci(Fd. Hence we have obtained the desired equality.
Note that the local property used ahove holds for e1l' and Xrr. Q.E.D.

Proof 0/ Theorem A. Let rr : 6 --+ C be the seluistable reduction of the ral11ified
fibers R rr . Then we know that 'Trorr is also the seluistable reduction of the branched
fibers Brr . By Lenuna 2.4 anel the basic equalities we can obtain the equalities in
this theorel11. Q.E.D.

3 On the invariants of non-selnistable fibers

3.1 The comp-utations 0/ the invariants ci, C2 and X

In what follows, we shall consieler the C0111putation of the invariants ci(F),
cz(F) and XF. By Noether equality, we only neeel to compute ci anel C2.

First note that if we use embedded resolution to resolvc the singularities of F,
then the nluuber

C-I (P) = ~# {( -1)-curves in pi contracted by P}

is also independent of the stablizing base change if cl is divided by AlF.
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ci(p) = 4NF + F;ed + L O'p - C-l (P),
pEF

c2(F) = 21VF + pp - L ßp + C-I (F).
]IEF

11

(15)

Proof. The first fo1'nn11a has been proved in Proposition 2.2. In order to provc
the second fonnula, wc consider the stablizing base change 7r of F whose deg1'ee
is divided by A1F. By definition, if Fand F2 are respectively thc pullback fibers
of F in S anel 52, (note that S2 is the enlbedeled resolution, not the 111inilual
resolution), then we have

Since F2 is senlistablc, so eF2 is the ntuuber of singular points of F2 , w hich is exactly
the nunlber dLpEF ßp (Lelnnla 1.4). "Ve have known that eF = 2f-lF +fLF, hcncc
thc sccond fonnula has been obtained. Q.E.D.

Remark. Fronl the fornnI1as above and the Noether fonnula, we can see that XF

is independent of C_I (F), hence it can be conlputeel elirectly froln elnbedded res
olution. In fact, if we consider the canonical senlistable reduction of F, then we
can prove that

c_I(F) = L ßql,
q'EF'

where P' is the elnbeddecl resolution of F, and q' runs over the singular points
of P' such that the (-2)-curves cOllling fronl p~ are contracteel to points of the
sCluistable 1110del of F.

Example. Note that the eliscussion above holds for e11iptic fibrations. In this case,
!(; = 0 for a11 base changes, so we have ci(F) = O. By a direct COlllputation we
have

{

0,

c2(F) = 12X F = 6,

CF,

if F is of type mlb,

if F is of type Ib (b > 0),

othcrwise.

The result above shows thc wc11-known fact that thc selnistable 1110del of an
elliptic fiber is smooth except for type mlb (b > 0) anel type Ib (b > 0).

3.2 Prool 01 Theorem C

Lenuua 3.2.

L 0]1 ::; 2pa (Fred ),

]IEF

(16)

the eq<uality holds iff Pa (Fred) = 0, hence F is a tree 01 nonsing1l,lar rational C'U,ives.
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Proof. Vie sha11 use the notations of Sect. 1.1. By (1) and (4), wc have

r-l

O:p = 20p - L(nli - 2) - 2(kp - 1)
i=O

On the other hand, if Fred = L~~l r i , thell we have

lF

pa (Fred ) = LPa(I\) + L op -lF + 1.
i=l pEF

Hence we only neeel to prove that

(17)

(18)

(19)L(kp-1)~IF-1.
pEF

But this inequality is an imlllecliatc consequenee of the eOllnectcelness of F. So
(16) holels.

If the equality in (16) holds, then frolll (17) we know that O:p = 0 for aJ1Y p E F,
henee Pa(Fred ) = O. Then frolll (18) anel (19), we ean see F is a tree of snlooth
rational curves. Q.E.D.

Theorenl 3.3.
ci(F) ::; 4g - 4. (20)

Proof. From Lenuna 3.2 we have

ci(F) ::; 4NF + F r
2
ed + 2Pa(Fred) - C-l(P),

anel the equali ty holels iff Pa (Fred ) = O. Henee it is easy to prove that ci (F) <
4g - 3 - C-l (F), anel the cquality holds iff F satisfies

(21 )

So it is enough to prove that for the fibers F satisfying (21) we have C-l (F) ~ 1.
Now we consieler the eanonical semistable reeluction 4>F of F, we know the

degree of 4> F = M F . We can see that the fiber F satisfying (21) is a tree of a
(-3)-curve r anel some (-2)-curves E. Wc note first that if F eontains a (-2)
curve E such that Fred has only one singular point ]J on E, then p is an orelinary
double point of type (11.,211.), where 11. is the Inltltiplicity of E in F. Sinee thc
pu11baek fiber F of F is seinistahle, so for aJ1Y eOlnponent r in F, _r2 is tbe
intersection nUll1ber of r with the other cOlllponents. Thus we can sec easily that
the inverse ilnage of E in the Ininimal resolution surfaee consists of 11. (-1 )-eurves,
henee the exeeptional curves of ]J ean be contractecl to a point. That is to say
\ve contracted n + [n,2n]d - (n,2n) = ~d (c-1)-curves. Thus the contribution of
(E, p) to C-I (F) is ~. On the other hand, we know easily that there are at lea.'3t
two such (-2)-curves in F, henee C-l (F) ~ 1. This eOlllpletes the proof. Q.E.D.

3.3 Proo/ 0/ Theorem B
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Theorenl 3.4. For any singular fiber F, wc have

ci(F) :::; 2C2(F),

13

(22)

with equality iff F = nFred and F has at worst ordinary double points as its
sing'ularities.

Proof. From (15), we have

2C2(F) - ci(F) = 3C-l (F) - Fr
2
ed + L(2f-lp - 2ßp - Qp).

p

Then by Lenuna 1.3, Pp - ßp ~ Qp, hence we have

If ci(F) = 2C2(F), then Fr2cd = 0, auel u p = 0 f?r a11 p E F. By thc wcll-known
Zariski's lenlnla ([BPV], p.90), we have F = nFred . Since u p = °inlplies ]J is an
ordinary double point, so Fred has at warst nodes as its singularities. The converse
is obvious. Q.E.D.

Proposition 3.5. 1/ all 0/ the rnultiple componcnts 0/ F are (-2)-curvcs, then

ci (F) :::; C2 ( F) . (23)

Proof. The proof is siluilar to that of Theoreln 3.4.

4 Applicatiol1s

4.1 On the slopes 0/ fibrations

Q.E.D.

Fronl the corollary to Thcorenl A, Thcorenl 3.4 and the Noether equality, we
have

Theorenl 4.1. For any stablizing base change 7f, we have

](; :::; 8X11"' (24)

As in the case of fibrations, we have thc following definition of slopes.

Definition 4.2. If F is a non-seillistable fiber, XF =I 0, anel so we can define the
slope of F as

AF = ci(F)/XF.

FroIu TheoreIll 3.4, \ve kno\v °< AF :::; 8.
If Jr is a non-invariant base change, then we deHne thc slope of Jr as

/\11" = ](;/X11"'

Note that a non-trivial stablizing base change Jr satisfies X11" > 0, so Theorelu
4.1 says that its slope A11" ::; 8.

"'le have known in the Introcluction that for a stablizing base change 7T',

](} - AlXI = ci(B11") - Al XB1f ' (25)
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Corollary 4.3. 1/ f : S --+ C is a llon-scrnistable fibration with /\f > 8, then
thr07tgh any non-trivial stablizing base change, we hauc

AT> AJ. (26)

In what fo11ow5, we sha11 eonsi~r a set of fibrations ~ whieh is invariant under
base ehanges, i.c., if f E ~, thell f E ~.

Corollary 4.4. Let f (resp. f') be a fibration in ~ with maximal (resp. minimal)
slope.

1) For any non-semistable fibcr F 0/ f (rcsp. f'), we have

Al" ~ AJ' (resp. Al" ::; Al')'

2) 1/ A1 > 8, then f is sernistable.
S) 1/ )..1 > 6, then allY non-sernistable fiber 0/ f has at least one m·ltltiple com

lJOnent which is not a (-2)-curve.

Proof. Considering the canonical stablizing base change of Fand using (25), we
ean prove 1). 2) anel 3) are illllneeliate con5equences of (22)-(25) anel the assl.UUp
tion. Q.E.D.

Remark. This eoro11ary ean be useel to classify singular fibers of a fibration with
nünilnal slope in the sense above. For exaInple,

I) Xiao ([Xl], [X4]) has provcel that for any relatively Ulüülnal fibration f of
genus g,

/\/ ~ 4 - 4/g.

Furthennore, if f is a hypere11iptie fibration, then
49 + 2

/\1 ::; 12 - [92 / 2]'

11) If f is non-hypere11iptic, then the lower bounds /\g of the slope are /\3 = 3,
Ai = 24/7, )..5 = 40/11. (cf. [eh], [Ho], [Ko], [Re]).

If we cOllsider fibratiolls over pI, anel \ve ollly eOllsider base changcs \vith two
rarnification points, then the above results can also be used.

4-2 Canonical dass inequality for general fibrations

First we reca11 Miyaoka's illequality and rcfer to [Hi] for the details.

Lenllna 4.5. [Mi] 1/ S is a smooth S7t1jace 0/ general type, and EI,
disjoint ADE curves on S, then we haue

EH are

n

L rn,(Ed :::; 3C2(S) - ci(s),
;=1

where rn(E) is defincd as folIo ws,

3 3
rn(A r ) = 3(1' + 1) - --i nl.(Dr ) = 3(r' + 1) - ( )' /or r' ~ 4;

r' + 1 4 r - 2
1 1 1

rn(E6 ) = 21- S; rn(E7 ) = 24 - 16; rn(Es) = 27 - 40'

The condition "of general type" ean be replaced by son1e other conditions. (cf.
[Mi]).



Invariants of base changes, II 15

Theorenl 4.6. 11 f is a fibration 01 genus 9 > lover a C'ltrve C 01 genus b, then

I(~/c ~ 3 I: J: + (2g - 2) Inax(2b - 2,0), (27)
yEC

where J: = eF
II

- kL:ECFj/ rn(E) ~ 49 - 3, and the S7tm is taken over alt 01 the

disjoint ADE curves E in F y.

Proof. The inequality (27) is an inunediate consequence of rvIiyaoka-Yau inequality
(cf. [Vo], Vojta's proof). So we only neecl to prove that J~ ~ 4g - 3.

\iVe clenote by lD the nlunber of C01l1pOnents of a curve D. Let F red = D +
L:ECF E be the reduced part of a fiber F. Then

Xtop(F) = Xtop(D) + I: (Xtop(E) - #(D n E))
EcF

= Xtop(D) - I: (kp(D) - 1) + I: (lE + 1) - #(D n I: E)
pED EcF EcF

~ 21D + I: (IE + 1) - I: (kp(D) - 1) - I: #(D n E).
EcF pED EcF

Frolll the definition of rn(E), we know

rn(E) 2:: 3(IE + 1) - 1,

hence

J~ = 29 - 2 + Xtop(F) - I: 1n(E)
EcF

~ 2[} - 2 + 21D - I: (kp(D) - 1) - #(D n I: E) + I: l.
pED EcF ECF

So it is enough to prove that

I:(kp(D) - 1) + I: (#(D n E) - 1) 2:: ID - l.
pED EcF

Indeed, if D is connected, then we havc

I: (kp(D) - 1) 2:: lD - 1,
pED

hence (28) holels. If D has l' connected conlponents D1 , .•. ,D r , then
r

(28)

I:(kp(D) - 1) 2:: I:(ID i - 1) = lD - 1'.

pED i=l

On the other hand, froIn the connecteelness of F, we can prove easily that

I: (#(D n E) - 1) 2:: l' - l.
EcF

Hence (28) also holels. Q.E.D.

In [Vo], Vojta proved that if f is a semistable fibration with s singular fibers,
then

I(~/c ~ (2g - 2)(2b - 2 + s).

By llsing base changes, we can obtain a sirnilar ineqllality for general fibrations.
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Theorenl 4.7. 1/ f has s singular fibers, then

I(~/c :::; (2g - 2)(2b - 2 + 38) (29)

Proo/. If b > 0, by Kodaira-Parshin's construction, nlodulo an etale base change,
there exists a stablizing base change totally ra111ified over the singular fibers. Note
that (29) is unchanged under an etale. base change. If rr is stablizing base change,
then fro1n Theorenl A, we have

}.~2 2(B) 1 J,-2
\ f = cl 7r + d \T

C0111bining TheorC111 3.3 anel Vojta's canonical dass inequality for se111istable fi
brations, \ve can obtain inUllediately (29).

If C = jpl, then 8 2:: 3 ([Bel]), hence there exist base changes rr : C -r C
totally raillified over the s singular fibers, whose degrees can be arbitrarily large.
Note that g( C) > 0, hence (29) holels for J By' Lenulla 2.6 anel anel Theore111 3.3,
we have

::; 4(9 - 1)(g(0) - 1)/d + (6g - 6)8/d + (4g - 4)8

d-I
= 4(g - l)(b - 1) + -d-2s + (4g - 4)8 + (6g - 6)8/d,

then let cl --+ 00, we obtain (29).

4.9 On Horikawa rw,mber 0/ a non-sernistable fiber 0/ genns 3

Q.E.D.

Let f : S -r C be a relatively 1ninilnal non-hyperclliptic fibration of genus 3,
anellet F be a fiber of f. The Horikawa nUlllber of F is def1necl as (cf. [Re])

The global invariants of f depend on this ntl111ber. In fact, Reid [Re] shows that

!(J-3Xj=LHF.
F

(30)

In general, it is ql1ite difficult to conlpute HF. The ai111 here is to try to reduce
the C0111putatiol1 of a non-se111istablc fiber to the conlputation of its se111istable
l11odels, by using senlistable reduction.

Theorenl 4.8. Let F be the semistable model 0/ Funder a stablizing base change
0/ degree d. Then

(31 )
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Proof. \Ve can aSSllllle that the branch locus of the base change consists of generic
slnooth fibers and F, hence

(ci (F) - 3XF) = ]{; - 3X1f

= (J(; - 3Xf) - ~(J(1- 3X1)

1
=HF-dHF·

By using Noether formula, we can obtain (31). Q.E.D.

EXa7n]Jles. If F is a genus 2 c2:,lrve with an ordinary cusp, then we can take cl = 6.
Then the se1nistable l110del F consists of a nonsingular elliptic curve E anel a
nonsingular curve C of genus 2, with EC = 1. Since ci(F) = kand c2(F) = 1

6
1 ,

hence we have
HF = 6HF + 2.

If F = 2C, C is a snlooth curve of genus 2, then we can take cl = 2, heuce F
is a nonsingular hyperelliptic curve of genus 3. We have c7 (F) = 4, C2 (F) = 2.
Hence

H p =2Hp-5.

So we cau COlllpute directly the Horikawa numbers of SOUle special singular fibers,
e.g., if their sC1nistable nlode1s are non-hyperelliptic curves of genus 3.

5 The proof of Lelunla 1.5

In this section, we sha11 use freely thc notations of Sect. 1.2. Note first that
Le1111na 1.5 is a special case of the fo11owing theoreln.

Theorenl 5.1. Far the embedded resolution giuen in Seet. 1.2, we haue

where 1Hi,1ni,1ni(d) are the m:ultiplicitics 0/ Bi,red, Bi} Bi(d) rcspectively} and

Bi(d) = Lr(d, nr)r i/ Bi = Lr nrr.

Proof. Since we o111y neeel to find ]{p = ](rj;, without 10ss of generality, we 1nay
assume that Uo is a c01npact slnooth surface, al1d the reduced curve of B =
Ba = Lr nrr has on1y one singular point p, (otherwise wc can resolvc thc other
singu1arities of B by using enlbeddecl resolution). So we have a fonnu1a similar to
(11 ):

1" .+.* * (I'" '" (1 (cl, n r ) )r) l ~\.111 = l.fJ?Ta \.Uo + L.t - d + \'4>,
reH

l.e.,

(32)
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(33)

(34)

On the other hand, 7f,. is detennined by B r = a*(B), hence we have also

KM = 17*71:; (Ku, + Br,red - ~Br((l)) + 1(,/.

FrOln Defini tion 1.1 it is easy to prove that

Ku; + Bi,red - ~Bi(d) =u; (KUi _ 1 + Bi-l ,red - ~Bi-! (d))

- (m i -! - 2 + ~((m:_l,d) - m i - 1 (d))) Ei.

If we denote by [i the total inverse iInage of Ei in Ufo, then fronl (32)-(34), we
have

Henee we obtain the desired equality. Q.E.D.
Rcmark. In order to resolve the singularities of lIo, we can used the d-resol'ution
01 (B,p), i.e., replace the condition (3) in Definition 1.1 by

(3') If Ei = ai 1(pi _ d is the exccptional curve, thcn wc have

Then we have also the fonnula in Theorenl 5.1.

Finally, we consicler the conlputation of I(~. If (Er, q) is defined by xayb = 0,
then - I(~ ean be eOlllputecl as follows.

I. If (d, a) = (d, b) = (a, b) = 1, then we let q, q' be two integers with 0 < q, q' <
d, aq + b == 0 (lnod d), qq' == 1 (lnod d). If

d 1
- = [eI,'" ,er) = el - -----
q 1

ez- --
I

then
r , ?

_l'~z - ~( . _ ?) q + q + .... _ ?
\q - L,.; e l .... + d .....

i=l

11. Ir (d, a, b) = 1, then the singularity of V~- over q is isolll0rphie to the nol'
11lalization of zd' = xa'yb', where a = a'(d,a), b = b'(d,b) anel cl = d'(d,a)(cl,b),
hence the COlllputation is reduced to (I).

111. If do = (d, a, b) > 1, then wc have

da
zd - xayb = TI (zdldO - xaldoybldoexp (2rriH/do)).

i=l

Henee the singularity clecolnposes into da singularities of type Ir.
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