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Let f :X -+ Y be any proper morphism of noetherian schemes and let

f. :ZX -+ ZY be the eorresponding push-forth homomorphism of groups of ey­

cles. vVe say that f preserves rational equivalence, if f. sends cycles rationally

equivalent to zero on X to eycles rationally equivalent to zero on Y. This means

that f. induces a homomorphism f. :AX -+ AY of the eorresponding groups

modulo rational" equivalence ('Chow groups'). It is not hard to show that this is

so, if Y is universally catenary. When Y is not universally catenary, the situation

is not so dear (see for example [FULTON], p 396 and [KLEIMAN], pp 327 ­

329). vVith the following example we propose to show tha~ being universally cate­

nary is just about the best condition one can impose on Y in order that all proper

morphisms from a noetherian seheme to Y should preserve rational equivalence.

vVe shall construct a finite and birational morphism f :X -+ Y of two-dimensional

noetherian, integral and catenary sehemes such that

i) X is regular, ii) Y is loeal,

iii) f does not preserve rational equivalenee.

vVe get our f by modifying Example (5.6.11) of [GD] pp 101 - 102,

in the following manner:

Choose a field extension [(0 C K I which has a countable transcendence base

[{ = ](o(xo, Xl,·· .), A = [{[X]xK[x] and A = A[y].

Then A is a discrete valuation ring with parameter X and A is a polynomial

algebra over A. In particular dimA = 2. Define [( -epimorphisms € : A -+ [{
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and e,' : A ~ K (x) by

e,(x) =,e,(y) = 0, e,'(x) = X, e,'(y) = I/x. (1)

The corresponding kerneIs m : = ](er(e) and m' : = ](ei( e,') are maximal ideals

of A. 0 bviously

The conditions

m = xA + yA, m' = (xy - l)A,

m' nm = m'm, ht(m') = 1, ht(m) = 2.

(2)

(i 2:: 0), L = Im (eil )

define a ](0 - homomorphism eil : K (x) ~ K and a subfield L of K such that

K = L EB xoL. rut cP = eil 0 e,' : A ~ L. Then

Im(<jJ) = L, !(er(<p) = m'. (3)

Set n = m'm, B = K ei( <P - e), and t/J = elB = <pIB. Clearly B is a subring of

A such that

mn B = n = m' n'B, n = Ker(t/J).

Lemma 1. i) Im('ljJ) = L ,ii) n is a maximal ideal of B.

(4)

Proof: Suppose z E K(x) and t = e"(z) E L. Since ]{(x) is the quotient

field of A and x is a parameter of A, we can find n >> 0 such that x n z E A. Set

a = t + (z - t)xnyn E K l . Then a E A, e,(a) = t, and if;(a) = e"(t + (z - t)) = t.

Thus a E B and 'ljJ (a) = if; (a) = t. This proves i). The assertion ii) now follows

immediately from (4). 0

Lemma 2. A = B + (xy - l)B + xo(xy - l)B.
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Proof: Let a E A. Since 'lj; = 4>IB and 1m('IjJ) - L = 1m(if;), we can

choose bEB such that if;(a) = 'ljJ(b) = 4>(b). Then a - b E ](er(if;) = (xy - l)A

and a - b = (xy - l)a' where a' E A. Because Im('ljJ) = Land ]( = LEB xoL,

e(a/) = 'lj;(c) + xo7/J(d) = e(c + xod) for some c, d E B. Set e = a' - c - xod. Then

e E ](er(e) = m and (xy-l)e E m'm = n C B. Because b, e, d E B, (xy-l)e E B

and a = (b + (xy - l)e) + (xy - l)e + xo(xy - l)d, the assertion follows. 0

Now Eakin's theorem and lemma 2 imply immediately:

Lemma 3. The ring B is noetherian and A is a finite extension of B.

Set

M=B\n, S=M-1B, J=nS,

R -_M-1 A,] R l ' 'R=m, =m,

Y = SpeeS,

x = SpeeR.

(5)

(6)

Because R and S are noetherian subrings of ](1, X and Y are integral and

noetherian. The indusion S eRdefines a finite and dominant morphism

f: X ---+ Y. Since n is maximal in B, Y is local and X is semilocal. It follows

from (2) - (5) and (6) that I and I' are the only c10sed points of X and that

ht(I) = 2, ht(I') = 1. (7)

Because A is a discrete valuation ring, it follows from (6), (7) that X is regular

and that

dimY = dimX = 2.

Being integral and local Y is then catenary.

Lemma 4. The morphism f is birational.

(8)

Proof: The field "R(X) of rational functions on X is the common quotient

field K(x, y) of the subrings ]([x, yJ, A and R of ](1' For any r = alb E R(X)

(a, b E ]<[x, y]) we have x(xy - l)a E n C Band x(xy - l)b E B. Consequently
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r == (x(xy - l)a/(x(xy -l)b) E R(Y) and R(X) == R(Y). 0

Denote

r = xy - 1 E 'R(X)·

and

a = f.[div(r)] E ZY.

To show that f does not preserve rational equivalence it is enough to show that

a f 0 in ZY. The degrees of the residue-field extensions

k(I) ~ k( J) -+ k(I') (9)

are calculated using the natural identifications k(I) == A/m, k(I') = Alm' and

k(J) == Bin. From (2), (3), (4) and lemma 1 we then see that the sequen.ce

(9) cau be identified with I( ~ L -+ L. Because I{ == LEB xoL, it follows that

[k(I) : k( J)] = 2, [k(I'): k( J)] = 1. (10)

Since r == xy - 1 is a parameter of the discrete valuation ring OX,1I = Ami, it .

follows that ordf , (r) = 1. By (7) I' is the only point of codimension 1 in X lying

over J. It then follows from (10) that the coefficient of [J] in a equals 1· 1 == 1.

Let q be any point of dimension 1 in Y. Then vV: == {q, J} is the

closure of {q} in Y. For each 8 E 'R(W)·, the coefficient of [J] in [div (s )] IS

equal to ordJ / q (s). It is enough to show that this is always even. Sinee X IS

regular and J is clearly the conductor of R in S, it follows that f restriets to

an isomorphism X\ {I, I'} --+ Y\ {J}. In particular there is exactly one prime

p in X over q, and Rp == Bq in [((x, y). Sinee p n S == q =f J, we see that

(0) f p ~ {I, I'}. Because q f J and J == l' n S and ht(l') == 1, it follows that

p ct. I' ct. p and xy - 1 fI. p. Since I and I' are the only maximal ideals of R,

it follows that p is a proper subideal of l. The ring R/p is then loeal and one­

dimensional. Set U == V(p) == Spec(R/p) c X. The loeal ring R p == Sq has the
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residue field L : '= R(ltV) = R(U) so that the restrietion g ; U -+ W is birational

and bijective. Let E be the common integral closure of S / q and R/p in L. Set

V = SpecE and look at the morphisms V -+ U -+ W induced by the imbeddings

S/q -+ R/p -+ E. Since the loeal ring R/p is algebraie, the morphism V -+ U is

finite and E is semiloeal. Let mt, ... , m e be the maximal ideals of E and k(mi)

(i = 1, ... , e) the eorresponding residue fields. Because R/p is loeal, it follows

that the mi lie over its maximal ideal I /p. Of the residue field extensions

k(J/q) = k(J) -+ k(I) = k(I/p) -+ k(mi)

the first is of degree two by (10). Hence the degrees [k( mi): k( J / q)] are all even.

Because the morphisms V -+ U -+ vV are finite, we know that

e

ordJ/q(s) = I: ordm, (s)[k(mi): k(J/q)]
i=1

(see [FULTON], A.3.1 p 412, for example). The assertion follows immediately.
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