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Abstract. Bernstein, Frenkel and Khovanov have constructed a categorification of tensor products
of the standard representation of sl2 using singular blocks of category O for sln. In earlier work,
we construct a positive characteristic analogue using blocks of representations of sln over a field k
of characteristic p > n, with zero Frobenius character, and singular Harish-Chandra character. In
the present paper, we extend these results and construct a categorical slk-action, following Sussan’s
approach, by considering more singular blocks of modular representations of sln. We consider both
zero and non-zero Frobenius central characters. In the former setting, we construct a graded lift of
these categorifications which are equivalent to a geometric construction of Cautis, Kamnitzer and
Licata. We show that the grading arises from Koszul duality, and resolve a conjecture of theirs.
For non-zero Frobenius central characters, we show that the geometric approach to categorical
symmetric Howe duality by Cautis and Kamnitzer can be used to construct a graded lift of our
categorification using singular blocks of modular representations of sln.

1. Introduction

In their landmark paper [BFK99], Bernstein, Frenkel and Khovanov categorify the action of
sl2 on the tensor product (C2)⊗n using singular blocks of category O for sln, motivated by the
observation that the classes of the simple objects in the representation categories match up with a
(specialization of) the dual canonical basis inside (C2)⊗n. This paper is a sequel to our earlier work
[NZh16], and is part of a larger project to extend the results in [BFK99] to the positive characteristic
setting. Using representation categories of sln in positive characteristic with nilpotent Frobenius
characters, we construct categorical slk actions that lift tensor products of symmetric powers of the
standard representation (in particular, for sl2, we can categorify arbitrary tensor products of finite-
dimensional modules). We also show that the resulting categorification has a graded lifting that
is equivalent to the geometric slk-categorification constructed by Cautis, Kamnitzer, and Licata
[CK12, CKL10, CKL12] using derived category of coherent sheaves on partial flag varieties.

Categorification refers to the idea of lifting algebraic structures and maps to the categorical level
whereby a linear map between two vector spaces, a vector spaces are lifted to categories, and the
linear map is lifted to a functor. In many cases, including the one discussed in this paper and
in [BFK99], the categories themselves arise in representation theoretic contexts, and new results
about them may be obtained as a consequence. Categorical techniques play a crucial role in Chuang-
Rouquier’s proof of the abelian defect conjecture [CR08], and in Khovanov’s knot homology theory
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(see [Kh] and [Kh2]). In [RW15] Riche and Williamson apply these techniques to obtain new
results about the representations of algebraic groups in small characteristic by developing a theory
of p-canonical bases. In [EL], Elias and Losev use categorical methods to obtain more results
in this vein. See also work of the first author with Rina Anno [AN16] and David Yang [NY17],
where dimension formulae for irreducible representations of sln with two-row nilpotent Frobenius
characters are obtained.

We are interested in slk-categorifications; for simplicity, we start with the k = 2 case. An
sl2-representation on a finite-dimensional complex vector space V consists of a weight space de-
composition V =

⊕
r∈Z Vr, linear maps Er+1 : Vr → Vr+2 and Fr : Vr+2 → Vr, such that

Er−1Fr−1 − Fr+1Er+1 = r · Id

Loosely speaking, when we categorify the representation V , we replace each weight space Vr by
a “weight category” Cr such that K0(Cr) ' Vr; and replace the maps Er+1 and Fr+1 by functors
Er+1 : Cr → Cr+2 and Fr+1 : Cr+2 → Cr which satisfy a categorical analogue of the sl2 relation. In
Chuang-Rouquier’s notion of an sl2-categorification, these functors are equipped with additional
data that satisfy certain compatibilities. An slk-representation on a vector space V consists of a
weight space decomposition of V , and a collection of maps {Ei, Fi | 1 ≤ i ≤ k − 1} between the
different weight spaces which satisfy the Serre relations for slk. A categorical slk action consists of
a “weight category” Cλ for each weight space of V , and functors between these weight categories
that lift the action of Ei and Fi on the Grothendieck group (together with some additional data;
see Section 2.2 for a precise definition).

To categorify sl2-representations, we define the weight category Cχ,−n+2r to be Modχ,µr(Ug),
which consists of all finitely generated Usln-modules, on which the Harish-Chandra center acts via
the same singular central character µr, and the Frobenius center acts by a nilpotent χ. Again, the
functors E−n+2r+1 and F−n+2r+1 between the weight categories are translation functors between
the corresponding blocks, and are given by tensoring with kn (resp. (kn)∗) followed by projection.
Suppose that χ be a nilpotent functional with Jordan type λ = (λ1, · · · , λi). In Theorem 3.1
we show that this datum gives rise to a categorical sl2 action, and that the sl2 representation
obtained is the tensor product Vλ = Vλ1⊗· · ·⊗Vλi (here Vi is the sl2-representation with dimension
i+ 1). In Theorem 3.12 we generalize this construction to construct categorical slk-actions, lifting
tensor product representations of symmetric powers of the standard representation, by using a
larger collection of representation categories corresponding to more general singular Harish-Chandra
central characters.

In Section 4 we prove our second main result: when the nilpotent χ is zero, the constructed
slk-categorification admits a graded lift which is equivalent to one constructed by Cautis, Kam-
nitzer, and Licata [CK12, CKL10, CKL12]. In the latter construction, the weight categories are
taken to be the derived category of Gm equivariant coherent sheaves on T ∗G/P , where the para-
bolic P is the stabilizer of a k-step flag in kn. The functors that categorify E(−n + 2r + 1) and
F(−n+ 2r+ 1) are given by certain pull-push maps using an intermediary space. The equivalence
between representation categories of sln in positive characteristic and coherent sheaves on these
partial flag varieties is proven by Riche [Ric10], using geometric localization theory developed by
Bezrukavnikov, Mirković, and Rumynin [BMR08]. In establishing this equivalence between the
geometric construction of [CKL12] and the algebraic construction using modular representations,
we prove a Koszul duality between two geometric categorificatons of slk constructed in [CKL12]
and [CK16], which has been previously conjectured by Cautis, Kamnitzer [CK16].

When the Frobenius central character of sln is a non-zero nilpotent χ, we show in § 5 that the geo-
metric construction of categorical symmetric Howe duality by Cautis and Kamnitzer [CK16] can be
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used to obtain a graded lift of the categorification using singular blocks of modular representations
of sln. The geometric spaces used in [CK16] are certain Schubert varieties in Beilinson-Drinfeld
affine Grassmannians. These Schubert varieties, denoted by Y(k) with k related to the parabolic P
above, are shown to be smooth [CK16], and suitable Fourier-Mukai transforms between them define
an slk-categorification. We take certain transversal slices in Y(k) determined by the nilpotent χ,
and show that these Fourier-Mukai transforms, when restricted to the transversal slices, still pro-
vide a categorical slk-action. We show in Theorem 5.2 that under the localization of Bezrukavnikov,
Mirković, and Rumynin [BMR08], these Fourier-Mukai transforms on the transversal slices give a
graded lifting of the translation functors between blocks of modular sln-representations considered
in Theorem 3.12.

Acknowledgements. We would like to thank Roman Bezrukavnikov, Joel Kamnitzer, Sabin
Cautis, Mikhail Khovanov, Ben Webster, Catharina Stroppel and Michael Ehrig for helpful discus-
sions. The first author would like to thank the University of Sydney (in particular, Gus Lehrer and
Ruibin Zhang) and the Max Planck Institute of Mathematics in Bonn for supporting this research.
During the initial stage of the preparation, the second author was affiliated with the Institute of
Science and Technology Austria, Hausel Group, supported by the Advanced Grant Arithmetic and
Physics of Higgs moduli spaces No. 320593 of the European Research Council. Part of the paper
was prepared when the second named author was supported by the Australian Research Council
via the award DE190101222.

2. Preliminaries

2.1. Modular representations of Lie algebras. Let G be a semisimple, simply connected,
algebraic group, with Lie algebra g, defined over a field k of characteristic p. Assume that p satisfies
conditions (H1)-(H3) in B.6 of [Jant04]. In the case that we will be studying, where G = SLn(k),
g = sln(k), it is sufficient that p > n. Let g = n− ⊕ h ⊕ n+ be the triangular decomposition, W
be the associated Weyl group, and ρ the half-sum of all positive roots. Recall that we have the
twisted action of W on h∗:

w · λ = w(λ+ ρ)− ρ
In this subsection we will collect some facts about the representation theory of g, and refer the
reader to Jantzen’s expository article for a detailed treatment.

The center of the universal enveloping algebra, Z(Ug), can be described as follows. Define the
Harish-Chandra center ZHC to be ZHC = (Ug)G. Given an element x ∈ g, it is known that there

exists a unique x[p] ∈ g such that xp − x[p] ∈ Z(Ug). Then the Frobenius center ZFr is defined to

be the subalgebra generated by {xp − x[p] | x ∈ g}. In fact, for p � 0, Z(Ug) is generated by ZFr

and ZHC; see [Jant04, § C].

Definition 2.1. Let Modfg
χ,λ(Ug) be the full category of all finitely generated modules, where

the Frobenius center ZFr acts with a fixed nilpotent functional χ ∈ g∗, and the Harish-Chandra
character ZHC acts via a generalized central character λ ∈ h∗//W . (We follow the convention that

the Harish-Chandra character are ρ-shifted.) We will refer to Modfg
χ,λ(Ug) as a “block”.

Define Uχg be the quotient of Ug by the ideal 〈xp − x[p] − χ(x)p | x ∈ g〉. Suppose that χ is in
standard Levi form, i.e. χ(n+) = χ(h) = 0, and there exists a subset I of the simple roots such
that given a positive root α, χ(g−α) 6= 0 precisely if α ∈ I. Define Wχ to be the subgroup of the
Weyl group W generated by the reflections sα for α ∈ I.
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Definition 2.2. Let µ ∈ h∗ be an integral weight, such that µ(H)p − µ(H [p]) = 0. Define Uχb be

the quotient of Ub by the ideal 〈xp − x[p] − χ(x)p | x ∈ b〉, and kµ the Uχb-module with highest
weight µ. Then the baby Verma module ∆χ(µ) is defined as:

∆χ(µ) = Uχg⊗Uχb kµ

We may now obtain a classification of the simple objects in Modχ,λ(Usln) is as follows. The baby
Verma ∆χ(µ) lies in Modχ,λ(Usln) precisely if µ ∈ W · λ, and has a unique simple quotient which
we denote by Lχ(µ). Following Proposition D.3 in [Jant04], Lχ(w · µr) ' Lχ(w′ · µr) precisely if
w′ ∈Wχ · w.

Definition 2.3. Let C ⊆ G be the maximal torus of the centralizer of the nilpotent element
χ ∈ g∗, and X the corresponding group of characters. The category ModCχ,µ(Ug) consists of
modules in M ∈ Modχ,µ(Ug) equipped with a grading M = ⊕ν∈XMν and satisfying the following
natural compatibilities: each root vector Eα ∈ g maps Mν to Mν+α, and H ∈ c acts on Mν as
multiplication by ν(H) (here ν is the differential of ν).

Given µ ∈ h∗, suppose that µ be a lift of µ|c (here c is the subtorus of h corresponding to C).
Let ∆χ(µ) be the module in Modχ,µ(Ug) obtained from ∆χ(µ) obtained by imposing the condition
that kµ has grading µ, and Lχ(µ) be the corresponding simple quotient. Following Section D.7 of
[Jant04], in the Grothendieck group the (infinite) transition matrix between the objects ∆χ(µ) and
Lχ(µ) is unitriangular.

2.2. Categorical slk-actions. In this section we give an expository overview of categorical slk-
actions, following Section 5 of Rouquier’s [Rouq08] (the notion was introduced simultaneously by
Khovanov and Lauda in [KL1] and [KL2]). We follow the exposition in Section 6.3 of [SS15].

Definition 2.4. An slk-categorification is an abelian category A with a pair of endofunctors (E,F)
and natural transformations x ∈ End(E) and τ ∈ End(E2) such that:

(1) We have E = ⊕k−1
i=1 Ei, where Ei is the generalized i-eigenspace of x.

(2) For all d ≥ 0, the endomorphisms xj,d = Ed−jxEj−1 and tk,d = Ed−k−1tEk−1 of Ed satisfy

the relations of the degenerate affine Hecke algebra Hdaff .

(3) The functor F is isomorphic to a right adjoint of E.
(4) The endomorphisms ei and fi induced by Ei and Fi turn K0(A) into an integrable repre-

sentation of slk. The classes of the indecomposable projective objects are weight vectors.

Here recall that the degenerate affine Hecke algebra is the quotient of the free product of the algebras
C[x1, · · · , xn] and C[Sn] by the following relations (here s1, · · · , sn−1 are the transpositions in the
symmetric group Sn).

tjxi − xitj = 0 if |i− j| > 1; tjxj − xj+1tj = xjtj − tjxj+1 = 1

Remark 2.5. Although the above framework is best suited to our purposes, Rouquier’s original def-
inition, which is essentially equivalent, is more intuitive. Following [Rouq08], an slk-categorification
consists of an abelian category C equipped with the following:

• An adjoint pair (Es, Fs) of exact endofunctors of C for 1 ≤ s ≤ i− 1.
• Maps xs ∈ End(Es) and τs,t ∈ Hom(EsEt, EtEs) for each s, t ∈ {1, · · · , i− 1}.
• A decomposition C =

⊕
λ∈X Cλ, where X is the root lattice of slk.

such that:

• Fs is isomorphic to a left adjoint of Es
• Es(Cλ) ⊂ Cλ+αs and Fs(Cλ) ⊂ Cλ−αs
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• On the Grothendieck group, [Es] and [Fs] induce a representation of slk.
• The maps xs and τs,t satisfy relations (1)-(4) in 4.1.1 of [Rouq08].

Theorem 5.30 in [Rouq08] implies that the above conditions ensure that the functors Es and Ft
also satisfy the categorical slk relations.

2.3. Recollection of the θ-action. We recollect some facts about categorical (slk, θ)-action,
which were defined by Cautis in [C14]. We refrain from reciting the precise definition to avoid
repetition.

A (slk, θ)-action consists of a target graded, additive, k-linear idempotent complete 2-category
K where the objects (0-morphisms) are indexed by a and equipped with

(1) 1-morphisms: Ei1a = 1a[i]Ei and Fi1a[i] = 1aFi where 1a is the identity 1-morphism of a.

(2) 2-morphisms: for each a, a linear map Yk → End2(1a).

These are subject to conditions spelled out in [C14]. We recall some of these here.

(1) Hom(1a, 1a〈l〉) is zero if l < 0, and one-dimensional if l = 0 and 1a 6= 0. Moreover, the
space of maps between any two 1-morphisms is finite dimensional.

(2) Ei and Fi are left and right adjoints of each other up to specified shifts.
(3) We have EiFi1a = FiEi1a

⊕
[ai+1−ai] 1a for ai ≤ ai+1; FiEi1a = EiFi1a

⊕
[ai−ai+1] 1a if

ai ≥ ai+1

(4) If i 6= j then FjEi1a = EiFj1a.

Here
⊕

nA means A〈n− 1〉 ⊕A〈n− 3〉 ⊕ · · · ⊕A〈−n+ 1〉.
It is shown in [C14, Theorem 2.1] that the data of (slk, θ)-action induces an action of the Hecke

algebra as in Definition 2.5. In particular, a (slk, θ)-action induces a categorification in the sense
of Definition 2.5.

Remark 2.6. For general simple Lie algebra g, there is a notions of (g, θ)-categorification [C14].
The existence of a quiver Hecke algebra in the generality of (g, θ)-categorification has been estab-
lished for an arbitrary g modulo some transient maps. When g = slk these transient maps are
not necessary, and hence the Hecke algebra action holds on the nose [C14, Remark 1.2]. Another
feature of (g, θ)-categorification to note is that the divided powers of Ei and Fi are not imposed as
part of the data. However, the existence of these divided powers follows from the existence of the
axioms of (g, θ)-categorification [C14, § 4].

2.4. Geometric categorical action. Again to avoid repetition we only provide a sketch here.
The detailed definition of geometric categorical g-action can be found in [CKL10, § 2] for the case
when g = sl2 and in [CKL12, § 2.2.2] for a general simple Lie algebra g.

A geometric categorical slk-action consists of the following data

(1) A collection of smooth varieties Y (λ) for λ ∈ X.

(2) Fourier-Mukai kernels E(r)
i λ ∈ Db Coh(Y (λ)×Y (λ+rαi)) and F (r)

i λ ∈ Db Coh(Y (λ+rαi)×
Y (λ)). When r = 1 we just write Ei and Fi.

(3) For each Y (λ) a flat deformation Ỹ (λ)→ h where h is the Cartan subalgebra of slk, so that

the fiber of Ỹ (λ) over 0 ∈ h is identified with Y (λ).

These data are subject to conditions spelled out explicitly in [CKL12, § 2.2.2].

3. Construction of the categorifications.

In this section, we construct categorical slk actions using blocks of representations of sln with
nilpotent Frobenius character and singular Harish-Chandra character. In order to simplify the
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exposition, the first three subsections focus on the k = 2 case. In the latter sections we state the
theorem in full generality, and explain in detail how the proof should be modified when k > 2.

3.1. Statement of the main theorem: the sl2 case. Let g = sln be defined over an algebraically
closed field k of characteristic p, with p > n. Let χ ∈ g∗ be a nilpotent with Jordan type λ =
(λ1, · · · , λi).

Let us now pick e1, e2, · · · , en ∈ h∗, so that the positive roots of g are given by {ei − ej | i < j},
and the simple roots are ei − ei+1 for 1 ≤ i ≤ n− 1. Recall that ρ may be expressed as follows:

ρ =
n− 1

2
e1 +

n− 3

2
e2 + · · ·+ 1− n

2
en.

Recall that the fundamental weights are λi = e1 + · · ·+ ei, for 1 ≤ i ≤ n− 1. For 0 ≤ r ≤ n, let us
define

µr = −ρ+ e1 + e2 + · · ·+ er, Cχ,−n+2r = Modfg
χ,µr(Ug)

Let kn be the standard representation of sln, and by (kn)∗ its dual, respectively. Let us define:

E−n+2r+1 : Cχ,−n+2r → Cχ,−n+2r+2, E−n+2r+1(M) = projµr+1
(M ⊗ kn);(1)

F−n+2r+1 : Cχ,−n+2r+2 → Cχ,−n+2r, F−n+2r+1(N) = projµr(N ⊗ (kn)∗).

Here projµ for any µ ∈ h//W is the functor taking the direct summand on which the Harish-
Chandra center acts by µ.

Theorem 3.1. Along with the categories Cχ,−n+2r := Modχ,µr(Ug), and the functors E−n+2r+1

and F−n+2r+1, there exist morphisms X and T , which give us a categorical sl2-action (in the sense
of Chuang-Rouquier). On the Grothendieck group, these functors recover the action of sl2 on
Vλ = Vλ1 ⊗ Vλ2 ⊗ · · · ⊗ Vλi .

In the e = 0 case, this statement was proven in Section 2 of our earlier paper [NZh16]. The
argument used there to show that the functors E−n+2r+1 and F−n+2r+1 satisfy the sl2-relations on
the level of Grothendieck groups does not work in this setting (since when e 6= 0, the categories
do not contain Weyl modules). In Section 3.2 below, we show that the sl2-holds on the level of
Grothendieck groups by adopting a different approach using the graded versions of the categories
Modχ,µr(Ug). In Section 3.3, we show that the sl2-representation obtained is Vλ. The rest of the
argument from [NZh16] works without modification, and the full proof when k ≥ 2 is given below
in Section 3.4; so we omit the details here to avoid repetition.

3.2. Verifying the sl2-relations on the Grothendieck group.
To prove Theorem 3.1, first we will show that this gives a weak sl2-categorification, i.e. that the

sl2-relation holds on the level of Grothendieck groups. Since the simple objects give a basis of the
Grothendieck group, it suffices to prove the following. Here suppose that Lχ(λ) is a simple object
which arises as the head of a baby Verma module ∆χ(λ) for some λ ∈ h∗, both of which lie in
C−n+2r.

Proposition 3.2. We have the following equality in the Grothendieck group:

[{F−n+2r+1 ◦E−n+2r+1 ⊕ Id⊕r}Lχ(λ)] = [{E−n+2r−1 ◦ F−n+2r−1 ⊕ Id⊕n−r}Lχ(λ)]

Definition 3.3. Let Cχ,−n+2r to be the category ModCχ,µr(Ug) defined in Section 2.1 (recall that
here C ⊆ G be the maximal torus of the centralizer of the nilpotent element χ ∈ g∗), and
K0(Cχ,−n+2r) its Grothendieck group. Note that for any character λ ∈ pX∗(C) ⊆ X∗(C) and

any module V ∈ Cχ,−n+2r, we have a well-defined module V ⊗ λ. This defines an auto-equivalence
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− ⊗ λ : Cχ,−n+2r → Cχ,−n+2r. On the level of Grothendieck group, we denote the resulting endo-

morphism as [λ] : K0(Cχ,−n+2r) → K0(Cχ,−n+2r). In particular, K0(Cχ,−n+2r) is a module over
Z[pX∗(C)].

Let λ ∈ X∗(C) be any lift of λ|c, and recall that ∆χ(λ) is the corresponding baby Verma

module in Cχ,−n+2r, and L(λ) the simple quotient of ∆χ(λ) in Cχ,−n+2r. On K0(Cχ,−n+2r), we

have [η][L(λ)] = [L(λ + η)] for any η ∈ pX∗(C). The classes of all the simple objects in Cχ,−n+2r

constitute a basis of K0(Cχ,−n+2r) as an abelian group. Therefore, by choosing a fixed lifting

λ ∈ X∗(C) for each λ, we obtain a basis of K0(Cχ,−n+2r) as a module over the ring Z[pX∗(C)]. In
particular, it is a free Z[pX∗(C)]-module.

The following is a straightforward computation:

Lemma 3.4. The following equality holds in K0(Cχ,−n+2r):

[{F−n+2r+1 ◦E−n+2r+1 ⊕ Id⊕r}∆χ(λ)] = [{E−n+2r−1 ◦ F−n+2r−1 ⊕ Id⊕n−r}∆χ(λ)]

Proof. This follows via the approach used to establish Theorem 1 in [BFK99]; in particular, see
Proposition 6 and Proposition 7 there. �

Proof of Proposition 3.2. Let I ⊆ Z[pX∗(C)] be the augmentation ideal. Let K0(Cχ,−n+2r)
∧
I be

the completion of the Z[pX∗(C)]-module K0(Cχ,−n+2r) at this ideal. The ring Z[pX∗(C)] is an

integral domain, hence the map Z[pX∗(C)]→ Z[pX∗(C)]∧I is injective. Similarly, K0(Cχ,−n+2r)→
K0(Cχ,−n+2r)

∧
I is injective, since K0(Cχ,−n+2r) is free as an Z[pX∗(C)]-module. In K0(Cχ,−n+2r)

∧
I ,

each [L(λ)] can be written as a finite linear combination of the baby Verma modules, with coefficients
in Z[pX∗(C)]∧I . By Lemma 3.4, we have the relation [{F−n+2r+1 ◦ E−n+2r+1 ⊕ Id⊕r}∆χ(λ)] =

[{E−n+2r−1 ◦ F−n+2r−1 ⊕ Id⊕n−r}∆χ(λ)] in K0(Cχ,−n+2r)
∧
I . Note that both sides of this equality

are well-defined elements in K0(Cχ,−n+2r), therefore, the equality holds in K0(Cχ,−n+2r) thanks to

the injectivity K0(Cχ,−n+2r) ↪→ K0(Cχ,−n+2r)
∧
I . In particular, we have [{F−n+2r+1 ◦ E−n+2r+1 ⊕

Id⊕r}Lχ(λ)] = [{E−n+2r−1 ◦F−n+2r−1 ⊕ Id⊕n−r}Lχ(λ)] in K0(Cχ,−n+2r). Note that forgetting the

C-grading defines a map K0(Cχ,−n+2r)→ K0(Cχ,−n+2r) sending [Lχ(λ)] to Lχ(λ)] and intertwines
the translation functors. Hence, we obtain the desired equality in K0(Cχ,−n+2r). �

To summarize, we have [F−n+2r+1 ◦ E−n+2r+1 ⊕ Id⊕r}] ' [{E−n+2r−1 ◦ F−n+2r−1 ⊕ Id⊕n−r] as
endomorphisms of K0(Cχ,−n+2r)

3.3. Ranks of Grothendieck groups.

Definition 3.5. Given χ ∈ g∗, let the parabolic subgroup Wχ be the subgroup of the Weyl group
W corresponding to the Levi subgroup inside CG(χ).

In our set-up, recall that χ ∈ g∗ is a nilpotent with Jordan type λ = (λ1, · · · , λi). The parabolic
Weyl group Wχ can be described as follows:

{1, · · · , n} =
⊔

0≤j≤i−1

Sj , Sj = {λ1 + · · ·+ λj + 1, · · · , λ1 + · · ·+ λj + λj+1}

Wλ = {w ∈W | w(Sj) = Sj for 0 ≤ j ≤ i− 1}

Definition 3.6. Let cλ(r) be the number of integer solutions to r = a1 + a2 + · · ·+ ai, with:

0 ≤ a1 ≤ λ1, · · · , 0 ≤ ai ≤ λi
As before, for 1 ≤ i ≤ n, let µi = −ρ+ e1 + · · ·+ ei.
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Lemma 3.7. The number of simple objects in Modχ,µr(Usln) is cλ(r).

Proof. Recall that the classification of simples in Modχ,µr(Usln) is as follows. The baby Verma
∆χ(w ·µr) has simple quotient Lχ(w ·µr). From Proposition D.3 in [Jant04], Lχ(w ·µr) ' Lχ(w′ ·µr)
precisely if w′ ∈Wλ · w.

Let Sn(r) be the set of all subsets of {1, · · · , n} with size r. From the classification of simples, it
follows that the number of simples in Modχ,µr(Usln) is equal to number of orbits of Wλ on Sn(r),
and hence is equal to cλ(r) (since given two subsets A,A′ ∈ Sn(r), it is clear that A and A′ lie in
the same Wλ-orbit precisely if |A ∩ Sj | = |A′ ∩ Sj | for each 0 ≤ j ≤ i− 1). �

Proposition 3.8. The sl2-representation obtained is Vλ = Vλ1 ⊗ Vλ2 ⊗ · · · ⊗ Vλi .
Proof. It suffices to show that the dimensions of the weight spaces match up, since they determine
the sl2-representation.

ch(Vλ) = (eλ1 + · · ·+ e−λ1) · · · (eλi + · · ·+ e−λi)

=
∑

0≤r≤λ1+···+λi

cλ(r)eλ1+···+λi−2r

The conclusion now follows from Lemma 3.7. �

3.4. Statement of the main theorem: categorical slk actions.
In this section, we will construct a categorical slk action generalizing Theorem 3.1 above. As

before, let g = sln be defined over k a field of positive characteristic. Recall that χ ∈ g∗ is a
nilpotent with Jordan type λ = (λ1, · · · , λi).
Definition 3.9. Let A(n, k) be the set consisting of all ordered k-tuples of positive integers whose
sum is n. Given a = (a1, · · · , ak) ∈ A(n, k), define the weight µ(a) and the category Cχ,a as follows:

µ(a) := −ρ− (e1 + · · ·+ ea1)− 2(ea1+1 + · · ·+ ea1+a2)− · · · − k(ea1+···+ak−1+1 + · · ·+ en)

Cχ,a := Modfgχ,µ(a)(Ug)

Definition 3.10. Given a = (a1, · · · , ak) ∈ A(n, k), if ai > 0 define:

a[i] = (a1, · · · , ai + 1, ai+1 − 1, · · · , ak) ∈ A(n, k)

Denote the translation functors between the representation categories as follows. Below projχ,µ
denotes the projection onto the block where the Frobenius character acts by χ and the Harish-
Chandra character acts by µ; M is an object in Cχ,µ(a) and N is an object in Cχ,µ(a[i]).

Eiχ,a : Cχ,µ(a) → Cχ,µ(a[i]), Eiχ,a(M) = projχ,µ(a[i])(M ⊗ kn)

F iχ,a : Cχ,µ(a[i]) → Cχ,µ(a), F iχ,a(N) = projχ,µ(a)(N ⊗ (kn)∗)

Remark 3.11. Note that the set A(n, k) parametrizes the set of weight spaces in slk-representation,
(Ck)⊗n. In the case where χ = 0, we obtain a categorification of this representation (the more
general case is described below; note that SiCk denotes the i-th symmetric power).

Theorem 3.12 (Main Theorem). Define the following categories and functors:

Cχn,r =
⊕

a∈A(n,k)

Cχ,µ(a); Eχ
i =

⊕
a∈A(n,k)

Eiχ,a; Fχ
i =

⊕
a∈A(n,k)

F iχ,a

There exist morphisms Xi ∈ End(Eχ
i ) and τi,j ∈ Hom(Eχ

i Eχ
j ,E

χ
i Eχ

j ), which give us a categorical

slk-action (in the sense of Rouquier). On the Grothendieck group, these functors recover the action
of slk on Vλ := Sλ1Ck ⊗ · · · ⊗ SλiCk.
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In Sections below, we show that the functors Ei
χ and Fi

χ satisfy the slk-relations on the level
of Grothendieck groups, and verify that the slk-representation obtained is Vλ. The rest of the
proof, which involves showing constructing the morphisms Xi and τi,j and checking they satisfy
the compatibilities spelled out in Definition 2.5, follows from the same arguments used in the
characteristic zero setting. Instead of using Definition 2.5, it will be more convenient for us to use
the equivalent characterization given in Remark 2.4. We summarize the argument below, following
the approach adopted by Sartori and Stroppel in Section 6 of [SS15].

Proof. First we define the two natural transformations x ∈ End(E) and τ ∈ End(E2). The trans-
formation x is induced by the operator Ω =

∑n
i,j=1 eij ⊗ eji ∈ U(gln) ⊗ U(gln), which gives an

endomorphism of M ⊗kn for M ∈ Cχn,r. The transformation τ is induced by the transposition map
σ ∈ End(kn ⊗ kn), σ(v ⊗ w) = w ⊗ v.

The first axiom in Remark 2.4 states that the functor E can be decomposed as a direct sum of
its eigenspaces with respect to the action of x. We refer the reader to Lemma 6.6 of [SS15] to the
proof in the characteristic zero setting, which works equally well in our setup.

The second axiom that the induced endomorphisms xj,d and τk satisfy the relations of the
degenerate affine Hecke algebra. This is proven by Arakawa and Suzuki, in Section 2.2 of [AS98],
in the category O setup. The same proof carries over verbatim.

The third axiom, stating that E and F are adjoints, is self-evident. The fourth axiom, stating that
the endomorphisms induced by Eχ

i and Fχ
i on the Grothendieck group give rise to a representation

of slk, is proven in the next section. It is clear that the classes of the indecomposable projectives
are weight vectors. �

3.5. Verifying the slk relations on the Grothendieck group.
To prove Theorem 3.12, first we show that one obtains a weak slk-categorification, i.e. that

the slk-relations hold on the level of Grothendieck group. A full list of relations can be found in
Theorem 3 of [Sus07] - however all of those involving the terms Hi are trivial to check; below we
list the others, which require some calculation. For the remainder of this section and the next, for
convenience we will omit the superscript χ from Eχ

i and Fχ
i . The module M below is an object in

Cχ,µ(a) for some a ∈ C(n, r).

Proposition 3.13. We have the following equalities in the Grothendieck group:

(1) [{EiFi ⊕ Id⊕ai+1}(M)] = [{FiEi ⊕ Id⊕ai}(M)}]
(2) If i 6= j, [EiFj(M)] = [FjEi(M)]
(3) If 1 ≤ i ≤ n− 1, [EiEiEi+1(M)] + [Ei+1EiEi(M)] = 2[EiEi+1Ei(M)]
(4) If 1 ≤ i ≤ n− 1, [FiFiFi+1(M)] + [Fi+1FiFi(M)] = 2[FiFi+1Fi(M)].

To prove this, we use the same approach used above with Proposition 3.2 in Section 3.2. Define
Cχ,a to be the category ModCχ,µ(a)(Ug).

Proof of Proposition 3.13. Let ∆χ(λ) ∈ Cχ,a be a lift of any baby Verma module which lies inside
Cχ,a. Following the argument that was used to establish Proposition 3.2, it suffices to establish the

four relations inside K0(Cχ,a), when M = ∆χ(λ). This computation is essentially identical to that
used in the characteristic zero setting (see the proof of Theorem 3 in [Sus07]), but we sketch it
below for the reader’s convenience. Construct a map φ as follows:

φ : (Ck[t±])⊗n → K0(
⊕

a∈A(n,k)

Cχ,a)

φ(vi1t
j1 ⊗ · · · ⊗ vintjn) = [∆χ(−ρ− (i1 + pj1)e1 + · · · − (in + pjn)en)]
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Note that φ(av) = aφ(v), where a = Ei or Fi and v = vi1t
j1 ⊗ · · · ⊗ vintjn .This is a straightforward

calculation, following Proposition 6 and 7 in [BFK99]. The conclusion then follows, since φ is a
surjective map and the four relations hold on (Ck[t±])⊗n. �

3.6. Calculating ranks of Grothendieck groups: the slk case.
First we define some notation to keep track of the simple objects. Recall the sets Sj used below

are defined in the proof of Lemma 3.8.

Definition 3.14. Given a ∈ A(n, k), let the set C(a) consist of all n-tuples r = (r1, · · · , rn) with
0 ≤ rj ≤ k− 1 for 1 ≤ j ≤ n, such that for each 0 ≤ i ≤ k− 1, i occurs ai+1 times amongst the set
{r1, · · · , rn}. Define the weight

µ[r] = −ρ+ r1e1 + · · ·+ rnen

For 0 ≤ j ≤ i − 1, define: [r(j)] = {rk | k ∈ Sj}. Given r, r′ ∈ C(a), if [r(j)] = [r′(j)] for all
0 ≤ j ≤ i− 1; say that r ∼ r′. Let cλ(a) be the number of such equivalence classes in C(a).

Lemma 3.15. The number of simple objects in Modχ,µ(a)(Ug) is cλ(a).

Proof. Note that µ[r] and µ[r′] are in the same W -orbit precisely if r, r′ ∈ C(a) for some a. Note
also that µ[r] and µ[r′] are in the same Wλ-orbit, precisely if r ∼ r′. From the argument in the
proof of Lemma 3.8, the number of simple objects in this category Modχ,µ(a)(Ug) is equal to the
number of equivalence classes of such tuples in C(a). �

Theorem 3.16. The slk-representation obtained is Sλ1Ck ⊗ · · · ⊗ SλiCk.

Proof. Denote by {v0, · · · , vk−1} the natural basis of Ck; under the natural projection (Ck)⊗m →
SmCk, let v{k1,··· ,km} be the image of vk1 ⊗ · · · ⊗ vkm (here 0 ≤ k1, · · · , km ≤ k − 1). Given r as
above, let vr = v[r(0)] ⊗ v[r(2)] ⊗ · · · ⊗ v[r(i−1)]; note that vr = vr′ iff r ∼ r′. Note also that vr and
vr′ lies in the weight space corresponding to a iff r ∈ C(a). Hence the conclusion follows from the
following, since the dimension of the a-weight space in this representation is equal to the rank of
the Grothendieck group of Modχ,µ(a)(Ug). �

4. Koszul duality and geometric slk-categorifications

In this section we prove that the categorification in the previous section admits a graded lift
in the case where χ = 0, and is equivalent to a geometric categorification constructed by Cautis,
Kamnitzer and Licata in [CK12, CKL10, CKL12]. This is a generalization of version of Theorem
B in our earlier paper [NZh16]. We start by recalling the set-up in [CK12, Section 3], and their
construction of a categorical action of slk acting on (Ck)⊗n (we keep the notation from Section 3.4).

4.1. The statement. We setup the partial flag varieties, their cotangent bundles, and the cate-
gories of coherent sheaves.

Definition 4.1. For any a = (a1, · · · , ak) ∈ A(n, k), let Pa be parabolic preserving the standard
k-step flag in kn whose dimension of step i is ki := a1 + · · · + ai for i = 1, . . . , k. Let Pa = G/Pa
be the corresponding partial flag variety; note that the weight µ(a) is Pa-regular. Define:

Ca := DbCohGm(T ∗Pa)

Above the multiplicative group Gm acts by dilation on the fibers of the cotangent bundle T ∗G/Pa.
Also define Pa,a[i] = Pa ∩ Pa[i] and Pa∗[i] be the corresponding partial flag variety.
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Definition 4.2. Assuming that a[i] 6= 0, define the variety W below, as the intersection of T ∗Pa×Pa
Pa∗[i] and T ∗Pa[i] ×Pa[i] Pa∗[i] inside the ambient space T ∗Pa∗[i].

W = {(0 ⊆ · · · ⊆ Vi−1 ⊆ V ′i ⊆ Vi ⊆ Vi+1 ⊆ · · · ⊆ Cn,M) |MV ′i ⊆ Vi−1,MVi+1 ⊆ V ′i } ⊆ T ∗Pa×T ∗Pa[i]

There are two projections p : W → T ∗Pa and q : W → T ∗Pa[i]. We have the following functors
given by Fourier-Mukai transforms.

Ei,a := OW ⊗ det(V ′i/Vi−1)⊗ det(Vi+1/Vi)−1{ki − ki−1} ∈ Db
Gm

Coh(T ∗Pa × T ∗Pa[i])

Ei,a : Db
Gm

Coh(T ∗Pa)→ Db
Gm

Coh(T ∗Pa[i])(2)

Fi,a := OW ⊗ det(Vi/V ′i)ki+1−2ki+ki−1+1{ki+1 − ki − 1} ∈ Db
Gm

Coh(T ∗Pa × T ∗Pa[i])

F i,a : Db
Gm

Coh(T ∗Pa[i])→ Db
Gm

Coh(T ∗Pa)(3)

The following result, which is due to Cautis-Kamnitzer, is proven in Theorem 3.1 of [CK12].
We refer the reader to [CK12, Section 2] and [CKL12, § 2.2.2], for the definition of a geometric
categorical slk-action. A brief summary is in § 2.4.

Theorem 4.3. Define:

Cn,r :=
⊕

a∈A(n,r)

Ca; Ei :=
⊕

a∈A(n,r)

Ei,a; Fi :=
⊕

a∈A(n,r)

F i,a

The above categories and functors, equipped with some additional datum, gives rise to a geometric
categorical slk-action (lifting the action of the quantum group Uq(slk) on the tensor product V ⊗n,
where V is the standard module).

The main result of this section is the following. It is proven in [Ric10], [BM13] that the cat-

egories C0,a = Modfg0,µ(a)(Ug) admit Koszul gradings, which we denote Cgr0,a. The existence of the

equivalences below follow the results in [Ric10], but need to be modified slightly for our set-up.

Theorem 4.4. There exists equivalences Γa : Db(Cgr0,a) ' Ca with the following property. The com-

posite of the equivalences Γa with the forgetful functors Cgr0,a → C0,a intertwines the categorification

from Theorem 4.3 with the categorification from Theorem 3.12 (when χ = 0).

The proof is given in § 4.4, using the results proven in the next two sections.

4.2. An overview of geometric localization theory. Let P be a parabolic subgroup, p the
corresponding parabolic Lie algebra, and u its unipotent radical. The P -wall WP ⊆ ΛR is the
subspace determined by {λ, α∨} = 0 for all α roots in the Levi root subsystem of P . A weight µ is
P -regular if it lies in WP but not on any hyperplane that does not contain WP . Let P = G/P be
the corresponding partial flag variety, T ∗P be the cotangent bundle. Define:

g̃P = {(X, gP ) ∈ g∗ × P | X|g.u = 0}

Note the natural projection g̃P → g∗. For simplicity, we identify g∗ with g in the standard way.
In the special case when e = 0 ∈ N , we also have the more straightforward equivalence [Ric10,

Theorem 3.4.14]

(4) γ̃Pµ : DbModfg
µ,0(Ug) ' DGCoh(g̃P ×Lg∗ {0})

where U0g is the restricted enveloping algebra, and g̃P ×Lg∗ {0} = g̃P ×Lg∗×P P.
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Moreover, the category Modfg
µ,0(Ug) admits a Koszul grading; we denote the resulting category

Modfg, gr
µ,0 (Ug). The equivalence (4) has a graded version, following [Ric10, Theorem 10.3.1]:

γ̃Pµ : DbModfg,gr
µ,0 (Ug) ' DGCohGm(g̃P ×Lg∗ {0}).

Under the forgetful functor Forg : Modfg,gr
µ,0 (Ug)→ Modfg

µ (U0g), these two localization equivalences
are compatible.

Let P ⊆ Q ⊆ G be two parabolic subgroups, and µ, ν ∈ Λ be weights which respectively are P
and Q-regular. The natural map π̃QP : g̃P → g̃Q induces functors on derived categories of coherent
sheaves, which we denote by

Rπ̃QP∗ : DGCohGm(g̃P ×Lg∗ {0})→ DGCohGm(g̃Q ×Lg∗ {0})
Lπ̃Q∗P : DGCohGm(g̃Q ×Lg∗ {0})→ DGCohGm(g̃P ×Lg∗ {0})

Consequently, the translation functors between the ungraded categories defined as in (1) have lifts.
More precisely, we have functors

T νµ : Modfg, gr
µ,0 (Ug)→ Modfg, gr

ν,0 (Ug) Tµν : Modfg, gr
ν,0 (Ug)→ Modfg, gr

µ,0 (Ug)

satisfying the commutativity conditions

(5) T νµ ◦ γ̃Pµ ∼= γ̃Qν ◦Rπ̃PQ∗ and Tµν ◦ γ̃Qν ∼= γ̃Pµ ◦ Lπ̃P∗Q .

One sees that [Ric10, Proof of Proposition 5.4.3] after forgetting the grading, these correspond to
the translation functors (1). In particular, they descend to well-defined functors on the abelian
categories though they were defined on the level of derived categories.

4.3. An intermediary categorification. In this section we describe the proof of Theorem 4.4,
which will be completed in the next section. This involves constructing an intermediary categori-
fication which is a variant of that constructed by Cautis-Kamnitzer in Theorem 4.3.

From Section 4.2, we have equivalences as follows (here we abbreviate).

γa : DbModfg,gr0,µ(a)(Ug) ' DGCohgr(g̃Pa ×Lg∗ {0})

We will construct graded lifts of the functors Ei0,a : Modfg0,µ(a)(Ug) → Modfg0,µ(a[i])(Ug) (defined in

Section 3.4), and compute their images under the above equivalences γa, γa[i]. Let µi(a) be the
singular weight corresponding to the parabolic Pa,a[i] (see definition 4.1). We have the following
maps:

g̃Pa
b1← (g̃Pa ×Pa Pa∗[i])

a1← g̃Pa∗[i]
a2→ (g̃Pa[i] ×Pa[i] Pa∗[i])

b2→ g̃Pa[i]

The crucial point here is that the graded translation functor T
µ(a[i])
µ(a) , which lifts Ei0,a, and T

µ(a)
µ(a[i]),

which lifts F i0,a, can be re-expressed as follows: T
µ(a[i])
µ(a) = T

µi(a)
µ(a) ◦T

µ(a[i])
µi(a) and T

µ(a)
µ(a[i]) = T

µi(a)
µ(a[i])◦T

µ(a)
µi(a).

Using equation 5 above, it follows that under the equivalences γa, γa[i], these translation functors

correspond to push and pull under the maps b1 ◦ a1 = π̃
Pa[i]
Pa∗[i] , b2 ◦ a2 = π̃

Pa
Pa∗[i] . Abusing notation,

we will use the same symbols to denote the corresponding maps after applying the base change
− ×g {0} to both sides. It follows that the functors defined below are graded lifts of the functors
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Ei0,a and F i0,a.

Ei,a : DGCohgr(g̃Pa ×Lg {0})→ DGCohgr(g̃Pa[i] ×
L
g {0})(6)

Ei,a = b2∗a2∗a
∗
1b
∗
1{−(ki − ki−1)};

Fi,a : DGCohgr(g̃P2 ×Lg {0})→ DGCohgr(g̃Pa ×Lg {0}),(7)

Fi, = b1∗a1∗a
∗
2b
∗
2{−(ki+1 − ki − 1)}.

Note that we have added artificial shiftings in the grading, {−(ki − ki−1)} and {−(ki+1 − ki − 1)};
the reason for this will become apparent later. It has been proved in [CK16, § 5] that these functors
give rise to an slk-categorification; we will give an alternate proof of this fact in the next section
by using Theorem 4.3. In what follows, we will refer to this as Categorification 1.

To prove Theorem 4.4, it now suffices to show that Categorification 1 is equivalent to the cat-
egorification from Theorem 4.3. For the simplicity of the exposition, we will do this by showing
that they are both equivalent to another categorification, defined below and which we will refer to
as Categorification 3. The latter is constructed from Theorem 4.3 by a line bundle twist, and it is
almost immediate that they are equivalent. In the next section we will show that Categorification
1 and 3 are equivalent by using a Koszul duality argument.

It follows from Proposition 4.5 below that the following Fourier-Mukai transforms give an slk-
categorification, which will be refereed to as Categorification 3. We use the same set-up from
Theorem 4.3.

E′i,a : Db
Gm

Coh(T ∗Pa)→ Db
Gm

Coh(T ∗Pa[i])(8)

E ′i,0 = OW ⊗ det(Vi+1)−1det(Vi)
ki+1−kidet(V ′i )ki−ki+1+1{ki − ki−1}

F′i,a : Db
Gm

Coh(T ∗Pa[i])→ Db
Gm

Coh(T ∗Pa)

F ′i,0 = OW ⊗ det(Vi−1)−1 det(Vi)
ki−1−ki det(V ′i )ki−ki−1+1{ki+1 − ki − 1}

Proposition 4.5. Consider the automorphism ⊗idet(Vi)
ki−ki+1 acting on Db

Gm
Coh(T ∗Pa). This

automorphism conjugates the categorification from Theorem 4.3 to Categorification 3.

Proof. This is straightforward calculation. When precomposing a Fourier-Mukai transform, we add
the line bundle; when post-composing, subtract. �

4.4. Koszul duality. To complete the proof of Theorem 4.4, it suffices to show that Categorifica-
tion 1 and 3 are equivalent; that will be done in this section.

We have the following Koszul duality maps, following Section 10 of [Ric10] (see also [NZh16,
Lemma 3.1]):

κa : DGCohgr(g̃Pa ×Lg {0}) ' DGCohgr(T ∗Pa)
Note that W , the Lagrangian correspondence, is the intersection of T ∗Pa ×Pa P and T ∗P2 ×P2 P
inside the ambient space T ∗Pa∗[i]. We have the following maps.

W
γ1

ww

γ2

((
T ∗Pa ×Pa Pa∗[i]

α1 ''

β1

xx

T ∗Pa[i] ×Pa[i] Pa∗[i]

α2vv

β2

((
T ∗Pa T ∗Pa∗[i] T ∗Pa[i]
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By [Ric10, Proposition 2.4.5], b∗r is Koszul dual to β∗r for r = 1, 2.

Lemma 4.6. Under the Koszul dualit, Ei,a from Categorification 1 becomes the following Fourier-
Mukai transform on W

det(Vi+1)−1det(Vi)
ki+1−kidet(V ′i )ki−ki+1+1[ki+1 − ki − 1]{(ki+1 − ki − 1)}(9)

Proof. Let us calculate the Koszul dual to a∗1. On Pa∗[i], we have two vector bundles, F1 = Pa∗[i]×Pa
T ∗Pa and F2 = T ∗Pa∗[i]. The natural embedding F1 ↪→ F2 is α1. By [Ric10, Proposition 4.5.2], a∗1
is Koszul dual to the functor

α1∗ ◦ det(F1)−1 det(F2)[n2 − n1]{2(n2 − n1)}

Note that det(F1)−1 det(F2) is the determinantal line bundle of the relative cotangent bundle of
the natural projection Pa∗[i] → Pa, which is

det Hom(Vi/V
′
i , V

′
i /Vi−1)

= det(Vi/V
′
i )−(ki−ki−1) det(V ′i /Vi−1)

= det(Vi+1)−1 det(Vi)
ki+1−ki det(V ′i )ki−ki+1+1

Also, n2 − n1 is the dimension of the relative cotangent bundle, i.e., dim Hom(Vi+1/Vi, Vi/V
′
i ) =

ki+1− ki− 1. Putting this together, the functor b2∗a2∗a
∗
1b
∗
1 corresponds to the following map, after

applying the Koszul duality equivalence from [NZh16, Lemma 3.1]:

β2∗ ◦ α∗2 ◦ ⊗det(Vi+1)−1det(Vi)
ki+1−kidet(V ′i )ki−ki+1+1[ki+1 − ki − 1]{2(ki+1 − ki − 1)} ◦ α1∗ ◦ β∗1 .

By the same argument as in [NZh16, Lemma 3.6], based on a derived interpretation, projection
formula, and base change, we have:

α∗2 ◦ ⊗det(Vi+1)−1det(Vi)
ki+1−kidet(V ′i )ki−ki+1+1[ki+1 − ki − 1]{2(ki+1 − ki − 1)} ◦ α1∗ =

γ2∗ ◦ ⊗det(Vi+1)−1det(Vi)
ki+1−kidet(V ′i )ki−ki+1+1[ki+1 − ki − 1]{2(ki+1 − ki − 1)} ◦ γ∗1 .

Using this equality, the stated formula for E follows (keeping in mind that p = β1◦γ1 and q = β2◦γ2).
By [Ric08, p. 67] (see also [Ric10, Remark 1.1.10]), κ commutes with internal and cohomological

shiftings. We get

det(Vi+1)−1det(Vi)
ki+1−kidet(V ′i )ki−ki+1+1[ki+1 − ki − 1]{(ki+1 − ki − 1)}.

�

Lemma 4.7. Under the Koszul dualiyt, Fi,a from Categorification 1 becomes the following Fourier-
Mukai transform on W

det(Vi−1)−1 det(Vi)
ki−1−ki det(V ′i )ki−ki−1+1[ki − ki−1]{(ki − ki−1)}.(10)

Proof. Let us calculate the Koszul dual to a∗2. On Pa∗[i], we have two vector bundles, F1 =
Pa∗[i] ×Pa[i] T ∗Pa[i] and F2 = T ∗Pa∗[i]. The natural embedding F1 ↪→ F2 is α2. By [Ric10, Proposi-

tion 4.5.2], a∗2 is Koszul dual to the functor

α2∗ ◦ det(F1)−1 det(F2)[n2 − n1]{2(n2 − n1)}
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Note that det(F1)−1 det(F2) is the determinantal line bundle of the relative cotangent bundle of
the natural projection Pa∗[i] → Pa[i], which is

det Hom(Vi+1/Vi, Vi/V
′
i )

= det(Vi+1/Vi)
−1 det(Vi/V

′
i )ki+1−ki−1

= det(Vi−1)−1 det(Vi)
ki−1−ki det(V ′i )ki−ki−1+1.

Also, n2 − n1 is the dimension of the relative cotangent bundle, i.e., dim Hom(Vi+1/Vi, Vi/V
′
i ) =

ki − ki−1. Putting this together, the functor b1∗a1∗a
∗
2b
∗
2 corresponds to the following map, after

applying the Koszul duality equivalence from [NZh16, Lemma 3.1]:

β1∗ ◦ α∗1 ◦ ⊗ det(Vi−1)−1 det(Vi)
ki−1−ki det(V ′i )ki−ki−1+1[ki − ki−1]{2(ki − ki−1)} ◦ α2∗ ◦ β∗2 .

The lemma now follows from an argument using projection formula and base change, analogous to
that of Lemma 4.6.

By [Ric08, p. 67] (see also [Ric10, Remark 1.1.10]), κ commutes with internal and cohomological
shiftings. We get

det(Vi−1)−1 det(Vi)
ki−1−ki det(V ′i )ki−ki−1+1[ki − ki−1]{(ki − ki−1)}.

�

To complete the proof we need the equivalences

ξa : DGCohgr(T ∗Pa) ∼= Db CohGm(T ∗Pa)

induced by the regrading sending Mp
q to Mp−q

q (see, e.g., [Ric08, (1.1.2)]). The lemma below
follows from the definitions.

Lemma 4.8. The following two diagrams commutes, where the top rows are the Fourier-Mukai
transforsm with kernels described in Lemmas 4.6 and 4.7; the bottom rows are from Categorifica-
tion 3.

DGCohgr(T ∗Pa) //

ξa
��

DGCohgr(T ∗Pa[i])

ξa[i]
��

Db CohGm(T ∗Pa) // Db CohGm(T ∗Pa[i]);

DGCohgr(T ∗Pa[i]) //

ξa[i]
��

DGCohgr(T ∗Pa)

ξa
��

Db CohGm(T ∗Pa[i]) // Db CohGm(T ∗Pa).

Summarizing the above, we have proven Theorem 4.4, the main result of this section. The desired
equivalences Γ be expressed as the composition Θ ◦ κ ◦ ξ.
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4.5. Quantum loop algebra actions. The sln-categorifications above can be extended to Lglk-
categorifications [CK16, CK12]. In the present section, we prove a loop version of the equivalence in
§ 4.4. In a special case this has been conjectured by Cautis and Kamnitzer [CK16, Conjecture 8.4].

We follow the same notations as in § 4. The categorification defined in (6) can be extended to
a Lglk-categorification [CK16]. We refer the readers to [CK16, § 4] for the definition of a Lglk-
categorifications. In particular, it consists of triangulated categories together with functors Ei(l)
and Fi(−l) for i = 1, . . . , k and l = 0, 1, satisfying condition spelled out there.

Assuming that a[i] 6= 0. Recall that we have functors for l = 0, 1

Ei,a(l) : DGCohgr(g̃Pa ×Lg {0})→ DGCohgr(g̃Pa[i] ×
L
g {0})(11)

Ei,a(l) = b2∗a2∗(Vi/V ′i)−la∗1b∗1[il]{−(ki − ki−1 − il)};
Fi,a(−l) : DGCohgr(g̃P2 ×Lg {0})→ DGCohgr(g̃Pa ×Lg {0}),(12)

Fi,a(−l) = b1∗a1∗(Vi/V ′i)la∗2b∗2[−il]{−(ki+1 − ki − 1 + il)}.

When l = 0, we get the functors from (6). In particular, describing the l = 0 functors as Fourier-
Mukai transforms with kernels being Og̃Pa∗i

, we then have Ei,1 = Ei,0 ⊗ det(Vi/V ′i)−1[i]{i} and

Fi,−1 = Fi,0 ⊗ det(Vi/V ′i)[−i]{−i}. In what follows, we will refer to this loop version of Categorifi-
cation 1 as Categorification 1?.

Similarly, the categorification from Definition 4.2 also has an extension to the action of the
quantum loop algebra[CKo16, § 7.3] [CKL10] [CK16, § 8.1], which we recall here. Recall that

W = {(0 ⊆ · · · ⊆ Vi−1 ⊆ V ′i ⊆ Vi ⊆ Vi+1 ⊆ · · · ⊆ Cn,M) |MV ′i ⊆ Vi−1,MVi+1 ⊆ V ′i } ⊆ T ∗Pa×T ∗Pa[i]

with two projections p : W → T ∗Pa and q : W → T ∗Pa[i]. We have the following functors given by
Fourier-Mukai transforms, l = 0, 1.

Ei,a(0) := OW ⊗ det(V ′i/Vi−1)⊗ det(Vi+1/Vi)−1{ki − ki−1} ∈ Db
Gm

Coh(T ∗Pa × T ∗Pa[i])

Ei,a(1) := OW ⊗ det(V ′i/Vi−1)⊗ det(Vi+1/V ′i)−1{ki − ki−1 + i} ∈ Db
Gm

Coh(T ∗Pa × T ∗Pa[i])

Ei,a(l) : Db
Gm

Coh(T ∗Pa)→ Db
Gm

Coh(T ∗Pa[i])(13)

Fi,a(0) := OW ⊗ det(Vi/V ′i)ki+1−2ki+ki−1+1{ki+1 − ki − 1} ∈ Db
Gm

Coh(T ∗Pa × T ∗Pa[i])

Fi,a(−1) := OW ⊗ det(Vi/V ′i)ki+1−2ki+ki−1+2{ki+1 − ki − 1− i} ∈ Db
Gm

Coh(T ∗Pa × T ∗Pa[i])

F i,a(−l) : Db
Gm

Coh(T ∗Pa[i])→ Db
Gm

Coh(T ∗Pa)(14)

The functors with l = 0 are those from Definition 4.2. In what follows, we will refer to this as
Categorification 2?.

Again for the simplicity of exposition, we extend the intermediate categorification to a quantum
loop algebra action. It follows from Lemma 4.10 below that the following Fourier-Mukai transforms
give an Lglk-categorification, which will be referred to as Categorification 3?.

Ei,a(l)
′ : Db

Gm
Coh(T ∗Pa)→ Db

Gm
Coh(T ∗Pa[i])(15)

Ei,a(0)′ = OW ⊗ det(Vi+1)−1det(Vi)
ki+1−kidet(V ′i )ki−ki+1+1{ki − ki−1}

Ei,a(1)′ = Ei,0 ⊗ det(Vi/V ′i)−1{i}

Fi,a(−l)′ : Db
Gm

Coh(T ∗Pa[i])→ Db
Gm

Coh(T ∗Pa)

Fi,a(0)′ = OW ⊗ det(Vi−1)−1 det(Vi)
ki−1−ki det(V ′i )ki−ki−1+1{ki+1 − ki − 1}

Fi,a(−1)′ = Fi,0 ⊗ det(Vi/V ′i){−i}
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Using Lemmas 4.6 and 4.7, we easily get the following.

Lemma 4.9. Under the Koszul duality to Ei,1 from Categorification 1? becomes the Fourier-
Mukai transform with kernel − ⊗ det(Vi/V ′i)−1[i]{i} applied to (9) on W , and Fi,−1 become − ⊗
det(Vi/V ′i)[−i]{−i} applied to (10).

Proof. This follows directly from projection formula. �

The following is similar to Proposition 4.5.

Lemma 4.10. Consider the automorphism⊗idet(Vi)
ki−ki+1 acting onDb

Gm
Coh(T ∗Fl(k1, k2, · · · , n)).

This automorphism conjugates Categorification 2? to Categorification 3?.

Proof. This is straightforward calculation. When precomposing a Fourier-Mukai transform, we add
the line bundle; when post-composing, subtract. �

Let ξa : DGCohgr(T ∗Pa) ∼= Db CohGm(T ∗Pa) be as in § 4.4. Similar to Lemma 4.8, ξa inter-
twines the Fourier-Mukai transforsm with kernels described in 4.9 with Ei,a(1)′ and Fi,a(−1)′ from
Categorification 3?. Therefore, the equivalence of categories κ ◦ ξ takes Categorification 3? to
Categorification 1?.

Summarizing all the above, we have the folowing

Theorem 4.11. The equivalence Θ ◦ κ ◦ ξ takes Categorification 2? to Categorification 1?.

Remark 4.12. In the special case when k = n, Cautis and Kamnitzer conjectured the exis-
tence of such an equivalence that intertwines Categorification 2? and Categorification 1? [CK16,
Conjecture 8.4]. Here the space g̃Pa is denoted by Mn(a) in loc. cit. and g is denoted by Mn;

Categorification 1? is denoted by K̃DGFl,n and Categorification 3? is denoted by KFl,n. Therefore,

Theorem 4.11 resolves [CK16, Conjecture 8.4]. It is remarked that we need
∑k

i=1 ai = n in order
for an equivalence in Theorem 4.11 to make sense. However, the condition k = n is not necessary.

5. Graded lifting for a general Frobenius character

In this section we construct graded lifts of the categorification from Theorem 3.1 for general
χ, not necessarily zero. This is done by establishing a relation between the categorification from
Theorem 3.1 with the geometric categorical symmetric Howe duality of Cautis and Kamnitzer. The
graded lifting is a categorification in the sense of (slk, θ)-action of Cautis [C14] which we sketched in
§ 2.3. First we recall more of the localization theory sketched in § 4.2, covering the case of nonzero
Frobenius characters χ.

5.1. Localization with base change. Let P be a parabolic subgroup, p the corresponding par-
abolic Lie algebra, and u its unipotent radical. The P -wall WP ⊆ ΛR is the subspace determined
by {λ, α∨} = 0 for all α roots in the Levi root subsystem of P . A weight µ is P -regular if it lies
in WP but not on any hyperplane that does not contain WP . Let P = G/P be the corresponding
partial flag variety, T ∗P be the cotangent bundle. Define:

g̃P = {(X, gP ) ∈ g∗ × P | X|g.u = 0}
Note that we have a natural projection g̃P → g∗. For simplicity, we also fix an identification of g∗

with g using standard techniques.
Let e be a point in N . Let φ be a homomorphism SL(2) → G with dφ ( 0 1

0 0 ) = e. The corre-
sponding sl2 triple e, h, f defines a Slodowy slice Se := e+Zg(f) transversal to the conjugacy class
of e. Let C be a maximal torus in the centralizer of the image of φ. It is also a maximal torus in
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the centralizer Ge of e. Let ϕ : Gm → G by ϕ(t) := φ
(
t 0
0 t−1

)
. We denote by Gm a copy of the

group Gm acting on g by t • x := t−2 ad(ϕ(t))x and by C̃ the group C ×Gm, which acts on g via

the adjoint action of C and the action of Gm as above. This action of C̃ factors through G×Gm,
and preserves the Slodowy slice Se, and the action of Gm contracts Se to e. The natural inclusion
map Se → g is equivariant with respect to the map of algebraic groups C̃ → G × Gm. Below, we
write the maximal torus of G as H.

Following [BR13, § 5.1], we consider the derived fiber product g̃P ×Lg Se which is a dg-scheme

whose structure sheaf of dg-algebras is C̃-equivariant. However, the base change Se → g is exact
with respect to g̃P → g in the sense of [BM13, § 1.3]. In particular, the natural morphisms of

dg-schemes g̃P ×g Se → g̃P ×Lg Se is a quasi-isomorphism. We consider the C̃-equivariant derived

category of coherent sheaves Db
C̃

Coh(g̃P ×g Se). For the technical parts of the proof, we will also

need the derived category DGCohC̃(g̃P ×Lg Se), as defined in [BR13, § 5.2].
Recall that we have an embedding of the parabolic Springer fiber Pe in T ∗P ⊆ g̃P , where Pe is

the fiber of e under the natural projection T ∗P → N . For simplicity, we denote the completion of

g̃P at the subvariety Pe by P̂e. Assume µ is P -regular. Let U µ̂ê be the completion of U(g) at the
Frobenius center e and Harish-Chandra center µ. The group C still acts on this completion. We
have the following localization equivalence proven in [BM13]:

γ̃Pµ : Db CohC(P̂e) ∼= Db Mod-(U µ̂ê , C).

Moreover, the Gm ⊆ C̃-action on P̂e endows U µ̂ê with a grading following [BM13] (see also Re-
mark 5.1 for a more detailed recollection):

γ̃Pµ : Db CohC̃(P̂e) ∼= Db Mod-gr(U µ̂ê , C).

These two localizations functors are compatible under the functors forgetting the Gm-action and
the grading respectively:

DbModfg, gr
µ (U µ̂ê , C)

Forg
��

∼=
// DbCohC̃(P̂e)

Forg
��

DbModfgµ (U µ̂ê , C) ∼=
// DbCohC(P̂e)

Let the derived base-change via Se → g of P̂e be denoted by S̃∧Pe , which again is quasi-isomorphic

to the scheme-theoretical base-change. We will also consider the base-change U µ̂ê ×
L
g Se of U µ̂ê via

the ring map O(g(1)) → O(Se). The significance of this base-change is that the grading of this
DG-algebra has Koszul property [BM13, § 5.3.2]. The above equivalence implies the following

γ̃Pµ : DGCohC̃(S̃∧Pe)
∼= DGMod-gr(U µ̂ê ×

L
g Se, C).

Remark 5.1. Indeed, a H-equivariant vector bundle E on gP is constructed in [BM13], which
is a tilting bundle and hence induces a derived equivalence between coherent sheaves on gP and
finitely generated modules of the endomorphism ring A = EndgP (E). This equivalence is T ×Gm-
equivariant, and is compatible with derived base-change via a map S → g [BM13, § 5.2.1]. Taking

the base-change via Se → g of P̂e, we get a vector bundle E on S̃∧Pe which by construction is
automatically C-equivariant, and a Gm-equivariance structure is determined in [BM13, § 5.3.1].

The algebra A, taking completion with respect to e and 0, is Morita equivalent to U µ̂ê [BM13,
§ 5.2.5], with µ determined by P as before. The Gm-equivariance structure of E|

S̃∧Pe
and hence of
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A ⊗LO(g) O(Se) endows U µ̂ê ×
L
g Se with a grading. (Again here the derived base change is quasi-

isomorphic to the classical base change.) The fact that this grading has Koszul property when
P = B [BM13, § 5.3.2] implies Lusztig’s conjectures on canonical basis [BM13, Theorem 5.3.5].

Let P ⊆ Q ⊆ G be two parabolic subgroups, and µ, ν ∈ Λ be weights which respectively are P
and Q-regular. We have the natural map π̃QP : g̃P → g̃Q. induces functors on derived categories of
coherent sheaves, which without causing confusion, are denoted by

Rπ̃QP∗ : DGCohC̃(g̃P)→ DGCohC̃(g̃Q)

Lπ̃Q∗P : DGCohC̃(g̃Q)→ DGCohC̃(g̃P)

These functors can be expressed in terms of Fourier-Mukai transforms with kernels given by the
structure sheaves of graphs of the maps π̃QP , denoted by ΓQP for simplicity. Restricting to the
completions and taking base-change via Se → g, we get the Fourier-Mukai transforms

FΓQP
: Db CohC̃(P̂e)→ Db CohC̃(Q̂e)

FΓQP
: Db CohC̃(Q̂e)→ Db CohC̃(P̂e)

as well as

FΓQP
: DGCohC̃(S̃∧Pe)→ DGCohC̃(S̃∧Qe)

FΓQP
: DGCohC̃(S̃∧Qe)→ DGCohC̃(S̃∧Pe).

Composing with the localization functors, we get functors

T νµ : DbModfg, gr(U µ̂ê , C)→ DbModfg, gr(U ν̂ê , C)

Tµν : DbModfg, gr(U ν̂ê , C)→ DbModfg, gr(U µ̂ê , C),

T νµ : DGMod-gr(U µ̂ê ×
L
g Se, C)→ DGMod-gr(U ν̂ê ×Lg Se, C)

Tµν : DGMod-gr(U ν̂ê ×Lg Se, C)→ DGMod-gr(U µ̂ê ×
L
g Se, C),

so that in both cases we have

(16) T νµ ◦ γ̃Pµ ∼= γ̃Qν ◦ FΓQP
and Tµν ◦ γ̃Qν ∼= γ̃Pµ ◦ FΓQP

.

After forgetting the grading, these become the translation functors projχ,µ(a[i])(−⊗kn) and projχ,µ(a)(−⊗
(kn)∗) in the corresponding ungraded categories.

5.2. Geometric categorification on the Slodowy slices. Now we follow the setup from § 3.4.
For any a = (a1, · · · , ak) ∈ A(n, k), we have a parabolic Pa preserving the standard k-step flag in
kn whose dimension of step i is a1 + · · ·+ ai for i = 1, . . . , k. We have a corresponding weight µ(a)
which is Pa-regular. Let Pa = G/Pa.

For i = 1, . . . , k − 1, assume a is such that ai+1 6= 0. Recall also that

a[i] = (a1, . . . , ai + 1, ai+1 − 1, . . . , ak) ∈ A(n, k)

We denote Pa by P1, Pa[i] by P2, and P1 ∩ P2 by P ; similarly, P1 = G/P1, P2 = G/P2, and
P = G/P . We have the following maps

g̃P1

π̃
P1
P← g̃P

π̃
P2
P→ g̃P2 ,
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the graphs of which are denoted by Γ(P1,P) and Γ(P2,P) respectively. Their structure sheaves
give Fourier-Mukai kernels

OΓ(P1,P) and OΓ(P2,P).

Abusing notation, we use these kernels to define the following Fourier-Mukai transforms, which
are equal to (6).

Ei = FΓ(P1,P) ◦ FΓ(P2,P){−(ki − ki−1)} : DGCohT×Gm(g̃P1 ×g {0})→ DGCohT×Gm(g̃P2 ×g {0});
(17)

Fi = F
Γ
P2
P
◦ FΓPP1

{−(ki+1 − ki − 1)} : DGCohH×Gm(g̃P2 ×g {0})→ DGCohH×Gm(g̃P1 ×g {0}).
(18)

Similarly, for an arbitrary e ∈ N we also have the following Fourier-Mukai transforms

Ei = FΓ(P1,P) ◦ FΓ(P,P2){−(ki − ki−1)} : Db CohC̃(P̂1,e)→ Db CohC̃(P̂2,e);(19)

Fi = FΓ(P2,P) ◦ FΓ(P,P1){−(ki+1 − ki − 1)} : Db CohC̃(P̂2,e)→ Db CohC̃(P̂1,e);(20)

and

Ei = FΓ(P1,P) ◦ FΓ(P,P2){−(ki − ki−1)} : DGCohC̃(S̃∧P1,e
)→ DGCohC̃(S̃∧P2,e

);(21)

Fi = FΓ(P2,P) ◦ FΓ(P,P1){−(ki+1 − ki − 1)} : DGCohC̃(S̃∧P2,e
)→ DGCohC̃(S̃∧P1,e

).(22)

Theorem 5.2. (1) Let the category Cχ,a be Db CohC̃(P̂a,e) (or respectively DGCohC̃(S̃∧Pa,e)),

with functors Eiand Fi as in (19) (or respectively (21)). There exist Yk → End2(1a),
satisfying the conditions of a (slk, θ)-categorification (as recalled in § 2.3, following [C14]).

(2) In particular, the same result holds for the categories Cχ,a being DbModfg, gr(U µ̂e , C) (or

respectively DGMod-gr(U µ̂ê ×
L
g Se, C)), and functors

Eiχ,a := T
µ(a[i])
µ(a) {−(ki − ki−1)}, F iχ,a := T

µ(a)
µ(a[i]){−(ki+1 − ki − 1)}.

(3) In both cases above, forgetting the degree, the functors T
µ(a[i])
µ(a) {−(ki−ki−1)} and T

µ(a)
µ(a[i]){−(ki+1−

ki − 1)} become projχ,µ(a[i])(−⊗ kn) and projχ,µ(a)(−⊗ (kn)∗).

In the framework of § 2.3, we have K = ⊕aCχ,a, with 1a being the identity functor on Cχ,a. The
condition Ei1a = 1a[i]Ei then implies that Ei : Cχ,a → Cχ,a[i]. In what follows, we use Ei1a and Ei,a
interchangeably, and similarly for Fi. The statements (2) and (3) together provide a graded lifting
of the categorification from Theorem 3.12.

In § 5.3, we prove (1). We remark here that the statements (2) and (3) follow directly from
(1) using the localization results described in § 5.1. More precisely, equation (16) implies that the
localization equivalences

γ̃Pµ : Db CohC̃(P̂e) ∼= Db Mod-gr(U µ̂ê , C)

intertwine the functors Ei and T
µ(a[i])
µ(a) {−(ki−ki−1)}, and also the functors Fi and T

µ(a)
µ(a[i]){−(ki+1−

ki − 1)}. The functorial relations of the translation functors then follow from those of Ei and Fi.

A similar argument applies for the categories DGMod-gr(U µ̂ê ×
L
g Se, C).

Remark 5.3. (1) The grading of the algebra U µ̂ê ×
L
g Se has Koszul property [BM13, Proposi-

tion 5.3.2] when µ is regular. We expect this property holds for general µ.
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(2) Without base change to Se or ke, the algebra U µ̂ê also has a grading discussed above.
However, as the Gm-action does not contract the formal completion of g at e to a point, we

do not expect this grading to have the same Koszul property as in the case of U µ̂ê ×
L
g Se.

(3) Replacing in Theorem 5.2 S̃∧Pa,e by P̂e×Lg ke, we obtain a similar result withDGMod-gr(U µ̂ê ×
L
g

Se, C) replaced by DGMod-gr(U µ̂ê ×
L
g ke, C) where ke is the residue field at e ∈ g. How-

ever, the derived base change here is essential and is not quasi-isomorphic to the classical

base change. The Koszul property of the grading on U µ̂ê ×
L
g Se translates in this setting

to [BM13, Lemma 6.3.1]. The category Modfg
χ,λ(Ug) considered in Theorem 3.12 is the

category of modules over the classical base change, forgetting the C̃-action.

(4) Theorem 3.12 holds with Modfg
χ,λ(Ug) replaced by Mod-gr(U µ̂ê , C) or DGMod-gr(U µ̂ê ×

L
g

Se, C).

Remark 5.4. It follows from [C14, Theorem 2.1] that a (slk, θ)-categorification induces an action
of the degenerate affine Hecke algebra in the sense of Definition 2.5. In particular, Theorem 5.2
implies Theorem 3.12.

5.3. Proof of Theorem 5.2(1). Now we prove Theorem 5.2(1) via the following methodology.
In [CK16], the Fourier-Mukai kernels defining Ei and Fi are constructed on larger varieties, which
are versions of slices in the affine Grassmannians. The functorial relations, as well as the condi-
tions necessary for a (slk, θ)-action, are verified. Using the proofs there, combined with standard
arguments involving base-change and Fourier-Mukai transforms via derived schemes as in [BR13,
§ 5], we show that the same functorial relations hold when considered as functors in the categories
from statement Theorem 5.2(1) above.

Definition 5.5. Given d = (d1, · · · , di), define:

Y(d) = {C[z]m = L0 ⊆ L1 ⊆ · · · ⊆ Li ⊆ C(z)m : zLj ⊆ Lj ,dim(Lj/Lj−1) = dj}

In particular, we have a map Y(d) → Y(n) by forgetting all intermediate flags (Li in Y(a) is
mapped to L in Y(n)):

Y(n) = {C[z]m = L0 ⊆ L ⊆ C(z)m : zL ⊆ L,dim(L) = n}
We briefly recall the (gln, θ)-categorifications constructed in [CK16] using the spaces Y(a). As-

sume a is a sequence of numbers so that a[i] exists. We have the correspondence Y(a ∗ i) ⊆
Y(a)× Y(a[i]) (denoted by Y1

i (a) in [CK16]) consists of

{(L•, L′•) | Lj = L′j for j 6= i, L′i ⊆ Li}.
The natural projections are π1 : Y(a ∗ i) → Y(a) and π2 : Y(a ∗ i) → Y(a[i]). The Fourier-Mukai
transforms

Ei,a : DbCohgr(Ya)→ DbCohgr(Ya[i])(23)

Ei,a = π2∗π
∗
1{−(ki − ki−1)};

Fi,a : DbCohgr(Ya[i])→ DbCohgr(Ya),(24)

Fi, = π1∗π
∗
2{−(ki+1 − ki − 1)}.

defines an (gln, θ)-categorification [CK16, Theorem 5.1]. In fact, a quantum loop algebra version
has been considered in [CK16]. For simplicity, we do not discuss the higher loops in this section.
Nevertheless, we note that from the proof of [CK16, Theorem 5.1], one can see that all functorial
relations hold H-equivariantly. The following Lemma is from [CK16, Section 8.3]:
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Lemma 5.6. We have an open embedding g̃Pd → Y(d) that is compatible with the G×C∗-action
on both varieties.

Proof. We follow the notations used in [CK16]. Let Wp ⊆ L0 be the span of

{e1, . . . , z
p−1e1, . . . , en, . . . , z

p−1en}
Define

X(n) = {C[z]m = L0 ⊃ L : zL ⊆ L,dim(L) = n}
We have an isomorphism X(n) ' Y(n). Let X(n)0 ⊆ X(n) be the open subset consisting of lattices
L so that L ∩ W0 = 0 and dim(L ∩ W1) = n, and let Y(d)0 be the preimage of X(n)0 via the
projection Y(d)→ Y(n).

Now consider the natural embeddings Y(d) ⊂ Y(n)×P(d) and g̃Pd ⊆ g×P(d), and the image as
subvarieties are characterized by the same incidence relations, i.e., a flag of lattices is the same as
a flag preserved by z. Therefore, we have the following stronger statement about the isomorphism
of Mirković and Vybornov:

Y(d)0 ' g̃Pd .

�

Now let S ↪→ gln be a map which respects the action of G→ H ×Gm. Let fP : S̃P → g̃P be the

map obtained by derived base-change. For any P → Q, we have g̃P ×Lg̃Q S̃Q
∼= g̃P ×Lg̃Q (g̃Q ×g S) ∼=

g̃P ×Lg̃Q S = S̃P . Hence, the following is a Cartesian diagram of DG-schemes:

g̃Q g̃P
πgoo

S̃Q

fQ

OO

S̃P

fP

OO

πSoo

Using the base-change theorem of DG-schemes [BR13, Proposition 3.7.1], we deduce that:

fP∗π
∗
S = π∗gfQ∗;(25)

πS∗f
∗
P = πg∗f

∗
Q.

Consequently, we have the following analogue of [BR13, Lemma 5.3.2].

Lemma 5.7.

(fP × id)∗OΓ(Q,P) = (id×fQ)∗OΓ(Q,P).

Here all the functors are understood to be derived. The graph Γ(Q,P) on the left hand side is

in g̃P × g̃Q, and the graph Γ(Q,P) on the right hand side is in S̃P × S̃Q.
Let ΓfP be the graph of fP . Then, by [Ric08, Lamma 1.2.3 and Corollary 4.3] we formulate (25)

as

OΓ(fP ) ?OΓ(Q,P) = OΓ(Q,P) ?OΓ(fQ);(26)

OΓ(Q,P) ?OΓ(fP ) = OΓ(fQ) ?OΓ(Q,P).

Recall that e ∈ N is a nilpotent element. Then, we take S ↪→ g to be either {e} ↪→ g or Se ↪→ g.
We prove the functorial relation:

EiFi ∼= FiEi
⊕

[−ai+ai+1]

1a,
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for ai ≤ ai+1. The other relations are similar. The morphism fPa is affine, so it suffices to construct
a quasi-isomorphism between

(id×fPa)∗(OΓ(Pa∗i,Pa) ?OΓ(Pa[i],Pa∗i) ?OΓ(Pa∗i,Pa[i]) ?OΓ(Pa∗i,Pa))

and
(id×fPa)∗(OΓ(Pa∗i,Pa[i]) ?OΓ(Pa∗i,Pa) ?OΓ(Pa∗i,Pa) ?OΓ(Pa[i],Pa∗i)

⊕
[−ai+ai+1]

1a).

We use [Ric08, Lamma 1.2.3 and Corollary 4.3] to rewrite the above as

OΓ(fPa ) ? (OΓ(Pa∗i,Pa) ?OΓ(Pa[i],Pa∗i) ?OΓ(Pa∗i,Pa[i]) ?OΓ(Pa∗i,Pa))

and
OΓ(fPa ) ? (OΓ(Pa∗i,Pa[i]) ?OΓ(Pa∗i,Pa) ?OΓ(Pa∗i,Pa) ?OΓ(Pa[i],Pa∗i)

⊕
[−ai+ai+1]

1a).

By (25), this is equivalently to

(OΓ(Pa∗i,Pa) ?OΓ(Pa[i],Pa∗i) ?OΓ(Pa∗i,Pa[i]) ?OΓ(Pa∗i,Pa)) ?OΓ(fPa )

∼=(OΓ(Pa∗i,Pa[i]) ?OΓ(Pa∗i,Pa) ?OΓ(Pa∗i,Pa) ?OΓ(Pa[i],Pa∗i)
⊕

[−ai+ai+1]

1a) ?OΓ(fPa ).

This follows from [CK16, Proposition 5.7]. Therefore, we are done.
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