Generalized Exponents via Hall-Littlewood Symmetric Functions

R.K. Gupta

Department of Mathematics Brown University Providence, R.I. 02912 USA
and
Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26
D-5300 Bonn 3
Federal Republic of Germany

Generalized Exponents via Hall-Littlewood
 Symmetric Functions

R.K.Gupta ${ }^{1}$

${ }^{1}$ Research supported by the NSF and a NATO Postdoctoral Fellowship

The generalized exponents of finite-dimensional irreducible representations of a compact Lie group are important invariants first constructed and studied by Kostant in the early 1960's. Their actual computation has remained quite enigmatic. What was known ($[\underline{K}]$ and [. $\underline{H}, T h .1]$) suggested to us that their computation lies at the heart of a rich combinatorially flavored theory.

This note announces several results all tied together by Theorem 2.3 below which selects the natural generalizations of Hall-Littlewood symmetric functions, rather than irreducible characters, as the best basis of the character ring. Full details will appear elsewhere.

1. Statement of Probiem. Let g be a complex semi-simple Lie algebra with adjoint group G. Via the adjoint action, the symmetric algebra $S(\underline{q})$ becomes a graded representation of G. Kostant studied this representation in his fundamental paper [K] ; his results are well-known. $S(\underline{g})=I \otimes H$ is a free module over the G-invariants I generated by the harmonics H. Moreover, I is a polynomial ring on homogeneous generators of known degrees, and $H=\underset{p \geq 0}{\oplus} H^{p}$ is a graded, locally-finite G-representation.

Hence, to study the isotypic decomposition of $S(\underline{g})$, one forms for each irreducible G-representation V the polynomial in an indeterminate q :

$$
\begin{equation*}
F(V):=\sum_{p \geq 0}\left\langle V, H^{p}\right\rangle q^{p} . \tag{1.1}
\end{equation*}
$$

Here 〈, > is the usual form $\operatorname{dim}_{H_{g}}($,) on the representation ring of g. Kostant's problem asks us to determine $F(V)$; he called the integers e_{1}, \ldots, e_{s} with $F(V)=\sum_{i=1}^{S} q^{e_{i}}$ the generalized exponents of V. The polynomial $F(V)$ turns out to be a rather deep invariant of the representation V. For instance, the $F(V)$ are certain KazhdanLusztig polynomials for the affine Weyl group (combine [K, Th. 1] and [Ka ,Th. 1.8]), and they describe certain group cohomology ([EP, Th. 6.1]).
2. A Bilinear Form. Our idea is to interpret F as a bilinear form on the character ring Λ of g. Precisely, define a $\mathbb{Z}[q]$-valued symmetric bilinear form $\langle<$,$\rangle on \Lambda[q]$ by setting
(2.1) $\left\langle\left\langle\operatorname{ch}\left(V_{1}\right), \operatorname{ch}\left(V_{2}\right)\right\rangle\right\rangle:=F\left(V_{1} \otimes V_{2}^{*}\right)$,
for any two g-representations V_{1} and V_{2}, and extending q-linearly. (Here ch (V) and V^{*} mean the character and dual of V.) our (2.1) makes sense as (1.1) actually defines F on any representation of g.

We will present a basis in which our new form $\langle\langle\rangle$,$\rangle diagonalizes.$ First fix a Carton subalgebra \underline{h} of g and some familiar associated objects. Let Φ be the root system with Φ^{+}a choice of positive roots. Form the lattice \underline{P} of integral weights and its subset \underline{P}^{++}of dominant ones. Let W be the Weyl group with length function 1. Set $t_{\pi}(q):=\sum_{\substack{w \in W \\ w \cdot \pi=\pi}} q^{l(w)}$, for $\pi \in \underline{P}$. Use exponential notation for characters.

Define, for $\pi \in \underline{P}^{++}$, the Hall-Littlewood characters

$$
\begin{equation*}
P_{\pi}:=t_{\pi}(q)^{-1} \sum_{w \in W} w\left(e^{\pi} \prod_{\varphi \in \Phi^{+}} \frac{1-q e^{-\varphi}}{1-e^{-\varphi}}\right) \tag{2.2}
\end{equation*}
$$

These characters are classical objects when $\underline{g}=\underline{s l}_{n}$; they appear in this more general form in work of Keto ([Ka]).

Theorem 2.3. The $P_{\pi}, \pi \in \underline{p}^{++}$, form an orthogonal $\mathbf{Z}[q]$-basis of $\Lambda[q]$ with respect to the form $\langle\langle\rangle$,\rangle , and

$$
\left\langle\left\langle P_{\pi}, P_{\pi}\right\rangle\right\rangle=t_{0}(q) / t_{\pi}(q)
$$

To prove this, we compare $\langle\langle\rangle$,$\rangle to the usual form \langle$,$\rangle via the$ expansion $\sum_{p \geq 0} \operatorname{ch}\left(H^{p}\right) q^{p}=t_{0}(q) \prod_{\varphi \in \Phi}\left(1-q e^{\varphi}\right)^{-1}$. Then we extend \langle,$\rangle to a$ form on $\Lambda[[q]]$, where we know ([G, Th. 2.5]) the basis dual to $\left\{P_{\pi}\right\}_{\pi \in \underline{P}^{++}}$
3. Stability for PGL_{n}. Let us concentrate on $\underline{q}=\underline{s l}_{n}$ to jillustrate ($\$ 5$) the effective use of 2.3 in evaluating F on irreducibles.

We have formulated a stability theory (1981) for the generalized exponents based on a "mixed tensor" parameterization $V_{\alpha, \beta}^{n}$ of the irreducible $\mathrm{PGL}_{\mathrm{n}}$-representations, for certain pairs α, β of partitions. (See $\S 4$, but for example, $\mathbb{C}=V_{(0)}^{n},(0)$ and $g=V_{(1),(1)}^{n}$.) Write H_{n}^{p} for the degree p harmonics.

Theorem 3.1. Fix $p \geq 0$. Then the number of irreducible $\mathrm{PGL}_{\mathrm{n}}{ }^{-}$ components of H_{n}^{p} is constant for $n \geq 2 p$. Moreover, the decomposition stabilizes: for some finite set J^{p} of partition pairs and integers $c_{\alpha, \beta}^{p}$.

$$
H_{n}^{p} \simeq \bigoplus_{(\alpha, \beta) \in J^{p}}^{\prod_{\alpha, \beta}} \quad{ }_{\alpha}^{p} \quad V_{\alpha, \beta}^{n}, \quad \text { for } n \geq 2 p
$$

Our original proof worked by a combinatorial analysis of the pieces in $S\left(E n d \mathbb{C}^{\text {n }}\right.$) using the Cauchy and Littlewood-Richardson rules. We, R. Stanley, and P. Hanlon then studied the stable series $\lim _{n \rightarrow \infty} F\left(V_{\alpha, \beta}^{n}\right)$.

The main question raised by 3.1 , however, is the determination of the $F\left(V_{\alpha, \beta}^{n}\right)$ as functions of two variables g and \underline{n} (with the proviso $n \geq l(\alpha)+l(\beta)$ always implicit).
4. Combinatorics of SL_{n}-Representations. As $\underline{g}=\underline{s l}_{n}$, the character ring Λ now identifies with the ring of symmetric functions in variables $x_{1}, \ldots x_{n}$ modulo the relation $x_{1} \cdots x_{n}=i$. The set \underline{P}^{++}identifies with the set Q_{n} of partitions of at most $n-1$ rows. The Schur function $s_{\pi}\left(x_{1} \ldots, x_{n}\right)$ is the character of the irreducible highest weight representation V_{π}^{n}, $\pi \in Q_{n}$. Also, $P_{\pi}=P_{\pi}\left(x_{1}, \ldots x_{n} ; q\right)$ is the classical Hall-Littlewood symmetric function.

Write partitions γ as non-decreasing sequences $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots\right)$, ignoring trailing zeros, with magnitude $|\gamma|=\gamma_{1}+\gamma_{2}+\ldots$ and length $1(\gamma)$.

Given partitions $\underline{\alpha}$ and β with $1(\alpha)+1(\beta) \leq n$, we defined $V_{\alpha, \beta}^{n}$ as the Cartan piece (the "highest" irreducible component) in $V_{\alpha}^{n} \otimes V_{\beta}^{n *}$. So $v_{\alpha, \beta}^{n}=V_{\gamma}^{n}$ when γ is the component-wise sum (put $s=l(\alpha), t=l(\beta)$):

$$
\gamma=\operatorname{prt}_{n}(\alpha, \beta):=(\alpha_{1}, \ldots, \alpha_{s}, \underbrace{0, \ldots, 0}_{n-s-t},-\beta_{t}, \ldots,-\beta_{1})+(\underbrace{\beta_{1}, \ldots, \beta_{1}}_{n}) .
$$

Lemma 4.1. Fix $n \geq 1$. Then the $V_{\alpha, \beta}^{n}$, where α and β satisfy $1(\alpha)+1(\beta) \leq n$ and $|\alpha|=|\beta|$, form an exhaustive, repetition free, list of the irreducible, finite-dimensional representations of PGL $_{n}$.

For each value of $n, F\left(V_{\alpha, \beta}^{n}\right) \in \mathbb{Z}[q]$ is controlled by the partitions $\lambda=\operatorname{prt}_{n}(\alpha, \beta)$ and $\mu=\left(\beta_{1}^{n}\right)$ of magnitude $\beta_{1} n$. In fact, we observed that $F\left(V_{\alpha, \beta}^{n}\right)$ equals the combinatorial Kostka-Foulkes polynomial $K_{\lambda, \mu}(q)$ attached to Young tableaux of shape λ and weight μ (see [M,III, 6]).

However, in $\S 5$ we prove that $F\left(V_{\alpha, \beta}^{n}\right)$ as $\underline{\text { a function }}$ of q and \underline{n} is really "controlled" just by α and $\underline{\beta}$ (symmetrically, as $F\left(V_{\alpha, \beta}^{n}\right)=$ $F\left(V_{\alpha, \beta}^{n}\right)$. Let $h_{1}(\alpha), \ldots, h_{|\alpha|}(\alpha)$ be the hook numbers and $\tilde{\alpha}$ be the conjugate of $\alpha(\operatorname{see}[\underline{M}, I, 1]) . \quad$ Set $e(\alpha):=\sum_{i \geq 1} i \alpha_{i} . \quad$ Previously (1982), we knew only

Proposition 4.2. Assume $|\alpha|=r$.
(i) If $\beta=\left(1^{r}\right)$, then $F\left(V_{\alpha, \beta}^{n}\right)=q^{e(\tilde{\alpha})} \prod_{i=1}^{r}\left(1-q^{n-r-\tilde{\alpha}_{i}+i}\right) /\left(1-q^{h_{i}(\alpha)}\right)$.
(ii) If $\beta=(r)$, then $F\left(V_{\alpha, \beta}^{n}\right)=s_{\alpha}\left(q, \ldots, q^{n-1}\right)$.
5. A Formula for $E\left(V_{\alpha, \beta}^{n}\right)$. Let us extend our notation $K_{\lambda, \mu}(q)$ to skew-partitions (i.e., skew-diagrams) $\lambda=\alpha / \theta$. Cf. [M, I,5]. Set $b_{\pi}(q):=\prod_{i \geq 1}(1-q) \cdots\left(1-q^{\left.m_{i}^{(\pi)}\right)}\right.$, for $m_{i}(\pi)$ the multiplicity of in π.

Theorem 5.1. Fix α and β with $|\alpha|=|\beta|=r$. Then

$$
\mathrm{F}\left(\mathrm{~V}_{\alpha, \beta}^{\mathrm{n}}\right)=\sum(-1)^{|\theta|} K_{\alpha / \theta, \pi}(q) K_{\beta / \tilde{\theta}, \pi}(q) \frac{\left(1-q^{n}\right) \cdots\left(1-q^{n-1(\pi)+1}\right)}{b_{\pi^{(q)}}}
$$

summed over all partition pairs θ, π with $|\theta|+|\pi|=r$.

To prove this, we first compute $F\left(V_{\gamma}^{n} \otimes V_{\delta}^{n *}\right)$ using Th. 2.3 by writing s_{γ} and s_{δ} in terms of the P_{π}. Then we express $V_{\alpha, \beta}{ }^{n}$ in terms of the $V_{\gamma}^{n} \otimes V_{\delta}^{n^{*}}$ using essentially a formula of Littlewood.

Th. 5.1 leads to new, unified proofs of several old results, among them 3.1. 4.2, and the stable theorem [$\underline{5}, 8.1$ proven by Stanley. But mainly, 5.1 gives the first real means for computing the $F\left(V_{\alpha, \beta}^{n}\right)$.

Corollary 5.2. For some polynomial $g_{\alpha, \beta}(q, z)$ over \mathbb{Z},

$$
F\left(V_{\alpha, \beta}^{n}\right)=\frac{g_{\alpha, \beta}\left(q, q^{n-r+1}\right)}{(1-q) \cdots\left(1-q^{r}\right)}
$$

Moreover, $g_{\alpha, \beta}(q, z)(1-q)^{-1} \ldots\left(1-q^{r}\right)^{-1}$ is a linear combination, over $\mathbb{Z}[q]$, of the functions $\left(1-q^{r-1} z\right) \cdots\left(1-q^{r-i} z\right)(1-q)^{-1} \cdots\left(1-q^{i}\right)^{-1}, i=1, \ldots, r$.

We have some conjectures on the form of the $g_{\alpha, \beta}(q, z)$. The examples below, done by hand, are new, though the first is an old conjecture. For integers c_{i}, d_{i}, we set

$$
\left[\begin{array}{lll}
c_{1} & \cdots & c_{r} \\
d_{1} & \cdots & d_{r}
\end{array}\right]_{q}:=\left(1-q^{c_{1}}\right) \cdots\left(1-q^{c_{r}}\right)\left(1-q^{d_{1}}\right)^{-1} \cdots\left(1-q^{d_{r}}\right)^{-1} .
$$

But we refrain from thinking about these unless they are polynomials in \underline{q}.

Example 5.3. If $\alpha=\beta=(2,1)$, then 5.1 yields

$$
F\left(V_{\alpha, \beta}^{n}\right)=q^{3}\left[\begin{array}{ccc}
n+1 & n-1 & n-3 \\
1 & 1 & 3
\end{array}\right]_{q}+q^{5} \cdot\left[\begin{array}{ccc}
n-1 & n-2 & n-3 \\
1 & 1 & 3
\end{array}\right]_{q}
$$

Example 5.4. Let us find $F\left(V_{\pi}^{6}\right)$ when $\pi=(6,4,1,1)$. Then $\pi=$ prt ${ }_{6}(\alpha, \beta)$ for $\alpha=(4,2)$ and $\beta=(2,2,1,1)$. 5.1 gives

$$
\begin{aligned}
& F\left(V_{\alpha, \beta}^{n}\right)=q^{9}\left[\begin{array}{cccccc}
n+2 & n+1 & n-1 & n-2 & n-4 & n-5 \\
1 & 1 & 2 & 2 & 4 & 5
\end{array}\right] q+q^{12}\left[\begin{array}{ccccc}
n+2 & n-1 & n-2 & n-3 & n-4 \\
1 & 1 & 2 & 2 & 4
\end{array}\right) \\
& +q^{15}\left[\begin{array}{cccccc}
n-1 & n-2 & n-2 & n-3 & n-4 & n-5 \\
1 & 1 & 2 & 2 & 4 & 5
\end{array}\right] q+q^{9}\left(1+q+q^{2}\right)\left[\begin{array}{ccccc}
n & n-1 & n-2 & n-3 & n-4 \\
1 & 1 & 2 & 2 & 2 \\
5 & 5 & 2
\end{array}\right.
\end{aligned}
$$

So, at $n=6, \quad F\left(V_{\pi}^{6}\right)=2 q^{9}+3 q^{10}+7 q^{11}+9 q^{12}+13 q^{13}+13 q^{14}+15 q^{15}+12 q^{16}+11 q^{17}$ $+7 q^{18}+5 q^{19}+2 q^{20}+q^{21}$.

REFERENCES

[FP] E.M. Friedlander and B.J. Parshall, On the cohomology of algebraic and related finite groups, Invent. Math. 74 (1983), 85-117.
[G] R.K. Gupta, Characters and the q-analog of weight multiplicity, I.H.E.S. preprint $M / 86 / 6$ (submitted for publication).
[H] W.H. Hesselink, Characters of the nullcone, Math. Ann. 252 (1980), 179-182.
[Ka] S. Kato, Spherical functions and a q-analogue of Kostant's weight multiplicity formula, Invent. Math. 66 (1982), 461-468.
[k] B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327-404.
[M] I.G. Nacdonald, Symmetric Functions and Hall Polynomials, Oxford, Clarendon Press 1979.
[S] R.P. Stanley, The stable benavior of some characters of SL(n, ©). Linear and Multilinear Algebra 16 (1984), 3-27.

Acknowledgement: I warmly thank Univ. of Paris VI, I.H.E.S., and the Max-Planck-Institute for their hospitality.

Max-Planck-Institute für Mathematik, Gottfried-Claren-Str., 5300 Bonn 1 . West Germany

Department of Mathematics, Brown University, Prov., R.I. 02912

