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The: generalized exponents of finite-dimensional irreducible
representations of a compact Lie group are important invariants first
constructed and studied by Kostant in the earl? 1960's. Their actual
computation has remained quite enigmatic. What was known (LE]
and [ H,Th. 11) ‘suggested to us that their computation lies at the

heart of a rich combinatorially flavored theory.

This note announces several results all tied together by Theorem
2.3 below which selects the natural generalizations of Hall-Littlewood
symmetric functions, rather than irreducible characters, as the best

basis of the character ring. Full details will appear elsewhere.

1. Statement of Probiem. Let g be a complex semi-simple Lie

algebra with adjoint group G. Via the adjoint action, the symmetric
algebra S(g) becomes a graded representation of G. Kostant studied
this representation in his fundamental paper £k] ; his results are

well-known. S(g) = I®H is a free module over the G-invariants

1 generated by the harmonics H. Moreover, 1 is a polynomial ring

on homogeneous generators of known degrees, and H= @® HP is a
' : p>0

graded, locally-finite G-representation.



Hence, to study the isotypic decomposition of S(g), one forms for

each irreducible G-representation V the polynomial in an indeterminate q:
fi.1 CF(V)i= & , HP b
(i.1) CFWs 2Ky HP) q

Here ¢ , Y 1is the usual form dim Homg( , ) on the representation ring

of g. Kostant's problem asks us to determine F(V); he called the
. . bl €4 . L
.integers SRR with F(V) = 4@ the generalized exponents of V.

The polynomial F(V) turns out to be a rather deep invariant of
the representation V. For instance, the F(V) are certain Kazhdan-

Lusztig polynomials for the affine Weyl group (combine‘[thh, 1] and

[ka, Th. 1;8]), and they describe certain group cohomology (LEP, Th. 6.17).

2. A Bilinear Form. Our idea is to. interpret F as a bilinear

form on the character ring J\.of g. Precisely, define a 2[q] -valued

AN .
symmetric bilinear form « ) /> on f\'[q] by setting

*

(2.1) Keh(vy) , ch(v) ) = F(U,@V.,),



for any two g—representations Vl and V2, and extending q-linearly.‘
(Here ch(V) and V* mean the character and dual of V.) Our (2.1) makes
sense as (l1.1) actually defines F on any representation of g.

We will present a basis in which our new form {K 5)) diagonalizes.
First fix a Cartan subalgebra h of g and some familiar associated
objects. Let @ be the root system with §+ a choice of positive
roots. Form the lattice P of integral weights and its subset g+4 of

dominant ones. Let W be the Weyl group with length function 1.

Set t_(q) := 2 ql(w), for me P. Use exponential notation for
v weW :
w-r=T
characters.

Define, for Te E+*, the Hall-Littlewood characters

-l " - e
w' e - e
These characters are classical objects when g = sl : they appear in

n

this more general form in work of Kato ([Kal).

Theorem 2.3. The P",‘We.g++, form an orthogonal Z[q] -basis

of Alql with respect to the form & . Y . and

e, . BN = to/e (@.



To prove this, we compare «,» to the usual form (,7 via the

expansion b ch(Hp)qp = to(q) Tl—(l-qe‘f’)—l. Then we extend (,) +to a
p>0 ped

+ 4

ep

form on N[lgll, where we know ([G ,Th. 2.5]1) the basis dual to {P"‘X
w



3. Stability for PCL . Let us concentrate on g=§in to illustrate

(§5) the effective use of 2.3 in evaluating F on irreducibles.
We have formulated a stability theory (1981) for the generalized

1 . - . n .
exponents based on a "mixed tensor" parameterization V of the

3

irreducible PGLn—representations, for certain pairs d,@ of partitions.

n

- - . = n 1 : : p
(See §4, but for example, C V(O),(O) and g V(l),(l)‘) Write Hn for the

degree p harmonics.

Theorem 3.1. Fix p>0. Then the number of irreducible PGLn—
components of Hi is constant for n>2p. Moreover, the decomposition

stabilizes: for some finite set JP of partition pairs and integers qf

)

HP = S¥) cP v "o, for n>2p.
(*,0) eI®  Hf AP

Our original proof worked by a combinatorial analysis of the pieces

in S(End @n) using the Cauchy and Littlewood-Richardson rules. We, R.

Stanley, and P. Hanlon then studied the stable series lim F(V n

).
N-y oo '@

The main question raised by 3.1, however, is the determination of

the F(Vdis) as functions of two variables g and n (with the proviso
, a2 :

nzl(a)+1(B) always implicit).



4. Combinatorics of SL -Representations. As g=§ln, the character
n

ring N now identifies with the ring of symmetric functions in wvariables
X

17X, modulo the relation xln‘xn=1. The set E++ identifies with the

set Qn of partitiens d{ at most n-1 rows. The Schur function

SW(XI""Xn) is the character of the irreducible highest weight

representation yi . TeQ . Also, P =P (X,,..,X ;d) is the classical
e n ™ Tl n

Hall-Littlewood symmetric function.

Write partitions ¥ as non-decreasing sequences X?(Bi,xé,..),

ignoring trailing zeros, with magnitude |K1=51+35+.. and length 1(¥).

.Given partitions « and f with 1{at)+1(B)en, we. defined \Y " as the

X,
. . "o o . n_.,n¥
Cartan piece (the ﬁhlghest irreducible component) in g*@vﬁ . So
Z,= yh when ¥ is the component-wise sum . (put s=1(&), t=1({)):
&,

Sr

¥= pre (,B) = (.. &0, .., 0,8 ... =) + (B ... 8)),
n-s-t n



‘Lemma 4.1. Fix n>l. Then the sz.' where o and § satisfy

1)+1(pr)¢«n and |#l=161, form an exhaustive,repetition free, list of the

irreducible, finite-dimensional representations of PGLn.

)

For each value of n, F(V Z)E.Z[q] is controlled by the partitions
A=prt_(«,8) and lL=(B?) of magnitude # n. In fact, we observed that
F(Yin ) equals the combinatorial Kostka-Foulkes polynomial K (a)

e A, p
attached to Young tableaux of shape )\ and weight /L {see [ﬂ,III,G] ).

However, in §5 we prove that F(Vdr

ki

') as a function of g and n

is really "controlled" just by o« and # (symmetrically,as F(V " y=

* 6

(.) be the hook numbers and bee the conjugate

.
F(V . Let h,(),...h
(V[ Let hy () "

of(see [ M,1,1]). Set e(t):= E:idi. Previously (1982), we knew only
: i>»l

Proposition 4.2. Assume |dl=T.

It

. r ~ -
~ n-r-d.+1i h. (&)
(i) If £-(1F), then F(Yxié) @ T (1-q Yoy/a-a b,
: i=1

il
2]
?~
~
Q2
~
No]
s

4

(ii) If p =(r), then F(vd“ )



)

5. A Formula for F(V n J. Let us extend our notation K (g) to
e

skew-partitions (i.e., skew-diagrams) A=&/8. Cf. [WX,I,S]. Set

o m, (m) _ o _ o
‘bw(.q):r-'ﬂ;(l—q)---(l—q_ - ), for sni(n)'-"the‘-mu-l-t-iplit:ity of 1 in .
1> ) . .

Theorem 5.1. Fix & and $ with |s}=|él=r. Then

n-1@¢r)+1

R R ‘9' l_ n P l_. )
rv Ry o= E (-1 K K (l-g ). (l-g
¢ o, B ) d-/‘@‘)'n' (D @/9 ‘;Tr(q) b (q)

summed over all partition pairs 8,7 with 18 + |l =r.

% .
To prove this, we first compute F(V;QBVQ ) using Th. 2.3 by
writing s and SB in terms of the E". Then we express Yin in terms

¥ )

' %
of the %;s>ﬂ; using essentially a formula of Littlewood.

Th. 5.1 leads to new, unified proofs of several old results,

among them 3.1, 4.2, and the stable theorem [§,8.1] proven by Stanley.

But mainly, 5.1 gives the first real means for computing the F(V n ).
‘ L



Corollary 5.2. For some polynomial g (a,z) over Z,

o, p

n-r+1
Fv Dy = 9,094 )

)
(1-g)---(1-q%)

Moreover, gd @(q,z)(l-q)-%ea(l-qr)—l'is a linear combination, over Z[al,

)

of the functions (l-qr_lz)-“(1-qr—lz)(1—q)—ln((1—ql)-l, i=1,..,r.

We have some conjectures on the form of the qd 6(q,z). The

»

examples below, done by hand, are new, though the first is -an old

conjecture. For integers ci’di' we set

C L C C c d - d -
[1 I} = (1-q 1) (l-q D) (l-q D he(1-q r)‘l'
d e d .
17 S| :
q

But we refrain from thinking about these unless they are polynomials in g.

Example 5.3. 1If d=f0=(2,1), then 5.1 vields

n 3 |n+l n-1 n-3 5 [nsl n-2 n-3
F(V ) = q [ . ] + q [ ]
A, B o 11 3 q 1 1 3 q

Example 5.4. Let us find F(Vﬁ) when T=(6,4,1,1). Then w=prt6(d,@)

for &=(4,2) and ﬁ=(2,2,l,l). 5.1 gives

FV n y = 9|n+2 n+1l n-1 n-2 n-4 n-5 12 +2 n 1 n -2 n-3 n-4 n-
«p? T T 1 1 2 2 a4 s 2 4 ¢

+ o5 [nil 172 n-2 n-3 n-4 n£5:| + d(lrg +q )[n nol n-2 n-3 n-4 n;
2 q v - :



- .10 -

‘ : . . .
So, at n=6, F(Vs) = 2q9+3q10+7q11+9q12+13q13+13ql4+lSqlJf12q16+llq;/

+7q18+5q19+2q20+q21.
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