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The· generalized exponents of finite-dimensional .irreducible

representations of a compaet Lie group are important invariants first

constructed and studied by Kostant in the early 1960's. Their aetual

computation has remained quite enigmatic. What was known ([K]

and .L!j,.Th. 1]) .suggested to us that their eomputation lies at the

heart of a rieh combinatorially flavored theory.

This note announces several results all tied together by Theorem

2.3 below which selects the natural generalizations of Hall-Littlewood

symmetrie functions, rather than irredueible eharacters, as the best

basis of the eharacter ring. Full details will appear elsewhere.

1. Statement of Problem. Let ~ be a eomplex semi-simple Lie

algebra with adjoint group G. Via the adjoint action, the symmetrie

algebra S(~) becomes a graded representation of G. Kostant studied

this representation in his fundamental paper [~) ; his results are

: well-known. S(~) =!S H i5 a free module over the G-invariants

I generated by the harmonics H. Moreover, I is a polynomial ring

on homogeneous generators of known degrees, and

graded, loeally-finite G-representation.
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Hence, to study the isotypic decornposition of S(~), one forms for

each irreducible G-representation V the polynomial in an indeterminate q:

(1. 1)

Here < , ) is the usual form dirn Horn ( , ) on the representation ring
~

of 9.. Kostant's problem asks us to determine F(V); he called the

s
e·

.integers e 1 , .. ,es with F(V) =i~ q 1 the generalized exponents of ~.

The polynornial F(V) turns out to be a rather deep invariant of

the representation V. For instance, the F(V) are certain Kazhdan-

Lusztig polynomials for the affine Weyl group (combine· [H/Th~ 1] and

..~

[ß§.,Th. 1.8]), and they describe certain group cohomology ([FP,Th. 6.11).

2. ABilinear Form. Gur idea is ta.interpret F as abilinear

form on the character ring A of 9.. Precisely, define a Z[q]-valued

symmetrie bilinear form « ,)) on A[qJ by setting

(2.1)
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for any two ~-representations Vi and V2 ' and extending q-linearly .

. *
(Here ch(V) and V mean the character and dual of V.) Dur (2.1) makes

sense as (1.1) actually defines F on any representation of ~.

We will present a basis in which our new form « ~)) diagonalizes.

First fix a Cartan subalgebra h of ~ and same familiar associated

~ ~+ aobjects. Let ~ be the root system with ~ choice of positive

roots. Form the lattice P of integral weights and its subset p++ of

dominant ones. Let W be the Weyl group with length function 1.

Set t (q) ~=
l(

characters.

L ql(w), for rrep.
WE.W
W·T(::.7(

Use exponential notation for

++
Define, for tr~ ~ , the Hall-Littlewood characters

(2.2) P1r
-I

. - t (q)
11

These characters are classical objects when 5! = sln; they appear in

this more general form in work of Kato ((Ka]).

Theorem 2. 3. The P ,11 E. P + +, form an orthogonal Z [q] - has i s
rr -

of A (q] wi th respect to the form « , )) , and
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Ta prove this, we compare «,)) to the usual form (,) via the

expansion ~ chCHP)qP ~ toCq) 1f Cl-qelf ) -1. Then we extend (,) to a
p~O rc~

form on A [tqJ), where we know ([G , Th. 2.5]) the basis dual to ~ P 'l,1 n j +-l
lfE. P



3. Stability for PGL
n

.
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Let us concentrate on ~:sl to illustrate-n

(§5) the effective use of 2.3 in eva1uating F on irreducibles.

We have formulated astability theory (1981) for the generalized

exponents based on a "mixed tensor" parameterization V n of the
oc..~(5

irreducible PGLn-representations, for certain pairs ~,~ of partitions.

(See §4, but for, example, ~:v(8),(o) and ~=V(~),(l)') Write'H~ for the

degree p harmonics.

Theorem 3.1. Fix p~O. Then the number of irreducible PGL n

components of HP is constant for n~2p. Moreover, the decompositionn

stabilizes: for some finite set JP of partition pa~rs and integers c P
oI..)ß

n
V fl.. '

d...)\"",

for n~2p.

Gur original proof worked by a combinatorial analysis of the piece~

in S(End ~n) using the Cauchy and Littlewood-Richardson rules. We, R.

Stanley, and P. Hanlon then studied the stable series 1im F(Vo<.n~).
n~ cl:> 1\

The main question raised by 3.1, however, is the determination of

tbe F(V~~~) as functions of two variables g and n (with the provlso

n~l(~)+l(~) always implicit).
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4. Combinatories of SL -Representations. As ~=sl , the character
n -n

ring l\.. now identifies with the ring of symmetrie functions in variables

Xl' .. , xn ~odulo the relation X(OO x
n

:::1. The set ~++ identifies wi th the

set On of partitions ~ at most n-l rows. The Schur function

Sll(X 1 ' .. ,Xn ) is the character ofthe irreducible highest weight

representation Vn , rr€Q. Also, P = P (xl' .. ,X ;q) 15 the classical
~ . n tr rr n

Hall-Li ttle",/ood symmetrie function.

Wri te parti tions ( as non-decreasing sequenceso= ( OJ., °2 , .. ),

ignoring trai I ing zeros, V\öi th magni tude 10':'0;. + 0; +.. and length 1 'lf).

·Given partitions cJ.... and f. \-Jith l(ot..)+l(ß)~n, we· defined V n as the
---- . r:J..., (J,

n n*
Cartan piece (the "highest" irreducible component) in VrJ.. 0Vß. So

V n = Vn v/hen (( is the component-wise sum (put s=l(d.), t=l((S)):
d..,(3) zr

o~ prtn (ol,!3) := (o!.l'··'c(s,~,-ßt.. ··,-ßl) + efl'··'(S1..)·
n-s-t n



'Lemma 4.1. Fix n>l.
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Then the V n , where ~ and ß satisfy
d..,~

l(d..)+l(~)~n and '~l:16\, form an oxhaustive,repetltion free, list of the

irreducible, finite-dimensional representations of PGL .n

Für each value of n, F(V n)E Z[q] is controlled by the partitions
cl.J~

A~prtn(~'~) and ~=(ß~) of magnitude ~ln. In fact, we observed that

F(V n ) equals the combinatorial Kostka-Foulkes polynomial K (q)
~)ß A)~

attached to Young tableaux of shape A and weight fL (see [M,III,6] ).

However, in R5 we prove that F(V Tl ) as a function of .9. and Tl
~ - -- 0<..12. - - -

) ~ .

is really "controlled" just !2Y ~ and ß (symmetrically, as F(V..) n )=- ~)ß

F(V n )). Let h1(cL), .. ,h (ci.) be the hook numbers 'and Z be the conjugatE
oi..) ß> . Idol

ofc).,(see [t},I,l]). Set e(o():= ~ iol.. Previously (1982), we knew only
. 1 1
1-"

Proposi tion 4.2. Assume \d..\=r.

(i) I f ß = (1 r), then

(ii) If ß =(r), then

F(V n )
C{,,;

F(V n )
~1~

r n-r-~. +i h. (cl)
qe(~) 1f (l-q 1 )/(l-q 1 ).

i:1

n-1 .
s (q, .. ,q ).

d-
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5. A Formula far F(V n 1. Let us extend our notation K (q) to
O(J~ A.jÄ

.skew-partitions (i.e., skew-diagrams) ).~«'/f). Cf. [M ,1,5]. Set

.. rn .(-fT )

'b '(.q):: lT (1-q) .... Cl-q .. 1. :r/'·f'or ni. Crr}"the·m\J;1-t.iplici'ty'öf i in rr,.
1T i>l 1, "

" '

Theorem 5. 1 .Fix d.. and ~ \·Ji th ,~\=, ~\=r. Then

summed over all parti tion pairs e, 7r wi th 181:.+ \ir\ =r.

*To prove this, we first compute :F CV;@ v~~ ) using Th. 2.3 by

nwrjting SV'" and s in terms of the P. Then we express V in terms
, . 0 0 'TI" (}..J ß

*of the Vn
@ Vn using essentially a formula of Li ttlewood.

~ 6

Th. 5.1 leads to new, unified proofs of several old results,

among them 3.1, 4.2, and the stable theorem [§,8.1) proven by Stanley.

But mainly, 5.1 gives the first real means for computing the F(V n ).
rJ.)fS



Corollary 5. '2.

F CV na,.)
cJ..> I'"'
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Für some polynomial g~~~(q,Z) over Z,

n-r+l
= 90(.1 P (q, q )

(l-q)····Cl-qr)

Moreover, 9 Cq,z)(1-q)-1... " (1_qr)-1 ,is a linear combination, over Z[q],
d.,f3

ofthe func ti 0 n s (1- q r - 1z) . h (1 - q r - i z) ( 1 - q) -1.... (1- q i ) -1, i =1, . . , r .

We have same conjectures on the form of the g (q,z). The
o(.)~

examples below, done by hand, are new, though the first is -an old

conjecture. Für integers c.,d., we set
1 1

Cl c d l 1 d 1
:=. ( l-q ) .... (l-q r) (l-q . ).- .... (l-q r)-

But we refrain from thinking about these unless they are polynomials in g.

Example 5.3. If d..=ß=C2,1), then 5.1 yields

FCV.... ,nß,) = q3 [n~l n;:l n;3J q"1- q5. [i1n121133] q

Example 5.4. Let us find F(V 6 ) when 1J'=(6,4;1,1). Then 'lf=prt
6

Cd , ß)
'11

for d..=(4,2) and ß=(2,2,1,1). 5.1 gives

F (V n~ ) 9 [n+2 n+l n-l n-2 n-4 n-s] 12r+2 n-1 n-2 n-3 n-4 n-
= q 1 1 2 245 + q 1 1 2 2 4 t;«, q

~

+ q15 [n;:l n-2 n-2 n-3 n-4
n;sJ q

9 2
) [~ n-1 n-2 n-3 n-4 n-

1 2 2 4 + q (l+q +q
1 2 2 2 t:

~



So, at n=6,

- )0.

6 9 10 11 12 13 14 15 16 17F(V ) = 2q +3q +7q +9q i13q +13q +15q +~2q'+11q.
'rr

7
'18 5 19 2 20 21

+ q + q + q. +q .
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