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Abstract

This paper develops a method to carry out the large-N asymptotic analysis of a class
of N-dimensional integrals arising in the context of the so-called quantum separation
of variables method. We push further ideas developed in the context of random ma-
trices of sizeN, but in the present problem, two scales 1/Nα and 1/N naturally occur.
In our case, the equilibrium measure isNα-dependent and characterised by means of
the solution to a 2× 2 Riemann–Hilbert problem, whose large-N behavior is anal-
ysed in detail. Combining these results with techniques of concentration of measures
and an asymptotic analysis of the Schwinger-Dyson equations at the distributional
level, we obtain the large-N behavior of the free energy explicitly up too(1). The
use of distributional Schwinger-Dyson is a novelty that allows us treating sufficiently
differentiable interactions and the mixing of scales 1/Nα and 1/N, thus waiving the
analyticity assumptions often used in random matrix theory.
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An opening discussion

The present paper develops techniques enabling one to carryout the large-N asymptotic analysis of a class of
multiple integrals that arise as representations for the correlation functions in quantum integrable systems solvable
by the quantum separation of variables. We shall refer to thegeneral class of such integrals as the sinh model:

zN[W] =
∫

RN

N∏

a<b

{
sinh[πω1(ya − yb)] sinh[πω2(ya − yb)]

}β ·
N∏

a=1

e−W(ya) · dNy .

Whenβ = 1 and for specific choices of the constantsω1, ω2 > 0 and of the confining potentialW, zN represents
norms or arises as a fundamental building block of certain classes of correlation functions in quantum integrable
models that are solvable by the quantum separation of variable method. This method takes its roots in the works
of Gutzwiller [54, 55] on the quantum Toda chain and has been developed in the mid ’80s by Sklyanin [79, 80]
as a way of circumventing certain limitations inherent to the algebraic Bethe Ansatz. Expressions for the norms
or correlation functions for various models solvable by thequantum separation of variables method have been
established,e.g. in the works [6, 38, 39, 51, 66, 67, 81, 84]. The expressions obtained there are either directly of
the form (1.9) or are amenable to this form (with, possibly, achange of the integration contour fromRN toC N, with
C a curve inC) upon elementary manipulations. Furthermore, a degeneration of zN arises as a multiple integral
representation for the partition function of the six-vertex model subject to domain wall boundary conditions [62].
In the context of quantum integrable systems, the numberN of integrals definingzN is related to the number of
sites in a model (as,e.g. in the case of the compact or non-compact XXZ chains or the lattice regularisations
of the Sinh or Sine-Gordon models) or the number of particles(as,e.g. in the case of the quantum Toda chain).
From the point of view of applications, one is mainly interested in the thermodynamic limit of the model, which
is attained by sendingN to +∞. For instance, in the case of integrable lattice discretisations of some quantum
field theory, one obtains in this way an exact and non-perturbative description of a quantum field theory in 1+ 1
dimensions and in finite volume. This limit, at the level ofzN, translates itself in the need to extract the large
N-asymptotic expansion of lnzN up to o(1). It is, in fact, the constant term in the expansion on ln

(
zN[W′]/zN[W]

)

with W′ some deformation ofW that provides one with the correlation functions of the underlying quantum field
theory in finite volume. These applications to physics constitute the first motivation for our analysis. From the
purely mathematical side, the motivation of our works stemsfrom the desire to understand better the structure of
the large-N asymptotic expansion of multiple integrals whose analysisdemands to go out of the scheme of the
β-ensembles.
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As we shall argue in § 2.1, it is possible to understand the large-N asymptotic analysis of the multiple integral
zN[W] from the one of the re-scaled multiple integral

ZN[VN] =
∫

RN

N∏

a<b

{
sinh[πω1TN(λa − λb)] sinh[πω2TN(λa − λb)]

}β ·
N∏

a=1

e−NTNVN(λa) · dNλ .

ThereTN is a sequence going to infinity withN whose form is fixed by the behaviour ofW(x) at largex, and:
VN(ξ) = T−1

N ·W(TNξ).
The main task of the paper is to develop an effective method of asymptotic analysis of the rescaled

multiple integral ZN[V] in the case whenTN = Nα, 0 < α < 1/6 and V is a givenN-independent strictly
convex smooth potentialV satisfying to a few additional technical hypothesis.

The treatment of the class ofN-dependent potentialsVN which would enable one to deduce the large-N
asymptotic expansion ofzN[W] will be the matter of a future work.

Prior to discussing in more details the results obtained in this paper, we would like to provide a brief overview
of the developments that took place, over the years, in the field of large-N asymptotic analysis ofN-fold multiple
integrals. This discussion serves as an introduction to various ideas that appeared fruitful in such an asymptotic
analysis. More importantly, it will put these techniques incontrast with what happens in the case of the sinh model
under study. In particular, we will to point out the technical aspects which complicate the large-N asymptotic
analysis ofzN[W] and thus highlight the features and techniques that are newin our analysis. Finally, such an
organisation will permit us to emphasise the main differences occurring in the structure of the largeN-asymptotic
expansion of integrals related to the sinh-model as compared to theβ-ensemble like multiple integrals.

The paper is organised as follows. Section 1 is the introduction where we attempt to give an overview of the
various methods used and results obtained in respect to extracting the large number of integration asymptotics of
integrals occurring to random matrix theory. Since we heavily rely on tools from potential theory, large deviations,
Schwinger-Dyson equations, and Riemann-Hilbert techniques, which are often known separately in several com-
munities but scarcely combined together, we thought usefulto give a detailed introduction for readers with various
backgrounds. In Section 2, we state and describe the resultsobtained in this paper. In Section 3 appears thefirst
part of the proof: we carry out theasymptotic analysis of the system of Schwinger-Dyson equations subordinate
to the sinh-model. It relies on results concerning the inversion of the master operator related with our problem. It
is a singular integral operator whose inversion enables one, among other, to construct anN-dependent equilibrium
measure. Thesecond part of the proofis precisely theconstruction of this inverse operator: it is carried out in
Section 4 by solving, forN large enough, an auxiliary 2× 2 Riemann-Hilbert problem. The inverse operator itself
and its main properties are described in Section 5. Thethird part of the proofconsists in obtainingfine informa-
tion concerning the large N-behaviour of the inverse operator: Section 6 is devoted to deriving uniform large-N
local behaviour for the inverse operator. In Section 7 we build on the results established so far to carry out the
large-N asymptotic analysis of single integrals involving the inverse operator. Finally, in Section 9 we establish
the large-N asymptotic expansion of certain bi-dimensional integrals, a result that is needed so as to obtain the
final answer for the expansion of the partition function. Thepaper contains four appendices. In Appendix A we
remind a few useful results of functional analysis. In Appendix B, we establish the asymptotic analysis for the
leading order lnzN[W] by adapting known large deviation techniques. Then, in Appendix D, we derive an exact
expression for the partition functionZN[VG] whenβ = 1 andVG is a Gaussian potential. We also obtain there
the large-N asymptotics ofZN[VG]. This result is instrumental in deriving the asymptotic expansion ofZN[V]
for more general potential, since the Gaussian partition function always appears as a factor of the latter. Finally,
Appendix E recapitulates all the symbols used in the paper. Some basic notations are also collected in § 1.4.
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1 Introduction

1.1 Beta ensembles with varying weights

One of the simplest and yet non-trivial examples of anN-fold multiple integral are provided byβ-ensembles with
varying weights:

Z(β)
N =

∫

RN

N∏

a<b

|λa − λb|β ·
N∏

a=1

e−NV(λa) · dNλ . (1.1)

β > 0 is a positive parameter andV is a potential growing sufficiently fast at infinity for the integral (1.1) to be
convergent. This partition function arises when integrating over the spectra of random matrices drawn from the
so-called orthogonal (β = 1), unitary (β = 2) or symplectic (β = 4) ensembles. The aforementioned three cases are
very special, since they feature a determinantal or Pfaffian structure unknown for generalβ, and they can be solved
in terms of orthogonal or skew-orthogonal polynomials [72]. For generalβ > 0 and polynomialV, the partition
function (1.1) can be interpreted as the integral over the spectrum of a well-tailored family of random tri-diagonal
matrices [40, 68]. Independently of these interpretations, Z(β)

N can also be thought of as the partition function
of a classical system ofN particles at temperatureβ−1 that interact through a a two-body repulsive logarithmic
interaction and are placed in an overall confining potentialV.

Universality

Theβ-ensembles have been extensively studied for more than 20 years, seee.g. the books [4, 29, 72, 76]. The
statistical-mechanics interpretation ofβ-ensembles makesZ(β)

N and its associated probability distribution a good
playground for testing the local universality of the distribution of repulsive particles [48]. The physical idea
behind universality is that the logarithmic repulsion dictates the local behaviour of the particles4. The universality
classes should only depend onβ and the local environment of the chosen position onR. First results of local
universality in the bulk where obtained by Shcherbina and Pastur [75] atβ = 2. Then, atβ = 2 and for polynomial
V, Deift, Kriechenbauer, McLaughlin, Venakides and Zhou [36] established the local universality in the bulk
within the Riemann-Hilbert approach to orthogonal polynomials with orthogonality weight e−NV(x) on the real
line. These results were then extended by Deift and Gioev toβ ∈ {1, 2, 4} for the bulk [32] and then for the edge
[31] universality. The bulk and edge universality for general β > 0 were recently established by various methods
and under weaker assumptions. Bourgade, Erdös and Yau builton relaxation methods so as to establish the bulk
[18, 20] and the edge [19] universality in the presence of genericCk potentials. Krishnapur, Rider and Virág [68]
proved both universalities by means of stochastic operatormethods and in the presence of convex polynomial
potentials. Finally, the bulk universality was also established on the basis of measure transport techniques by
Shcherbina [78] in the presence of real-anaytic potentialswhile universality both at the bulk and edge was derived
by Bekerman, Figalli and Guionnet [8] forCk potentials withk large enough.

Leading order ofZ(β)
N : the equilibrium measure and large deviations

The leading asymptotic behaviour of the partition functionZ(β)
N takes the form :

lnZ(β)
N = −N2

(
E(β)[µeq] + o(1)

)
with E(β)[µ] =

∫
V(x) dµ(x) − β

∫

x<y

ln |x− y|dµ(x)dµ(y) . (1.2)

4By local we understand looking at intervals shrinking withN so that these contain typically only a finite number of particles in the
N→ ∞ limit
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In these leading asymptotics, the functionalE(β) is evaluated at the so-called equilibrium measureµeq, a probability
measure onR that minimises the functionalE(β). This minimiser can be characterised within the framework of
potential theory [69] and arises in numerous other branchesof mathematical physics. In particular, it exists and is
unique. We stress that the leading order (1.2) depends onβ only via a rescaling of the potential.

We shall begin the present discussion by describing, on a heuristic level, the mechanism which gives rise to
(1.2). For this purpose, observe that the integrand ofZ(β)

N can be recast as

exp
{
− N2E(β)[L(λ)

N ]
}

where L(λ)
N =

1
N

N∑

a=1

δλa (1.3)

is the empirical measure whileδx refers to the Dirac mass atx. For finite but largeN, λ 7→ E(β)[L(λ)
N ] attains its

minimum at a pointγeq = (γeq;1, . . . , γeq;N) whose coordinatesγeq;1 < · · · < γeq;N are bounded, uniformly inN,
from above and below. This minimum results from a balance5 between the repulsion of the integration variables
induced by the logarithmic interaction and the confining nature of the potentialV. It seems reasonable that the
main contribution to the integral, namely the one not including exponentially small corrections, will issue from
a small neighbourhood of the pointγeq (or those issuing from permutations of its coordinates) andhence yield,

to the leading order inN, lnZ(β)
N = −N2(E(β)[L

(γeq)
N ] + o(1)

)
. As a matter of fact, theγeq;a are distributed in

such a way that they densify on some compact subset ofR and in such a way that, in fact,L
(γeq)
N converges to the

probability measureµeq.
This reasoning thus indicates that the leading asymptoticsof lnZ(β)

N issue from a saddle-point like estimation
of the integral (1.1). This statement can be made precise within the framework of large deviations. Ben Arous
and Guionnet [5] showed that the sequence of probability measures associated withZ(β)

N satisfies a large deviation

principle with good rate functionE(β)[µ]. Their framework shows that, in fact,L(λ)
N converges almost surely and in

expectation towards the equilibrium measureµeq.
The properties of the equilibrium measureµeq have been extensively studied [34, 69, 77]. One can prove that

if V isCk for k ≥ 2, thenµeq is Lebesgue continuous with aCk−2 density. Besides, ifV is real-analytic, the density
is the square-root of an analytic function, hence its support consists of a finite number of segments, calledcuts.
Critical points of the model occur when the topology of the support is not stable under small perturbations of the
potential, i.e. one component of the support splits in two, two cuts merge, or a new cut appears. When this is not
the case, we say that the potential isoff-critical.

A remarkable feature of this model is that the density ofµeq can be built in terms of the solution to ascalar
Riemann–Hilbert problem for a piecewise holomorphic functions having jumps on the support ofµeq. Such
Riemann–Hilbert problems can be solved explicitly leadingto aone-fold integral representation for the density.
These manipulations originate in the work of Carleman [23],and some aspects have also been treated in the book
of Tricomi [82]. The endpoints of the support, however, haveto be determined by non-linear (and sometimes
transcendental) consistency relations. We stress that thevery existence of aone-foldintegral representation with
fully explicit integrand tremendously simplifies the analysis, be it in what concerns the description of the properties
of µeq, or any handling that actually involves the equilibrium measure.

The all-order large-N expansion

The motivation to study all-order asymptotic expansions oflnZ(β)
N when N → ∞ initially came from physics

and the study of 2d-quantum gravity [21, 49] partly since the coefficients in the all order asymptotic expansion of

5The Lebesgue measure does not participate to the setting of this equilibrium: the aforementioned terms induce a eO(N2) behaviour in
the light of (1.2), while on compact subsets ofRN, the Lebesgue measure produces at most a O(ecN) contribution, withc depending on the
size of the compact set.
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Z(β)
N provide solutions to many problems in enumerative geometryor topological strings, and also because of the

richness of the algebraic structures in which those expansions fit. Going beyond the leading order demands taking
into account the effect of fluctuations of the integration variables around their large-N equilibrium distribution. The
most effective way of doing so consists in studying the so-called Schwinger-Dyson equations associated withZ(β)

N ,
which are, in fact, sometimes referred to as "loop equations". The Schwinger-Dyson equations consist of a tower
of equations which relate multi-point expectation values of test functions versus the probability measure induced
by Z(β)

N . In the case of analytic interactions, it is possible to introduce a collection of fundamental objects, the
n-point correlators,n = 1, 2, . . . . These are specific expectation values whose knowledge, in the analytic setting, is
enough for computing all the expectation values related with the given model. Their use constitutes an important
technical simplification of the intermediate analysis.

The calculation of the first sub-leading correction to (1.2)based on the use of Schwinger-Dyson equations for
correlators was first carried out in the seminal papers of Ambjørn, Chekhov and Makeenko [3] and of these authors
with Kristjansen [2]. The approach developed in these papers allowed, in principle, for a formal6, order-by-order
computation of the large-N asymptotic behaviour ofZ(2)

N . However due to its combinatorial intricacy, the approach
was quite complicated to set in practice. In [43], Eynard proposed a rewriting of the solutions of Schwinger-Dyson
equations in a geometrically intrinsic form that strongly simplified the structure and intermediate calculations.
Chekhov and Eynard then described the corresponding diagrammatics [24], and it led to the emergence of the
so-called topological recursion fully developed by Eynardand Orantin in [45, 46]. It allows, in its present setting,
for a formal yet quite systematic order-by-order calculation of the coefficients arising in the large-N asymptotic
behaviour of theβ-ensemble partition functions, just as numerous other instances of multiple integrals, seee.g.
the work of Borot, Eynard and Orantin [14].

We have not yet discussed the problem of actually proving theexistence of an asymptotic expansion of lnZ(β)
N

to all algebraic orders inN, namely the fact that

lnZ(β)
N =

K∑

k≥0

N2−kF(β)
k [V] +O(N−K) (1.4)

for any K ≥ 0 and with coefficients being someβ-dependent functionals of the potentialV. The existence and
form of the expansion up to o(1) whenβ = 2 was proven by Johansson [61] for polynomialV under the one-cut
hypothesis, this by using the machinery of Schwinger-Dysonequations anda priori bounds for the correlators
first obtained by Boutet de Monvel, Pastur et Shcherbina [28]. Then, the existence of the all-order asymptotic
expansion atβ = 2 was proven by Albeverio, Pastur and Shcherbina [1] by combining Schwinger-Dyson equations
and the bounds derived in [28]. Later, within the Riemann–Hilbert problem approach, Ercolani and McLaughlin
[42] established the existence of the all order asymptotic expansion atβ = 2 in the case of potentials that are a
perturbation of the Gaussian interaction. In particular, this work proved that the coefficients of the asymptotic
expansion coincide with the formal generating series enumerating ribbon graphs of [21] – also known under the
name of "maps". Finally, Borot and Guionnet [16] systematised and extended to allβ > 0 the approach of
[1], hence establishing the existence of the all-order large-N asymptotic expansion ofZ(β)

N at arbitraryβ and for
convex real analytic potentials. Though this phenomenon will not occur in the present article, let us mention for
completeness that, whenµeq is supported on several cuts, the form (1.4) of the asymptotic expansion is not valid
anymore, and oscillatory terms inN have to be included. When adopting the physical picture, this effect takes its
roots in the possibility the particles have to tunnel from one cut to another [11, 44]. For real-analytic off-critical
potentials and generalβ > 0, the all-order asymptotic expansion was conjectured in [44] and established in [15].
We refer the reader to the latter reference for a deeper discussion relative to the history of this problem.

6Namely based, among other things, on the assumption of the very existence of the asymptotic expansion.
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Generalisations

It is fair to say that presently, there exists a pretty good understanding of the large-N asymptotic expansions inβ
ensembles. The main remaining open questions concern the description of the asymptotic expansion uniformly
around critical points (viz. when the number of cuts changes) and the possibility to relax the regularity of the
potential, for instance by allowing the existence of Fisher–Hartwig singularities7. What we would like to stress is
that the techniques of asymptotic analysis described so farare effective in the sense that they allow, upon certain
more or less obvious generalisations of technical details,treating various instances of other multiple integrals.

The framework of small enough perturbation of the Gaussian potential is, in general, the easiest to deal with.
Asymptotic expansions for multi-matrix models have been obtained in such a setting. For instance, the expansion
including the first sub-leading order was derived for a two-matrix model by Guionnet and Maurel-Segala [52],
the one to all orders for multi-matrix models by Maurel-Segala [71] and to all orders for unitary random matrices
in external fields in [53] was then obtained by an appropriateadaptation of the analysis of Schwinger-Dyson
equations.

Another natural generalisation ofβ-ensembles consists in replacing the one-particle varyingpotentialN ·V by
a regular and varying multi-particle potential

N
N∑

a=1

V(λa) ֒→
r∑

p=1

N2−p

p!

∑

i1<···<ip
ia=1,...,N

Vp
(
λi1, . . . , λip

)
. (1.5)

When r = 2, such interactions were studied by Götze, Venker [50] and Venker [83] where it was shown that
their bulk universality corresponds to the universality class ofβ-ensembles. In fact, atr = 2 and whenβ = 2,
the structure of such models becomes determinantal in the special cases where the two-body interaction takes the
form:

V2(λ1, λ2) = ln

(
f (λ2) − f (λ1)
λ2 − λ1

)
. (1.6)

It is well known that, then, the associated multiple integrals can be fully characterised in terms of appropriate
systems of biorthogonal polynomials in the sense of [65]. Itis for this reason that such multiple integrals are
referred to as biorthogonal ensembles. The casef (λ) = λθ for β = 2 is of special interest in that such a setting
allows one to push the calculations even further. Borodin [12] was able to establish certain universality results
for specific examples of confining potentialsV. Furthermore, it was observed, first on a specific example by
Claeys and Wang [27] and then in full generality by Claeys andRomano [26] that the biorthogonal polynomials
can be characterised by means of a Riemann-Hilbert problem.However, for the moment, the Riemann–Hilbert
problem-based machinery still did not lead to the asymptotic evaluation of the associated partition functions

For generalr, Borot [13] has shown that the formal asymptotic expansion of the partition function subordinate
to multi-particle potentials is captured by a generalisation of the topological recursion. The existence of the all-
order asymptotic expansion was established by the authors in [17] under certain regularity assumptions on the
multi-particle interactions. Note that for perturbationsof the Gaussian potential of the form (1.5) the hypothesis
of [17] are indeed satisfied.

1.2 β-ensembles with non-varying weights

In all the examples of the multiple integrals discussed so far, the interaction potentialV is preceded by a power of
N. This scaling ensures that, for typical configurations of the λa’s, the logarithmic repulsion is of the same order

7Although, even in these two cases, some partial progress hasbeen achieved atβ = 2 where one can build on the Riemann–Hilbert
approach [9, 25, 33]
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of magnitude inN than the confining potential. As a consequence, with overwhelming probability whenN → ∞,
the integration variables remain in a bounded region and exhibit at typical spacing 1/N. The scheme developed in
[1, 16, 17, 36] for the asymptotic analysis was adapted to this particular tuning of the interactions withN and, in
general, breaks down if the nature of the balance between theinteractions changes.

Serious problems relative to extracting the large-N asymptotic behaviour already start to arise in the case of
non-varyingweights,i.e. for multiple integrals:

∫

RN

N∏

a<b

|ya − yb|β
N∏

a=1

e−W(ya) · dNy . (1.7)

Indeed, consider the integral (1.7) forN-large and focus on the contribution of a bounded domain ofR
N. In this

case, the logarithmic interactions are dominant in respectto the confinement (and this by one order inN): the
dominant contribution of such a region is obtained by spacing theya’s as far apart as possible. Increasing the size
of such a bounded region will increase the value of the dominant contribution, at least until the confining nature
of the potential kicks in. Hence, to identify the configuration maximising the value of the integral, one should
rescale the integration variables asya = TNλa with TN → ∞. The sequenceTN is chosen in such a way that the
2-body interaction and the confinement ensured by the potential have the same order of magnitude inN, viz.:

W(TNλ) = NVN(λ) with VN(λ) = V∞(λ) · (1+ o(1)
)

(1.8)

for some potentialV∞ and pointwise almost-everywhere inλ. These new variablesλ are typically distributed in a
bounded region and have a typical spacing 1/N.

The simplest illustration of such a mechanism issues from the case of a polynomial potentialV(λ) =
∑2ℓ

a=1 caλ
a,

c2ℓ > 0. In this case, the sequenceTN takes the formTN = N1/(2ℓ). Note that, up to a trivial prefactor, the two-body
interactionλ 7→ |λ|β is invariant under dilatations. As a consequence, for polynomial potentials, the asymptotic
analysis can still be carried out by means of the previously described methods [35], with minor technical compli-
cations due to the handling of aN-dependent potential. Although illustrative, the polynomial case is by far not
representative of the complexity represented by working with non-varying weights. Indeed, the genuinely hard
part of the analysis stems form the fact that, in principle, in the expansion (1.8):

• the remainder may not be "sufficiently" uniform ;

• the non-varying potentialW may have singularities in the complex plane. This last scenario means that
the singularities of the rescaled potentialVN given in (1.8) will collapse, with aN-dependent rate, on the
integration domain.

In this situation, the usual scheme for obtaining sub-leading corrections breaks down. So far, the large-N asymp-
totic analysis of a "non-trivial" multiple integral of the type (1.7) were carried out only whenβ = 2 and this
for only a handful of examples. Zinn-Justin [85] proposed anN-fold multiple integral representation of the type
(1.8) for the partition function of the six-vertex model in its massless phase and subject to domain wall boundary
conditions. By using a proper rescaling of the variables suggested in [85], Bleher and Fokin [10] carried out the
large-N asymptotic analysis of the associated multiple integral within the Riemann–Hilbert problem approach to
orthogonal polynomials. The most delicate point of their analysis was to absorb the contribution of the sequence of
polesζn/N, n = 1, 2, . . . , of the rescaled potential that were collapsing onR. In fine, they obtained the asymptotic
expansion of the logarithm of the integral up to o(1) corrections.

To conclude, it seems fair to state that despite the considerable developments that took place over the last
20 years in the field of large-N asymptotic expansion ofN-dimensional integrals, the techniques of asymptotic
analysis are still far from enabling one to grasp the large-N asymptotic behaviour of multiple integrals lacking the
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presence of a scaling of interactions. Such integral arise quite naturally in concrete applications. For instance, it
is well known that correlation functions in quantum integrable models are described byN-fold multiple integrals
[58, 59, 60, 64] or series thereof [63]. Usually, for reasonsstemming from the physics of the underlying model,
one is interested in the large-N behaviour of these integrals and, in particular, in the constant term arising in
their asymptotics. However, for most cases of interest, thegiven N-fold integrals have a much too complicated
integrand in order to apply any of the existing methods of analysis.

1.3 The integrals issued from the method of quantum separation of variables

In the present paper, we develop the main features of a theorythat would enable one to extract the large-N
asymptotic behaviour out of the class of multiple integralsthat naturally arises in the context of the so-called
quantum separation of variables method:

zN[W] =
∫

RN

N∏

a<b

{
sinh[πω1(ya − yb)] sinh[πω2(ya − yb)]

}β ·
N∏

a=1

e−W(ya) · dNy . (1.9)

Independently of its numerous potential applications to physics, should one only have in mind characterising
the large-N behaviour ofN-fold multiple integrals, it is precisely the class of integrals described by (1.9) that
constitutes naturally the next one to investigate and understand after theβ-ensembles issued ones (1.1), (1.5).
Indeed, on the one hand the integrand in (1.9) bears certain structural similarities with the one arising inβ-
ensembles. On the other hand, it brings two new features intothe game. Therefore,zN[W] provide ones with a
good playground for pushing forward the methods of asymptotic analysis ofN-fold integrals and learning how
to circumvent or deal with certain of the problematic features mentioned above. To be more precise, the main
features of the integrand inzN[W] being an obstruction to applying the already established methods stem from the
presence of

• a non-varying confining one-body potentialW;

• a two-body interaction that has the same local (viz. whenλa→ λb) singularity structure as in theβ-ensemble
case, while breaking other properties of the Van-der-Mondeinteraction such as the invariance under a re-
scaling of all the integration variables.

Although, the tools of asymptotic analysis discussed previously break down or have to be altered in a significant
way, a certain analogy with matrix models andβ-ensembles persists. Indeed, upon a proper rescaling in thespirit
of Sub-Section 1.2, one can show that the integral localisesat a configuration of the integration variables in such
a way that these condensate, in the large-N limit, with a densityρeq. In fact, we show in Appendix B that it is
possible to repeat, with some modifications, the large-deviation approach toβ-ensemble integrals so as to obtain
the leading asymptotic behaviour of lnzN. However, in order to go beyond the leading asymptotic behaviour of
the logarithm, one has to alter the picture and work directlyat the level of the rescaled model

ZN[V] =
∫

RN

N∏

a<b

{
sinh

[
πω1Nα(λa − λb)

]
sinh

[
πω2Nα(λa − λb)

]}β ·
N∏

a=1

{
e−N1+αV(λa)

}
·

N∏

a=1

dλa . (1.10)

This integral is related tozN[W] by a rescaling of the integration variables. The exponentα is fixed by the growth of
the original potentialW at infinity. Finally, the potentialV should depend onN and correspond to some rescaling
of the original potentialW. In fact, the main result obtained in the present paper dealswith the large-N asymptotic
expansion of the rescaled partition functionZN[V] and this in the case where
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• 0 < α < 1/6;

• the potentialV is smooth, strictly convex, has sub-exponential growth andis N-independent.

Per se, the application of our technique and results to computing the asymptotics of the original integralzN[W]
would demand to take aN dependent potential and studyZN[VN], which is technically more involved. However,
this problem isnot conceptually different from the one studied in this paper. Therefore, the setting we shall
discuss is more fit for developing the method of asymptotic analysis of this class of integrals. We shall address the
question ofN-dependent potentialsVN related to specific applications to quantum integrable models in a separate
publication.

Within our setting, in order to grasp sub-leading corrections to lnZN[V], one faces several difficulties:

(i) owing to the scalingNα, the nature of the repulsive interaction between theλa’s changes drastically between
N = ∞ andN finite. Therefore, one has to keep track of the transition of scales between theper-seleading
contribution – which feels, effectively, only the bruteN = ∞ behaviour of the two body interaction – and
the sub-leading corrections which experience the two-bodyinteractions at all scales.

(ii ) The presence of two scalesN andNα weakens a naive approach to the concentration of measures.

(iii ) The derivative of the two-body interaction possesses a tower of poles that collapse down to the integra-
tion line, hence making the use of correlators and complex variables methods to study Schwinger-Dyson
equations completely ineffective.

(iv) The master operator arising in the Schwinger-Dyson equations is anN-dependent singular integral operator
of truncated Wiener–Hopf type. One has to invert this operator effectively and derive the fine,N-dependent
bounds on its continuity constant as an operator between spaces of sufficiently differentiable functions.

(v) The large-N behaviour of one point functions, as fixed by a successful large-N analysis of the Schwinger-
Dyson equations, is expressed in terms of one and two dimensional integrals involving the inverse of the
master operator. One has to extract the large-N asymptotic behaviour of such integrals.

The setting of methods enabling one to overcome these problems constitutes the main contributions of this
work.

First, in order to strengthen the concentration of measuresand, in fact, effectively absorb part of the asymp-
totic expansion into a single expression, one should work with N-dependent equilibrium measures, that is to say
equilibrium measures associated with a minimisation problem of a quadraticN-dependent functional on the space
of probability measures onR. The density of such anN-dependent measure can be expressed as an integral trans-
form whose kernel is given by a double integral involving thesolution to a matrix 2×2 Riemann–Hilbert problem.
This very fact constitutes a crucial difference with the matrix model case in that, in the latter case,the density of
equilibrium measure solves a scalar Riemann–Hilbert problem, hence admitting an explicit, one dimensional in-
tegral representation. On top of improving numerous bounds, the use of suchN-dependent equilibrium measures
turns out to be crucial in order to push the asymptotic expansion of ln zN[W] up to o(1)

Second, theper semachinery of topological recursion mentioned earlier breaks down for this class of multiple
integrals. In order to circumvent dealing with the collapsing of poles, we develop a distributional approach to
the asymptotic analysis of Schwinger-Dyson equations. Thelatter demands, in particular, to have a much more
precise control on its constituents.

Third, the inversion of the master operator is based on handlings of the inverse of the operator driving the
singular integral equation for the density of equilibrium measure. Obtaining fine,N dependent bounds for this
operator demands to go deep into the details of the solution of the 2× 2 Riemann–Hilbert problem which arises
as the building block of this inverse kernel. We develop techniques enabling one to do so.
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Finally, the precise control on the objects issuing from Schwinger-Dyson equations yield, through usual in-
terpolation by means oft-varying potentials, anN-dependent functional of the density of equilibrium measure
– itself also depending onN – as an answer for the large-N asymptotics of lnZN[V]. Setting forth methods for
the asymptotic analysis of this functional demands, again,a very fine control of the inverse build through the
Riemann–Hilbert problem approach. We develop such methods, in particular, by describing the new class of
special functions related to our problem.

Putting in perspective the bi-orthogonal ensembles.

At this point, we shall make several comments in respect to the existing literature on bi-orthogonal ensembles.
Indeed, the applications to the quantum separation of variables correspond to settingβ to 1 in zN[W] and hence
ZN[V]. In this case, these multiple integral corresponds to a bi-orthogonal ensemble. As such, they can be
explicitly computed, at least in principle, by means of the system of bi-orthogonal polynomials associated with
the bi-periodic functions eπω1y, eπω2y and in respect to the weight e−W(y) supported onR. As shown by Claeys
and Wang [27] for a specific degeneration (which correspondsbasically to sending one of theω’s in (1.9) to zero)
and then in full extent by Claeys and Romano [26], such a systems of bi-orthogonal polynomials solves a vector
Riemann-Hilbert problem. Furthermore, the non-linear steepest descent approach [35, 36] to the uniform in the
variable large degree-N asymptotics of orthogonal polynomials can be generalised to such a bi-orthogonal setting,
leading to Plancherel-Rotach like asymptotics. In principle, by adapting the steps of [42], one should be able
to derive the largeN asymptotic expansion of the integralzN in presence ofvarying weights,viz. provided the
replacementW ֒→ NV is made. However, such a results would by no means allow one for any easy generalisation
to non-varying weights. Indeed, as we have argued, in the non-varying case, one rather needs to carry out the
large-N analysis of the rescaled modelZN[V]. However, starting from such a multiple integral would imply that
one should study the system of bi-orthogonal polynomials associated with the functions eπNαω1y, eπNαω2y. This
presence ofNα introduces a new scale inN to the Riemann–Hilbert analysis, what would probably demand a quite
non-trivial modification of the non-linear steepest descent method.

On top of all this, one needs to construct the equilibrium measure. For similar reasons of absorbing part of
the asymptotic expansion, this measure will have to issue from the sameN-dependent minimisation problem and
hence correspond to theN-dependent equilibrium measure that we construct in the present paper. However, if one
goes into the details of the work [26], one observes that these authors provide a one-fold integral representation
for the density of the one-cut equilibrium measure arising in bi-orthogonal ensembles. The kernel of this trans-
form involves the inverse of an explicit and basic transcendental function. Although extremely effective in the
varying case, such an integral representation appears ineffective in the analysis ofZN[V]. Indeed, then, one would
have to manipulateN-dependent versions of this inverse and, in particular, obtain uniform inN local behaviours
thereof.A priori, since this inverse does not seem to admit an explicit seriesexpansion or a manageable integral
representation, such a characterisation appears to be quite complicated. Furthermore, the transform constructed
in [26] does not exhibit explicitly the factorisation of square root singularities at the edges - in contrast to the
case of the one-fold integral representation arising inβ ensembles. This means that, just as in our setting, one
would have to extract the square root behaviour by hand. Therefore, although one dimensional, we believe that
this transform, in the present state of the art, is much less effective then ours, at least from the point of view of our
perspective of asymptotic analysis. In fact, when specialised to the construction of the equilibrium measure, the
2× 2 Riemann–Hilbert analysis we use enable us, among other things, to provide the leading, up to exponentially
small corrections inN, behaviour of the inverse of theN-rescaled map built in [26]. Thus, indirectly, our approach
solves such a problem.
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1.4 Notations and basic definitions

In this section, we introduce basic notations that we shall use throughout the paper.

General symbols

• o and O refer to standard domination relations between functions. In the case of matrix functionM(z) and
N(z), the relationM(z) = O(N(z)) is to be understood entry-wise,viz. M jk(z) = O(N jk(z)).

• O(N−∞) means O(N−K) for arbitrarily largeK’s.

• Given a setA ⊆ X, 1A stands for the indicator function ofA, andAc denotes its complement inX.

• A Greek letter appearing in bold,e.g.λ, will always denote anN-dimensional vector:

λ =
(
λ1, . . . , λN

) ∈ RN . (1.11)

and dNλ denotes the product of Lebesgue measures
∏N

a=1 dλa.

• given x ∈ R, ⌊x⌋ denotes the integer satisfying⌊x⌋ ≤ x < ⌊x⌋ + 1

• Throughout the file, the curveC +reg will denote the curve depicted in Figure 4 appearing in § 6.1.This curve
is such that 2ς = dist

(
R,C +reg

)
> 0. Throughout the text, this distance will always be denotedby 2ς.

• I2 is the 2× 2 identity matrix whileσ± andσ3 stand for the Pauli matrices:

σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
and σ3 =

(
1 0
0 −1

)
. (1.12)

Functional spaces

• M1(R) denotes the space of probability measures onR. The weak topology onM1(R) is metrized by the
Vasershtein distance, defined for any two probability measureµ1 andµ2 by:

DV[µ, ν] = sup
f∈Lip1,1(R)

∫

R

f (ξ) d(µ1 − µ2)(ξ) , (1.13)

where Lip1,1(R) is the set of Lipschitz functions bounded by 1 and with Lipschitz constant bounded by 1. If
f is a bounded, Lipschitz function, its bounded Lipschitz norm is:

|| f ||BL = || f ||L∞(R) + sup
ξ,η∈R

∣∣∣∣∣∣
f (ξ) − f (η)
ξ − η

∣∣∣∣∣∣ . (1.14)

• Given an open subsetU of Cn, O(U) refers to the ring of holomorphic functions onU. If f is a matrix of
vector valued function, the notationf ∈ O(U) is to be understood entrywise,viz. ∀ a, b one hasfab ∈ O(U).

• Ck(A) refers to the space of function of classk on the manifoldA. Ck
c(A) refers to the spaces built out of

functions inCk(A) that have a compact support.
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• Lp(A, dµ) refers to the space ofpth-power integrable functions on a setA in respect to the measureµ.
Lp(A, dµ) is endowed with the norm

|| f ||Lp(A,dµ) =

{ ∫

A

| f (x)|p dµ(x)
} 1

p
. (1.15)

• More generally, given ann-dimensional manifoldA, Wp
k (A, dµ) refers to thepth Sobolev space of orderk

defined as

Wp
k (A, dµ) =

{
f ∈ Lp(A, dµ) : ∂a1

x1
. . . ∂

an
xn f ∈ Lp(A, dµ) ,

n∑

ℓ=1

aℓ ≤ k with aℓ ∈ N
}
. (1.16)

This space is endowed with the norm

|| f ||Wp
k (A,dµ) = max

{
||∂a1

x1
. . . ∂

an
xn f ||Lp(A,dµ) : aℓ ∈ N, ℓ = 1, . . . , n, and satisfying

n∑

ℓ=1

aℓ ≤ k
}
. (1.17)

In the following, we shall simply writeLp(A), Wp
k (A) unless there will arise some ambiguity on the measure

chosen onA.

• We shall also need theN-weighted norms of orderℓ for a function f ∈W∞
ℓ

(Rn), which are defined as

N (ℓ)
N [ f ] =

ℓ∑

p=0

|| f ||W∞p (Rn)

Npα . (1.18)

In particular, we have the trivial boundN (ℓ)
N [ f ] ≤ ℓ|| f ||W∞k (Rn). Also, the number of variables off is implicit

in this notation.

• The symbolF denotes the Fourier transform onL2(R) whose expression, versusL1∩L2(R) functions, takes
the form

F [ϕ](λ) =
∫

R

ϕ(ξ) eiξλdξ . (1.19)

Givenµ ∈ M1(R), we shall use the same symbol for denoting its Fourier transform, viz. F [µ]. The Fourier
transform onL2(Rn) is defined with the same normalisation.

• The sth Sobolev space onRn is defined as

Hs(R
n) =

{
u ∈ S′(Rn) : ||u||2Hs(Rn) =

∫

Rn

(
1+

∣∣∣
n∑

a=1

t2a
∣∣∣

1
2
)2s∣∣∣F [u](t1, . . . , tn)

∣∣∣2 · dn t < +∞
}
, (1.20)

in whichS′ refers to the space of tempered distributions. We remind that given a closed subsetF ⊆ Rn,
Hs(F) corresponds to the subspace ofHs(Rn) of functions whose support is contained inF.
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• The subspace

Xs
(
A
)
=

{
H ∈ Hs

(
A
)

:
∫

R+iǫ

χ11(µ)F [H](Nαµ)e−iNαµbN
dµ
2iπ
= 0

}
(1.21)

in which A ⊆ R is closed will play an important role in the analysis. It is defined in terms ofχ11, the (1, 1)
entry of the unique solutionχ to the 2× 2 matrix valued Riemann–Hilbert problem given in Section 4.3.

• Given a smooth curveΣ in C, the spaceMℓ

(
L2(Σ)

)
refers toℓ × ℓ matrices with coefficients belonging to

L2(Σ). It is endowed with the norm

||M||Mℓ(L2(Σ)) =

{∫

Σ

∑

a,b

[
Mab(s)

]∗Mab(s) dµ(s)
} 1

2
. (1.22)

and∗ denotes the complex conjugation.

Certain standard operators

• Given an oriented curveΣ ⊆ C, −Σ refers to the same curve but endowed with the opposite orientation.

• Given a functionf defined onC \ Σ, with Σ an oriented curve inC, we denote -if these exists- byf±(s) the
boundary values off (z) onΣ when the argumentzapproaches the points∈ Σ non-tangentially and from the
left (+) or the right (−) side of the curve. Furthermore, if one deals with vector or matrix-valued function,
then this notation is to be understood entry-wise.

• H± = {z ∈ C : Im (±z) > 0} is the upper/lower half-plane, andR± = {z ∈ R : ±z ≥ 0} is the closed
positive/negative real axis.

• The symbolC refers to the Cauchy transform onR:

C[ f ](λ) =
∫

R

f (s)
s− λ ·

ds
2iπ

. (1.23)

The± boundary valuesC± define continuous operators onHs(R) and admit the expression

C±[ f ](λ) =
f (λ)
2
+

1
2i

?

R

f (s) ds
π(s− λ)

. (1.24)

• Given a function f supported on a compact setA of Rn, we denote byfe an extension off onto some
compact setK such thatA ⊆ Int(K). We do stress that the compact support is part of the data of the
extension. As such, it can vary from one extension to another. However, the extensionfe is always assumed
to be of the same class asf . For instance, iff is Lp(A),Wp

k (A) or Ck(A), then fe is Lp(K),Wp
k (K) or Ck(K).
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2 Main results and strategy of proof

2.1 A baby integral as a motivation

The purpose of this section is to provide an example, in Theorem 2.1, of the leading large-N asymptotic expansion
of ln zN[W] wherezN[W] is the unscaled partition function defined by (1.9). We shall also argue that the large-N
asymptotic behaviour of (1.9) – whose integrand does not depend explicitly onN – can be deduced from the one
of the rescaled model (2.47) – whose integrand depends explicitly on N– that we propose to study.

Let E(ply) the functional, defined inR ∪ {+∞} for any probability measureµ ∈ M1(R):

E(ply)[µ] =
∫

cq|ξ|q dµ(ξ) − βπ(ω1 + ω2)
2

∫
|ξ − η|dµ(ξ)dµ(η) , (2.1)

Theorem 2.1 Let W be a potential such that

lim
|ξ|→+∞

|ξ|−q W(x) = cq > 0 for some q > 1 , (2.2)

E(ply) is a lower semi-continuous good rate function, and

lim
N→+∞

ln zN[W]

N2+ 1
q−1

= − inf
µ∈M1(R)

E(ply)
[
µ
]
. (2.3)

This infimum is attained at a unique probability measureµ
(ply)
eq . This measure is continuous with respect to the

Lebesgue measure and has density

ρ
(ply)
eq (ξ) =

q(q− 1)|ξ|q−2

2πβ(ω1 + ω2)
· 1[a ;b](ξ) . (2.4)

µ
(ply)
eq is supported on the interval[a ; b], with (a, b) being the unique solution to the set of equations

|b|q−1 = −|a|q−1 =
πβ(ω1 + ω2)

q
. (2.5)

We have, explicitly:

lim
N→+∞

ln zN[W]

N2+ 1
q−1

=
(
cq

) 1
q ·

(
πβ

q
(ω1 + ω2)

) q+1
q

· 2q2 − 9q+ 6
2(2q− 1)

. (2.6)

The proof of this proposition is postponed to Appendix B, andfollows similar steps to,e.g., [4]. We now
provide heuristic arguments to justify the occurrence of scaling in N in this problem. Just as discussed in the
introduction, the repulsive effect of the sinh-2 body interactions will dominate over the confining effect of the
potential as long as the integration variables will be located in some bounded set. Furthermore, in the same
situation, the Lebesgue measure should contribute to the integral at most as an exponential inN. We thus look for
a rescaling of the variablesya = TNλa where the effects of the confining potential and the sinh-2 body interactions
will be of the same order of magnitude inN. This recasts the partition function as

zN[W] =
(
TN

)N
∫

RN

N∏

a<b

{
sinh

[
πω1TN(λa − λb)

]
sinh

[
πω2TN(λa − λb)

]}β N∏

a=1

{
e−W(TNλa)

}
dNλ , (2.7)
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Taking into account the large-variable asymptotics of the potential, we have:

N∑

a=1

W
(
TNλa

) ∼ Tq
N N , (2.8)

where the symbol∼ means that for a "typical" distribution of the variables{λa}N1 , the leading inN asymptotic
behaviour of the sum in the right-hand side should be of the order of the left-hand side. Similarly, assuming a
typical distribution of the variables{λa}N1 such that most of the pairs{λa, λb} satisfyTN|λa − λb| ≫ 1, one has

N∑

a<b

β ln
{
sinh

[
πω1TN(λa − λb)

]
sinh

[
πω2TN(λa − λb)

]} ∼ C N2 TN . (2.9)

Thus, the confining potential and the two-body interaction will generate a comparable order of magnitude inN as
soon asN2 · TN = Tq

N · N, i.e.

TN = N
1

q−1 . (2.10)

Theorem 2.1 indeed justifies that the empirical distribution L(λ)
N of λa = N

−1
q−1 ya concentrates around the equilib-

rium measure, with a large deviation principle governed by the rate function (2.1).

This observation implies that, in fact,ZN[VN] with VN(λ) = N−
q

q−1 ·W(N
1

q−1λ) is the good object to study in that

it involves interactions that are already tuned to the proper scale inN. Due to the relationzN[W] = N
N

q−1 · ZN[VN],
one readily has access to the large-N asymptotic expansion ofzN[W].

2.2 The model of interest and our assumptions

It follows from the arguments given in the previous section that, effectively, the analysis of the unrescaled model
boils down to the one subordinate to the partition function

ZN[V] =
∫

RN

N∏

a<b

{
sinh

[
πω1Nα(λa − λb)

]
sinh

[
πω2Nα(λa − λb)

]}β N∏

a=1

e−N1+αV(λa) · dNλ , (2.11)

with α some parameter – equal to 1/(q− 1) in the previous paragraph – andV a potential that possibly depends on
N. Due to such an effective reduction, in this paper, we shall develop the general formalism to extract the large-N
asymptotic behaviour. Therefore, we shall keep the complexity at minimum. In particular, we shallnot consider
the case ofN-dependent potentials which would put the analysis ofZN[V] in complete correspondence with the
one ofzN[W]. Indeed, this would lead to numerous technical complication in our arguments, without bringing
more light on the underlying phenomena. By focusing on (2.11), we believe that the new features and ideas of our
methods are better isolated and illustrated. We shall incorporate the peculiarities of the modelzN[W] of (1.9) and
investigate its asymptotic behaviour up too(1) in a future publication.

In the present paper we obtain the large-N asymptotic expansion of lnZN[V] up to o(1) under four hypothesis

• the potentialV is confining,viz. there existsǫ > 0 such that

lim sup
|ξ|→+∞

|ξ|−(1+ǫ) V(ξ) = +∞ ; (2.12)

• the potentialV is smooth and strictly convex onR ;
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• the potential is sub-exponential, namely there existsǫ > 0 andCV > 0 such that

∀ξ ∈ R, sup
η∈[0 ;ǫ]

∣∣∣V′(ξ + η)
∣∣∣ ≤ CV

(|V(ξ)| + 1
)
, (2.13)

and given anyκ > 0 andp ∈ N, there existsCκ,p such that

∀ξ ∈ R,
∣∣∣V(k)(ξ)

∣∣∣e−κV(ξ) ≤ Cκ,p . (2.14)

• the exponentα in Nα is neither too large nor too small:

0 < α < 1/6 . (2.15)

The first hypothesis guarantees that the integral (2.11) is well-defined, and that theλ’s will typically remain in
a compact region onR independent ofN. It could be weakened to study weakly confining potentials, to the price
of introducing more technicalities, similar to those already encountered forβ ensembles – seee.g. [56].

In the second assumption,V could be assumedCk for k large enough. The convexity assumption guarantees
that the support of the equilibrium measure is a single segment8. In principle, the multi-cut regime that may arise
when the potential is not strictly convex can be addressed byimporting the ideas of [15] to the present framework.
We expect that the analysis of the Riemann-Hilbert problem in the multi-cut regime is very similar to the present
case, but with a larger range of degrees for the polynomial freedom appearing in the solution (5.14). Though it
would certainly represent some amount of work, the ideas we develop here should also be applicable to derive the
fine largeN analysis of the solution of the Riemann-Hilbert problem in the bulk and in the vicinity of all the edges
of the support of the equilibrium measure.

The third assumption is not essential, but allows some simplification of the intermediate proofs concerning the
equilibrium measure and the large deviation estimates,e.g. Theorem 3.7 and Corollary 3.10. It is anyway satisfied
in physically relevant problems.

In the fourth assumption,α = 0 can already be addressed with existing methods [17]. The upper limit
α < α∗ = 1/6 has a purely technical origin. The value ofα∗ could be increased by entering deeper into the
fine structure of the analysis of the Schwinger-Dyson equation, and by finding more precise local and global
bounds for the largeN behaviour of the inverse of the master operatorU−1

N , in more cunning norms. Intuitively,
the genuine upper limit should beα∗ = 1, since in theα > 1 case, we reach a regime where the particles do not
feel the local repulsion any more. However, obtaining microscopic estimates is usually a difficult question – forβ
ensembles, it has been addressede.g. in [19, 20]. So, one can expect important technical difficulties to extend our
result to values ofα increasing up to 1.

This set of hypothesis offers a convenient framework for our purposes, enabling us to focus on the technical
aspects (i) − (vi) listed in § 1.3 without adding extra complications.

2.3 Main results: asymptotic expansion ofZN[V] at β = 1

We now state one of the main results of the paper, namely the large-N asymptotic expansion of the partition
functionZN[V] which holds for any potentialV satisfying the hypothesis stated above

Theorem 2.2 The below asymptotic expansion holds

ln

(
ZN[V]

ZN[VG;N]

)

|β=1

= −N2+α
⌊2/α⌋+1∑

p=0

dp[V]

Nαp
+ Nα · 0ג ·

(
�[V,VG;N](bN) −�[V,VG;N](aN)

)

+ ℵ0 ·
(
�[V,VG;N]′(bN) +�[V,VG;N]′(aN)

)
+ o(1) . (2.16)

8See e.g. the expression of theN = ∞ equilibrium measure (2.29). Its proof is given in Appendix C.
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The whole V-dependence of this expansion is encoded in the coefficientsdp[V] and in the function�[V,VG;N](ξ).
0ג andℵ0 are numerical coefficients given, resp., in terms of a single and four-fold integral. Also, the answer
involves the Gaussian potential

VG;N(ξ) =
πβ(ω1 + ω2) ·

[
ξ2 − (

aN + bN + O(N−∞)
)
ξ
]

bN − aN +
1

Nα

2∑
p=1

1
πωp

ln
( ω1ω2

ωp(ω1 + ω2)

)
+ O(N−∞)

(2.17)

and sequences aN and bN that are given in Theorem 2.5. If we denote V±N = V ± VN;G, the coefficientsdp[V] take
the form

d0[V] =
−1

4π(ω1 + ω2)

bN∫

aN

V−N(ξ) · (V−N)′′(ξ) dξ (2.18)

when p= 0 and, for any p≥ 1:

dp[V] = up+1

bN∫

aN

V−N(ξ) · V(p+2)(ξ) dξ (2.19)

+
∑

s+ℓ=p−1
s,ℓ≥0

ks,ℓ

s!

{
(−1)ℓ (V−N)(ℓ+1)(aN) · (V+N)(s+1)(aN) + (−1)s (V−N)(ℓ+1)(bN) · (V+N)(s+1)(bN)

}
.

The coefficientsks,ℓ are defined by:

ks,ℓ =
is+ℓ+1

2π

ℓ+1∑

r=1

s!
r!(s+ ℓ + 1− r)!

· ∂
r

∂µr

( µ

R↓(−µ)

)
|µ=0
· ∂

s+1+ℓ−r

∂µs+1+ℓ−r

( 1
R↓(µ)

)
|µ=0

, (2.20)

R↓ is theH+ Wiener–Hopf factor of1/F [S](λ), with S defined in(2.42), that reads

R↓(λ) =
λ

2π
√
ω1 + ω2

·
( ω2

ω1 + ω2

)− iλ
2πω1 ·

( ω1

ω1 + ω2

)− iλ
2πω2 ·

Γ

( iλ
2πω1

)
· Γ

( iλ
2πω1

)

Γ

( iλ(ω1 + ω2)
2πω1ω2

) . (2.21)

The function� describing the constant term is defined as

�[V,VG;N](ξ) =
V′(ξ) − V′G;N(ξ)

V′′(ξ) − V′′G;N(ξ)
ln

(
V′′(ξ)

V′′G;N(ξ)

)
. (2.22)

The V-independent coefficient 0ג in front of the term Nα reads

0ג =

+∞∫

0

du J(u)
2π

(
uS′(u) + S(u)

)
with J(u) =

∫

C (+)
reg

2 sinh
[
λ/(2ω1)

]
sinh

[
λ/(2ω2)

]

sinh
[
λ(ω1 + ω2)/(2ω1ω2)

] · e
iλu dλ
2iπ

. (2.23)
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Finally, the numerical prefactorℵ0 is expressed in terms of the four-fold integral

ℵ0 = −
ω1 + ω2

2

∫

R

du J(u)
2π

+∞∫

|u|

dv∂u

{
S(u) ·

(
r
[v− u

2
] − r[v+ u

2
])}

+

∫

C (+)
reg

dλdµ

(2iπ)2

µ(ω1 + ω2)
(λ + µ)R↓(λ)R↓(µ)

+∞∫

0

dxdyeiλx+iµy ∂x

{
S(x− y)

(
r(x) − r(y) − x− y

2π(ω1 + ω2)

)}
. (2.24)

The integrand ofℵ0 involves the functionr which is given by

r(x) =

c1(x) + c0(x)

[
2∑

p=1

1
2πωp

ln
( ω1ω2

ωp(ω1 + ω2)

)]

1+ 2πβ(ω1 + ω2)c0(x)
(2.25)

with

cp(x) =
ip

2iπ
√
ω1 + ω2

∫

C (+)
reg

eiλx

λ

∂p

∂λp

( 1
R↓(λ)

)
· dλ

2iπ
. (2.26)

The result forβ , 1 contain two more terms, and is given in the body in the article, by Proposition 3.20, in terms
of N-dependent simple and double integralsI(2)

s;β. The final form for the asymptotics up too(1) of these extra terms
can be worked out following the steps of Section 9, although we decided to leave it out of the scope of this article,
sinceβ , 1 does not seem to appear in quantum integrable systems.

2.4 Main results: theN-dependent equilibrium measure and the master operator

It is not hard to generalise the proof of Theorem 2.1 to the present setting so as to obtain the below characterisation
of the leading inN asymptotic behaviour forZN[V].

Theorem 2.3 LetE∞ be the lower semi-continuous good rate function

E∞[µ] =
1
2

∫
(V(η) + V(ξ) − πβ(ω1 + ω2)|ξ − η|) dµ(ξ)dµ(η) . (2.27)

Then, one has that

lim
N→+∞

ln ZN[V]

N2+α
= − inf

µ∈M1(R)
E∞

[
µ
]
. (2.28)

The infimum is attained at a unique probability measureµeq. This measure is continuous with respect to the
Lebesgue measure, and has density

ρeq(x) =
V′′(ξ)

2πβ(ω1 + ω2)
· 1[a ;b](ξ) (2.29)

supported on the interval[a ; b], with (a, b) being the unique solution to the set of equations

V′(b) = −V′(a) = πβ(ω1 + ω2) . (2.30)
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One has, explicitly,

lim
N→+∞

ln ZN[V]

N2+α
= −V(a) + V(b)

2
+

(
V′(b)

)2(b− a) +
∫ b

a

(
V′(ξ)

)2 dξ

4πβ(ω1 + ω2)
. (2.31)

The strict convexity ofV guarantees that the density (2.29) is positive and that it reaches a non-zero limit at the
endpoints of the support. This behaviour differs from the situation usually studied inβ ensembles with analytic
potentials which leads to a generic square root (or inverse square root) vanishing (or divergence) of the equilibrium
density at the edges.

Note that the functionE∞ defined in (2.27) arises as a good rate function in the large deviation estimates for the
empirical measureL(λ)

N , c.f. (1.3). In fact, a refinement of Theorem 2.3 would lead to the more precise estimates

ln ZN[V] = −N2+αE∞
[
µeq

]
+ O(N2) . (2.32)

Thus, in respect to the usual varying weightβ-ensemble case, there is a loss of precision by aN1−α factor. This, in
fact, takes its origin in that the purely asymptotic rate functionE∞

[
µeq

]
does not absorb enough of the fine structure

of the saddle-point. As a consequence, the remainder O(N2) mixes both types of contributions: the deviation of
the saddle-point in respect to its asymptotic position and the fluctuation of the integration variables around the
saddle-point.

The fine,N-dependent, structure of the saddle-point is much better captured by theN-dependent deformation9

of the rate functionsE∞:

EN[µ] =
1
2

∫ V(ξ) + V(η) − β

Nα
ln

{ 2∏

p=1

sinh
[
πNαωp(ξ − η)]

} dµ(ξ)dµ(η) . (2.33)

This N-dependent rate functions appear extremely effective for the purpose of our analysis. Namely, it allows
us re-summing a whole tower of contributions into a single term. The use ofEN should not be considered as a
mere technical simplification of the intermediate steps; itis, in fact, of prime importance. The use of the more
classical objectE∞ would render the analysis of the Schwinger-Dyson equationsimpossible. This fact will become
apparent in the core of the file. Here, we only state the improvement provided by the use of the finite-N minimiser
of EN:

ln ZN[V] = −N2+α inf
µ∈M1(R)

EN
[
µ
]
+ O(N1+α) . (2.34)

As usual, this minimiser admits a characterisation in termsof a variational problem:

Theorem 2.4 For any strictly convex potential V, the N-dependent rate functionEN admits its minimum onM1(R)
at a unique probability measureµ(N)

eq . This equilibrium measure is supported on a segment[aN ; bN] and corre-
sponds to the unique solution to the integral equations

V(ξ) − β

Nα

∫
ln

{ 2∏

p=1

sinh
[
πNαωp(ξ − η)]

}
dµ(N)

eq (η) = C(N)
eq on [aN ; bN] (2.35)

V(ξ) − β

Nα

∫
ln

{ 2∏

p=1

sinh
[
πNαωp(ξ − η)]

}
dµ(N)

eq (η) > C(N)
eq on R \ [aN ; bN] , (2.36)

9The property of lower semi-continuity along with the fact that EN has compact level sets is verified exactly as in the case ofβ-
ensembles, so we do not repeat the proof here.
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with C(N)
eq a constant whose determination is part of the problem(2.35)-(2.36). The equilibrium measure admits a

densityρ(N)
eq , which isCk−2 in the interior ]aN; bN[ if V is Ck. Finally, one has the behaviour at the edges:

ρ
(N)
eq (ξ) =

ξ→a+N
O
( √

ξ − aN
)
, ρ

(N)
eq (ξ) =

ξ→b−N
O
( √

bN − ξ
)
. (2.37)

The proof of the proposition above is rather classical. It follows, for instance, from [17, Section 2.3] in
what concerns the regularity, and from a convexity argumentalready used in [14, Lemma 6.2] in what concerns
connectedness of the support and the strict inequality in (2.36). Elements of proof are nevertheless gathered in
Appendix C. In fact, regarding to the equilibrium measure, we can be much more precise whenN is large enough:

Theorem 2.5 In the N→ ∞ regime, the equilibrium measureµ(N)
eq :

• is supported on the single interval[aN ; bN] whose endpoints admit the asymptotic expansion

aN = a +
k∑

ℓ=1

aN;ℓ

Nℓα
+ O

( 1

N(k+1)α

)
and bN = b +

k∑

ℓ=1

bN;ℓ

Nℓα
+ O

(
1

N(k+1)α

)
, (2.38)

where k∈ N∗ is arbitrary, (a, b) are as defined in(2.30)while

(
bN;1

aN;1

)
=

{ 2∑

p=1

1
2πωp

ln
( ω1ω2

ωp(ω1 + ω2)

)}
·


V′′(a) · {V′′(b)
}−1

−V′′(b) · {V′′(a)
}−1

 ; (2.39)

• is continuous in respect to Lebesgue. Its density isρ
(N)
eq vanishes like a square-root at the edges:

ρ
(N)
eq (ξ) ∼

ξ→a+N

(V′′(aN) + O(N−α)

πβ
√
π(ω1 + ω2)

) √
ξ − aN , ρ

(N)
eq (ξ) ∼

ξ→b−N

(V′′(bN) + O(N−α)

πβ
√
π(ω1 + ω2)

) √
bN − ξ , (2.40)

and there exists a constant C> 0 independent of N such that:

||ρ(N)
eq ||L∞([aN ;bN]) ≤ C ||V′′||L∞([aN ;bN]) . (2.41)

This density takes the formρ(N)
eq =WN[V′], withWN as defined in(2.44).

If the potential V defining the equilibrium measures satisfies V ∈ Ck([aN ; bN]), then the density is of class
Ck−2 on ]aN ; bN[.

Note that the characterisation ofρ(N)
eq in the theorem above comes from the fact that it is solution tothe singular

integral equationSN
[
ρ

(N)
eq

]
(ξ) = V′(ξ) on [aN ; bN], where

SN
[
φ
]
(ξ) =

bN
?

aN

S
[
Nα(ξ − η)]φ(η) dη and S(ξ) =

2∑

p=1

βπωp cotanh
[
πωpξ

]
. (2.42)

The unknowns in this equation (ρ(N)
eq , aN, bN) should be picked in such a way thatρ(N)

eq has mass 1 on [aN ; bN] and
is regular at the endpointsaN, bN. Thus, determining the equilibrium measure boils down to aninversion of the
singular integral operatorSN. In fact, the singular integral operatorSN also intervenes in the Schwinger-Dyson
equations. The precise control on its inverseWN – defined between appropriate functional spaces – plays a crucial
role in the whole asymptotic analysis.
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These information can be obtained by exploiting the fact that the operatorSN is of truncated Wiener–Hopf
type. As such, its inversion is equivalent to solving a 2× 2 matrix valued Riemann–Hilbert problem. This
Riemann–Hilbert problem admits a solution forN large enough that can be constructed by means of a variant of
the non-linear steepest descent method. By doing so, we are able to describe, quite explicitly, the inverseWN by
means of the unique solutionχ to the 2× 2 matrix valued Riemann–Hilbert problem given in Section 4.3. We
will not discuss the structure of this solution here and, rather, refer the reader to the relevant section. We will,
however, provide the main consequence of this analysis,viz. an explicit representation for the operatorWN. For
this purpose, we need to announce thatχ11, the (1, 1) matrix entry ofχ, is such thatµ 7→ µ1/2 · χ11(µ) ∈ L∞(R).

Theorem 2.6 Let 0 < s < 1/2. The operatorSN : Hs
(
[aN ; bN]

) → Xs
(
R
)

is continuous and invertible where,
for any closed A⊆ R,

Xs
(
A
)
=

{
H ∈ Hs

(
A
)

:
∫

R+iǫ

χ11(µ)F [H](Nαµ)e−iNαµbN
dµ
2iπ
= 0

}
(2.43)

is a closed subspace of Hs
(
A
)

such thatSN
(
Hs

(
[aN ; bN]

))
= Xs(R). The inverse is given by the integral transform

WN which takes, for H∈ C1([aN ; bN]) ∩ Xs(R), the form

WN[H](ξ) =
N2α

2πβ

∫

R+2iǫ

dλ
2iπ

∫

R+iǫ

dµ
2iπ

e−iNα(ξ−aN)λ

µ − λ

{
χ11(λ)χ12(µ)− µ

λ
·χ11(µ)χ12(λ)

}
·

bN∫

aN

dηeiNαµ(η−bN)H(η) . (2.44)

In the above integral representations the parameterǫ > 0 is small enough but arbitrary. Furthermore, for any
H ∈ C1([aN ; bN]

)
, the transformWN exhibits the local behaviour

WN[H](ξ) ∼
ξ→a+N

CLH′(aN)
√
ξ − aN and WN[H](ξ) ∼

ξ→b−N
CRH′(bN)

√
bN − ξ . (2.45)

where CL/R are some H-independent constants.

Note that, within such a framework, the density of the equilibrium measureµ(N)
eq is expressed in terms of the

inverse asρ(N)
eq = WN

[
V′

]
. In this case, the pair of endpoints (aN, bN) of the support ofµ(N)

eq corresponds to the
unique solution to the system of equations

bN∫

aN

WN
[
V′

]
(ξ) dξ = 1 and

∫

R+iǫ

dµ χ11(µ)
2iπ

bN∫

aN

eiµNα(η−bN)V′(η) dη = 0 . (2.46)

The first condition guarantees thatµ(N)
eq has indeed mass 1, while the second one ensures that its density vanishes

as a square root at the edgesaN, bN. Using fine properties of the inverse, these conditions can be estimated more
precisely in the large-N limit, hence enabling one to fix the large-N asymptotic expansion of the endpointsaN, bN

as announced in (2.38)-(2.39).

2.5 The overall strategy of the proof

In the following, we shall denote bypN(λ) the probability density onRN associated with the partition function
ZN[V] defined in (2.11):

pN(λ) =
1

ZN[V]

N∏

a<b

{
sinh

[
πω1Nα(λa − λb)

]
sinh

[
πω2Nα(λa − λb)

]}β N∏

a=1

e−N1+αV(λa) . (2.47)
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pN(λ) gives rise to a probability measurePN on RN. We also agree that, throughout the file,L(λ)
N refers to the

empirical measure

L(λ)
N =

1
N

N∑

a=1

δλa (2.48)

associated with the stochastic vectorλ.

Definition 2.7 Letν1, . . . , νℓ be any (possibly depending on the stochastic vectorλ) measures andψ a function in
ℓ variables. Then we agree upon

〈
ψ
〉
ν1⊗···⊗νℓ

≡
〈
ψ(ξ1, . . . , ξℓ)

〉
ν1⊗···⊗νℓ

≡ PN

[ ∫

Rℓ

ψ(ξ1, . . . , ξℓ) dν1 ⊗ · · · ⊗ dνℓ
]

(2.49)

whenever it makes sense. We shall add the superscript V whenever the functional dependence of the probability
measure on the potential V needs to be made clear.

Note that if none of the measuresν1, . . . , νℓ is stochastic, then the expectation versusPN in (2.49) can be omitted.
The Schwinger-Dyson equations constitute a tower of equations which relate expectation values of functions

in many, non necessarily fixed, variables that are integrated versus the empirical measure (2.48). More precisely,
the Schwinger-Dyson equations at levelk (k ≥ 1) yield exact relations between various expectation values of a
function ink variables and its transforms, this versus the empirical measure. The knowledge of these expectation
values, yields an access to the derivatives of the partitionfunction with respect of external parameters. For instance,
if {Vt}t is a smooth one parameter family of potentials, then

∂t ln ZN[Vt] = −N2+α〈∂tVt〉Vt

L(λ)
N

. (2.50)

The exponentVt appearing in the right-hand side is there so as to emphasise that the expectation value is computed
in respect to the probability measure subordinate to thet-dependent potentialVt.

Thus the problem boils down to obtaining a sufficiently precise control on the behaviour inN of the one-point
expectation values. This can be achieved on the basis of a careful analysis of the system of Schwinger-Dyson
equations associated with the present model. Since this machinery does not simplify much in theβ = 1 case, we
do this for generalβ. The result for some sufficiently regular functionH and potentialsV satisfying to the general
hypothesis, is our Proposition 3.19.

In theβ = 1 case, Proposition 3.19 reads:

−N2+α〈H〉V
L(λ)

N

= −N2+α

bN∫

aN

H(ξ) ·WN
[
V′

]
(ξ) dξ +

1
2
Id

[
H,V

]
+ o(1) . (2.51)

and the proof shows that the remainder o(1) is uniform inH andV provided thatH is regular enough and thatV
satisfies to the hypothesis given in (2.12)-(2.14). Furthermore, the expansion (2.51) involves

Id[H,V] =

bN∫

aN

WN

[
∂ξ

{
S
(
Nα(ξ − ∗)) · GN

[
H,V

]
(ξ, ∗)}

]
(ξ) dξ , (2.52)
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with

GN
[
H,V

]
(ξ, η) =

WN[H](ξ)
WN[V′](ξ)

− WN[H](η)
WN[V′](η)

. (2.53)

Note that, in (2.52), the∗ indicates the variable of the function on which the operatorWN acts. Given sufficiently
regular functionsH,V, we obtain in Section 9 and more precisely in Proposition 9.10 the large-N asymptotic
behaviour ofId[H,V]. We then have all the elements to calculate the large-N asymptotic behaviour of the partition
function ZN[V]. For this purpose, we observe that, whenβ = 1, the partition function associated to a quadratic
potential can be explicitly evaluated as shown in Proposition D.2. One can also show (cf. Lemma D.1) that there
exists a unique, up to a constant, quadratic potentialVG;N such that its associated equilibrium measure has the
same support [aN, bN] as the one associated with V. ThenVt = (1− t)VG;N + tV is a one parametert smooth family
of strictly convex potentials, andµ(N)

eq;Vt
= (1 − t)µ(N)

eq;VG;N
+ tµ(N)

eq;V. Furthermore, if follows from the details of the
analysis that led to (2.51) that the remainder o(1) will be uniform in t ∈ [0 ; 1]. As a consequence, by combining
all of the above results and integrating equation (2.50) over t, we get that, in the asymptotic regime,

ln

(
ZN[V]

ZN[VG;N]

)
= −N2+α

1∫

0

dt
∫

∂tVt(ξ) dµ(N)
eq;Vt

(ξ) + Nα · 0ג ·
(
�[V,VG;N](bN) −�[V,VG;N](aN)

)

+ ℵ0 ·
(
�′[V,VG;N](bN) +�′[V,VG;N](aN)

)
+ o(1) . (2.54)

The constants0ג andℵ0 were defined respectively in (2.23) and (2.24), while� is as given by (2.22).
Note also that the first integral can be readily evaluated (integration of rational functions in t) on the asymptotic

level by means of Proposition 7.6. It produces an expansion into inverse powers ofNα and, as such, does not
contribute to the constant term unlessα is of the form 2/n for some integern. Note that it is this integral that gives
rise to the functionaldp[V] in (2.16). Finally, the answer for the large-N asymptotic behaviour of the partition
functionZN[VG;N] |β=1 can be found in Proposition D.2.

For β , 1, (2.51) is modified by the addition of two more termsI(2)
s;β andId;β. Their largeN behaviour can

be determined without difficulty – but with some algebra – along the lines of Section 7.2 and § 9. Then, to arrive
to a final answer forZN[V]β,1 similar to (2.54), we would need to compute exactly the partition function for the
Gaussian potentialZN[VG;N]β,1. We do not know at present how to perform such a calculation. Thus, we would
be able to derive the asymptotic behaviour of the partition function atβ , 1 up to a universal,i.e. not depending
on the potentialV, function ofβ. However, since the valuesβ , 1 do not seem to appear in quantum integrable
systems, we shall limit ourselves in this article to the result of Proposition 3.20 for the caseβ , 1.

3 Asymptotic expansion ofln ZN[V] - the Schwinger-Dyson equation approach

In the present section we develop all the necessary tools to prove the large-N asymptotic expansion for lnZN[V]
up to o(1) terms, in the form described in (2.51). The asymptotic expansion we obtain containsN-dependent
functionals of the equilibrium measure whose large-N asymptotic analysis will be carried out in Sections 7-9. We
shall first obtain somea priori bounds on the fluctuations of linear statistics around theirmeans computedvs.
theN-dependent equilibrium measureµ(N)

eq . In other words, we consider observables given by integration against
products of the centred measure:

Definition 3.1 We define the centred empirical measure as:

L(λ)
N = L(λ)

N − µ
(N)
eq . (3.1)
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Then we shall build on a bootstrap approach to the Schwinger-Dyson equations so as to improve thesea priori
bounds. We shall use these improved bounds so as to identify the leading and sub-leading terms in the Schwinger-
Dyson equations what, eventually, leads to an analogue, atβ , 1, of the representation (2.51) which will be
given in Proposition 3.19. Finally, upon integrating the relation (2.50) so as to to interpolate the partition function
between a Gaussian and a general potential, we will get theN-dependent large-N asymptotic expansion of lnZN[V]
in Proposition 3.20.

For simplification, we use the notation:

sN(ξ) =
β

2Nα
ln

[
sinh

(
πω1Nαξ

)
sinh

(
πω2Nαξ

)]
(3.2)

for the two-body interaction kernel, and we introduce the effective potential associated to theN-dependent equi-
librium measure:

VN;eff(ξ) = V(ξ) − 2
∫

sN(ξ − η) dµ(N)
eq (η) − C(N)

eq . (3.3)

By the characterisation of the equilibrium measure (Theorem 2.4), VN;eff = 0 in the support [aN ; bN], while
VN;eff > 0 outside [aN ; bN].

3.1 A priori estimates for the fluctuations aroundµ(N)
eq

The model provides a natural way of comparing two probability measures:

Definition 3.2 If µ, ν ∈ M1(R), we set:

D2[µ, ν] ≡ −
∫

sN(ξ − η) d(µ − ν)(ξ) d(µ − ν)(η) , (3.4)

with sN as given in(3.2). D2[µ, ν] is a well-defined number inR ∪ {+∞}.

The notation is justified by the propertyD2 ≥ 0 following from:

Lemma 3.3 We have the representation:

D2[µ, ν] =
∫ {

πβ

2Nαϕ

2∑

p=1

cotanh
[ ϕ

2ωpNα

]}
·
∣∣∣F [µ − ν](ϕ)

∣∣∣2 · dϕ
2π

, (3.5)

whereF [µ](ξ) is the Fourier transform of the measureµ.

Proof — Direct given the formulaF [
ft
]
(ϕ) = −(π/ϕ)

(
cotanh[πϕ/2t] − 2t/πϕ

)
with

ft(x) = ln | sinh(tx)| − t|x| + ln 2.

Definition 3.4 The classical positions xN
i for the measureµ(N)

eq are defined by

i
N
=

xN
i∫

−∞

dµ(N)
eq (y) f or i ∈ [[ 1 ; N ]] and xN0 = aN , xN

N = bN . (3.6)
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Our first task is to derive a lower bound for the partition function (2.11), by restricting to configurations of
points close to their classical positions:

Lemma 3.5 ZN[V] ≥ exp
{
− N2+αEN

[
µ

(N)
eq

]
+ O

(
N1+α)} .

We stress on this occasion that using theN-dependent rate functionEN allows the gain of a factor 1/N in the re-
mainder with respect to the leading term, while usingE∞ would lead to a weaker estimate O(N2) for the remainder.
This is of particular importance to simplify the analysis ofSchwinger-Dyson equations that will follow.

Proof — It follows from the local expressions obtained in Section 6 that µ(N)
eq is continuous with respect to

Lebesgue measure with density bounded by a constantM independent ofN, as shown in (2.41). This ensures that

∣∣∣xN
i+1 − xN

i

∣∣∣ ≥ 1
MN

, i ∈ [[ 0 ; N − 1 ]] . (3.7)

We obtain our lower bound by keeping only configurations in

Ω =
{
λ ∈ RN : sup

a
|λa − xN

a | ≤
1

4MN
}
.

Letσǫ be someN-independentǫ-neighbourhood of [aN ; bN]. SinceV ∈ C1(R), it follows that

∣∣∣V(λa) − V(xN
a )

∣∣∣ ≤ ||V
′||L∞(σǫ)

4MN
viz. − V(xN

a ) − ||V
′||L∞(σǫ )

4MN
≤ −V(λa) (3.8)

for a ∈ [[ 1 ; N ]] and for anyλ ∈ Ω. Thus, upon a re-centring atxN
a of the integration in respect toλa, we get

ZN[V] ≥
N∏

a=1

{
e−N1+αV(xN

a )
}
· e−N1+α

4M ||V′ ||L∞(σǫ ) ×
∫

[−1/(4MN),1/(4MN)]N

dNν ·
N∏

a<b

{ 2∏

p=1

sinh
[
πωpNα(νa − νb + xN

a − xN
b )

]}β

≥
N∏

a=1

{
e−N1+αV(xN

a )
}
· e−N1+α

4M ||V′ ||L∞(σǫ ) ×
N∏

a<b

e2NαsN(xN
b −xN

a ) ×
∫

ν1<···<νN

dNν

N∏

a=1

{
1|ξ|< 1

4MN
(νa)

}
. (3.9)

We remind thatsN has been defined in (3.2). The second line is obtained by keeping only the configurations where
i 7→ νi is increasing, and then using that sinh is an increasing function. Finally:

ZN[V] ≥
N∏

a=1

{
e−N1+αV(xN

a )
}
· e−N1+α

4M ||V′ ||L∞(σǫ ) ·
N∏

a<b

e2NαsN(xN
b −xN

a ) · 1
N!

( 1
4NM

)N
. (3.10)

We rewrite the first product involving the potential by comparison between the Riemann sum and the integral:

1
N

N∑

a=1

V(xN
a ) =

∫

R

V(ξ) dµ(N)
eq (ξ) + δN, |δN| ≤

||V′||L∞(σǫ )

N
· (bN − aN) . (3.11)

It thus remains to bound from below theβ-exponent part. Using thatsN is increasing onR+, we get:

∫

x<y

sN(y− x) dµ(N)
eq (x) dµ(N)

eq (y) =
N−1∑

a,b=0

xN
a+1∫

xN
a

xN
b+1∫

xN
b

1x<y(x, y)sN(y− x) dµeq(x) dµeq(y)

≤ 1

N2

N−1∑

a=0

N−1∑

b=a+1

sN(xN
b+1 − xN

a ) +
N−1∑

a=0

sN(xN
a+1 − xN

a ) · 1

2N2
. (3.12)
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The first sum can be recast as

N−1∑

a=0

N∑

b=a+2

sN(xN
b − xN

a ) =
N−1∑

a=1

N∑

b=a+1

sN(xN
b − xN

a ) +
N∑

b=1

sN(xN
b − xN

0 ) −
N−1∑

a=0

sN(xN
a+1 − xN

a ) . (3.13)

It follows from (3.7) and from|xN
a − xN

b | < |bN − aN| < C for someC > 0 independent ofN, that:

max
0≤a≤N−1

|sN(xN
a+1 − xN

a )| = N−αO
(
ln N + Nα) and max

1≤a≤N
|sN(xN

a − xN
0 )| = O

(
1
)
. (3.14)

Hence, it follows that

N2
∫

x<y

sN(y− x) dµ(N)
eq (x) dµ(N)

eq (y) ≤ O
(
N
)
+

N∑

a<b

sN(xN
b − xN

a ) , (3.15)

thus leading to the claim.

We now estimate the fluctuations of linear statistics by using an idea introduced in [70].

Definition 3.6 Given a configuration of pointsλ1 ≤ · · · ≤ λN, we build a sequencẽλ1 < · · · < λ̃N defined as

λ̃1 = λ1 and λ̃k+1 = λ̃k + max
(
λk+1 − λk, e

−(ln N)2)
. (3.16)

Further, for anyλ ∈ RN, we associate a vector̃λ ∈ RN by ordering theλ’s with a permutationσ, apply the previous
construction to obtain a N-uplẽλ, and put them in original order with the permutationσ−1. The corresponding
empirical measure is:

L(̃λ)
N =

1
N

N∑

a=1

δ
λ̃a

and we denote L(̃λ)N;u the convolution of L(̃λ)N with the uniform probability measure on[0 ; e−(ln N)2
/N].

The new configuration has been constructed such that, forℓ , k,

∣∣∣̃λk − λ̃ℓ
∣∣∣ ≥ e−(ln N)2

,
∣∣∣λk − λℓ

∣∣∣ ≤
∣∣∣̃λk − λ̃ℓ

∣∣∣ and
∣∣∣λk − λ̃k

∣∣∣ ≤ (k− 1) · e−(ln N)2
. (3.17)

The advantage of working withL(̃λ)
N;u is that it is Lebesgue continuous; as such it can appear in theargument ofEN

orD2 and yield finite results. The scale of regularisatione−(ln N)2
= N− ln N is somewhat arbitrary, but in any case

negligible compared toN−α.

Proposition 3.7 Assume that

• the partition function ZN[V] satisfies a lower-bound of the form

ZN[V] ≥ exp
{
− N2+αEN

[
µ

(N)
eq

]
+ δN

}
, δN = o

(
N2+α) ; (3.18)

• the potential is sub-exponential, viz. there existsǫ > 0 and CV > 0 such that

∀x ∈ R , sup
t∈[0 ;ǫ]

∣∣∣V′(x+ t)
∣∣∣ ≤ CV

(∣∣∣V(x)
∣∣∣ + 1

)
. (3.19)
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Then, given any0 < η < 1, we have for allλ ∈ RN that

pN
(
λ
) ≤ exp

{
− N2+αD2[L(̃λ)

N;u, µ
(N)
eq

] − δN − N2+α(1− η)
∫

R

VN;eff(ξ) dL(̃λ)
N;u(ξ) + O(N ln N)

}
. (3.20)

The effective potential VN;eff has been defined in(3.3)whileD2[µ, ν] is as given in(3.2).

Proof — The partition function takes the form:

ZN[V] =
∫

RN

dNλ exp

{
− N2+α

( ∫
V(x) dL(λ)

N (x) − Σdiag[L
(λ)
N ]

)}
, Σdiag[µ] =

∫

x,y

sN(x− y) dµ(x)dµ(y) .

wheresN defined in (3.2). We are going to estimate the cost of replacing L(λ)
N by L(̃λ)

N;u in the above integration. We
start with the term involving the potential. Since we assumed V sub-exponential, we have:

∣∣∣∣∣
∫

V(x) dL(λ)
N (x) −

∫
V(x) dL(̃λ)

N (x)
∣∣∣∣∣ ≤

1
N

N∑

a=1

(a− 1)

e(ln N)2 · sup
{
|V′(̃λa + t)| : t ∈

[
0;

(a− 1)

e(ln N)2

]}

≤ NCV

e(ln N)2

( ∫
|V(x)|dL(̃λ)

N (x) + 1
)
. (3.21)

Further, sinceV(x)→ +∞ when|x| → ∞, there existsC′eff > 0 such that

∀x ∈ R, C′eff
(
1+ VN;eff(x)

) ≥ CV
(|V(x)| + 1

)
. (3.22)

As a consequence,

exp

{
−N2+α

∫
V(x) dL(λ)

N (x)

}
≤ exp

{
N3+α C′eff

e(ln N)2

[
1 +

∫
VN;eff(x) dL(̃λ

N (x)
]
−N2+α

∫
V(x)dL(̃λ)

N (x)

}
. (3.23)

Now, let us consider the term involving the sinh interaction. SincesN is increasing onR+ and the spacings between

λ̃a’s are larger than those between theλa’s, it follows thatΣdiag
[
L(λ)

N

] ≤ Σdiag
[
L(̃λ)

N

]
. Furthermore, we have:

Σdiag
[
L(̃λ)

N

] − Σdiag
[
L(̃λ)

N;u

]
=

∫

x,y

dL(̃λ)
N (x) dL(̃λ)

N (y)
∫

[0 ;1]2

d2u
{
sN(x− y) − sN

(
x− y+ N−1e−(ln N)2

(u1 − u2)
)}

− 1
N

∫

[0 ;1]2

d2u sN
[
N−1e−(ln N)2

(u1 − u2)
]
. (3.24)

WhenN is large enough, we can use the Lipschitz behaviour ofsN on [e−(ln N)2
/2,+∞[ for the first term. Indeed:

|s′N(x)| =
2∑

p=1

βπωp

2
cotanh[πωpNα|x|] ≤ c′N−αe(ln N)2

(3.25)
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for somec′ > 0. Besides, we exploit thatsN is increasing to bound the second term. This leads to:

∣∣∣Σdiag
[
L(̃λ)

N

] − Σdiag
[
L(̃λ)

N;u

]∣∣∣ ≤ C
(
N−α−1

)
+ C′ N−(1+α) (ln N)2 . (3.26)

Since the measureL(̃λ)
N;u is continuous with respect to Lebesgue, it is not any more necessary to take care of the

diagonal singularity insN, and we obtain:

exp

{
− N2+α

( ∫

R

V(x)dL(λ)
N (x) − Σdiag[L

(λ)
N ]

)}
≤ exp

{
− N2+αEN[L(̃λ)

N;u] + O
(
N(ln N)2)

}
(3.27)

× exp

{
e−(ln N)2

N3+α C′eff

∫
VN;eff(x)dL(̃λ)

N;u(x)

}
.

Sinceµ(N)
eq is also continuous with respect to Lebesgue,EN[µ(N)

eq ] is finite and we can expand the first term

aroundµ(N)
eq :

EN
[
L(̃λ)

N;u

]
= EN

[
µ

(N)
eq

]
+D2[L(̃λ)

N;u, µ
(N)
eq

]
+

∫

R

d(L(̃λ)
N;u − µ

(N)
eq )(x)

{
V(x) − 2

∫

R

dµ(N)
eq (y) sN(x− y)

}
.

We recognize in the last integralVN;eff(x) + C(N)
eq integrated against a measure of mass 0. So, we can omit the

constantCeq, and sinceVN;eff = 0 on the support ofµ(N)
eq , we actually find:

EN
[
L(̃λ)

N;u

]
= EN

[
µ

(N)
eq

]
+D2[L(̃λ)

N;u, µ
(N)
eq

]
+

∫

R

VN;eff(x) dL(̃λ)
N;u(x)

If we plug this relation in (3.28), we obtain a similar bound but now withVN;eff having the prefactor
N2+α − e−(ln N)2

N3+αC′eff ≤ (1− η)N2+α, this for any 0< η < 1, provided thatN is large enough.
In order to bound the one and multi-point expectation valuesand in particular the various terms arising in the

Schwinger-Dyson equations, we introduce the exponential regularisation of a function:

Definition 3.8 Given a function f in n variables, its exponential regularisation with growthκ is defined by

Kκ[ f ](ξ1, . . . , ξn) =
{ n∏

a=1

e−κV(ξa)
}
· f (ξ1, . . . , ξn) . (3.28)

We also denoteM(n)
N;κ the (un-normalised) measure onRN whose density reads pN(λ)

n∏
a=1

eκV(λa) (notice that the

exponential factor only affects n variables out of N).

We will use repeatedly the transformation:

M
(n)
N;κ

[Kκ[ f ]
]
=

〈
f
〉
. (3.29)

In this respect, prior to establishing the simplesta priori bounds on the multi-point expectation values, we need
an easy bound on the total mass ofM(n)

N;κ.
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Lemma 3.9 For any κ ≥ 0 and positive integer n0 there exists cn0,Cn0 > 0 such that, for any n≤ n0 and any
measurable setΩ ⊂ RN that is invariant under permutations of coordinates, it holds

∣∣∣M(n)
N;κ[Ω]

∣∣∣ ≤ (Cn0)
n · PN[Ω] + O

(
e−cn0 N1+α) · exp

{
− N2+α inf

λ∈Ω
D2[L(̃λ)

N;u, µ
(N)
eq

]}
. (3.30)

Proof — We first claim that the constantC(N)
eq arising in the minimisation problem for the equilibrium measure

(2.35) is bounded inN. Indeed, it follows from (2.35) that

C(N)
eq =

bN∫

aN

V(ξ) dµ(N)
eq (ξ) − β

Nα

∫

[aN ;bN]2

ln
{ 2∏

p=1

sinh[πωpNα(ξ − η)]
}
dµ(N)

eq (ξ)dµ(N)
eq (η) . (3.31)

Therefore, we have:

∣∣∣C(N)
eq

∣∣∣ ≤ ||V||L∞([aN ;bN ]) + C ||V′′||2L∞([aN ;bN])

∫

[aN ;bN]2

1
Nα

∣∣∣∣ ln
{ 2∏

p=1

sinh[πωpNα(ξ − η)]
}∣∣∣∣dξdη , (3.32)

where we have used thatµ(N)
eq is a probability measure and that its density is bounded by (2.41). The double

integral remaining in (3.32) can be bounded by anN-independent constant. Such bounds are obtained by using
that the function

gN(ξ) =
1

Nα

∣∣∣∣ ln
{ 2∏

a=1

sinh[πωaNα(ξ)]
}∣∣∣∣ − π(ω1 + ω2)|ξ| (3.33)

approaches 0 pointwise inξ ∈ [aN − bN ; bN − aN] \ {0} and is bounded as|gN(ξ)| ≤ C(1 + | ln ξ|). Since the
endpointsaN andbN are bounded inN in virtue of (2.38), we can apply the dominated convergence theorem to
(ξ, η) 7→ gN(ξ − η) on [aN ; bN]2.

The confinement hypothesis (2.12) on the potential implies the existence oft > 0 independent ofN such that:

∀ξ ∈ R \ [−t, t], VN;eff(ξ) ≥
V(ξ)

2
≥ |ξ|

2
. (3.34)

where the effective potential is defined by (3.3).
The left hand side of (3.30) can be decomposed, by invoking the symmetry of the integrand, into pieces where

the variables are either outside or inside the segment [−t, t]:

∫

RN

pN(λ)·
n∏

a=1

eκV(λa)1Ω(λ) dNλ =

n∑

p=0

(
n
p

) ∫

([−t ;t]c)p

p∏

a=1

dλa

∫

[−t,t]n−p

n∏

a=1+p

dλa

∫

RN−n

N∏

a=1+n

dλa pN(λ) 1Ω(λ)
n∏

a=1

eκV(λa) .

SincepN(λ) is the density of a probability measure onRN, the termp = 0 corresponding to all variables in [−t, t]
is bounded as:

∣∣∣∣∣
∫

[−t,t]n

n∏

a=1

dλa

∫

RN−n

N∏

a=1+n

dλa pN(λ) 1Ω(λ)
n∏

a=1

eκV(λa)
∣∣∣∣∣ ≤ enκ||V||L∞ ([−t ;t])PN[Ω] . (3.35)
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For the other termsp ≥ 1, we rather take advantage of:

∣∣∣pN(λ) 1Ω(λ)
∣∣∣ ≤

N∏

a=1

e−
1
2 N1+αVN;eff (λa) · exp

{
− N2+α inf

λ∈Ω
D2[L(̃λ)

N;u, µ
(N)
eq

]}
(3.36)

which follows from (3.20) withη = 1/2 given in Proposition 3.7. Indeed, we have:

∣∣∣∣∣
∫

([−t ;t]c)p

p∏

a=1

dλa

∫

[−t ;t]n−p

n∏

a=1+p

dλa

∫

RN−n

N∏

a=1+n

dλa pN(λ) 1Ω(λ)
n∏

a=1

eκV(λa)
∣∣∣∣∣

≤ e(n−p)κ||V||L∞ ([−t ;t]) −N2+α infλ∈ΩD2
[
L(̃λ)

N;u,µ
(N)
eq

] { ∫

[−t ;t]c

e−
1
2 N1+αVN;eff (ξ)+κV(ξ)dξ

}p
·
{ ∫

R

e−
1
2 N1+αVN;eff(ξ)dξ

}N−p
.

(3.37)

Further, in virtue of (3.34) we have, forN large enough,

∣∣∣∣∣
∫

[−t ;t]c

e−
1
2 N1+αVN;eff (ξ)+κV(ξ)dξ

∣∣∣∣∣ ≤
∣∣∣∣∣

∫

[−t ;t]c

e−
1
8 N1+αV(ξ)dξ

∣∣∣∣∣ ≤
∣∣∣∣∣

∫

[−t ;t]c

e−
1
8 N1+α|ξ|dξ

∣∣∣∣∣ = O
(
e−cN1+α)

. (3.38)

The integral overR in (3.37) is bounded uniformly by a constantA, sinceVN;eff ≥ 0 andVN;eff grows at least
linearly at infinity. All-in-all, for any p ≥ 1, (3.37) is bounded byANe−cN1+α

= o(e−c′N1+α
). Summing up over

p ∈ [[ 0 ; n ]], we see that the upper bound forp = 0 obtained in (3.35) dominates the sum, whence the result.

Corollary 3.10 Let κ ≥ 0. There exist constants Cn > 0 depending on n andκ such that the below bounds hold
for any f satisfyingKκ[ f ] ∈W∞1 (Rn)

∣∣∣
〈

f (ξ1, . . . , ξn)
〉
⊗n

1L
(λ)
N

∣∣∣ ≤ Cn

{
N−n ||Kκ[ f ]||W∞1 (Rn) + N(α−1)n/2 ||Kκ[ f ]||1/2W∞n (Rn) · ||Kκ[ f ]||1/2W∞0 (Rn)

}
. (3.39)

Proof — Using the trick (3.29) and decomposingL(λ)
N = L

(̃λ)
N;u + (LλN − L(̃λ)

N;u), we can write:

〈
f
〉⊗n

1L
(λ)
N
=

n∑

ℓ=1

n∑

i1<···<iℓ
=1

M
(n)
N;κ+κ′

[
Kκ+κ′ [ f ]

(
ξ1, . . . , ξn

) ℓ∏

a=1

dL(̃λ)
N;u(ξia)

n∏

a=1
,1,...,ℓ

d
(
L(̃λ)

N;u − L(λ)
N

)
(ξia)

]
+

〈
f
〉
⊗n

1L
(̃λ)
N;u

.

(3.40)

Sincẽλa’s are not far from̃λa’s according to (3.17), we can bound for anyℓ ≤ n− 1,

∣∣∣∣∣M
(n)
N;κ+κ′

[
Kκ+κ′ [ f ]

(
ξ1, . . . , ξn

) ℓ∏

a=1

dL(̃λ)
N;u(ξia)

n∏

a=1
,1,...,ℓ

d(L(̃λ)
N;u − L(λ)

N )(ξia)
]∣∣∣∣∣

≤ (2C)n · ||Kκ[ f ]||W∞1 (Rn)
N(N − 1)

2
· e−(ln N)2

N
. (3.41)
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The first factor comes from the geometric bound (3.9) on the partition function of the measuresMN;κ+κ′ , while in
the second factor, we used the sub-exponential hypothesis (2.14) to get rid of the operatorKκ′ .

As a consequence, the first sum in (3.40) will only give rise to||Kκ[ f ]||W∞1 (Rn) ·O(N−∞) corrections. This being
settled, Proposition 3.7 ensures the existence ofM > 0 and a constantC > 0 such that, forN large enough:

PN

[
ΩM;N

]
= O

(
e−CM N1+α)

with ΩM;N =
{
λ ∈ RN : D2[L(̃λ)

N;u, µ
(N)
eq

]
> M/N

}
. (3.42)

This ensures that
∣∣∣∣
〈
f
〉
⊗n

1L
(̃λ)
N

∣∣∣∣ ≤ C′ ·Cn
n0
||Kκ[ f ]||L∞(Rn) e−C′′M N1+α

+

∣∣∣∣
〈

f · 1Ωc
M;N

〉
⊗n

1L
(̃λ)
N

∣∣∣∣ . (3.43)

Finally, using Cauchy-Schwarz inequality to make the distanceD appear:

∣∣∣∣
〈
f · 1Ωc

M;N

〉
⊗n

1L
(̃λ)
N

∣∣∣∣ =
∣∣∣∣∣M

(n)
N;κ+κ′

[
1Ωc

M;N

∫

Rn

F [Kκ+κ′ [ f ]
]
(ϕ1, . . . , ϕn)

n∏

a=1

F [L(̃λ)
N;u

]
(−ϕa) · dnϕ

(2π)n

]∣∣∣∣∣

≤
{∫

Rn

∣∣∣F [Kκ+κ′ [ f ]](ϕ1, . . . , ϕn)
∣∣∣2

∏n
i=1

{
πβ

2Nαϕi

2∑
p=1

cotanh
[ ϕi

2ωpNα

]} ·
dnϕ

(2π)n

} 1
2 ·Cn ·M(n)

N;κ+κ′

[
1Ωc

M;N
Dn[L(̃λ)

N;u, µ
(N)
eq

]]
. (3.44)

The last factor, because it is evaluated on the complement onΩM;N, is at most O(N−n/2). The Fourier transform
part of the bound can be estimated with the bound:

n∏

i=1

∣∣∣∣∣∣
πβ

2Nαϕi

2∑

p=1

cotanh
[ ϕi

2ωpNα

]∣∣∣∣∣∣
−1

≤
n∏

i=1

(
C Nα|ϕi |

) ≤ (CNα)n
(
1+

{ n∑

i=1

ϕ2
i

}1/2
)n

. (3.45)

Hence, there exists a constantC′n > 0 such that:
∣∣∣〈 f

〉
⊗n

1L
(̃λ)
N

∣∣∣ ≤ C′n N(α−1)n/2
(
||Kκ+κ′ [ f ]||Hn/2(Rn) + ||Kκ[ f ]||W∞0 (Rn)

)
. (3.46)

where theW∞0 norm is nothing but theL∞ norm. In order to bound||Kκ+κ′ [ f ]||Hn/2(Rn) by theW∞n norms (c.f. their
definition (1.17)), we observe that:

||Kκ+κ′ [ f ]||2Hn/2(Rn) ≤ ||Kκ+κ′ [ f ]||Hn(Rn) · ||Kκ+κ′ [ f ]||L2(Rn) . (3.47)

TheL2(Rn) norm is bounded directly as:

||Kκ+κ′ [ f ]||L2(Rn) ≤ ||Kκ′ [1]||L2(Rn) · ||Kκ[ f ]||W∞0 (Rn) . (3.48)

Finally, in order to bound||Kκ+κ′ [ f ]||Hn(Rn), we remark that (1+ |t|)2n ≤ 4n(1+ t2)n, so that:

(
1+

{ n∑

a=1

ϕ2
a

}1/2)2n

≤ C
n∑

k=0

Pk(ϕ
2
1, . . . , ϕ

2
n) (3.49)

for some symmetric homogeneous polynomial of degreek:

Pk(ϕ
2
1, . . . , ϕ

2
n) =

∑

k1+···+kn=k

p{ka} · ϕ2k1
1 · · ·ϕ

2kn
n with p{ka} ≥ 0 . (3.50)
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This ensures that

||Kκ+κ′ [ f ]||2Hn(Rn) ≤ C
n∑

k=0

∑

k1+···+kn=k

p{ka}

∫ ∣∣∣∣
n∏

a=1

∂
ka
ξa
· Kκ+κ′ [ f ](ξ1, . . . , ξn)

∣∣∣∣
2
· dnξ

≤ C′ · ||Kκ′/2[1]||2L2(Rn) · ||Kκ[F]||2W∞n (Rn) . (3.51)

To get the last line, we have repeatedly used the sub-exponential hypothesis (2.14). As a consequence, for some
constantC′

||Kκ+κ′ [ f ]||Hn/2(Rn) ≤ C′ · ||Kκ[ f ]||
1
2
W∞n (Rn) · ||Kκ[ f ]||

1
2
W∞0 (Rn) . (3.52)

Inserting the above bound in (3.46), we obtain

∣∣∣〈 f
〉
⊗n

1L
(̃λ)
N

∣∣∣ ≤ C′′n N(α−1)n/2 ||Kκ[ f ]||
1
2
W∞n (Rn) · ||Kκ[ f ]||

1
2
W∞0 (Rn) , (3.53)

what leads to the desired form of the bound on the average
〈

f
〉⊗n

1L
(λ)
N

.

3.2 The Schwinger-Dyson equations

In the present section, we derive the system of Schwinger-Dyson equations in our model. The operator

UN[φ](ξ) = φ(ξ) · {V′(ξ) − SN[ρ(N)
eq ](ξ)

}
+ SN[φ · ρ(N)

eq ](ξ) , (3.54)

with SN defined in (2.42) will arise in their expression, and play a crucial role in the large-N analysis.UN (and
SN) are invertible and all the informations on the inverses areobtained later in Proposition 8.2 (the inverse ofSN

is denotedWN, see § 5.4).
Since we will be dealing with operators initially defined on functions in one variable but acting on one of the

variables of a function in many variables, it is useful to introduce the

Definition 3.11 Given an operatorO : W∞p (R) → W∞p (Rℓ) acting on functions of one variable andφ ∈ W∞p (Rn),
Ok[φ] refers to the function

Ok[φ](ξ1, . . . , ξn+ℓ−1) = Ok
[
φ(ξ1, . . . , ξk−1, ∗, ξk+ℓ, . . . , ξn+ℓ−1)

]
(ξk, . . . , ξk+ℓ−1) , (3.55)

in which∗ denotes the variable ofφ on which the operatorOk acts.

For instance, according to the above definition, we haveUN;1
[
φ
]
(ξ1, . . . , ξn) = UN

[
φ(∗, ξ2, . . . , ξn)

]
(ξ1).

Definition 3.12 If φ is a function in n≥ 1 variables, we denote∂p the differentiation with respect to the pth

variable. We also define an operatorΞ(p) : W∞
ℓ

(Rn)→W∞
ℓ

(Rn−1) by:

Ξ(p)[φ](ξ1, . . . , ξn) = φ(ξ1, . . . , ξp−1, ξ1, ξp, . . . , ξn−1) .

Proposition 3.13 Letφn be a function in n real variables such thatKκ[φn] ∈ W∞1 (Rn), cf. (3.28), for someκ ≥ 0
that can depend on n. Then, all expectation values appearingbelow are well-defined. Furthermore, the level1
Schwinger-Dyson equation takes the form:

−〈φ1
〉
L(λ)

N
+

1
2

〈
DN ◦U−1

N [φ1]
〉
L(λ)

N ⊗L
(λ)
N

+
(1− β)
N1+α

〈
∂1U−1

N [φ1]
〉
µ

(N)
eq
+

(1− β)
N1+α

〈
∂1U−1

N [φ1]
〉
L(λ)

N
= 0 . (3.56)
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There,DN corresponds to the non-commutative derivative

DN[φ](ξ, η) =

{ 2∑

p=1

βπωp cotanh
[
πωpNα(ξ − η)]

}
· (φ(ξ) − φ(η)

)
. (3.57)

In their turn, the Schwinger-Dyson equation at level n takesthe form:

〈
φn

〉
n⊗
L(λ)

N

=
1

N2+α

n∑

p=2

〈
Ξ(p) ◦ U−1

N;1[∂pφn]
〉

n−1⊗
L(λ)

N

+
1
2

〈
DN;1 ◦ U−1

N;1[φn]
〉

n+1⊗
L(λ)

N

+
(1− β)

N1+α

〈
∂1U−1

N;1[φn]
〉
µ

(N)
eq

n−1⊗
L(λ)

N

+
1

N2+α

n∑

p=2

〈
Ξ(p)◦U−1

N;1[∂pφn]
〉
µ

(N)
eq

n−2⊗
L(λ)

N

+
(1− β)

N1+α

〈
∂1U−1

N;1[φn]
〉

n⊗
L(λ)

N

.

(3.58)

Proof — Schwinger-Dyson equations express the invariance of an integral under change of variables, or equiv-
alently, integration by parts. Although the principle of derivation is well-known, we include the proof to be
self-contained, following the route of infinitesimal change of variables. Letφ(a), a = 1, . . . , n + 1 be a collection
of smooth and compactly supported functions. We introduce an ǫ-deformation of the probability densitypN given
in (2.47) by setting:

p
({ǫa}n1)
N

(
λ
)
=

1
ZN({ǫa})

N∏

a<b

{
sinh

[
πω1Nα(λa − λb)

]
sinh

[
πω2Nα(λa − λb)

]}β N∏

a=1

e−N1+αV({ǫa})(λa) , (3.59)

where:

V({ǫa})(λ) = V(λ) +
n+1∑

a=2

ǫa

(
φ(a)(ξ) −

∫
φ(a)(η) dµ(N)

eq (η)

)
. (3.60)

The new normalisation constantZN({ǫa}) in (3.59) is such thatp({ǫa})
N is a still a probability density onRN.

We then defineGt(µ) = µ + tφ(1)(µ). Since∂ξφ(1)(ξ) is bounded from below, fort small enoughGt is a
diffeomorphism ofR. Let us carry out the change of variablesλa = Gt(µa) and translate the fact thatp({ǫa})

N is a
probability measure. This yields

1 =
∫

RN

p({ǫa})
N (λ)

N∏

a=1

dλa =

∫

RN

p({ǫa})
N

(
Gt(λ1), . . . ,Gt(λN)

) N∏

a=1

G′t(λa) dλa . (3.61)

As a consequence, the change of variables yields, to the firstorder int:

1 =
∫

RN

dNλ

{
1+ t

N∑

a=1

∂λaφ
(1)(λa)

}{
1 − t N1+α

N∑

a=1

(
V({ǫa})

)′(λa)φ(1)(λa)

}

{
1 + t Nα

N∑

a<b

[ 2∑

p=1

βπωp cotanh[πωpNα(λa − λb)]
][
φ(1)(λa) − φ(1)(λb)

]}
· p({ǫa})

N (λ) + O(t2) . (3.62)

Identifying the terms linear int leads to:

−
〈
φ(1)∂1

[
V({ǫa})

]〉({ǫa})
L(λ)

N

+
1
2

〈
DN[φ(1)]

〉({ǫa})
L(λ)

N ⊗L(λ)
N

+
(1− β)

N1+α

〈
∂1φ

(1)〉({ǫa})
L(λ)

N

= 0 . (3.63)
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The superscript ({ǫa}) is there to emphasise that the averages should be taken in respect to the probability measure
associated with theǫ-deformed density (3.59). We then centralise the empiricalmeasures in respect toµ(N)

eq .

By using the integral equation satisfied by the density of theequilibrium measureV′(ξ) = SN
[
ρ

(N)
eq

]
(ξ) for

ξ ∈ [aN ; bN], we obtain:

−
〈
UN[φ(1)]

〉({ǫa})
L(λ)

N

−
n+1∑

p=2

ǫa

(〈
φ(1) ∂1φ

(p)〉
µ

(N)
eq
+

〈
φ(1) ∂1φ

(p)〉({ǫa})
L(λ)

N

)

+
1
2

〈
DN[φ(1)]

〉({ǫa})
L(λ)

N ⊗L
(λ)
N

+
(1− β)

N1+α

(〈
∂1φ

(1)〉
µ

(N)
eq
+

〈
∂1φ

(1)〉({ǫa})
L(λ)

N

)
= 0 . (3.64)

Sendingǫa’s to zero in this equation leads to the desired form of the Schwinger-Dyson equation at level 1. In order
to get the Schwinger-Dyson equation at leveln, we should compute theǫa derivatives of (3.64) evaluated atǫa ≡ 0.
However, first, it is convenient to multiply the above equation byZN({ǫa})/ZN[V] so as to avoid differentiating the
{ǫa}-dependent partition function entering in the definition ofthe densityp({ǫa})

N (λ). Doing so, however, produces
additional averages in front of the averages solely involving the non-stochastic measuresµeq:

−
〈
UN[φ(1)](ξ1)

n∏

a=2

φ(a)(ξa)
〉

n+1⊗
L(λ)

N

+
1

N2+α

n+1∑

p=2

〈
φ(1)(ξ1) ∂1φ

(p)(ξ1)
n+1∏

a=2
,p

φ(a)(ξ(p)
a )

〉
n⊗
L(λ)

N

+
1
2

〈
DN[φ(1)](ξ1, ξ2)

n+1∏

a=2

φ(a)(ξa+1)
〉

n+2⊗
L(λ)

N

+
(1− β)

N1+α

〈
∂1φ

(1)(ξ1)
〉
µ

(N)
eq
·
〈 n+1∏

a=2

φ(a)(ξa−1)
〉

n⊗
L(λ)

N

+
1

N2+α

n+1∑

p=2

〈
φ(1)(ξ1)∂1φ

(p)(ξ1)
〉
µ

(N)
eq

〈 n+1∏

a=2
,p

φ(a)(ξ(p)
a−1)

〉
n−1⊗
L(λ)

N

+
(1− β)

N1+α

〈
∂1φ

(1)(ξ1)
n+1∏

a=2

φ(a)(ξa)
〉

n+1⊗
L(λ)

N

= 0 .

(3.65)

To anyξ ∈ Rn−1, we associated the vectorξ(p) ∈ Rn by ξ(p) = (ξ1, . . . , ξp−1, ξ1, ξp, . . . , ξn−1), whose components
arise in products of the type

∏n+1
a=2
,p

φ(a)(ξ(p)
a ). The representation

UN[φ](ξ) = φ(ξ)V′(ξ) +

bN∫

aN

{ 2∑

p=1

βπωp cotanh
[
πωpNα(ξ − η)]

}(
φ(η) − φ(ξ)

)
ρ

(N)
eq (η) dη (3.66)

readily shows that the operatorsUN andDN are both continuous as operatorsW∞1 (K)→W∞0 (K) for any compact
K ⊆ R. This continuity along with the finiteness of the measurePN is then enough to conclude, by density
of C∞c (R) ⊗ · · · ⊗ C∞c (R) in C∞c (Rn), that equation (3.58) holds for all functionsφn ∈ C∞c (Rn). Eventually, the
assumption of compact support can be dropped. Indeed, givenanyφn ∈ C∞c (Rn), the Schwinger-Dyson equation
at level 1 can be recast as

M
(n)
N;κ′

[ ∫
Kκ′

[UN;1[φn]
] ⊗n

a=1 dL(λ)
N

]
=

1

N2+α

n∑

p=2

M
(n−1)
N;κ′

[ ∫
Ξ(p)

[
Kκ′ [∂pφn] dL(λ)

N ⊗
( ⊗n−1

a=2 dL(λ)
N

)]

+
1
2
M

(n+1)
N;κ′

[ ∫
Kκ′

[DN;1[φn]
] ⊗n+1

a=2 dL(λ)
N

]
+

(1− β)
N1+α

M
(n)
N;κ′

[ ∫
Kκ′ [∂1φn] dL(λ)

N ⊗
( ⊗n

a=2 dL(λ)
N

)]
. (3.67)

36



with the measuresM(n)
N;κ introduced in Definition 3.8. It is readily seen due to the sub-exponentiality hypothesis

(2.14) that given 0< κ < κ′ andφn such thatKκ[φn] ∈W∞1 (Rn), we have:

||Kκ′
[UN;1[φn]

]||W∞0 (Rn) ≤ C||Kκ[φn]] ||W∞0 (Rn) (3.68)

and likewise forDN;1. Thus, sinceKκ[φn] ∈ W∞1 (Rn) can be approached inW∞1 (Rn) norm by functionsKκ[ψn]

with ψn ∈ C∞c (Rn), it remains to invoke the finiteness of the measuresM(n)
N;κ′ so as to get (3.58) in full generality.

It follows from the form taken by the Schwinger-Dyson equations that, if we want to solve these equations
perturbatively we should, in the very first place, constructthe inverse to the operatorUN. This should be done is
such a way that one can control explicitly or at least in a manageable way, its dependence onN and its possible
singularities. Indeed, the building blocks ofU−1

N exhibit, for instance, square root like singularities at the endpoints
of the support [aN ; bN] of the equilibrium measure. In § 8.1, we shall construct a regular representation forU−1

N .
By regularity, we mean that the various square root singularities present in its building blocks eventually cancel
out, hence showing thatU−1

N [H] is smooth as long asH is. Then, in § 8.2, we shall provide explicit,N-dependent,
bounds on theW∞

ℓ
(R) norms ofU−1

N [H]. These will play a crucial role in the large-N analysis of the Schwinger-
Dyson equations.

3.3 Asymptotic analysis of the Schwinger-Dyson equations

The asymptotic analysis of the Schwinger-Dyson equation builds heavily on a family ofN-weighted norms that
we introduce below.

Definition 3.14 For anyφ ∈W∞n (Rp), the N-weighted L∞ norm of orderℓ is defined by

N (ℓ)
N [φ] =

ℓ∑

k=0

||φ||W∞k (Rp)

Nkα
. (3.69)

This notation does not specify the number of variables ofφ since this is usually clear from the context.

The weighted norm satisfies the obvious bound:

N (ℓ)
N [φ] ≤ ℓ · ||φ||W∞

ℓ
(Rp) , (3.70)

and, respectively, the operators of differentiation and "repetition of a variable"Ξ(p) are bounded as :

N (ℓ)
N [∂pφ] ≤ NαN (ℓ+1)

N [φ] , N (ℓ)
N

[
Ξ(p)[φ]

] ≤ N (ℓ)
N [φ] . (3.71)

Also, it is important to introduce a specific function that allows one to control the dependence on the potential in
the various bounds that issue from the Schwinger-Dyson equations.

Definition 3.15 The orderℓ estimate of the potential V is defined as

nℓ[V] =
max

{ ℓ∏
a=1
||Kκ[V′]||W∞ka

(Rn) :
ℓ∑

a=1
ka = 2ℓ + 1

}

{
min

(
1 , inf [a ;b] |V′′(ξ)| , |V′(b+ ǫ) − V′(b)| , |V′(a− ǫ) − V′(a)|

)}ℓ+1
, (3.72)

whereǫ > 0 is small enough and fixed once for all, whileκ > 0. We also remind thatKκ is the exponential
regularisation of Definition 3.8.
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Sinceκ only plays a minor role due to the sub-exponentiality hypothesis (2.14) in the estimates provided by
nℓ[V], we chose to keep its dependence implicit. Note also that the constantsnℓ[V] satisfy

nℓ[V] · nℓ′ [V] ≤ nℓ+ℓ′+1[V] . (3.73)

Lemma 3.16 Let κ > 0 . There exist constants Cn;ℓ, C̃n;ℓ > 0 such that, for anyφ satisfying

• Kκ/ℓ[φ] ∈W∞2ℓ+1(Rn)

• ξ 7→ φ(ξ, ξ2, . . . , ξn) ∈ Xs([aN ; bN]), 0 < s< 1/2, that is to say10

∫

R+iǫ

dµ
2iπ

χ11(µ)

bN∫

aN

φ(ξ, ξ2, . . . , ξn) eiµNα(ξ−bN)dξ = 0 almost everywhere in (ξ2, . . . , ξn) ∈ Rn−1 (3.74)

we have the bounds:

N (ℓ)
N

[
Kκ

[U−1
N;1[φ]

]] ≤ Cn;ℓ · nℓ[V] · Nα · ( ln N
)2ℓ+1 · N (2ℓ+1)

N

[Kκ[φ]
]
, (3.75)

N (ℓ)
N

[
Kκ

[DN;1[φ]
]] ≤ C̃n;ℓ · (ln N)2 · N (ℓ+1)

N

[Kκ[φ]
]
. (3.76)

Note that the above lemma implies, in particular, a bound on the weighted norm ofDN;1 ◦ U−1
N;1:

N (ℓ)
N

[
Kκ

[DN;1 ◦ U−1
N;1[φ]

]] ≤ C′n,ℓ · nℓ+1[V] · Nα · ( ln N
)2ℓ+5 · N (2ℓ+3)

N

[Kκ[φ]
]
, (3.77)

Proof — We first focus on the norm ofKκ
[DN;1[φ]

]
. In order to obtain (3.76), we bound

Okn+1(ξn+1) =
n+1∏

a=1

∂
ka
ξa
Kκ

[DN;1[φ]
]
(ξ1, . . . , ξn+1) with

n+1∑

a=1

ka ≤ ℓ ka ∈ N (3.78)

by different means in the two cases of interest,viz. Nα|ξ1 − ξ2| ≥ (ln N)2 andNα|ξ1 − ξ2| < (ln N)2.
We first treat the caseNα|ξ1 − ξ2| ≥ (ln N)2. Observe that for|Nαξ| ≥ (ln N)2, we have:

∀ℓ ≥ 0,
∣∣∣∂ℓξ

{
S(Nαξ)

}∣∣∣ ≤ δℓ,0 c′0 + (1− δℓ,0) c′ℓ Nℓαe−c′′ ln2 N ≤ cℓ
(
ln N

)2 (3.79)

for some constantscℓ, whereS is defined in (2.42) andδℓ,0 being the Kronecker symbol. Therefore:

∣∣∣Okn+1(ξn+1)
∣∣∣ ≤

∑

pa+ℓa=ka
a=1,2

2∏

a=1

(
ka

pa

)
·
∣∣∣∣∂p1
ξ1
∂

p2
ξ2

[
φ{ka}(ξ1, ξ3, . . . , ξn+1) − φ{ka}(ξ2, ξ3, . . . , ξn+1)

]∣∣∣∣ · cℓ1+ℓ2 · (ln N)2

≤ C · N[max(k1,k2)]α · (ln N)2
max(k1,k2)∑

s=0

N−sα max
η∈{ξ1,ξ2}

∣∣∣∂s
1φ{ka}(η, ξ3, . . . , ξn+1)

∣∣∣

≤ C · Nℓα · (ln N)2 · N (ℓ)
N

[Kκ[φ]
]
, (3.80)

10It is straightforward to check by carrying out contour deformations that, for functionsψ decaying sufficiently fast at infinity in respect
to its first variable, the condition (3.74) is equivalent to belonging toXs(R).
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where, in the intermediate calculations, we have used:

φ{ka}(ξ1, ξ2, . . . , ξn) =
n+1∏

a=3

∂
ka
ξa

{
Kκ[φ](ξ1, ξ2, . . . , ξn)

}
. (3.81)

We now turn to the case whenNα|ξ1− ξ2| < (ln N)2. Observe that for anyℓ ∈ N and|Nαξ| ≤ (ln N)2, the function
S̃, with S̃(x) = xS(x), satisfies

∀ℓ ≥ 0,
∣∣∣∂ℓξ

{
S̃(Nαξ)

}∣∣∣ ≤ δℓ,0
∣∣∣Nαξ

[
S(Nαξ)− 2β

Nαξ

]
+2β

∣∣∣ + (1−δℓ,0) Nℓα||S̃||W∞
ℓ

(R) ≤ cℓN
αℓ( ln N

)2 (3.82)

for some constantscℓ. Starting from the integral representation

Okn+1(xn+1) =

1∫

0

dt
Nα

∂
k1
ξ1
∂

k2
ξ2

{
∂1φ{ka}(ξ1 + t(ξ2 − ξ1), ξ3, . . . , ξn+1) · S̃(

Nα(ξ1 − ξ2)
)}
, (3.83)

we obtain:

∣∣∣Okn+1(xn+1)
∣∣∣ ≤

∑

pa+ℓa=ka
a=1,2

(
k1
p1

)(
k2
p2

)
cℓ1+ℓ2

Nα(1−ℓ1−ℓ2)

1∫

0

(1− t)p1tp2(∂p1+p2+1
1 φ{ka})

(
ξ1 + t(ξ2 − ξ1), ξ3, . . . , ξn+1

) · (ln N)2 · dt

≤ CN(k1+k2)α(ln N)2
k1+k2+1∑

s=1

N−sα max
η∈[ξ1 ;ξ2]

∣∣∣(∂s
1φ{ka})(η, ξ3, . . . , ξn+1)

∣∣∣

≤ CNℓα(ln N)2 · N (ℓ+1)
N

[Kκ[φ]
]
. (3.84)

Putting together (3.80) and (3.84) and taking the supremum over {ka} such that
∑

a ka ≤ ℓ, we deduce the desired
bound (3.76) for the weighted norm ofDN.

The bounds for the weighted norm ofKκ
[U−1

N;1[φ]
]

are obtained quite straightforwardly by using theW∞
ℓ

(R)
bounds onKκ[ψ], given thatKκ[ψ] ∈W∞2ℓ+1(R), as derived in Proposition 8.2.

With the bounds on the action of the operatorsU−1
N;1 andDN;1, we can improve thea priori bounds on the

centred expectation values of the correlators through a bootstrap procedure.

Proposition 3.17 Let α < 1/4 and pickκ > 0. There exist an increasing sequence of integers(mn)n, positive
constants(Cn)n, such that, for any n≥ 1 and φ ∈ Xs([aN ; bN]) in the sense of(3.74) and satisfyingKκ[φ] ∈
W∞mn

(Rn), cf. (3.28), we have:
∣∣∣∣
〈
φ
〉⊗n

1L
(λ)
N

∣∣∣∣ ≤ Cn · nmn[V] · N (mn)
N

[Kκ[φ]
]
N(α−1)n . (3.85)

The whole dependence of the upper bound on the potential V is contained in the constantnℓn[V], and we can take:

mn = ℓ
(qn)
n , qn = 1+

⌊ n
1− 4α

⌋
, ℓ

(q)
n = 2q(n+ q) + 3(2q − 1) . (3.86)

Proof — The proof utilises a bootstrap-based improvement of thea priori bounds given in Corollary 3.10. Namely,
assume the existence of sequencesηN → 0, κN ∈ [0 ; 1], and constantsCn > 0 independent ofN, and integersℓn

increasing withn, such that, for anyφ such thatKκ[φ] ∈W∞
ℓn

(Rn):
∣∣∣∣
〈
φ
〉⊗n

1L
(λ)
N

∣∣∣∣ ≤ Cn · nℓn[V] · N (ℓn)
N

[Kκ[φ]
] ·

(
ηn

N · κN + Nn(α−1)
)
. (3.87)
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We will establish that there exists a new constantsC′n > 0 and integersℓ′n = 2ℓn+1 + 3 such that, forKκ[φ] ∈
W∞
ℓ′n

(Rn):

∣∣∣∣
〈
φ
〉⊗n

1L
(λ)
N

∣∣∣∣ ≤ Cn · nℓ′n[V] · N (ℓ′n)
N

[Kκ[φ]
] ·

(
ηn

N · κ′N + Nn(α−1)
)
, (3.88)

where

κ
′
N = κN

(
ln N

)ℓ′n+2 max
(
NαηN ; Nα−2η−2

N ; Nα−1η−1
N

)
. (3.89)

Before justifying (3.89), let us examine its consequences.The bootstrap approach can be settled if

κ
′
N = N−γκκN (3.90)

Assuming momentarily thatηN = N−γ, when 0< α < 1, the range ofα andγ ensuring (3.90) is:

α < γ < 1− α what implies α < 1/2 . (3.91)

The rateγκ at whichκ′N/κN goes to zero increases whenγ runs fromα to 1/2, is maximal and equal to 1/2 − α
whenγ = 1/2, and then decreases whenγ increases between 1/2 and 1− α.

Thea priori estimate proved in Corollary 3.10 gives:

∣∣∣∣
〈
φ
〉⊗n

1L
(λ)
N

∣∣∣∣ ≤ C′n · ||Kκ[φ]||
1
2
W∞n (Rn) · ||Kκ[φ]||

1
2
W∞0 (Rn) · N

(α−1)n/2 ≤ C′n · N (n)
N

[Kκ[φ]
]
N(α−1/2)n . (3.92)

Therefore, the assumption (3.88) is satisfied withηN = N−γ for γ = 1/2−α, and the orderℓn = n for the weighted
norm. The bootstrap condition (3.91) then impliesα < 1/4, and in this case, we find:

κ
′
N ≤ κN (ln N)ℓ

′
n N−

(1−4α)
2 . (3.93)

Now, we can iterate the bootstrap until the first term in (3.88) becomes less or equal than the second term
N(α−1)n. This is obtained in a number of stepsqn determined by the equationN−(1/2−α)nN−(1−4α)qn/2 ≪ N(α−1)n,
therefore:

qn = 1+
⌊ n
1− 4α

⌋
. (3.94)

The order of the weighted norm appearing in the bound of then point correlations at stepq of the recursion
satisfiesℓ(q)

n = 2ℓ(q−1)
n+1 + 3, with initial conditionℓ(0)

n = n. The solution is

ℓ
(q)
n = 2q(n+ q) + 3(2q − 1) . (3.95)

Therefore, we get at the end of the recursion:
∣∣∣∣
〈
φ
〉⊗n

1L
(λ)
N

∣∣∣∣ ≤ Cn · N(α−1)n · N (mn)
N

[Kκ[φ]
]
, mn = ℓ

(qn)
n . (3.96)

We shall now justify the claim (3.89). Starting from (3.87),we bound
〈
φ
〉⊗n

1L
(λ)
N

given by the Schwinger-

Dyson equations of Proposition 3.13, using the norms of the operatorsUN;1 andDN obtained in Lemma 3.16. We
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stress that it is indeed licit to apply the bound (3.75) forU−1
N for, if φ satisfies the condition (3.74), then so do the

functions∂pφ with p = 2, . . . , n. Respecting the order of appearance of terms in (3.58), we get11:

∣∣∣∣
〈
φ
〉⊗n

1L
(λ)
N

∣∣∣∣ ≤ Cn2
ℓn−1

[V]
N2α

N2+α
(ln N)2ℓn−1+1N (2ℓn−1+2)

N

[Kκ[φ]
] ·

(
ηn−1

N · κN + N(n−1)(α−1)
)

+ Cnℓn+1[V]nℓn+1+1[V]Nα(ln N)2ℓn+1+5 · N (2ℓn+1+3)
N

[Kκ[φ]
] ·

(
ηn+1

N · κN + N(n+1)(α−1)
)

+ C nℓn−1[V]nℓn−1+1[V]
N2α

N1+α
(ln N)2ℓn−1+3 · N (2ℓn−1+3)

N

[Kκ[φ]
] ·

(
ηn−1

N · κN + N(n−1)(α−1)
)

+ C(nℓn−2[V])2 N2α

N2+α
(ln N)2ℓn−2+2 · N (2ℓn−2+1)

N

[Kκ[φ]
] ·

(
ηn−2

N · κN + N(n−2)(α−1)
)

+ C nℓn[V]nℓn+1[V]
N2α

N1+α
(ln N)2ℓn−1+3 · N (2ℓn+3)

N

[Kκ[φ]
] ·

(
ηn

N · κN + Nn(α−1)
)
, (3.97)

for some constantC > 0 depending onn andκ only. Note that terms integrated against the probability measure
µ

(N)
eq have been bounded by means of sup norms. The maximal powers ofN are exactly as in (3.89) – since we

assumeηN → 0, the powers arising in the first line are negligible compared to those in the fourth line. We can
then use (3.73) to bound the products ofnℓ[V]’s in terms ofnℓ′n[V] for a choice:

ℓ′n ≥ max
(
2ℓn−1 + 2, 2ℓn+1 + 3, 2ℓn−1 + 3, 2ℓn−2 + 2, 2ℓn + 3

)
. (3.98)

Since (ℓn)n is increasing, we can takeℓ′n = 2ℓn+1 + 3, and we indeed find (3.88) forN large enough. Note that,
the new sequence (ℓ′n)n is, again, increasing. Then, the maximal power of lnN occurs in the second line, and is
(ln N)2ℓn+1+5 = (ln N)ℓ

′
n+2. So, we have fully justified (3.88).

The improved estimates on the multi-point correlators are almost all that is needed for obtaining the largeN
asymptotic expansion of general one-point functions up to o(N−(2+α)) corrections. Prior to deriving such results,
we still need to introduce an operator̃XN mapping any functionW∞p (O), O a bounded open subset inRn, onto a
function belonging toXs([aN ; bN]) in the sense of (3.74).

Definition 3.18 LetXN be the linear form on W∞1 ([aN ; bN]):

XN[φ] =
iNα

χ11;+(0)

∫

R+iǫ

dµ
2iπ

χ11(µ)

bN∫

aN

eiµNα(ξ−bN) φ(ξ) dξ . (3.99)

Then, we denote bỹXN the operator

X̃N[φ](ξ) = φ(ξ) − XN[φ] (3.100)

and also define:

Ũ−1
N = U−1

N ◦ X̃N, W̃N =WN ◦ X̃N . (3.101)

It follows readily from the identity
∫

R+iǫ

χ11(µ) · 1− e−iµxN

µ
· dµ

2iπ
= χ11;+(0) with xN = Nα(bN − aN) , (3.102)

11The third and fifth line are absent in the caseβ = 1, and it gives a larger range ofα > 0 for which ηN can be chosen so that the
bootstrap works. But, eventually, this does not lead to a stronger bound because we can only initialize the bootstrap with the concentration
bound (3.10) i.e.ηN = N−(1/2−α).
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that X̃N[φ] ∈ Xs([aN ; bN]) in the sense of (3.74). The proof of (3.102) follows from the use of the boundary
conditions e−iλNα(bN−aN)χ11;+(λ) = χ11;−(λ), λ ∈ R the fact thatχ11 ∈ O(C \ R) and thatχ11(λ) = O

(|λ|−1/2) at
infinity.

Likewise, by using the bounds (7.23) obtained in Corollary 7.3 it is readily seen that

N (p)
N

[
Kκ

[X̃N[φ]
]] ≤ C · N (p)

N

[Kκ[φ]
]
. (3.103)

Proposition 3.19 Given anyκ > 0, and anyφ satisfyingKκ[φ] ∈W∞
ℓ

(R), we have:

〈
φ
〉
L(λ)

N
=

(1− β)

N1+α
·
〈
∂1Ũ−1

N
[
φ
]〉
µ

(N)
eq
+

1

2N2+α

〈
Ξ(2)

[
∂2Ũ−1

N;1

[
DN

[Ũ−1
N

[
φ
]]]] 〉

µ
(N)
eq

+
(1− β)2

2N2(1+α)

〈
∂1∂2Ũ−1

N;1Ũ−1
N;2

[
DN

[Ũ−1
N

[
φ
]]] 〉

⊗2
µ

(N)
eq

+
(1− β)2

N2(1+α)

〈
∂1Ũ−1

N
[
∂1Ũ−1

N [φ]
]〉
µ

(N)
eq
+

δN[φ,V]
N2+α

. (3.104)

The remainderδN[φ,V] is bounded as:
∣∣∣δN[φ,V]

∣∣∣ ≤ C · nℓ[V] · N (ℓ′)
N

[Kκ[φ]
] · N6α−1 (ln N)ℓ

′′
(3.105)

for a constant C> 0 that does not dependent onφ nor on the potential V, and the integers:

ℓ = max(3m3 + 5, 8m2 + 18), ℓ′ = max(4m3 + 9, 14m2 + 37), ℓ′′ = max(14m2 + 17, 6m3 + 16)

given in terms of the sequence(mn)n introduced in(3.86).

Proof — The strategy is to exploit the Schwinger-Dyson equation andget rid of expectation values of functions
integrated against the random measureL(λ)

N . This can be done by replacing them approximately by integration
against a deterministic measure of a transformed function,up to corrections that we can estimate.

Letφ be a sufficiently regular function of one variable. Since the signed measureL(λ)
N has zero mass, it follows

that
〈
φ
〉
L(λ)

N
=

〈X̃N[φ]
〉
L(λ)

N
. We can use the Schwinger Dyson equation at level 1 (3.56) forthe functionX̃N[φ],

and apply the sharp bounds of Proposition 3.17 to derive:

∣∣∣∣
〈
φ
〉
L(λ)

N
− 1− β

N1+α

〈
∂1U−1

N
[X̃N[φ]

]〉
µ

(N)
eq

∣∣∣∣ ≤ C · n2m2+2[V] · N (2m2+3)
N

[Kκ[φ]
] · N3α−2(ln N)2m2+5 . (3.106)

Above, we have stressed explicitly the composition of the operatorU−1
N with X̃N. This bound ensures that

∣∣∣∣
1− β
N1+α

〈
∂1Ũ−1

N [φ]
〉
L(λ)

N
− (1− β)2

N2(1+α)

〈
∂1Ũ−1

N
[
∂1Ũ−1

N [φ]
]〉
µ

(N)
eq

∣∣∣∣ ≤ C′ ·n4m2+7[V] ·N (4m2+9)
N

[Kκ[φ]
]·N4α−3(ln N)6m2+14 .

(3.107)

where we remind that̃U−1
N = U−1

N ◦ X̃N. Equation (3.107) can be used for a substitution of the term proportional
to (1− β) in the Schwinger-Dyson equation at level 1 (3.56), and we get:

∣∣∣∣
〈
φ
〉
L(λ)

N
− 1− β

N1+α

〈
∂1Ũ−1

N [φ]
〉
µ

(N)
eq
− (1− β)2

N2(1+α)

〈
∂1Ũ−1

N
[
∂1Ũ−1

N [φ]
]〉
µ

(N)
eq

− 1
2
〈DN ◦ Ũ−1

N [φ]
〉⊗2L(λ)

N

∣∣∣∣ ≤ C′ · n4m2+7[V] · N (4m2+9)
N

[Kκ[φ]
] · N4α−3(ln N)6m2+14 . (3.108)
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In order to gain a better control on the term involvingDN – which is a two-point correlator – we need to study the
Schwinger-Dyson equation at leveln = 2 (3.58). Given a sufficiently regular functionψ2 in two variables, using
the sharp bounds of Proposition 3.17, we find:

∣∣∣∣∣
〈
ψ2

〉⊗2L(λ)
N
− 1

N2+α

〈
Ξ(2)

[
∂2Ũ−1

N;1
[
ψ2

]]〉
µ

(N)
eq
− 1− β

N1+α

〈(
∂1Ũ−1

N;1[ψ2]
)〉
µ

(N)
eq

⊗
L(λ)

N

∣∣∣∣∣
≤ C · n2m3+2[V] · N (2m3+3)

N

[Kκ[ψ2]
] · N4α−3(ln N)2m3+5 . (3.109)

We apply this estimate to the particular choice:

ψ2(ξ1, ξ2) = DN
[Ũ−1

N [φ]
]
(ξ1, ξ2) . (3.110)

Thanks to the bound (3.77) on the norm ofDN◦U−1
N and the sub-multiplicativity (3.73) of thenℓ[V]’s, we deduce:

∣∣∣∣∣
〈
ψ2

〉⊗2L(λ)
N
− 1

N2+α

〈
Ξ(2)

[
∂2Ũ−1

N;1
[
ψ2

]]〉
µ

(N)
eq
− 1− β

N1+α

〈(
∂1Ũ−1

N;1[ψ2]
)〉
µ

(N)
eq

⊗
L(λ)

N

∣∣∣∣∣
≤ C · n4m3+7[V] · N (4m3+9)

N

[Kκ[φ]
] · N5α−3 (ln N)6m3+16 . (3.111)

This can be used for a substitution of
〈
ψ2

〉
=

〈DN ◦ U−1
N

〉
in the left-hand side of (3.108). Before performing

this substitution, we still need to control the term in (3.111) which is proportional to (1− β). This is a one-point
correlator for the function:

ψ1(ξ) =
1− β
N1+α

∫
∂ηŨ−1

N;1
[
ψ2(∗, ξ)](η) dµ(N)

eq (η) . (3.112)

Applying the one-point estimate (3.106) to the functionψ1, along with the bounds (3.75)-(3.76) for the norms of
U−1

N andDN, we find:
∣∣∣∣
〈
ψ1

〉
L(λ)

N
− 1− β

N1+α

〈
∂1Ũ−1

N [ψ1]
〉
µ

(N)
eq

∣∣∣∣ ≤ C · n8m2+18[V] · N (8m2+21)
N

[Kκ[φ]
] · N5α−3(ln N)14m2+37 . (3.113)

This leads to:
∣∣∣∣∣
〈
ψ2

〉⊗2L(λ)
N
− 1

N2+α

〈
Ξ(2) ◦ ∂2Ũ−1

N;1[ψ2]
〉
µ

(N)
eq
− (1− β)2

N2(1+α)

〈
∂1Ũ−1

N;1∂2
[Ũ−1

N;2[ψ2]
]〉
µ

(N)
eq

⊗
µ

(N)
eq

∣∣∣∣∣
≤ C · n8m2+18[V] · N (8m3+21)

N

[Kκ[φ]
] · N5α−3(ln N)14m2+37 . (3.114)

The result follows by substituting this inequality in (3.108).

3.4 The large-N asymptotic expansion ofln ZN[V] up to o(1)

We can use the large-N analysis of the Schwinger-Dyson equations to establish theexistence of an asymptotic
expansion up to o(1) of lnZN[V]. The coefficients in this asymptotic expansion are single and double integrals
whose integrand depends onN. We will work out the large-N asymptotic expansion of these coefficients in
Sections 7-9. Prior to writing down this large-N asymptotic expansion, we need to introduce several single and
double integrals that will enter in the description of the result. We also remind the notatioñWN = WN ◦ X̃N

whereWN is the inverse ofSN (cf. (2.42)), studied in Section 5.4. GivenH,G sufficiently regular on [aN ; bN],
we define the one-dimensional integrals:

Is
[
H,G

]
=

bN∫

aN

H(ξ) · WN[G](ξ) · dξ , I
(1)
s;β

[
H,G

]
=

bN∫

aN

WN[G′](ξ) ∂ξ

{ W̃N[H](ξ)
WN[G′](ξ)

}
dξ (3.115)
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and

I
(2)
s;β

[
H,G

]
=

bN∫

aN

WN[G′](ξ) ∂ξ

{W̃N

[
∂1

( W̃N[H]
WN[G′]

)]
(ξ)

WN[G′](ξ)

}
dξ . (3.116)

We also define the two-dimensional integrals:

Id
[
H,G

]
=

bN∫

aN

W̃N

[
∂ξ

{
S
(
Nα(ξ − ∗))

( W̃N[H](ξ)
WN[G′](ξ)

− W̃N[H](∗)
WN[G′](∗)

)}]
(ξ) dξ (3.117)

and

Id;β
[
H,G

]
=

1
2

bN∫

aN

dξdηWN[G′](ξ) ·WN[G′](η)

×∂ξ∂η


1
WN[G′](ξ) · WN[G′](η)

W̃N;1 ◦ W̃N;2

[
S
(
Nα(∗1 − ∗2)

) ·
{ W̃N[H](∗1)
WN[G′](∗1)

− W̃N[H](∗2)
WN[G′](∗2)

}]
(ξ, η)

 .

(3.118)

Above,∗ refers to the variables on which the operators act,∗1, viz. ∗2, to the first, resp. second, running variable
on which the product of operatorsWN;1 ·WN;2 acts. The subscriptβ reminds that the terms concerned are absent
in the caseβ = 1.

Proposition 3.20 Let VG;N(λ) = gNλ
2 + tNλ be the unique Gaussian potential associated with an equilibrium

measure supported on[aN ; bN] as given in Lemma D.1 and assume that0 < α < 1/6. Then there existsℓ ∈ N
such that one has the large-N asymptotic expansion

ln
( ZN[V]
ZN

[
VG;N

]
)
= −N2+α

1∫

0

Is
[
∂tVt,V

′
t
] · dt − N(1− β)

1∫

0

I
(1)
s;β

[
∂tVt,Vt

] · dt − 1
2

1∫

0

Id
[
∂tVt,Vt

] · dt

− (1− β)2

Nα

1∫

0

{
I

(2)
s;β

[
∂tVt,Vt

]
+ Id;β

[
∂tVt,Vt

]} · dt + O
(
N6α−1 (ln N)2ℓ) . (3.119)

Proof — The result follows from (2.50). Indeed, the remarks above (2.54) allow to identify the equilibrium
measuresµ(N)

eq;Vt
= (1− t)µ(N)

eq;VG;N
+ tµ(N)

eq;V for all t ∈ [0, 1]. One can then use Proposition 3.19 to expand〈∂tVt〉Vt

L(λ)
N

,

along with the representation forU−1
N on the support of the equilibrium measure which reads

Ũ−1
N [H](ξ) =

W̃N[H](ξ)
WN[V′](ξ)

. (3.120)

Taking these data into account, it solely remains to write down explicitly the one and two-dimensional integrals
arising in Proposition 3.19.

Note that the factorsI(2)
s;β

[
∂tVt,Vt

]
andId;β

[
∂tVt,Vt

]
are preceded by the negative power ofN−α. Still, it does

not mean that these do not contribute to the leading contribution, i.e. up to o(1), to the asymptotics of the partition
function. Indeed, the presence of derivatives in their associated integrands generates additional powers ofNα.
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4 The Riemann–Hilbert approach to the inversion ofSN

In the present section we focus on a class of singular integral equation driven by a one parameterγ-regularisation
of the operatorSN. More precisely, we introduce the singular integral operator SN;γ

SN;γ[φ](ξ) =

bN
?

aN

Sγ

(
Nα(ξ − η))φ(η) · dη where


Sγ(ξ) = S(ξ) · 1[−γxN ;γxN]

xN = Nα · (bN − aN)
. (4.1)

This operator is a regularisation of the operatorSN in the sense that, formally,SN;∞ = SN. This regularisation
enables to set a well defined associated Riemann–Hilbert problem, and is such that, once all calculations have
been done and the inverse ofSN;γ constructed, we can take sendγ → +∞ at the level of the obtained answer. It is
then not a problem to check that this limiting operator does indeed provides one with the inverse ofSN.

We start this analysis by, first, recasting the singular integral equation into a form where the variables have
been re-scaled. Then, we put the problem of inverting the re-scaled operator associated withSN;γ with a vector
valued Riemann-Hilbert problem. The resolution of this vector problem demands the resolution of a 2× 2 matrix
Riemann–Hilbert problem for an auxiliary matrixχ. We construct the solution to this problem, forN-large enough,
in § 4.4 and then exhibit some of the overall properties of thesolutionχ in § 4.5. We shall build on these results
so as to invertSN;γ and thenSN in subsequent sections.

4.1 A re-parametrisation of the problem: a vector Riemann–Hilbert problem

In the handlings that will follow, it will appear more convenient to consider a properly rescaled problem. Namely
define

ϕ(ξ) = φ
(
(ξ + NαaN)N−α

)
and h(ξ) =

Nα

2iπβ
H

(
(ξ + NαaN)N−α

)
. (4.2)

It is then clear that solutions toSN;γ
[
φ
]
(ξ) = H(ξ) are in a one-to-one correspondence with those of

SN;γ[ϕ](ξ) =

xN
?

0

Sγ(ξ − η)ϕ(η) · dη
2iπβ

= h(ξ) . (4.3)

For anyN andγ ≥ 0, the operatorSN;γ is continuous as an operator

SN;γ : Hs
(
[0 ; xN]

) −→ Hs
(
[−γxN ; γxN]

) ⊆ Hs
(
R
)
. (4.4)

Indeed, this continuity follows readily from the boundedness of the Fourier transformF [Sγ] of the operator’s
integral kernel,c.f. Lemma 4.2 to come.

First, we shall start by focusing on spaces with a negative index s < 0 and going to construct a class of its
inverses

S −1
N;γ : Hs

(
[−γxN ; γxN]

) −→ Hs
(
[0 ; xN]

)
. (4.5)

What we mean here is that,per se, the operator is non-invertible in that, as will be inferredfrom our analysis, for
−k < s< −(k − 1)

dim kerSN;γ = k . (4.6)
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In fact, the analysis that will follow, provides one with a thorough characterisation of its kernel. Furthermore,
when restricting the operatorSN;γ to more regular spaces likeHs

(
[0 ; xN]

)
with s > 0, we get that the image

SN;γ
[
Hs

(
[0 ; xN]

)]
is a closed, explicitly characterisable subspace ofHs

(
[−γxN ; (γ + 1)xN]

)
, and that the operator

becomes continuously invertible on it.
In the following, we shall invert the operatorSN;γ by means of the resolution of an auxiliary 2× 2 Riemann–

Hilbert problem and then by implementing a Wiener–Hopf factorisation. The analysis is inspired by the paper of
Novokshenov [73] where a correspondence has been built between singular integral equations on a finite segment
subordinate to integral kernels depending on the difference on the one hand and Riemann–Hilbert problems on the
other one. The large parameter analysis is, however, new.

In fact the very setting of the Riemann–Hilbert problem-based analysis enables one to naturally construct
the pseudo-inverse ofSN;γ - i.e. modulo elements of ker

[
SN;γ

]
– when the operator is understood to act onHs

spaces withnegativeindex s < 0. The inversion ofSN;γ understood as an operator onHs spaces withpositive
index s ≥ 0 goes, however, beyond, the "crude" construction issuing from the Riemann–Hilbert problem-based
analysis. It is, in particular, based on an explicit characterisation, through linear constraints, of the image space
SN;γ

[
Hs([0 ; xN]])

]
, s ≥ 0. For 0< s < 1/2, which is the case of interest for us, we show thatSN;γ

[
Hs([0 ; xN])

]

coincides withXs([−γxN ; (γ + 1)xN]).

Lemma 4.1 Let h∈ Hs
(
[0 ; xN]

)
, s< 0. For any solutionϕ ∈ Hs

(
[0 ; xN]

)
of (4.3), there exists a two-dimensional

vector functionΦ ∈ O(C \ R) such thatϕ = F −1[(Φ1)+] andΦ is a solution to the boundary value problem:

• (
Φa

)
± ∈ F

[
Hs

(
R
±)] for a ∈ {1, 2}, and there exists C> 0 such that:

∀µ > 0, ∀a ∈ {1, 2},
∫

R

∣∣∣Φa(λ ± iµ)
∣∣∣2 · (1+ |λ| + |µ|)2s · dλ < C . (4.7)

• We have the jump equation forΦ+(λ) = Gχ(λ) · Φ−(λ) + H(λ) for λ ∈ R, with:

Gχ(λ) =

(
eiλxN 0

1
2iπβ · F

[
Sγ

]
(λ) −e−iλxN

)
and H(λ) =

(
0

−e−iλxNF [
he

]
(λ)

)
. (4.8)

Conversely, for any solutionΦ ∈ O(C \ R) of the above boundary value problem,ϕ = F −1[ (
Φ1

)
+

]
is a solution

of (4.3).

We do remind that± denotes the upper/lower boundary values onR with the latter being oriented from−∞
to +∞ ; he denotes any extension ofh to Hs(R) ; F [

Sγ

]
(λ) refers to the Fourier transform of the principal value

distribution induced bySγ:

F [
Sγ

]
(λ) =

γxN
?

−γxN

S(ξ) eiλξdξ . (4.9)

Proof — Assume that one is given a solutionϕ in Hs
(
[0 ; xN]

)
to (4.3). Then, letψL, ψR be two functions such that

supp(ψR) = [xN ;+∞[ , supp(ψL) = ] −∞ ; 0] (4.10)

and

xN
?

0

Sγ(ξ − η)ϕ(η) · dη
2iπβ

− he(ξ) = ψL(ξ) + ψR(ξ) . (4.11)
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Then, by going to the Fourier space, we get:

1
2iπβ

· F [
Sγ

]
(λ) · F [ϕ](λ) − F [he](λ) = F [ψ1](λ) + F [ψ2](λ) . (4.12)

By Lemma 4.2 that will be proved below,F [
Sγ

] ∈ L∞(R). HenceψR ∈ Hs(R+) whereasψL ∈ Hs(R−). Then, we
introduce the vectors

F↑(λ) =

(
F [ϕ](λ)

e−iλxNF [ψR](λ)

)
and F↓(λ) =

(
F [ϕxN ](λ)
F [ψL](λ)

)
(4.13)

where we agree uponϕxN(ξ) = ϕ(ξ + xN). Since
[
F↑

]
a ∈ F

[
Hs(R+)

]
, resp.

[
F↓

]
a ∈ F

[
Hs(R−)

]
, it is readily seen

that

F̃↑;a(λ) =
(
1− iλ

)s · [F↑
]
a(λ) resp. F̃↓;a(λ) =

(
1+ iλ

)s · [F↓
]
a(λ) (4.14)

defines a holomorphic function onH+, resp.H−, with L2(R) +, resp.−, boundary values onR. The Paley-Wiener
Theorem A.4 then shows the existence ofC > 0 such that:

∀µ > 0, ∀a ∈ {1, 2},
∫

R

∣∣∣[F↑/↓
]
a(λ ± iµ)

∣∣∣2 · (1+ |λ| + |µ|)2s · dλ < C . (4.15)

In other words the function:

Φ = F↑ · 1H+ + F↓ · 1H− (4.16)

solves the vector valued Riemann–Hilbert problem.
Reciprocally, suppose that one is given a solutionΦ to the vector-valued Riemann–Hilbert problem in question.

Then, setϕ = F −1[(Φ1
)
+

]
. We clearly haveϕ ∈ Hs(R+), but we now show that the support ofϕ is actually

included in [0, xN]. Let (·, ·) be the canonical scalar product onL2(R,C). If ρR is aC∞ function with compact
support included in ]xN,+∞[, we have:

(ρR, ϕ) =
(F [ρR] , F [ϕ]

)
= (e−ixN∗ F [ρR](1 − i∗)−s , (1+ i∗)s(Φ1)−

)
, (4.17)

where∗ denotes the running variable. But this is zero since (1+ i∗)s(Φ1)− ∈ F [L2(R−)], whereas, by the Paley-
Wiener Theorem A.4, e−ixN∗F [ρR](1 − i∗)−s ∈ F [L2(R−)]. Finally, the fact thatϕ ∈ Hs([0 ; xN]) satisfies (4.3)
follows from taking the Fourier transform of the second lineof the jump equation (4.8) forΦ.

For further handlings, it is useful to characterise the distributional Fourier transformF [Sγ] slightly better.

Lemma 4.2 The distributional Fourier transformF [Sγ](λ) defined by(4.9)admits the representation

F [Sγ](λ)

2iπβ
= R(λ) +

(
eiλγxN + e−iλγxN

) κN

λ
+ rN(λ) where κN = −

2∑

p=1

ωp

2
cotanh[πωpγxN] (4.18)

R(λ) =
sinh

[
λ(ω1 + ω2)

2ω1ω2

]

2 sinh
[
λ

2ω1

]
sinh

[
λ

2ω2

] , (4.19)
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and

rN(λ) =
2∑

p=1

(πωp)2

iλ(1− e−λ/ωp)

i/ωp∫

0

{ e−iλγxN

sinh2[πωp(ξ − γxN)]
− eiλγxN

sinh2[πωp(ξ + γxN)]

}
· e

iλξ dξ
2iπ

. (4.20)

Besides, forIm λ = ǫ > 0 small enough, there exists Cǫ > 0 independent of N such that, uniformly inReλ ∈ R:

|rN(λ)| ≤ Cǫ |λ|−2 · exp
{ − γxN( 2πmin[ω1, ω2] − ǫ)

}
. (4.21)

Proof — One has that

F [Sγ](λ)

2iπβ
=

1
2

2∑

p=1

lim
t→0+

∑

ǫ∈{±1}

xN∫

−γxN

πωp cotanh[πωp(ξ + iǫt)] · e
iλξ dξ
2iπ

(4.22)

=
1
2

∑

p∈{1,2}
ǫ∈{±1}

πωp

1− e−λ/ωp
lim
t→0+

∫

Γp

cotanh
[
πωp(ξ + iǫt)

] · e
iλξ dξ
2iπ

,

whereΓp = [−γxN ; γxN] ∪ [γxN + i/ωp ;−γxN + i/ωp], where the second interval is endowed with an opposite
orientation. It then remains to add the counter-term:

rN(λ) =
2∑

p=1

πωp

1− e−λ/ωp

i
ωp∫

0

{
e−iλγxN

(
cotanh[πωpγxN] + cotanh[πωp(ξ − γxN)]

)

+ eiλγxN
(
cotanh[πωpγxN] − cotanh[πωp(ξ + γxN)]

)}
· eiλξ dξ

2iπ
. (4.23)

to form a closed contour̃Γp. Upon integrating by parts, we find the expression (4.20) forrN(λ). Then, we pick
up the residues surrounded byΓ̃p, and we also write aside the term behaving asO(1/λ) whenλ → ∞. This leads
to the appearence ofκN in (4.18). The bounds on the line|Im λ| = ǫ > 0, with ǫ small enough are then obtained
through straightforward majorations.

The resolution of the vector Riemann–Hilbert problem forΦ can be done with the help of a matrix Wiener-
Hopf factorization. In order to apply this method, we first need to obtain a±-factorization of the matrixGχ given
by (4.8). This leads to an 2× 2 matrix Riemann–Hilbert problem that we formulate and solve, for N sufficiently
large, in the next subsections.

4.2 A scalar Riemann–Hilbert problem

In order to state the main result regarding to the auxiliary 2× 2 matrix Riemann–Hilbert problem, we first need
to introduce some objects. To start with, we introduce a factorization ofR(λ) that separates contributions from
zeroes and poles between the lower and upper half-planesλ ∈ H±. In other words, we consider the solutionυ to
the following scalar Riemann–Hilbert problem, depending on ǫ > 0 small enough and given once for all:

• υ ∈ O(C \ {R + iǫ}) and has continuous±-boundary values onR + iǫ ;

• υ(λ) =



( − iλ
) 1

2 · (1 + O
(
λ−1)) if Im λ > ǫ

−i
(
iλ

) 1
2 · (1 + O

(
λ−1)) if Im λ < ǫ

whenλ→ ∞ non-tangentially toR + iǫ ;

48



• υ+(λ) ·R(λ) = υ−(λ) for λ ∈ R + iǫ .

This problem admits a unique solution given by

υ(λ) =

{
R−1
↑ (λ) if Im λ > ǫ

R↓(λ) if Im λ < ǫ
(4.24)

where

R↑(λ) =
i
λ
· √ω1 + ω2 ·

(
ω2

ω1 + ω2

) iλ
2πω1·

(
ω1

ω1 + ω2

) iλ
2πω2·

2∏
p=1
Γ

(
1− iλ

2πωp

)

Γ

(
1− iλ(ω1 + ω2)

2πω1ω2

) (4.25)

and

R↓(λ) =
λ

2π
√
ω1 + ω2

·
(

ω2

ω1 + ω2

)− iλ
2πω1·

(
ω1

ω1 + ω2

)− iλ
2πω2 ·

2∏
p=1
Γ

( iλ
2πωp

)

Γ

( iλ(ω1 + ω2)
2πω1ω2

) . (4.26)

Note that

R↓(0) = −i
√
ω1 + ω2 and

(
λR↑(λ)

)
|λ=0
= i
√
ω1 + ω2 . (4.27)

Also, R↑ andR↓ satisfy to the relations

R↑(−λ) = λ−1 · R↓(λ) and
(
R↑(λ

∗)
)∗
= λ−1 · R↓(λ) . (4.28)

Furthermore,R↑/↓ exhibit the asymptotic behaviour

R↑(λ) =
( − iλ

)− 1
2 ·

(
1 + O

(
λ−1)) for λ −→

λ∈H+
∞ (4.29)

R↓(λ) = −i
(
iλ

) 1
2 ·

(
1 + O

(
λ−1)) for λ −→

λ∈H−
∞ (4.30)

as it should be. The notation↑ and↓ indicates the direction in the complex plane whereR↑/↓ have no pole nor
zeroes.

Preliminary definitions

We need a few other definition before describing the solutionto the factorisation problem forGχ. Let:

R↑(λ) =

(
0 −1
1 −R(λ)eiλxN

)
and R↓(λ) =

(
−1 R(λ)e−iλxN

0 1

)
, (4.31)

as well as their "asymptotic" versions:

R(∞)
↑ =

(
0 −1
1 0

)
and R(∞)

↓ =

(
−1 0
0 1

)
. (4.32)
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We also need to introduce

M↑(λ) =


1 0

− 1− R2(λ)
υ2(λ) · R(λ)

eiλxN 1

 and M↓(λ) =


1 υ2(λ) · 1− R2(λ)

R(λ)
e−iλxN

0 1

 , (4.33)

whereυ is given by (4.24), and:

PR(λ) = I2 +
θR

λ
Π−1(0)σ−Π(0) and


PL;↑(λ) = I2 + κN λ

−1 ei(γ−1)λxN · σ−

PL;↓(λ) = I2 + κN λ
−1 e−i(γ−1)λxN · σ−

, (4.34)

in whichΠ(0) is a constant matrix that will coincide later with the value at 0 of the matrix functionΠ, cf. (4.49).

θR =
1

υ2(0)

κN

1+ κN/(ω1 + ω2)
. (4.35)

4.3 The auxiliary 2× 2 matrix Riemann–Hilbert problem for χ: formulation and main result

The factorisation problem for the jump matrixGχ corresponds to solving the 2× 2 matrix Riemann–Hilbert
problem given below. This problem is solvable forN large enough.

Proposition 4.3 There exists N0 such that, for any N≥ N0, the given below2× 2 Riemann–Hilbert problem has
a unique solution. This solution is as given in Fig. 2

• the2× 2 matrix functionχ ∈ O(C \ R) has continuous±-boundary values onR;

• χ(λ) =



PL;↑(λ) ·
(
−sgn

(
Reλ

) · eiλxN 1
−1 0

)
· ( − iλ

)−σ3
2 ·

(
I2 +

χ1

λ
+ O

(
λ−2)) λ ∈ H+

PL;↓(λ) ·
(
−1 sgn

(
Reλ

) · e−iλxN

0 1

)
· (iλ)−

σ3
2 ei π2σ3 ·

(
I2 +

χ1

λ
+ O

(
λ−2)) λ ∈ H−

for some constant matrixχ1, whenλ→ ∞ non-tangentially toR ;

• χ+(λ) = Gχ(λ) · χ−(λ) for λ ∈ R .

Furthermore, the unique solution to the above Riemann–Hilbert problem satisfiesdetχ(λ) = sgn
(
Im(λ)

)
for any

λ ∈ C \ R.

The existence of a solutionχ will be established in § 4.4, by a set of transformations:

χ Ψ Π (4.36)

which maps the initial RHP forχ, to a RHP forΠ whose jump matrices are uniformly close to the identity when
N is large, and thus solvable by perturbative arguments [7]. The structure ofχ in terms of the solutionΠ is
summarized in Figure 2. The uniqueness ofχ follows from standard arguments, seee.g. [30], that we now
reproduce.

Proof — (of uniqueness)
Define, forλ ∈ C \ R,

d(λ) = det[χ(λ)]1H+(λ) − det[χ(λ)]1H−(λ) . (4.37)
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Sinceχ has continuous±-boundary onR, it follows thatd ∈ O(C \ R) has continuous± boundary values onR as
well. Furthermore these satisfyd+(λ) = d−(λ). Finally, d admits the asymptotic behaviourd(λ) = 1+O

(
λ−1). d

can thus be continued to an entire function that is bounded atinfinity. Hence, by Liouville theorem,d ≡ 1. Let
χ1, χ2 be two solutions to the Riemann–Hilbert problem forχ. Sinceχ2 can be analytically inverted, it follows
that χ̃ = χ−1

2 · χ1 solves the Riemann–Hilbert problem:

• χ̃ ∈ O(C \ R) and has continuous±-boundary values onR;

• χ̃(λ) = I2 + O
(
λ−1) whenλ→ ∞ non-tangentially toR;

• χ̃+(λ) = χ̃−(λ) for λ ∈ R .

Thus, by analytic continuation throughR and Liouville theorem̃χ = I2, hence ensuring the uniqueness of solu-
tions.

4.4 Transformation χ Ψ Π and solvability of the Riemann–Hilbert problem

We construct a piecewise analytic matrixΨ out of the matrixχ according to Figure 1. It is readily checked that
the Riemann–Hilbert problem forχ is equivalent to the following Riemann–Hilbert problem forΨ:

• Ψ ∈ O(C∗ \ ΣΨ) and has continuous boundary values onΣΨ ;

• The matrix

(
−1 0

−κN λ
−1 1+ κN/(ω1 + ω2)

)
· [υ(0)

]−σ3 · Ψ(λ) has a limit whenλ→ 0 ;

• Ψ(λ) = I2 + O
(
λ−1) whenλ→ ∞ non-tangentially toΣΨ ;

• Ψ+(λ) = GΨ(λ) · Ψ−(λ) for λ ∈ ΣΨ ;

where the jump matrixGΨ takes the form:

for λ ∈ Γ↑ GΨ(λ) = I2 +
eiλxN

υ2(λ)R(λ)
· σ− , (4.38)

for λ ∈ Γ↓ GΨ(λ) = I2 +
υ2(λ) e−iλxN

R(λ)
· σ+ , (4.39)

and forλ ∈ R + iǫ

GΨ(λ) = I2 +
rN(λ)
R(λ)

·


1 −υ+(λ)υ−(λ)e−iλxN

eiλxN

υ+(λ)υ−(λ)
−1

 . (4.40)

The motivation underlying the construction ofΨ is that its jump matrixGΨ not only satisfiesGΨ − I2 ∈ M2

((
L2∩

L∞
)(
ΣΨ

))
, but is, in fact, exponentially inN close to the identity

||GΨ − I2||M2(L2(ΣΨ)) + ||GΨ − I2||M2(L∞(ΣΨ)) = O
(
e−κǫN

α)
, (4.41)

with

κǫ = (bN − aN) ·min
{

inf
λ∈Γ↑∪Γ↓

|Im λ| ; 2γ
(
πmin[ω1, ω2] − ǫ

)}
. (4.42)
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R

R + iǫ

Γ↑

Γ↓

⊛

⊛

⊛

⊛

⊛

⊛

[
υ(λ)

]σ3 · R(∞)
↑ · P−1

L;↑(λ) · χ(λ)

M−1
↑ (λ) · [υ(λ)

]σ3 · R↑(λ) · P−1
L;↑(λ) · χ(λ)

M↓(λ) · [υ(λ)
]σ3 · R−1

↓ (λ) · P−1
L;↓(λ) ·G−1

χ (λ) · χ(λ)

M↓(λ) · [υ(λ)
]σ3 · R−1

↓ (λ) · P−1
L;↓(λ) · χ(λ)

[
υ(λ)

]σ3 ·
(
R(∞)
↓

)−1 · P−1
L;↓(λ) · χ(λ)

Figure 1:ΣΨ = Γ↑ ∪ Γ↓ ∪ {R + iǫ} is the contour appearing in the Riemann–Hilbert problem forΨ. Γ↑/↓ separates
all the poles ofR−1(λ) from R (they are indicated by⊛), and is such that dist(Γ↑/↓,R) > δ for someδ > 0 but
sufficiently small.

Note that we have a freedom of choice of the curvesΓ↑/↓, provided that these avoid (resp. from below/above) all
the poles ofR−1(λ) in H+/−. As a consequence, we have the natural bound:

inf
λ∈Γ↑∪Γ↓

|Im λ| ≤ 2πω1ω2

ω1 + ω2
. (4.43)

These bounds are enough so as to solve the Riemann–Hilbert problem forΨ. Indeed, introduce the singular
integral operator on the spaceM2

(
L2(ΣΨ)

)
of 2× 2 matrix-valuedL2(ΣΨ

)
functions by

C(−)
ΣΨ

[
Π
]
(λ) = lim

z→λ
z∈−side ofΣΨ

∫

ΣΨ

(GΨ − I2)(t) · Π(t)
t − z

· dt
2iπ

. (4.44)

SinceGΨ − I2 ∈ M2

((
L∞ ∩ L2)(ΣΨ

))
andΣΨ is a Lipschitz curve, it follows from Theorem A.3 thatC(−)

ΣΨ
is a

continuous endomorphism onM2(L2(ΣΨ)) that furthermore satisfies:
∣∣∣
∣∣∣
∣∣∣C(−)
ΣΨ

∣∣∣
∣∣∣
∣∣∣M2(L2(ΣΨ)) ≤ Ce−κǫN

α

. (4.45)

Hence, since

GΨ − I2 ∈ M2

(
L2(ΣΨ

))
and C(−)

ΣΨ
[I2] ∈ M2

(
L2(ΣΨ

))
(4.46)

provided thatN is large enough, it follows that the singular integral equation
(
I2 − C(−)

ΣΨ

)[
Π−

]
= I2 (4.47)
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admits a unique solutionΠ− such thatΠ− − I2 ∈ M2
(
L2(ΣΨ)

)
. The bound (4.41) also implies that:

||Π− − I2||M2(L2(ΣΨ)) ≤ 1 (4.48)

for N large enough. It is then a standard fact [7] in the theory of Riemann–Hilbert problems that the matrix

Π(λ) = I2 +

∫

ΣΨ

(GΨ − I2)(t) · Π−(t)
t − λ · dt

2iπ
(4.49)

is the unique solution to the Riemann–Hilbert problem:

• Π ∈ O(C \ ΣΨ) and has continuous± boundary values onΣΨ ;

• Π(λ) = I2 + O
(
λ−1) whenλ→ ∞ non-tangentially toΣΨ ;

• Π+(λ) = GΨ(λ) · Π−(λ) for λ ∈ ΣΨ .

We claim that for any open neighbourhoodU of ΣΨ such that dist(ΣΨ, ∂U) > δ > 0, there exists a constantC > 0
such that:

∀λ ∈ U, max
a,b∈{1,2}

[
Π(λ) − I2

]
ab ≤

C e−κǫN
α

1+ |λ| . (4.50)

Indeed, we can write:

max
a,b∈{1,2}

[
Π(λ) − I2

]
ab ≤ max

a,b∈{1,2}

∣∣∣∣∣∣

∫

ΣΨ

(GΨ − I2)ab(t)
t − λ · dt

2iπ

∣∣∣∣∣∣

+
∑

a,b∈{1,2}
||Π− − I2||M2(L2(ΣΨ)) ·

( ∫

ΣΨ

∣∣∣(GΨ − I2)ab(t)
∣∣∣2

|t − λ|2 · |dt|
(2π)2

)1/2

. (4.51)

The second term is readily bounded with (4.48) and the fact (4.41) thatGΨ is exponentially close to the identity
matrix. For the first term, we study the asymptotic behaviourof GΨ − I2 with help of § 4.2:

if t ∈ Γ↓ ∪ Γ↑, |(GΨ − I2)ab(t)| ≤ C e−|Ret| · e−κǫ Nα

, (4.52)

if t ∈ R + iǫ, |(GΨ − I2)ab(t)| ≤ C |t|−1 · e−κǫNα

. (4.53)

For the contribution onR+ iǫ, we split [GΨ− I2](t) = CΨ · t−1+O(t−2). We compute directly the contour integral of
the term int−1, and find the bound bound maxa,b

∣∣∣[CΨ]ab · λ−1
∣∣∣ if Im λ > ǫ, and 0 otherwise. Hence, it is bounded

by c1/(1+ |λ|) for some constantc1 > 0. The contribution of the remainderO(|t|−2) to the contour integral can be
bounded thanks to the lower bound dist(ΣΨ, λ) ≥ c2/(1+ |λ|) for some constantc2 > 0. Collecting all these bounds
justifies (4.50).

The Riemann–Hilbert problem forΨ andΠ have the same jump matrixGΨ, but Ψ must have a zero with
prescribed leading coefficient atλ = 0, whileΠ has a finite valueΠ(0). We then see that the formula:

Ψ(λ) = Π(λ) · PR(λ) (4.54)

with:

PR(λ) = I2 +
θR

λ
· Π−1(0)σ−Π(0) , and θR =

1

υ2(0)

κN

1+ κN/(ω1 + ω2)
(4.55)

yields the unique solution to the Riemann–Hilbert problem forΨ. Tracking back the transformationsΠ Ψ 
χ, gives the construction of the solutionχ of the Riemann–Hilbert problem of Proposition 4.3, summarized in
Figure 2. This concludes the proof of Proposition 4.3.
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R

R + iǫ

Γ↑

Γ↓

PL;↑(λ) ·
(
R(∞)
↑

)−1 · [υ(λ)
]−σ3 · Π(λ) · PR(λ)

PL;↑(λ) · R−1
↑ (λ) · [υ(λ)

]−σ3 · M↑(λ) · Π(λ) · PR(λ)

Gχ(λ) · PL;↓(λ) · R↓(λ) · [υ(λ)
]−σ3 · M−1

↓ (λ) · Π(λ) · PR(λ)

PL;↓(λ) · R↓(λ) · [υ(λ)
]−σ3 · M−1

↓ (λ) · Π(λ) · PR(λ)

PL;↓(λ) · R(∞)
↓ ·

[
υ(λ)

]−σ3 · Π(λ) · PR(λ)

Figure 2: Piecewise definition of the matrixχ. The curvesΓ↑/↓ separate all poles ofλ 7→ R−1(λ) from R and are
such that dist(Γ↑/↓,R) > δ > ǫ > 0 for a sufficiently smallδ. The matrixΠ appearing here is defined through
(4.49).

4.5 Properties of the solutionχ

Lemma 4.4 The solutionχ to the Riemann–Hilbert problem given in Proposition 4.3 admits the following sym-
metries

χ(−λ) =

(
1 0
0 −1

)
· χ(λ) ·

(
1 −λ
0 1

)
and

(
χ(λ∗)

)∗
=

(
1 0
0 −1

)
· χ(−λ) ·

(
−1 0
0 1

)
. (4.56)

where∗ refers to the component-wise complex conjugation.

Proof — SinceGχ(−λ) = e
iπσ3

2 G−1
χ (λ)e−

iπσ3
2 , the matrix:

Ξ(λ) = χ−1(λ) · e−
iπσ3

2 · χ(−λ) (4.57)

is continuous acrossR and thus is an entire function. The asymptotic behaviour ofΞ(λ) whenλ → ∞ is deduced
from the growth conditions prescribed by the Riemann–Hilbert problem (cf. Proposition 4.3):

Ξ(λ) = iλ · σ+ − i
(
χ1 · σ+ + σ+ · χ1

)
+ O(λ−1) . (4.58)

SinceΞ(λ) is entire, by Liouville theorem this asymptotic expression is exact, namely

Ξ(λ) = iλ · σ+ − i
(
χ1 · σ+ + σ+ · χ1

)
. (4.59)
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Observe that

χ1 · σ+ + σ+ · χ1 =

( [
χ1

]
21 tr

[
χ1

]

0
[
χ1

]
21

)
. (4.60)

By expanding the relation det
[
χ(λ)

]
= 1 for λ ∈ H+ at largeλ, we find that the matrixχ1 is actually traceless.

Finally, the jump condition atλ = 0 takes the form

χ−(0) = σ3 · χ+(0) . (4.61)

Using this relation and the expression forΞ given in (4.59), we get:

−iχ+(0) = −iχ+(0) ·
( [
χ1

]
21 0

0
[
χ1

]
21

)
i.e.

[
χ1

]
21 = 1 (4.62)

sinceχ+(0) is invertible. This proves the first relation in (4.56). In order to establish the second one, we consider:

Ξ̃(λ) = χ−1(−λ) · e
iπσ3

2 · (χ(λ∗)
)∗
. (4.63)

With the relation
(
Gχ(λ∗)

)∗
= G−1

χ (λ) and the complex conjugate of the asymptotic behaviour forχ, one shows

thatΞ̃ is holomorphic onC \R, continuous acrossR and hence entire. Furthermore, since it admits the asymptotic
behaviour

Ξ̃(λ) = e−
iπσ3

2 ·
(
I2 + O

(
λ−1)) , (4.64)

by Liouville’s theorem,̃Ξ(λ) = e−
iπσ3

2 .

Lemma 4.5 The matrixχ admits the large-λ, λ ∈ H+ asymptotic expansion

χ(λ) ≃ ( − iλ
)1/2 · σ+ +

∑

k≥0

K(λ) · χk − iσ+ · χk+1
( − iλ

)1/2
λk

, (4.65)

where(χk)k is a sequence of constant,2× 2 matrices, withχ−1 = 0 andχ0 = I2, and:

K(λ) =


−sgn(Reλ) eiλxN 0

−κN

λ
· sgn(Reλ) eiλγxN − 1 −iκN · sgn(Reλ) eiλ(γ−1)xN

 . (4.66)

In particular, we have:

[χ]11(λ) ≃ 1
( − iλ

)1/2

∑

k≥0

1

λk

[
− sgn(Reλ) eiλxN [χk]11 − i [χk+1]21

]
, (4.67)

λ−1 · [χ]12(λ) ≃ 1
( − iλ

)1/2

∑

k≥0

1

λk

[
− sgn(Reλ) eiλxN [χk−1]12 − i [χk]22

]
. (4.68)

Note that one should understand the matrixχ−1 occurring in(4.68)asχ−1 := 0. We also remind that[χ1]21 = 1.

Proof — It is enough to establish thatΠ admits, for anyℓ, the large-λ asymptotic expansion of the form:

Π(λ) =
k∑

ℓ=0

λ−ℓ Πℓ + ∆[k]Π(λ) with ∆[k]Π(λ) = O
( 1

λk+1−δ

)
for anyδ > 0 and Π0 = I2 . (4.69)
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Indeed, once this asymptotic expansion is established forΠ, the results forχ follow from matrix multiplications
prescribed on the top of Figure 2.

Equation (4.50) shows that the expansion (4.69) holds fork = 0 uniformly away fromΣΨ. This is actually
valid everywhere, for the jump matrixGΨ(λ) is analytic in a neighbourhood ofΣΨ and asymptotically close toI2

at largeλ in an open neighbourhood ofΣΨ, c.f. (4.52)-(4.53).
Now assume that the expansion holds up to some orderk. Consider the integral representation (4.49) forΠ. We

recall that (Π− − I2) ∈ L2(ΣΨ) andGΨ − I2 decays exponentially fast alongΓ↑ ∪ Γ↓. Thus, standard manipulations
give an asymptotic expansion of the form:

∫

Γ↑∪Γ↓

(GΨ − I2)(t) · Π−(t)
t − λ · dt

2iπ
≃

∑

ℓ≥1

Tℓ λ
−ℓ . (4.70)

It thus remains to focus on the integral onR+ iǫ. We can first move the contour toR+ iǫ′ for some 0< ǫ′ < ǫ,
and insert the assumed asymptotic expansion at orderk:

∫

R+iǫ

(GΨ − I2)(t) · Π−(t)
t − λ · dt

2iπ

=

k∑

ℓ=0

∫

R+iǫ′

(GΨ − I2)(t) · Πℓ
tℓ(t − λ)

· dt
2iπ

+

∫

R+iǫ′

(GΨ − I2)(t) · ∆[k]Π(t)

t − λ · dt
2iπ

. (4.71)

It follows from (4.20) that we can decomposerN(λ) = r (+)
N (λ)eiλγxN + r (−)

N (λ)e−iλγxN , with r (±)
N (λ) bounded inλ

away from its poles. This induces a decompositionGΨ − I2 = (GΨ − I2)(+) + (GΨ − I2)(−) onR + iǫ′. Inspecting
the expression (4.40), we can convince oneself that there exist curvesC ±GΨ ⊆ H

± going to∞ whenℜ(t) → ±∞,
t ∈ C ±GΨ and such that:

• t 7→ (GΨ − I2)(±)(t) · Πℓ
tℓ · (t − λ)

has no pole betweenR + iǫ′ andC ±GΨ,

• (GΨ − I2)(±)(t) decays exponentially fast int whent → ∞ alongC ±GΨ .

Therefore, we obtain:
∫

R+iǫ′

(GΨ − I2)(t) · Πℓ
tℓ(t − λ)

· dt
2iπ
=

∫

C +GΨ

(GΨ − I2)(+)(t) · Πℓ
tℓ(t − λ)

· dt
2iπ
+

∫

C −GΨ

(GΨ − I2)(−)(t) · Πℓ
tℓ(t − λ)

· dt
2iπ

(4.72)

and the properties of this decomposition ensure the existence of an all order asymptotic expansion inλ−1 when
λ→ ∞. It thus remains to focus on the last term present in (4.71). For δ > 0 but small, we write:

∫

R+iǫ′

(GΨ − I2)(t) · ∆[k]Π(t)

t − λ · dt
2iπ
= −

k∑

ℓ=0

1

λℓ+1

∫

R+iǫ′

tℓ(GΨ − I2)(t) · ∆[k]Π(t) · dt
2iπ
+
∆[k]T(λ)

λk+1|λ|1−2δ
. (4.73)

The decay at∞ of ∆[k]Π and (GΨ − I2) guarantees the existence of an asymptotic expansion of thefirst term in the
right-hand side, this up to a O

(
λ−k−2) remainder. Finally, we have:

|∆[k]T(λ)| =
∣∣∣∣∣
∫

R+iǫ′

tk+1 (GΨ − I2)(t) · ∆[k]Π(t)

|λ|2δ−1 · (t − λ)
· dt

2iπ

∣∣∣∣∣ ≤ C
∫

R+iǫ′

|λ|1−2δ dt

|t|1−δ |t − λ| , (4.74)
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where we used the assumed bound (4.69) for∆[k]Π(t) and theO(1/t) decay (4.53) forGΨ − I2. The growth of the
right-hand side at largeλ is then estimated by cutting the integral into pieces:

|λ|1−2δ

|t|1−δ |t − λ|
≤



C̃ |λ|−2δ |t|−(1−δ) if |Ret| ≤ |λ| /2
C̃ |λ|−δ |t − λ|−1 if |λ| /2 ≤ |Ret| ≤ 3 |λ| /2
C̃ |t|−(1+δ) if |Ret| ≥ 3 |λ| /2

(4.75)

for someC̃ > 0 independent ofλ andt. The integral overt of the right-hand side on each of piece is finite, and
collecting all the pieces, we get∆[k]T(λ) = o(1) whenλ→ ∞.

5 The inverse of the master operator

5.1 SolvingSN;γ[ϕ] = h for h ∈ Hs([0 ; xN]), −1 < s< 0

With the 2× 2 matrixχ in hand, we can come back to the inversion of the integral operator SN;γ according to
Lemma 4.1.

Proposition 5.1 Assume−1 < s < 0, and h∈ Hs([0 ; xN]). Any solution toSN;γ
[
ϕ
]
(ξ) = h(ξ) is of the form

ϕ = W̃ϑ;z0[he] where

W̃ϑ;z0[he] = F −1
[
(∗ − z0)χ11;+ + C+

[
f1;z0

]
+ χ12;+ · C+

[
f2;z0

]
+ ϑ · χ11;+

]
. (5.1)

Above,ϑ ∈ C and z0 ∈ C \R are arbitrary constants. We remind thatχ+ is the upper boundary value ofχ onR, C
is the Cauchy transform(1.24), C± its ± boundary values and he is any extension of h to Hs(R).

(
f1;z0(λ)
f2;z0(λ)

)
= e−iλxNF [he](λ) ·

(
(λ − z0)−1χ12;+(λ)
−χ11;+(λ)

)
. (5.2)

The transformW̃ϑ;z0 is continuous on Hs(R), −1 < s< 0:

||W̃0;z0[he]||Hs(R) ≤ CN ||he||Hs(R) , (5.3)

the continuity constant CN being however dependent, a priori, on N. Finally, when h∈ C1([0 ; xN]) the transform
can be recast as

W̃ϑ;z0[h](ξ) =
∫

R+2iǫ′

dλ
2π

∫

R+iǫ′

dµ
2iπ

e−iξλ−ixNµ

µ − λ

{
λ − z0

µ − z0
χ11(λ)χ12(µ) − χ11(µ)χ12(λ)

}
·

xN∫

0

eiηµh(η) · dη

+ ϑ

∫

R+iǫ′

e−iλξχ11(λ) · dλ
2π

. (5.4)

whereǫ′ > ǫ is arbitrary but small enough and such thatIm z0 > ǫ
′ in the case when z0 ∈ H+.

We stress that the integrals, as written in (5.4), are to be understood in the Riemann sense in that they only
converge as oscillatory integrals.
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Proof — The proof is based on a Wiener-Hopf factorisation. For the moment, we only assume thats < 0. LetΦ
be any solution to the vector Riemann–Hilbert problem forΦ outlined in Lemma 4.1. Then, define a piecewise
holomorphic functionΥ by

Υ(λ) =


χ−1(λ)Φ(λ) − Ĥ(λ) λ ∈ H+

χ−1(λ)Φ(λ) − Ĥ(λ) λ ∈ H−
(5.5)

where, for somez0 ∈ C \ R

Ĥ(λ) =



(λ − z0)ιs
∫

R

g1;ιs(t) dt

2iπ(t − λ)

(λ − z0)ιs−1
∫

R

g1;ιs−1(t) dt

2iπ(t − λ)


with

(
g1(λ)
g2(λ)

)
= χ−1

+ (λ) · H(λ) . (5.6)

Above, taking into account thats< 0, we have set

ga;ιs(t) = (t − z0)−ιsga(t) with ιs = k for − k < s< −(k− 1) . (5.7)

It follows from the asymptotic behaviour forχ+(λ) at largeλ thatg1 ∈ F
[
Hs−1/2

]
andg2 ∈ F

[
Hs+1/2

]
. Recall that

Theorem A.1 ensures that the± boundary valuesC± of the Cauchy transform onR are continuous operators on
Hτ(R) for any |τ| < 1/2. Thus,C±[g1;ιs] ∈ Hs+k−1/2(R) as well asC±[g2;ιs−1] ∈ Hs+k−1/2(R), which implies:

Ĥa;± ∈ F
[
Hsa(R)

]
with s1 = s− 1/2 ands2 = s+ 1/2 . (5.8)

Equation (4.7) ensures that, uniformly inµ > 0,

∀a ∈ {1, 2},
∫

R

∣∣∣Υa(λ ± iµ)
∣∣∣2 (

1+ |λ| + |µ|)2sa dλ < C . (5.9)

The discontinuity equation satisfied byΦ along with Ĥa;+ − Ĥa;− = ga guarantee thatΥa ∈ O(C \ R) admits
F [

Hsa(R)
] ± boundary values that are equal. Then, straightforward manipulations show that, in fact,Υ is entire.

Furthermore, for anyℓ ∈ N such thatsa + ℓ > −1/2 and for anyµ > |Im z|, we have:

∂ℓzΥa(z) =
∑

ǫ=±
ǫ

∫

R

ℓ! Υa(λ + iǫµ)

(λ + iǫµ − z)ℓ+1

dλ
2iπ

. (5.10)

Thus

∣∣∣∂ℓzΥa(z)
∣∣∣ ≤ 1

π
max
ǫ=±

( ∫

R

(
1+ |λ| + |µ|)−2sa

|λ + iǫµ − z|2(ℓ+1)
dλ

)1/2( ∫

R

|Υa(λ + iǫµ)|2 (
1+ |λ| + |µ|)2sa dλ

)1/2
(5.11)

where the last integral factor is bounded. So far, the parameter µ was arbitrary. We stress that the constantC in
(5.9) is uniform inµ. Thus takingµ = 2|z| and assuming that|z| > 1/2, we find:

∣∣∣∂ℓzΥa(z)
∣∣∣ ≤ C′ |z|−(sa+ℓ+1/2) ·

( ∫

R

(|λ| + 2
)−2sa

[
(λ − 1)2 + 1

]ℓ+1
dλ

)1/2
. (5.12)
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In particular, reminding the values ofsa in (5.8), we find that∂k−1
z Υ2(z) and∂k

zΥ1(z) are entire and bounded, so
they must be constant. These constants are zero due to (5.12). Hence, there exist polynomialsP1 ∈ Ck−1[X] and
P2 ∈ Ck−2[X] such that

Υ(z) =

(
P1(z)
P2(z)

)
. (5.13)

Reciprocally, it is readily seen that the piecewise analytic vector

Φ(λ) = χ(λ) · Ĥ(λ) + χ(λ) ·
(

P1(z)
P2(z)

)
with Pa ∈ Ck−a[X] for − k < s< −(k− 1) (5.14)

provides solutions to the Riemann–Hilbert problem forΦ.
From now on, we focus on the casek = 1, i.e. h ∈ Hs([0 ; xN]) for −1 < s < 0. Then, it follows from

Lemma 4.1 that any solution toSN;γ[ϕ] = h takes the formϕ = W̃ϑ;z0[he], with:

F [
W̃ϑ;z0[he]

]
(λ) = Φ1;+(λ) = χ11;+(λ) · (λ− z0)C+[ f1;z0](λ) + χ12;+(λ) · C+[ f2;z0](λ) + ϑ · χ11;+(λ) (5.15)

with fa;z0’s given by (5.2).

It is then readily inferred from the asymptotic expansion for χ at λ → ∞ given in Lemma 4.5, and from the
jump conditions satisfied byχ, that indeedΦ1;+ ∈ F

[
Hs([0 ; xN])

]
. Also the continuity onF [

Hτ(R)
]
with |τ| < 1/2

of the± boundary valuesC± of the Cauchy transform,cf. Theorem A.1, ensures that

||Φ1;+ ||F [Hs(R)] ≤ C ||he||Hs(R) , (5.16)

which in turn implies the bound (5.3).
It solely remains to prove the regularised expression (5.4). Givenh ∈ C1([0 ; xN]) it is clear thath ∈ Hs([0 ; xN])

for any s < 1/2. We chose the specific extensionhe = h. Then, it follows from the previous discussion that
W̃ϑ;z0[h] ∈ Hs([0 ; xN]). The integral in the right-hand side of (5.4), consideredin the Riemann sense, defines a
continuous function on [0 ;xN], that we denote momentarilỹVϑ;z0[h]. Now, for any f ∈ C∞([0 ; xN]), starting with
the expression (5.1) for̃Wϑ;z0[h], we have:

(
f , W̃ϑ;z0[h]

)
=

(F [ f ],Φ1;+
)
=

∫

R

F [ f ∗](−λ) · Φ1;+(λ) dλ =
∫

R+2iǫ′

F [ f ∗](−λ) · Φ1(λ) dλ (5.17)

=

∫

R

(
F [e2ǫ′• f ](λ)

)∗ · F [
e−2ǫ′•W̃ϑ;z0[h]

]
(λ)dλ =

(
f , Ṽϑ;z0[h]

)
. (5.18)

in • represents the running variable in respect to which the Fourier transform. There, we have equalitỹWϑ;z0[h] =
Ṽϑ;z0[h] for h ∈ C1 ∩ Hs

(
[0 ; xN]

)
.

A priori , the solutionsW̃ϑ;z0[he] given in (5.4) has two free parametersϑ andz0. This "double" freedom is,
however, illusory.

Lemma 5.2 Given z0, z′0 ∈ C \ R andϑ ∈ C, there existsϑ′ ∈ C such thatW̃ϑ;z0 = W̃ϑ′;z′0
.

Proof — By carrying out the decompositionλ − z0 = λ − µ + µ − z0 in the first term present in the integrand of
(5.4), we get that̃Wϑ;z0 = W̃ϑ(z0);∞

ϑ(z0) = ϑ −
∫

R+iǫ′

χ12(µ) · F [
he

]
(µ) · e−iµxN

µ − z0
· dµ

2iπ
, (5.19)
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and∞means that one should sendz0→ ∞ under the integral sign of (5.4).

Hence, with the above lemma in mind, we retrieve that the kernel of SN;γ is one dimensional when considered
as an operator onHs([0 ; xN]), with −1 < s < 0. The above lemma of course implies that we can choosez0

arbitrarily in (5.4). It is most suitable to consider the specific form of solutions obtained by takingz0 → 0 with
Im z0 < 0. Forh ∈ C1([0 ; xN]), this yields a family of solution parametrized byϑ ∈ C:

W̃ϑ[h](ξ) =
∫

R+2iǫ′

dλ
2π

∫

R+iǫ′

dµ
2iπ

e−iλξ−iµxN

µ − λ

{
λ

µ
·χ11(λ)χ12(µ)−χ11(µ)χ12(λ)

}
F [

h
]
(µ) + ϑ

∫

R+iǫ′

χ11(λ) e−iλξ ·dλ
2π

. (5.20)

It is possible to find real-valued solutions toSN;γ[ϕ] = h by takingh purely imaginary:

Lemma 5.3 Letϑ ∈ iR and let h∈ C1([0 ; xN]) satisfy h∗ = −h. Then,
(
W̃ϑ[he]

)∗
= W̃ϑ[he].

Proof — From Lemma 4.4, we have−χ11(−λ) =
(
χ11(λ∗)

)∗ andχ12(−λ) =
(
χ12(λ∗)

)∗. Hence, under the assump-
tions of the present lemma

(
W̃ϑ[h](ξ)

)∗
=

∫

R

dλ
2π

∫

R

dµ
−2iπ

eiλξ+iµxNe2ǫ′ξ+ǫ′xN

µ − λ + iǫ′

{
− λ − 2iǫ′

µ − iǫ′
· χ11(−λ + 2iǫ′)χ12(−µ + iǫ′)

+ χ11(−µ + iǫ′)χ12(−λ + 2iǫ′)

}
F [

h∗]︸︷︷︸
−F [h]

(−µ + iǫ′) − ϑ∗︸︷︷︸
−ϑ

∫

R

eiλξe2ǫ′ξχ11(−λ + iǫ′)
dλ
2π

. (5.21)

The change of variables (λ, µ) 7→ (−λ,−µ) in the first integral andλ 7→ −λ in the second integral entails the claim.

5.2 Local behaviour of the solutionW̃ϑ[h] at the boundaries

In the present subsection, we shall establish the local behaviour of W̃ϑ[h](ξ) at the boundaries of the segment
[0 ; xN], viz. whenξ → 0 or ξ → xN, this in the case whereh ∈ C1([0 ; xN]). We shall demonstrate that there exist
constantsC0,CxN affine inϑ and depending onh, such thatW̃ϑ[h] exhibits the local behaviour

W̃ϑ[h](ξ) =
C0√
ξ
+ O(1) for ξ → 0+ and W̃ϑ[h](ξ) =

CxN√
xN − ξ

+ O(1) for ξ → (xN)− . (5.22)

Let us recall that our motivation for studying̃Wϑ takes its origin in the need to construct the density of equi-
librium measureρ(N)

eq which solvesSN[ρ(N)
eq ] = V′ as well as to invert the master operatorUN arising in the

Schwinger-Dyson equations described in § 3.2. The density has a square root behaviour at the edges what trans-
lates itself into a square root behaviour atξ = 0 andξ = xN in the rescaled variables. Having this in mind, we
would like to enforceC0 = CxN = 0. For this purpose, we can exploit the freedom of choosingϑ. This is however
not enough and, as it will be shown in the present section, in order to have a milder behaviour of̃Wϑ[h] at the
edges, one also needs to impose a linear constraint onh. In fact, we shall see later on that the latter solely translates
the fact thath ∈ SN;γ[Hs(R)] with 0 < s< 1/2.

This informal discussion only serves as a guideline and motivation for the results of this subsection, in partic-
ular:
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Proposition 5.4 Let

I12[h] =
∫

R+iǫ

e−iµxN

µ
χ12(µ) · F [h](µ) · dµ

2iπ
. (5.23)

Then, for any h∈ C1([0 ; xN]) such that

I11[h] :=
∫

R+iǫ

e−iµxNχ11(µ) · F [h](µ) · dµ
2iπ
= 0 (5.24)

we haveW̃I12[h] [h] ∈ (
L1 ∩ L∞

)
([0 ; xN]).

Prior to proving the above lemma, we shall first establish a lemma characterising the local behaviour at 0 andxN

of functions belonging to the kernel ofSN;γ.

Lemma 5.5 The function

ψ(ξ) =
∫

R+2iǫ′

e−iλξχ11(λ)
dλ
2π

satis f ies SN;γ[ψ](ξ) = 0 ξ ∈]0 ; xN[ (5.25)

and admits the asymptotic behaviour

ψ(ξ) =
1

i
√
πξ
+ O(1) when ξ → 0+ and ψ(ξ) =

1

i
√
π(xN − ξ)

+ O(1) when ξ → (
xN

)−
. (5.26)

Proof — One has, forξ ∈]0 ; xN[ and in the distributional sense,

SN;γ[ψ](ξ) =
∫

R

dµ
2π

∫

R

dλ
2π

e−iµξ F [Sγ](µ)

2iπβ
· χ11;+(λ) · e

i(µ−λ)xN − 1
i(λ − µ)

=

∫

R

dµ
2π

∫

R−iǫ

dλ
2π

e−iµξ F [Sγ](µ)

2iπβ
· χ11(λ)eiµxN − eiλxNχ11(λ)

i(λ − µ)

=

∫

R

dµ
2π

e−iµξ F [Sγ](µ)

2iπβ

{
− χ11;+(µ) +

∫

R−iǫ

dλ
2π

χ11(λ) eiµxN

i(λ − µ)

}

= −
∫

R

dµ
2π

{
χ21;−(µ)e−iµξ + eiµ(xN−ξ)χ21;+(µ)

}
. (5.27)

Note that, in the intermediate steps, we have used thatχ11;+(λ) = eiλxN χ11;−(λ), and deformed the integral overλ
to the lower half-plane. Further, we have also used that

χ21;−(λ) + eiλxN χ21;+(λ) =
F [Sγ](λ)

2iπβ
χ11;+(λ) . (5.28)

Observe that, when 0< ξ < xN, the functionµ 7→ χ21;−(µ)e−iµξ (respectively,µ 7→ χ21;+(µ)eiµ(xN−ξ)) admits an
analytic continuation to the lower (resp. upper) half-plane that is Riemann-integrable onR− iτ (resp.R + iτ), this
for anyτ > 0, and that decays exponentially fast whenτ→ +∞. As a consequence,

∀ξ ∈]0 ; xN[,
∫

R

dµ
2π

(
e−iµξ χ21;−(µ) + eiµ(xN−ξ) χ21;+(µ)

)
= 0 , (5.29)
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which is equivalent toSN;γ[ψ](ξ) = 0.
From the large-λ expansion ofχ(λ) given in Lemma 4.5, we have forλ ∈ R + 2iǫ′,

W(λ) ≡ χ11(λ) +
sgn(Reλ) eiλxN + i

(−iλ)1/2
= O

(
|λ|−3/2

)
. (5.30)

Hence,

ψ(ξ) =
∫

R+2iǫ′

W(λ) e−iλξ · dλ
2π
−

∫

R+2iǫ′

sgn(Reλ) eiλ(xN−ξ)

(−iλ)1/2
· dλ

2π
+

∫

R+2iǫ′

e−iλξ

(−iλ)1/2
· dλ

2iπ
. (5.31)

By dominated convergence, the first term is O(1) in the limitξ → 0+. The second term is also a O(1). This is most
easily seen by deforming the contour of integration into a loop inH+ around iR+ + 2iǫ′, hence making the integral
strongly convergent, and then applying dominated convergence. Finally, the third term (5.31) can be explicitly
computed by deforming the integration contour to−iR+:

∫

R+2iǫ′

e−iλξ

(−iλ)1/2
· dλ

2iπ
=
−1√
ξ

+∞∫

0

{
1

(−ei0+ t)1/2
− 1

(−e−i0+ t)1/2

}
e−t dt
2π

=
Γ(1/2)

iπ
√
ξ
=

1

i
√
πξ

. (5.32)

Similar arguments ensure that the first and last term in (5.31) are a O(1) in theξ → (xN)− limit. The middle
term can be estimated as

∫

R+2iǫ′

sgn
(
Reλ

)

(−iλ)
1
2

eiλ(xN−ξ) · dλ
2π
=

e−2(xN−ξ)ǫ′

2π
√

xN − ξ

∫

R

sgn(λ) eiλ dλ
( − iλ + 2ǫ′(xN − ξ)

)1/2

= i
e−2(xN−ξ)ǫ′

π
√

xN − ξ

+∞∫

0

e−t dt
(
t + 2ǫ′(xN − ξ)

)1/2 =
i√

π(xN − ξ)
+ O

( √
xN − ξ

)
. (5.33)

Putting together all of the terms entails the claim.

Before carrying on with the proof of Proposition 5.4 we stillneed to prove a technical lemma relative to the
large-λ behaviour of certain building blocks of̃Wϑ[h].

Lemma 5.6 Let h∈ Cp+1([0 ; xN]
)
. Then, the integrals

J1a[h](λ) =
∫

R+ iǫ′

χ1a(µ) · F [h](µ) · e−iµxN

µδ2a
(
µ − λ) · dµ

2iπ
with δ2a =

{
1 if a = 2
0 if a = 1

(5.34)

admit the|λ| → ∞, Im λ > 2ǫ′ > 0, asymptotic behaviour:

J1a[h](λ) = −λ−1I1a[h] +
p∑

k=1

w
(1/2)
k;a (λ)

( − iλ
)1/2

λk
+

p∑

k=1

w
(1)
k;a

λk+1
+ O(λ−(p+3/2)) (5.35)

where

w
(1/2)
k;a (λ) =

k−1∑

ℓ=0

ik−ℓh(k−ℓ−1)(xN
){

sgn(Reλ) eiλxN [χℓ−δ2a]1a + i [χℓ+1−δ2a]2a

}
, (5.36)

andw (1)
k;a are constants whose explicit expression is given in the coreof the proof .
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Proof — The regularity ofh implies the following decomposition for its Fourier transform:

F [h](µ) = −
p∑

k=0

h(k)(xN
)
eiµxN − h(k)(0)

(−iµ)k+1
+

(−1)p+1

(
iµ

)p+1

xN∫

0

h(p+1)(t) eiξµ dξ . (5.37)

It gives directly access to the large-µ expansion:

µ−δ2aχ1a(µ) · F [h](µ) =
p∑

k=1

T(k)
a (µ)

(−iµ)1/2µk
+ R(p)

1a (µ) . (5.38)

The remainder isR(p)
1a (µ) = O(µ−p−3/2) whenµ is large, whereasT(k)

a (µ) remains bounded as long as Imµ is
bounded. Explicitly, these functions read:

T(k)
a (µ) =

k−1∑

ℓ=0

ik−ℓ
(
h(k−1−ℓ)(0)− eiµxNh(k−1−ℓ)(xN)

){
− sgn(Reµ) eiµxN [χℓ−δ2a]a1 − i [χℓ+1−δ2a]a2

}
(5.39)

whereχm are the matrices appearing in the asymptotic expansion ofχ, see (4.65). The integral of interest can be
recast as

J1a[h](λ) =
p∑

k=1

∫

R+iǫ′

T(k)
a (µ) e−iµxN

(−iµ)1/2µk(µ − λ)
· dµ

2iπ
−

p∑

ℓ=0

1

λℓ+1

∫

R+iǫ′

µℓR(p)
1a (µ) e−iµxN · dµ

2iπ

+

∫

R+iǫ′

µp+1 R(p)
1a (µ)

λp+1(µ − λ)
e−iµxN · dµ

2iπ
. (5.40)

In virtue of the bound onR(p)
1a , the last term is a O

(
λ−p− 3

2
)
. In order to obtain the asymptotic expansion of the first

term we study the model integral

Jk(λ) =
∫

R+iǫ′

(
c1sgn(Reµ) − c2e−iµxN

)(
κ1eiµxN − κ2

)

(−iµ)1/2µk(µ − λ)
· dµ

2iπ
, (5.41)

where Imλ > ǫ′ while c1, c2 andκ1, κ2 are free parameters. By deforming appropriately the contours, we get that:

Jk(λ) = κ1
c1sgn(Reλ)eiλxN − c2

(−iλ)1/2λk
− c1κ2

∮

−Γ([0 ;iǫ′])

sgn
(
Reµ

)
( − iµ

)1/2
µk(µ − λ)

· dµ
2iπ

(5.42)

+ c1κ1(−i)k

+∞∫

ǫ′

t−k−1/2e−txN

it − λ · dt
π
+ c2κ2

∮

−Γ(iR−)

e−iµxNµ−k

( − iµ
)1/2(µ − λ)

· dµ
2iπ

(5.43)

= κ1
c1sgn(Reλ) eiλxN − c2

(−iλ)1/2λk
−

p∑

q=0

λ−(q+1) L(q)
k + λ−(p+2)∆[p] Mk(λ) . (5.44)

The constantL(q)
k occurring above is expressed in terms of integrals

L(q)
k = −c1κ2

∮

−Γ([0 ;iǫ′ ])

sgn
(
Reµ

) · µq−k

( − iµ
)1/2 · dµ

2iπ
+ c1κ1(−i)k−q

+∞∫

ǫ′

tq−k−1/2 ·e−xN t · dt
π
+c2κ2

∮

−Γ(iR−)

e−iµxN · µq−k

( − iµ
)1/2 · dµ

2iπ
.
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(5.45)

and the remainder function reads:

∆[p] Mk(λ) = c1κ2

∮

−Γ([0 ;iǫ′ ])

λ · sgn(Reµ) · µp+1−k

(µ − λ) · (−iµ)1/2
· dµ

2iπ
− c2κ2

∮

Γ(iR−)

λ · e−iµxN · µp+1−k

( − iµ
)1/2(µ − λ)

· dµ
2iπ

+ c1κ1(−i)k−p

+∞∫

ǫ′

λ · tp−k+1/2 · e−txN

(t + iλ)
· dt
π
. (5.46)

If we define:

w̃
(1)
k;a = −

p∑

k=1

k−1∑

ℓ=0

{
L(q)

k

∣∣∣∣∣
c1→ −[χℓ−δ2a]1a κ1→ −ik−ℓh(k−ℓ−1)(xN)
c2→ i [χℓ+1−δ2a]2a κ2→ ik−ℓh(k−ℓ−1)(0)

}
. (5.47)

we obtain:

p∑

k=1

∫

R+iǫ′

T(k)
a (µ) e−iµxN

(−iµ)1/2µk(µ − λ)
· dµ

2iπ
=

p∑

k=1

w
(1/2)
k;a (λ)

(−iλ)1/2λk
+

p∑

q=0

w̃
(1)
k;a

λq+1
+ O(λ−(p+2)) . (5.48)

Furthermore, the above relation and equations (5.34) and (5.40), ensure that

∫

R+iǫ′

R(p)
1a (µ)e−iµxN · dµ

2iπ
= I1a[h] + w̃ (1)

0;a . (5.49)

Hence, putting all the terms together, we arrive to the expansion (5.35) with the constantsw (1)
k;a given by

w
(1)
k;a = w̃

(1)
k;a −

∫

R+iǫ′

µkR(p)
1a (µ)e−iµxN · dµ

2iπ
k ≥ 1 . (5.50)

Proof — (of Proposition5.4). Givenh ∈ C1([0 ; xN]) and forξ ∈]0 ; xN[, we can represent̃W0 as an integral taken
in the Riemann sense12

W̃0[h](ξ) =
∫

R+2iǫ′

e−iλξ
[
λ · χ11(λ)J12[h](λ) − χ12(λ)J11[h](λ)

] dλ
2π

, (5.51)

where we remind thatJ1a[h](λ) have been defined in (5.34). Using the asymptotic expansions of Lemma 4.5 for
χ and those of Lemma 5.6 forJ1a[h], we can decompose:

λ · χ11(λ)J12[h](λ) − χ12(λ)J11[h](λ) = I12[h] · sgn(Reλ) eiλxN + i

(−iλ)1/2
− iI11[h]

(−iλ)1/2
(5.52)

+
w

(1/2)
1;2 (λ)

{
sgn(Reλ) eiλxN + i

} − iw (1/2)
1;1 (λ)

iλ
+O(λ−3/2) .

12The fact that the integral (5.51) is well-defined in the Riemann sense will follow from the analysis carried out in this proof.
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As a matter of fact, the coefficient of 1/(−iλ) in this formula vanishes, as can be seen from the expressions (5.36)
for w (1/2)

1;a . Besides, integrating theO(λ−3/2) in (5.51) yields a contribution remaining finite atξ = 0 andξ = xN,

that we denoteW̃ c
0 [h] ∈ C0([0 ; xN]

)
. Eventually, the effect of the first line of (5.52) once inserted in (5.51) is

already described in (5.32)-(5.33). All in all, we find:

W̃0[h](ξ) = I12[h]

{
i√
πξ
+

i√
π(xN − ξ)

+O
( √

xN − ξ
)} − iI11[h]√

πξ
+ W̃ c

0 [h](ξ) . (5.53)

Since we havẽWϑ[h](ξ) = W̃0[h](ξ) + ϑψ(ξ) in terms of the functionψ of Lemma 5.5, we deduce that:

W̃I12[h] [h](ξ) = − iI11[h]√
πξ
+O

( √
xN − ξ

)
+ W̃ c

0 [h](ξ) (5.54)

and this function is continuous on [0 ;xN] if and only if I11[h] = 0.

5.3 A well-behaved inverse operator ofSN;γ

Since,in fine, we are solely interested in solutions belonging to
(
L1∩ L∞

)
([0 ; xN]) we shall henceforth only focus

on W̃I12[h] [h] and denote this specific solution asWN;γ[h]. Furthermore, we shall restrict our reasoning to a class
of functions such thatI11[h] = 0. We now establish:

Proposition 5.7 Let0 < s< 1/2. The subspace

Xs
(
[−γxN ; (γ + 1)xN]

)
=

{
h ∈ Hs

(
[−γxN ; (γ + 1)xN]

)
: I11[h] = 0

}
(5.55)

is closed in Hs
(
[−γxN ; (γ + 1)xN]

)
, and the operator:

SN;γ : Hs
(
[0 ; xN]

) −→ SN;γ
[
Hs

(
[0 ; xN]

)]
= Xs

(
[−γxN ; (γ + 1)xN]

)
(5.56)

is continuously invertible. Its inverse is the operator

WN;γ : Xs
(
[−γxN ; (γ + 1)xN]

) −→ Hs
(
[0 ; xN]

)
. (5.57)

On functions h∈ C1([0 ; xN]), it is defined as:

WN;γ[h](ξ) =
∫

R+2iǫ′

dλ
2π

∫

R+iǫ′

dµ
2iπ

e−iλξ−iµxN

µ − λ

{
χ11(λ)χ12(µ) − µ

λ
· χ11(µ)χ12(λ)

}
F [h](µ) . (5.58)

For h ∈ C1([0 ; xN]), WN;γ[h](ξ) is a continuous function on[0 ; xN], which vanishes at least like a square root at0
and xN. The operatorWN;γ extends continuously to Hs([0 ; xN]), 0 < s < 1/2 although the constant of continuity
of WN;γ depends, a priori, on N.

Comparing (5.58) with the double integral definingWN;θ in (5.20), one observes thatλ/µ in front of χ11(λ) is
absent and that there is an additional pre-factorµ/λ in front of χ12(λ).

Proof — Continuity ofWN;γ.
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Takeh ∈ C1([−γxN ; (γ + 1)xN]
)
. We first establish thatWN;γ[h], as defined by (5.58), extends as a continuous

operator fromHs
(
[−γxN ; (γ + 1)xN]

)
to Hs(R). We observe that:

F [
e−2ǫ′∗WN;γ[h]

]
(λ) = χ11(λ + 2iǫ′) · C[χ̂12F [hǫ′ ]

]
(λ + iǫ′) − χ12(λ + 2iǫ′)

λ + 2iǫ′
· C[χ̂11F [hǫ′ ]

]
(λ + iǫ′) (5.59)

with hǫ′(ξ) = e−ǫ
′ξ h(ξ),

χ̂11(µ) = (µ + iǫ′)χ11(µ + iǫ′) e−i(µ+iǫ′)xN and χ̂12(µ) = χ12(µ + iǫ′) e−i(µ+iǫ′)xN . (5.60)

It thus follows from the growth at infinity ofχ11 andχ12 and the continuity onHτ(R), |τ| ≤ 1/2, of the transforms
Cǫ , whereCǫ [ f ](λ) = C[ f ](λ + iǫ′), cf. Proposition A.2, that

||WN;γ[h]||Hs(R) ≤ C

{ ∣∣∣
∣∣∣Cǫ′

[̂
χ12 · F [hǫ′ ]

]∣∣∣
∣∣∣F [Hs−1/2(R)] +

∣∣∣
∣∣∣Cǫ′

[
χ̂11 · F [hǫ′ ]

]∣∣∣
∣∣∣F [Hs−1/2(R)]

}
(5.61)

≤ C′
{ ∣∣∣

∣∣∣ χ̂12 · F [hǫ′ ]
∣∣∣
∣∣∣F [Hs−1/2(R)] +

∣∣∣
∣∣∣ χ̂11 · F [hǫ′ ]

∣∣∣
∣∣∣F [Hs−1/2(R)]

}
(5.62)

≤ C′′ ||hǫ′ ||Hs(R) ≤ C′′′ ||h||Hs([−γxN ;(γ+1)xN]) . (5.63)

Proof — The spaceXs
(
[−γxN ; (γ + 1)xN]

)
.

Givenh ∈ Hs
(
[−γxN ; (γ + 1)xN]

)
, we have:

∣∣∣I11[h]
∣∣∣ ≤

( ∫

R

(1+ |µ|)−2s|χ11(µ)|2 dµ
)1/2
· ||h||Hs([−γxN ;(γ+1)xN]) . (5.64)

As a consequence,I11 is a continuous linear form onHs
(
[−γxN ; (γ + 1)xN]

)
. In particular, its kernel is closed,

what ensures thatXs
(
[−γxN ; (γ + 1)xN]

)
is a closed subspace ofHs

(
[−γxN ; (γ + 1)xN]

)
. We now establish that:

SN;γ
[
Hs

(
[0 ; xN]

)] ⊆Xs
(
[−γxN ; (γ + 1)xN]

)
. (5.65)

Let ϕ ∈ C1([0 ; xN]
)

and defineh = SN;γ[ϕ]. Then, using the jump condition (5.28):

I11[h] =

xN∫

0

dη ϕ(η)
∫

R

e−iµxN χ11;+(µ)
F [Sγ](µ)

2iπβ
eiµη =

xN∫

0

dη ϕ(η)
∫

R

(
χ21;−(µ)eiµ(η−xN) + χ21;+(µ)eiµη

)
dµ (5.66)

and this quantity vanishes according to (5.29). The equality can then be extended to the whole ofHs
(
[0 ; xN]

)
,

0 < s< 1/2 sinceI11 andSN;γ are continuous on this space andC1([0 ; xN]
)

is dense inHs
(
[0 ; xN]

)
.

Proof — Relation to the inverse.
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By definition, for anyh ∈ (
Hs∩ C1)([−γxN ; (1+ γ)xN]), we have:

W̃I12[h] [h](ξ) =
∫

R+2iǫ′

dλ
2π

∫

R+iǫ′

dµ
2iπ

e−iλξ−iµxN

µ − λ

{
λ

µ
· χ11(λ)χ12(µ) − χ11(µ)χ12(λ)

}
· F [h](µ)

+

( ∫

R+2iǫ′

dλ
2π

e−iλξχ11(λ)
)
·
( ∫

R+iǫ′

dµ
2iπ

e−iµxN

µ
χ12(µ) · F [h](µ)

)

=

∫

R+2iǫ′

dλ
2π

∫

R+iǫ′

dµ
2iπ

e−iλξ−iµxN

µ − λ

{
χ11(λ)χ12(µ) − χ11(µ)χ12(λ)

}
· F [h](µ)

−
( ∫

R+2iǫ′

dλ
2π

e−iλξ χ12(λ)
λ

)
·
( ∫

R+iǫ′

dµ
2iπ

e−iµxN χ11(µ) · F [h](µ)
)

︸                                    ︷︷                                    ︸
=0

= WN;γ[h](ξ) . (5.67)

In the last line, we used the freedom to add a term proportional to I11[h] = 0, so that the combination retrieves the
announced expression (5.58). The continuity of the linear functionalI12 on Hs([0 ; xN]) is proven analogously to
(5.64), hence ensuring the continuity of the operatorW̃I12[h]. Since both operatorsWN;γ andW̃I12[h] are continuous
onHs([0 ; xN]) and coincide onC1 functions which form a dense subspace, they coincide on the wholeHs([0 ; xN]).
From there we deduce two facts:

• we indeed haveSN;γ
[
WN;γ[h]

]
= h, as a consequence ofSN;γ

[
W̃I12[h] [h]

]
= h. This shows that the reverse

inclusion to (5.65) holds as well.

• The functionWN;γ[h] is supported on [0 ;xN] (and thus belongs toHs([0 ; xN])) since Lemma 4.1 ensures
that W̃I12[h] [h] is supported on [0 ;xN] this for anyh ∈ Hs

(
[−γxN ; (γ + 1)xN]

) ⊆ Hτ

(
[−γxN ; (γ + 1)xN]

)

with 0 < s< 1/2 and−1 < τ < 0.

Proof — Local behaviour forC1([0 ; xN]) functions.
It follows from a slight improvement of the local estimates carried out in the proof of Proposition 5.4 that,

givenh ∈ C1([0 ; xN]), we have:

WN;γ[h](ξ) = C(0)
L +C(1/2)

L

√
ξ +O

(
ξ
)

WN;γ[h](ξ) = C(0)
R +C(1/2)

R

√
xN − ξ +O

(
xN − ξ

)
,

form some constantsC(a)
L/R with a ∈ {0, 1/2}. It thus remains to check thatC(0)

L = C(0)
R = 0. It follows also from the

proof of Proposition 5.4 thatWN;γ[h] is, in fact, continuous onR. Since supp
[
WN;γ[h]

]
= [0 ; xN], the function has

to vanish at 0 andxN so as to ensure its continuity. Thence,C(0)
L = C(0)

R = 0.

5.4 WN: the inverse operator ofSN

In order to construct the inverse toSN, we should take the limitγ → +∞ in the previous formulae. It so happens
that this limit is already well-defined at the level of the solution to the Riemann–Hilbert problem forχ as defined
through Figure 2. More precisely, from now on, letχ be as defined in Figure 3 where the matrixΠ is as defined
through (4.47)-(4.49) with the exception that one should send γ → +∞ in the jump matrices forΨ (4.39)-(4.40).
Note that, in this limit,GΨ = I2 on R + iǫ, viz. Ψ is continuous acrossR + iǫ. Then, we can come back to the
inversion of the initial operatorSN in unrescaled variables – compare (4.1), (4.2) and (4.3).
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R

R + iǫ

Γ↑

Γ↓

(
R(∞)
↑

)−1 · [υ(λ)
]−σ3 · Π(λ) · PR(λ)

R−1
↑ (λ) · [υ(λ)

]−σ3 · M↑(λ) · Π(λ) · PR(λ)

(
eiλxN 0
R(λ) e−iλxN

)
· R↓(λ) · [υ(λ)

]−σ3 · M−1
↓ (λ) · Π(λ) · PR(λ)

R↓(λ) · [υ(λ)
]−σ3 · M−1

↓ (λ) · Π(λ) · PR(λ)

R(∞)
↓ ·

[
υ(λ)

]−σ3 · Π(λ) · PR(λ)

Figure 3: Piecewise definition of the matrixχ (atγ→ +∞). The curvesΓ↑/↓ separate all poles ofλ 7→ λR(λ) from
R and are such that dist(Γ↑/↓,R) > δ for someδ > 0 but sufficiently small.

Proposition 5.8 Let 0 < s < 1/2. The operatorSN : Hs
(
[aN ; bN]

) −→ Hs
(
R
)

is continuous and invertible on
its image:

Xs
(
R
)
=

{
H ∈ Hs(R) :

∫

R+iǫ

χ11(µ)F [H](Nαµ)e−iNαµbN · dµ
2iπ
= 0

}
. (5.68)

The inverse is then given by the operatorWN : Xs(R) −→ Hs([aN ; bN]) defined in(2.44):

WN[H](ξ) =
N2α

2πβ

∫

R+2iǫ

dλ
2iπ

∫

R+iǫ

dµ
2iπ

e−iNαλ(ξ−aN)

µ − λ
{
χ11(λ)χ12(µ)− µ

λ
·χ11(µ)χ12(λ)

}
e−iNαµbNF [

H
]
(Nαµ) (5.69)

with χ being understood as defined in Figure 3.

Proof — Starting from the expression for the inverse operator toSN;γ and carrying out the change of variables,
one obtains an operatorWN;γ which corresponds to the inverse of the operatorSN;γ. Then, in this expression we
replaceχ at finiteγ by the solutionχ atγ → +∞, as it is given in Figure 3. This corresponds to the operatorWN,
as defined in (2.44). One can then verify explicitly on the integral representation forWN by using certain elements
of the Riemann–Hilbert problem satisfied byχ that the equationSN

[WN[H]
]
= H does hold on [aN ; bN]. All the

other conclusions of the theorem can be proved similarly to Proposition 5.7.

We describe a symmetry of the integral transformWN that will appear handy in the remaining of the text.
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Lemma 5.9 The operatorWN has the reflection symmetry:

WN[H](aN + bN − ξ) = −WN[H∧](ξ) (5.70)

where we agree upon H∧(ξ) = H(aN + bN − ξ).

Proof — It follows from the jump conditions satisfies byχ and from Lemma 4.4 that, forλ ∈ R,

χ11;+(−λ) = e−iλxN · χ11;+(λ) and χ12;+(−λ) = e−iλxN ·
(
χ12;+(λ) − λ χ11;+(λ)

)
. (5.71)

Upon squeezing the contours of integration in the integral representation forWN to R we get, in particular, the+
boundary values ofχ1a. It is then enough to implement the change of variables (λ, µ, η) 7→ (−λ,−µ, bN + aN − η)
and observe that, all in all, the unwanted terms cancel out.

In the case of a constant argument (which clearly doesnot belong toXs(R)) the expression forWN simplifies:

Lemma 5.10 The functionWN[1](ξ) admits the one-fold integral representation

WN[1](ξ) = −Nα χ12;+(0)
2iπβ

∫

R+iǫ′

χ11(λ)
λ

e−iNαλ(ξ−aN) · dλ
2iπ

. (5.72)

Proof — Starting from the representation (2.44) we get, for anyξ ∈]aN ; bN[,

WN[1](ξ) =
Nα

2πiβ

∫

R+2iǫ

dλ
2iπ

∫

R+iǫ

dµ
2iπ

e−iNα(ξ−aN)λ

µ − λ

{1
µ
· χ11(λ)χ12(µ)− 1

λ
· χ11(µ)χ12(λ)

}
·
(
1 − e−iµxN

)
. (5.73)

One should then treat the terms involving the function 1 and e−iµxN arising in the right-hand side differently. The
part involving 1 is zero as can be seen by deforming theµ-integral up to+i∞. In what concerns the part involving
e−iµxN , we deform theµ-integral up to−i∞ by using the jump conditions e−iλxNχ1a;+(λ) = χ1a;−(λ). Solely the
pole atµ = 0 contributes, hence leading to (5.72).

6 Local behaviour ofWN[H](ξ) in ξ, uniformly in N

In this section we derive a local (inξ), uniform (in N), behaviour of the inverseWN[H](ξ). This will allow an
effective simplification, in the large-N limit, of the various integrals involvingWN[H] arising from the Schwinger-
Dyson equations of Proposition 3.13. Furthermore, these local asymptotics will provide a base for estimating the
W∞p norms of the inverse of the master operatorUN, cf. (3.54). In fact, such estimates demand to have a control
on the leading and sub-leading contributions issuing fromWN in respect toW∞p norms. We shall demonstrate in
§ 6.1 that the operatorWN can be decomposed as

WN = WR + Wbk + WL + Wexp . (6.1)

The operatorWexp represents an exponentially small remainder inW∞p norm, while the three other operators
contribute to the leading order asymptotics whenN → ∞. Their expression is constructed solely out of the
leading asymptotics inN of the solutionχ to the Riemann–Hilbert problem given in Proposition 4.3.

In § 6.2 we shall build on this decomposition so as to show thatthere arise two regimes for the large-N
asymptotic behaviour ofWN[H] namely when

• ξ is in the "bulk" of [aN ; bN], i.e. uniformly in N away from the endpointsaN andbN.

• ξ is close to the boundaries,viz. in the vicinity of the endpointsaN (respbN).

In addition to providing the associated asymptotic expansions, we shall also establish certain properties of the
remainders which will turn out to be crucial for our further purposes.
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6.1 An appropriate decomposition ofWN

We remind that any functionH ∈ Ck([aN ; bN]
)

admits a continuation into a functionCk
c
(
]aN − η ; bN + η[

)
for

someη > 0. We denote any such extension byHe, as it was already specified in the notation and basic definition
section. In the present subsection we establish a decomposition that is adapted for deriving the local and uniform
in N asymptotic expansion forWN.

In this section and the next ones, we will use extensively thefollowing notations:

Definition 6.1 To a variableξ on the real line, we associate xR = Nα(bN − ξ) and xL = Nα(ξ − aN) the corre-
sponding rescaled and centred around the right (resp. left)boundary variables. Similarly, for a variableη, we
denote yR and yL its rescaled and centred variable.

Definition 6.2 If H is a function of a variableξ, we denote H∧(ξ) = H(aN + bN − ξ) its reflection around the
centre of[aN ; bN] (as already met in Lemma 5.9). This exchanges the role of the left and right boundaries. If H is
a function of many variables, by H∧ we mean that all variables are simultaneously reflected. IfO is an operator,
we define the reflected operator by:

O∧[H] =
(O[H∧]

)∧ (6.2)

Definition 6.3 LetC (+)
reg (resp.C (−)

reg ) be a contour such that:

• it passes betweenR andΓ↑ (resp.Γ↓).

• it comes from infinity in the direction of anglee±3iπ/4 and goes to infinity in the direction of anglee±iπ/4.

These contours are depicted in Figure 4, and we denoteς/2 = dist(C (+)
reg ,R) > 0. We also introduce an odd

function J by setting, for x> 0:

J(x) =
∫

C (+)
reg

eiλx

R(λ)
dλ
2iπ

. (6.3)

Proposition 6.4 Given any function H∈ Ck([aN ; bN]
)

with k ≥ 1 belongingXs(R) (the image ofSN, see(5.68)),
the functionWN[H] is Ck−1(]aN ; bN[

)
and admits the representation

WN[H](ξ) = WR[He](xR, ξ) + Wbk[He](ξ) + WL[He](xL, ξ) + Wexp[H](ξ) (6.4)

with:

Wbk[He](ξ) =
Nα

2πβ

∫

R

[
He

(
ξ + N−αy

) − He(ξ)
]
J(y) · dy , (6.5)

WR[He](x, ξ) = − Nα

2πβ

+∞∫

x

[
He

(
ξ + N−αy

) − He(ξ)
]
J(y) · dy , (6.6)

− N2α

2πβ

∫

C (+)
reg

dλ
2iπ

∫

C (−)
reg

dµ
2iπ

eiλx

(µ − λ)R↓(λ)R↑(µ)

{ bN∫

aN

He(η)e
iµNα(η−bN)dη − He(ξ)

iµNα

}

WL[He](x, ξ) = −WR[H∧e ](x, aN + bN − ξ) . (6.7)
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R

R + iǫ

Γ↑
poles & zeroes ofλ 7→ R↓(λ)

Γ↓

poles & zeroes ofλ 7→ λR↑(λ)

C (+)
reg

C (−)
reg

Figure 4: The curvesC (±)
reg .

The remainder operatorWexp[He] reads:

Wexp = W(++)
N − (W(++)

N

)∧
+ Wres −

(Wres
)∧
+ ∆W(+−)

N − (
∆W(+−)

N

)∧
, (6.8)

where the operatorsW(++)
N and∆W(+−)

N are given by

W(++)
N [H](ξ) =

N2α

2πβ

∫

C (+)
reg

dλ
2iπ

∫

C (+)
reg

dµ
2iπ

bN∫

aN

dη
e−iNαλ(ξ−bN)+iNαµ(η−aN)

(µ − λ)R↓(λ)R↓(µ)

{
Ψ11(λ)Ψ12(µ) − µ

λ
· Ψ11(µ)Ψ12(λ)

}
H(η) ,

∆W(+−)
N [H](ξ) =

N2α

2πβ

∫

C (+)
reg

dλ
2iπ

∫

C (−)
reg

dµ
2iπ

bN∫

aN

dη
e−iNαλ(ξ−bN)+iNαµ(η−bN)

(µ − λ)R↓(λ)R↑(µ)

{
1+

µ

λ
· Ψ21(µ)Ψ12(λ) − Ψ11(λ)Ψ22(µ)

}
H(η)

(6.9)

whileWres is the one-form:

Wres[H] =
N2α

2πβ
Π12(0)θR

R↓(0)

∫

C (+)
reg

dµ
2iπ

µΨ11(µ)
R↓(µ)

bN∫

aN

dηH(η) eiNαµ(η−aN) . (6.10)

The piecewise holomorphic matrixΨ(µ) corresponds to the solution to the Riemann–Hilbert problemfor Ψ de-
scribed in Section 4.4 in which we have taken the limitγ→ +∞.
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In the expressions above, we have used an extensionHe of H whenever it was necessary to integrateH over
the whole real line, but we can keepH when only the integrals over [aN ; bN] are involved – e.g. in (6.9). The
decomposition given in Proposition 6.4 splitsWN into a sum of four operators. The operatorWbk takes into
account the purely bulk-type contribution of the inverse, namely those which do not feel the presence of the
boundariesaN, bN of the support of the equilibrium measure. This operator does not single out a specific point but
rather takes values which are of the same order of magnitude throughout the whole of the interval [aN ; bN]. In their
turn the operatorsWR/L represent the contributions of the right/left boundaries of the support of the equilibrium
measure. These operators localise, with exponential precision, on their respective left or right boundary. Namely,
they decay exponentially fast inxR/L when xR/L → +∞. This fact is a consequence of the exponential decay at
±∞ of J(x) in what concerns the first integral in (6.6) and an immediatebound of the second one which follows
from inf

{
Im λ, λ ∈ C (+)

reg
}
> 0.

Proof — We remind that since we are considering theγ → +∞ limit, the matrixΨ has no jump acrossR + iǫ. A
straightforward calculation based on the identity:

χ(λ) =

( −R−1
↓ (λ) eiλxN R−1

↑ (λ)
−R↑(λ) 0

)
· Ψ(λ) valid for λ betweenR andΓ↑ (6.11)

shows that, for suchλ’s andµ’s,

N2α

2πβ
· e−iNαλ(ξ−aN)

{
χ11(λ)χ12(µ) − µ

λ
· χ11(µ)χ12(λ)

}
eiNαµ(η−bN) =

∑

ǫ1,ǫ2∈{±}
Kǫ1,ǫ2

(
λ, µ | ξ, η) . (6.12)

The above decomposition contains four kernels

K−−
(
λ, µ | ξ, η) = N2α

2πβ
e−iNαλ(ξ−aN)+iNαµ(η−bN)

R↑(λ)R↑(µ)

{
Ψ21(λ)Ψ22(µ) − µ

λ
Ψ21(µ)Ψ22(λ)

}
, (6.13)

K++
(
λ, µ | ξ, η) = N2α

2πβ
e−iNαλ(ξ−bN)+iNαµ(η−aN)

R↓(λ)R↓(µ)

{
Ψ11(λ)Ψ12(µ) − µ

λ
Ψ11(µ)Ψ12(λ)

}
, (6.14)

K+−
(
λ, µ | ξ, η) = −N2α

2πβ
e−iNαλ(ξ−bN)+iNαµ(η−bN)

R↓(λ)R↑(µ)

{
Ψ11(λ)Ψ22(µ) − µ

λ
Ψ21(µ)Ψ12(λ)

}
, (6.15)

K−+
(
λ, µ | ξ, η) = −N2α

2πβ
e−iNαλ(ξ−aN)+iNαµ(η−aN)

R↑(λ)R↓(µ)

{
Ψ21(λ)Ψ12(µ) − µ

λ
Ψ11(µ)Ψ22(λ)

}
. (6.16)

The labeling of the kernelsKǫ1,ǫ2

(
λ, µ | ξ, η) by the subscriptsǫ1, ǫ2 refers to the half-planesHǫ1 × Hǫ2 in which

they are exponentially small whenN → ∞, provided that the variablesξ, η ∈ [aN ; bN] are uniformly away from
the boundariesaN or bN.

One should note that the above kernelsKǫ1,ǫ2 have a simple pole atλ = 0. In particular,

Res
(
K−+

(
λ, µ | ξ, η)dλ, λ = 0

)
=

µΨ11(µ)
R↓(µ)

· eiNαµ(η−aN) N2α · θR · Π12(0)
2πβ · (λR↑(λ)

)
|λ=0

, (6.17)

Res
(
K−−

(
λ, µ | ξ, η)dλ, λ = 0

)
= −µΨ21(µ)

R↑(µ)
· eiNαµ(η−bN) N2α · θR · Π12(0)

2πβ · (λR↑(λ)
)
|λ=0

. (6.18)

Furthermore, the kernels are related. Indeed, according tothe definition ofΨ in terms ofχ in Figure 1, we have
for λ betweenΓ↓ andR:

χ(λ) =

( −R−1
↓ (λ) R−1

↑ (λ) e−iλxN

0 R↓(λ)

)
· Ψ(λ) (6.19)
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and by invoking the reflection relation forχ obtained in Lemma 4.4, we can show that:

Ψ(−λ) =

(
0 λ

−λ−1 0

)
· Ψ(λ) ·

(
1 −λ
0 1

)
. (6.20)

The above equation ensures that

K−+
( − λ,−µ | aN + bN − ξ, aN + bN − η

)
= K+−

(
λ, µ | ξ, η) , (6.21)

K−−
( − λ,−µ | aN + bN − ξ, aN + bN − η

)
= K++

(
λ, µ | ξ, η) . (6.22)

The decomposition (6.12) of the integral kernel allows one recasting the operatorWN as:

WN[H](ξ) =
∑

ǫ1,ǫ2∈{±1}
W̃(ǫ1ǫ2)

N [H](ξ) (6.23)

where

W̃(ǫ1ǫ2)
N [H](ξ) =

∫

R+2iǫ

dλ
2iπ

∫

R+iǫ

dµ
2iπ

bN∫

aN

dη
Kǫ1ǫ2

(
λ, µ | ξ, η)

µ − λ H(η) . (6.24)

The next step consists in deforming the contours arising in the definition ofW̃(ǫ1ǫ2)
N [H]. We shall discuss these

handlings on the example of̃W(−+)
N [H]. In this case, one should deform theλ-integration toR − 2iǫ. In doing so,

we pick the residues at the poles atλ = 0 andλ = µ leading to

W̃(−+)
N [H](ξ) = Wres[H] +

∫

R

dλ
2iπ

bN∫

aN

dηK−+
(
λ, λ | ξ, η)H(η) +

∫

R−2iǫ

dλ
2iπ

∫

R−iǫ

dµ
2iπ

bN∫

aN

dη
K−+

(
λ, µ | ξ, η)

µ − λ H(η) .

It remains to implement the change of variables (λ, µ) 7→ (−λ,−µ) in the last integral and observe that

K−+
(
λ, λ | ξ, η) = N2α

2πβ
eiNαµ(η−ξ)

R(λ)
since detΨ(λ) = 1 , (6.25)

so as to obtain

W̃(−+)
N [H](ξ) = Wres[H] + W(0)

bk [H](ξ) − W̃(+−)
N

[
H∧]

(
aN + bN − ξ

)
, (6.26)

withWres being given by (6.10) and

W(0)
bk [H](ξ) =

N2α

2πβ

bN
?

aN

J
(
Nα(η − ξ)) H(η) dη (6.27)

with the functionJ given in (6.3). A similar reasoning applied to the case ofW̃(−−)
N [H](ξ) yields

W̃(−−)
N [H](ξ) = −W̃(++)

N

[
H∧

]
(aN + bN − ξ) − Wres[H

∧] . (6.28)

Hence, eventually, upon deforming the contours toC (+)
reg or C (−)

reg in theW(ǫ,ǫ′)
N operators,

WN[H](ξ) = W(++)
N [H](ξ) − W(++)

N

[
H∧

]
(aN + bN − ξ) + W(+−)

N [H](ξ)

− W(+−)
N

[
H∧

]
(aN + bN − ξ) + Wres[H] − Wres[H

∧] + W(0)
bk [H](ξ) . (6.29)
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The operatorW(++)
N appearing above has been defined in (6.9) whereas

W(+−)
N [H](ξ) =

∫

C (+)
reg

dλ
2iπ

∫

C (−)
reg

dµ
2iπ

bN∫

aN

dη
K+−

(
λ, µ | ξ, η)

µ − λ H(η) . (6.30)

At this stage, it remains to observe that

W(+−)
N [H](ξ) = W(0)

R [H](xR) + ∆W(+−)
N [H](ξ) , (6.31)

where∆W(+−)
N is as defined in (6.9), while

W(0)
R [H](x) = −N2α

2πβ

∫

C (+)
reg

dλ
2iπ

∫

C (−)
reg

dµ
2iπ

bN∫

aN

dη
H(η) eiλx+iNαµ(η−bN)

(µ − λ) R↓(λ)R↑(µ)
. (6.32)

As a consequence, we obtain the decomposition:

WN[H](ξ) = W(0)
L [H](xL) + W(0)

bk [H](ξ) + W(0)
R [H](xR) + Wexp[H](ξ) , (6.33)

where we have setW(0)
L [H]

(
x
)
= −W(0)

R [H∧]
(
x
)
. In order to obtain the representation (6.4) it is enough to incor-

porate certain terms present inW(0)
bk [H](ξ) into theR andL-type operators. Namely, we can recastW(0)

bk [H](ξ)
as

W(0)
bk [H](ξ) =

N2α

2πβ

bN∫

aN

J
(
Nα(η − ξ)) [H(η) − H(ξ)

]
dη − NαH(ξ)

[
̺0(xR) − ̺0(xL)

]

=Wbk[He](ξ) − Nα[̺0(xR) − ̺0(xL)
]
He(ξ) −

Nα

2πβ

{ +∞∫

xR

+

−xL∫

−∞

}[
He

(
ξ + N−αy

) − He(ξ)
]
J(y) dy .

There, we have introduced

̺0(x) =
−1

2iπβ

∫

C (+)
reg

eiλx

λR(λ)
dλ
2iπ

i.e. ̺′0(x) = − J(x)
2πβ

. (6.34)

The representation (6.4) forWN[H] follows by redistributing the terms. This decomposition also ensures that
WN[H] ∈ Ck−1(]aN ; bN[). Indeed, this regularity follows from the exponential decay of the integrands in Fourier
space whenξ ∈]aN ; bN[ and derivation under the integral theorems.

Note that the integral defining̺0 in (6.34) can be evaluated explicitly leading to:

̺0(x) =
1

2π2β
· ln

∣∣∣∣∣∣
1− e−

2π|x|ω1ω2
ω1+ω2

1+ e−
2π|x|ω1ω2
ω1+ω2

+ iπ
ω2−ω1
ω1+ω2

∣∣∣∣∣∣ . (6.35)

In particular, it exhibits a logarithmic singularity at theorigin meaning thatJ(x) has a 1/x behaviour around 0.
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6.2 Local approximants forWN

In this subsection, we obtain uniform – in the running variable – asymptotic expansions for the operatorsWbk,
WR andWexp. In particular, we shall establish that ifξ is uniformly away frombN (resp. aN), WR (resp.
WL) will only generate exponentially small (inN) corrections. Finally, this exponentially small bound will hold
uniformly after a finite number ofξ-differentiations. Prior to discussing these matters we need to introduce two
families of auxiliary functions onR+ and constants that come into play during the description of these behaviours.

Definition 6.5 For any integerℓ ≥ 0:

̟ℓ(x) =
1

2πβ

+∞∫

x

yℓ J(y) dy , (6.36)

̺ℓ(x) =
iℓ+1

2πβ

∫

C (+)
reg

dλ
2iπ

∫

R−iǫ′

dµ
2iπ

eiλx

µℓ+1R↑(µ)(µ − λ)R↓(λ)
, (6.37)

uℓ =
iℓ

2iπβ ℓ!
∂ℓ

∂λℓ

( 1
R(λ)

)

|λ=0
. (6.38)

Note that u2p = 0 since R is an odd function – given in(4.19).

For ℓ = 0, this definition of̺ 0 coincide with (6.34), whose explicit expression is (6.35).Indeed, we remember
from § 4.2 that↑ means that we can move the contour of integration overµ up to+i∞ without hitting a pole of
R−1
↑ (µ). According to (4.27),µR↑(µ) has a non-zero limit whenµ → 0, so we just pick up the residue atµ = λ,

which leads to the expression (6.34). Forℓ ≥ 1, the function̟ℓ is continuous atx = 0. Furthermore, for any
ℓ ≥ 0, ̺ℓ(x) and̟p(x) decay exponentially fast inx whenx→ +∞. Indeed, it is readily seen on the basis of their
explicit integral representations that there existsCℓ > 0 such that:

| ̺ℓ(x)| + |̟ℓ(x)| ≤ Cℓ e−C′
ℓ
x for ℓ ≥ 1 . (6.39)

Proposition 6.6 Let k≥ 0 be an integer, H∈ C2k+1([aN ; bN]
)
, and define:

WR;k[H](x, ξ) =
H(ξ) − H(bN)

ξ − bN
· x̺0(x) −

k∑

ℓ=1

H(ℓ)(ξ)

N(ℓ−1)α · ℓ! ·̟ℓ(x) +
k∑

ℓ=1

H(ℓ)(bN)

N(ℓ−1)α
· ̺ℓ(x) , (6.40)

Wbk;k[H](ξ) =
k∑

ℓ=1

H(ℓ)(ξ)

Nα(ℓ−1)
· uℓ . (6.41)

These operators provide the asymptotic expansions, uniform for ξ ∈ [aN ; bN]:

WR[He](xR, ξ) = WR;k[H](xR, ξ) + ∆[k]WR[He](xR, ξ) , (6.42)

Wbk[He](ξ) = Wbk;k[H](ξ) + ∆[k]Wbk[He](ξ) . (6.43)

The remainder in(6.42)takes the form:

∆[k]WR[He](x, ξ) = R(0)
R;[k] [He](x, ξ) +

k∑

ℓ=0

xℓ+1/2R(1/2)
R;[k];ℓ[He](x) , (6.44)
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withR(0)
R;[k][He] ∈W(∞)

k

(
R
+ × [aN ; bN]

)
andR(1/2)

R;[k];ℓ[He] ∈W(∞)
k

(
R
+
)
, and the more precise bound:

∀m ∈ [[ 0 ; k ]] , max
p∈[[ 0 ; m]]
ℓ∈[[ 0 ; k ]]

{∣∣∣∂p
ξ
R(0)

R;[k] [He](xR, ξ)
∣∣∣ +

∣∣∣∂p
ξ
R(1/2)

R;[k];ℓ[He](xR)
∣∣∣
}
≤ Ce−C′xR

N(k−m)α
||H(k+1)
e ||W∞m (R) (6.45)

for some C,C′ > 0 independent of N and H. The remainder in(6.43)is bounded by:
∣∣∣
∣∣∣∆[k]Wbk[He]

∣∣∣
∣∣∣
W∞m ([aN ;bN]) ≤ C N−kα ||H(k+1)

e ||W∞m (R) . (6.46)

Proposition 6.7 Let k≥ 0 be an integer, and H∈ C2k+1([aN ; bN]
)
. The operatorWexp takes the form:

Wexp[H](ξ) = R(0)
exp;R[H](xR, ξ) +

k∑

ℓ=0

xℓ+1/2
R R(1/2)

exp;R;ℓ[H](xR)

+R(0)
exp;L[H](xL, ξ) +

k∑

ℓ=0

xℓ+1/2
L R(1/2)

exp;L;ℓ[H](xL) (6.47)

withR(0)
exp;R/L[He] ∈W(∞)

k

(
R
+ × [aN ; bN]

)
andR(1/2)

exp;R/L;ℓ[He] ∈W(∞)
k

(
R
+
)
, and the more precise bound:

∀m ∈ [[ 0 ; k ]] , max
p∈[[ 0 ; m]]
ℓ∈[[ 0 ; k ]]

{∣∣∣∂p
ξ
R(0)

exp;R/L[He](xR/L, ξ)
∣∣∣ +

∣∣∣∂p
ξ
R(1/2)

exp;R/L;ℓ[He](xR/L)
∣∣∣
}
≤ CNmαe−C′Nα ||H(k+1)

e ||W∞m (R)

(6.48)

for some C,C′ > 0 independent of N and H.

The idea for obtaining the above form of the asymptotic expansions is to representH in terms of its Taylor-
integral expansion of orderk. We can then compute explicitly the contributions issuing from the polynomial part
of the Taylor series expansion forH and obtain sharp bounds on the remainder by exploiting the structure of
the integral remainder in the Taylor integral series. In particular, the analysis of this integral remainder allows
uniform bounds for the remainder as given in (6.45), (6.46) and (6.48). The reason for such handlings instead of
more direct bounds issues from the fact that the integrals wemanipulate are only weakly convergent. One thus has
first to build on the analytic structure of the integrand so asto obtain the desired bounds and expressions and, in
particular, carry out some contour deformations. Clearly,such handlings cannot be done anymore upon inserting
the absolute value under the integral sign, as then the integrand is no more analytic.

Proof — We carry out the analysis, individually, for each operator.

The operatorWbk

The Taylor integral expansion ofH up to orderk yields the representation

Wbk[He](ξ) =
k∑

p=1

1
2πβN(p−1)α

H(p)(ξ)
p!

∫

R

ypJ(y) dy + ∆[k]Wbk[He](ξ) , (6.49)

where

∆[k]Wbk[He](ξ) =
1

2πβNkα

1∫

0

dt
(1− t)k

k!

∫

R

dy yk+1J(y) H(k+1)
e (ξ + N−αty) . (6.50)
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In the first terms of (6.49) we identify:

∫

R

yℓJ(y)dy = iℓ−1 ∂
ℓ

∂λℓ

( 1
R(λ)

)

|λ=0
= 2πβ ℓ! uℓ , (6.51)

and we remind that this is zero whenℓ is even. Finally, we get that the remainder is aCk function ofξ, and:

∀m ∈ [[ 0 ; k ]] , ||∆[k]Wbk[He]||W∞m ([aN ;bN ]) ≤
||H(k+1)
e ||W∞m (R)

Nkα

∫

R

|y|k+1|J(y)| dy
2πβ

. (6.52)

SinceJ decays exponentially at∞ (see (6.34) and (6.35)), the last integral gives a finite,k-dependent constant.

The operatorWR

The contribution arising in the first line of (6.6) can be treated analogously toWbk, what leads to

− Nα

2πβ

+∞∫

x

J(y)
[
He

(
ξ + N−αy

) − He(ξ)
]
dy = −

k∑

ℓ=1

H(ℓ)
e (ξ)

N(ℓ−1)α ℓ!
̟ℓ(x) + ∆[k]W(1)

R [He](x, ξ) (6.53)

with

∆[k]W(1)
R [He](x, ξ) =

−1

2πβNkα

+∞∫

x

dy yk+1J(y)

1∫

0

dt
(1− t)k

k!
H(k+1)
e (ξ + N−α ty) . (6.54)

SinceJ decays exponentially at infinity, we clearly have:

max
p∈[[ 0 ; m]]

∣∣∣∂p
ξ
· ∆[k]W(1)

R [He](xR, ξ)
∣∣∣ ≤ C e−C′xR ·

||H(k+1)
e ||W∞m (R)

N(k−m)α
(6.55)

for some constantsC,C′ independent ofH andN. We remind that theξ-derivative can act on both variablesξ and
xR = Nα(bN − ξ).

We now focus on the contributions issuing from the second line of (6.6). For this purpose, observe that the
Taylor-integral series representation forH yields the following representation for the Fourier transform of H:

bN∫

aN

H(η)eiµNα(η−bN) dη = F1;k[H](µ) + F2;k[He](µ) + F3[He](µ) , (6.56)

where we complete the integral over [aN ; bN] to ] − ∞ ; bN] in the first term, while the two last terms come from
subtracting the right and left contributions:

F1;k[H](µ) = −
k∑

p=0

(
i

Nαµ

)p+1

· H(p)(bN) , F3[He](µ) =

aN∫

−∞

He(η) eiµNα(η−bN) dη (6.57)

and

F2;k[He](µ) =

bN∫

−∞

dη

1∫

0

dt
(1− t)k

k!
eiµNα(η−bN)(η − bN)k+1 H(k+1)

e

(
bN + t(η − bN)

)
. (6.58)
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Thus,

− N2α

2πβ

∫

C (+)
reg

dλ
2iπ

∫

C (−)
reg

dµ
2iπ

eiλx

(µ − λ)R↓(λ)R↑(µ)

bN∫

aN

H(η)e−iµyRdη

=

k∑

ℓ=0

H(ℓ)(bN)

N(ℓ−1)α
̺ℓ(x) + LΛ0

[F2;k[He] + F3[He]
]
(x) . (6.59)

LΛ0 is an operator with integral kernel – see later equation (6.66):

Λ0(λ, µ) =
−1

R↑(µ)R↓(λ)
(6.60)

which satisfies the assumptions of Lemma 6.8 appearing below. Thence, Lemma 6.8 entails the decomposition:

LΛ0

[F2;k[He] + F3[He]
]
(x) =

k∑

ℓ=0

{
xℓ+1/2e−ςxLΛ0;ℓ

[F2;k[He] + F3[He]
]
(x)

}

+ (∆[k]LΛ0)
[F2;k[He] + F3[He]

]
(x) (6.61)

in which bothLΛ0;ℓ
[F2;k[He] + F3[He]

]
(x) and (∆[k]LΛ0)

[F2;k[He] + F3[He]
]
(x) belong toW∞k (R+) and are as

given in (6.68)-(6.69)
By using the bounds:

∣∣∣F2;k[He](µ)
∣∣∣ ≤ ck||H(k+1)

e ||L∞(R)

(Nα|µ|)k+2
since

1
|Im µ| ≤

c′

|µ| for µ ∈ C (−)
reg , (6.62)

and

∣∣∣F3[He](µ)
∣∣∣ ≤ c

||He||L∞(R)

|µ|Nα
· e−xN |Im µ| . (6.63)

we get that there existsN-independent constantsC,C′ such that

max
p∈[[ 0 ; m]]
ℓ∈[[ 0 ; k ]]

∣∣∣∣∂p
ξ
·
{(

e−ςxRLΛ0;ℓ + ∆[k]LΛ0

)[
F2;k[He] + F3[He]

]
(xR)

}∣∣∣∣ ≤ C e−C′xR
||H(k+1)
e ||L∞(R)

N(k−m)α
. (6.64)

We have relied on:

Lemma 6.8 Let Λ(λ, µ) be a holomorphic function ofλ and µ belonging to the region of the complex plane
delimited byC (+)

reg andC (−)
reg and such that it admits an asymptotic expansion

Λ(λ, µ) =
k∑

ℓ=0

Λℓ(µ)
[
i(λ − iς)

]ℓ+1/2
+ ∆[k]Λ(λ, µ) with


|Λℓ(µ)| = O

(|µ|1/2)

|∆[k]Λ(λ, µ)| = O
(|λ|−(k+3/2) · |µ|1/2)

. (6.65)

Then, the integral operator onµ · L∞(
C (−)

reg
) ≡

{
f : µ 7→ µ f (µ) ∈ L∞

(
C (−)

reg
)}

LΛ
[
f
]
(x) =

N2α

2πβ

∫

C (+)
reg

dλ
2iπ

∫

C (−)
reg

dµ
2iπ
Λ(λ, µ)
µ − λ eiλx f (µ) (6.66)
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can be recast as

LΛ
[
f
]
(x) =

k∑

ℓ=0

xℓ+1/2e−ςxLΛ;ℓ[ f ](x) + ∆[k]LΛ
[
f
]
(x) , (6.67)

where the operators

LΛ;k[ f ](x) =
N2α

2πβ

∫

Γ(iR+)

dλ
2iπ

∫

C (−)
reg

dµ
2iπ

Λk(µ)eiλ f (µ)
[
x
(
µ − iς

) − λ](iλ)ℓ+
1
2

, (6.68)

∆[k]LΛ[ f ](x) =
N2α

2πβ

∫

C (+)
reg

dλ
2iπ

∫

C (−)
reg

dµ
2iπ

∆[k]Λ(λ, µ)

µ − λ eiλx f (µ) , (6.69)

are continuous as operatorsµ · L∞(
C (−)

reg
) → W∞k

(
R
+
)
. Note that, above,Γ

(
iR+

)
corresponds to a small counter-

clockwise loop aroundiR+.

Proof — It is enough to insert the large-µ expansion ofΛ and then, in the part subordinate to the inverse power-law
expansion, deform theλ-integrals toΓ

(
iR + iς

)
, translate by+iς and, finally, rescale byx. The statements about

continuity are evident.

The operatorWexp (Proposition 6.7)

The analysis relative to the structure ofWexp[He] follows basically the same steps as above so we shall not detail
them here again. The main point, though, is the presence of anexponential prefactor e−cNα

which issues from the
bound (4.50) onΠ − I2.

6.3 LargeN asymptotics of the approximants ofWN

The results of Propositions 6.6 and 6.7 induce the representation

WN[H](ξ) = WR;k[H](xR, ξ) + Wbk;k[H](ξ) − WR;k[H](xL, aN + bN − ξ) + ∆[k]WN[He](ξ) , (6.70)

with all remainders at orderk are collected in the last term. In this subsection, we shall derive asymptotic expansion
(in N) of the approximantsWbk;k andWR;k in the case when their unrescaled variableξ scales towardsbN as
ξ = bN −N−α x with x being independent ofN. We, however, first need to establish properties of certain auxiliary
functions that appear in this analysis.

Definition 6.9 Let ℓ ≥ 0 be an integer. As a supplement to Definition 6.5, we introduce, for any integerℓ ≥ 0:

bℓ(x) = ̺ℓ+1(x) − (−x)ℓ+1

(ℓ + 1)!
̺0(x) −

∑

s+p=ℓ
s,p≥0

(−x)p̟s+1(x)
p!(s+ 1)!

and uℓ(x) =
∑

s+p=ℓ
s,p≥0

(−x)pus+1

p!
(6.71)

and:

a0(x) = b0(x) + u0(x) , aℓ(x) =
bℓ(x) + uℓ(x)
a0(x)

for ℓ ≥ 1 . (6.72)
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It will be important for the estimates of § 8.2 to remark thatx−1/2a0(x) is a smooth and positive function:

Lemma 6.10 Let ℓ, n,m ≥ 0 be three integers such that n> m. There exist polynomials pℓ;m,n of degree at most
n+ ℓ and functions fℓ;m,n ∈W∞n−m

(
R
+
)

such that, for any x> 0:

a0(x) =
√

x p0;m,n(x)e−ςx + xm f0;m,n(x) and a0(x) ·aℓ(x) =
√

x pℓ;m,n(x)e−ςx + xm fℓ;m,n(x) . (6.73)

The functiona0(x) is positive for x> 0 and satisfies

a0(x) =
x→0

1
πβ

√
x

π(ω1 + ω2)
+ O(x) (6.74)

Finally, one has, in the x→ +∞ regime,

a0(x) = u1 + O(e−ςx) , a0(x) · aℓ(x) = uℓ(x) + O(e−ςx) (6.75)

and the bound on the remainder is stable with respect to finite-order differentiations.

Proof — By using the integral representation (6.3) for the functionJ, we can readily recast̟ ℓ(x), for x > 0 as:

̟ℓ(x) =
iℓ+1

2πβ

∫

C (+)
reg

eiλx

λ

∂ℓ

∂λℓ

( 1
R(λ)

) dλ
2iπ

. (6.76)

Theµ-integral arising in the definition (6.37) of̺ℓ can be computed by moving the contour of integration overµ

up to+i∞, and picking the residues atµ = λ andµ = 0:

̺ℓ(x) =
iℓ+1

2πβ

∫

C (+)
reg

eiλx

λℓ+1R(λ)

dλ
2iπ
+ τℓ(x) with τℓ(x) =

iℓ+1

2πβ

∫

C (+)
reg

eiλx

ℓ!R↓(λ)
· ∂

ℓ

∂µℓ

( 1
(µ − λ)R↑(µ)

)

|µ=0

dλ
2iπ

.

The first term can be related to the functions̺0 and̟s of Definition 6.5 by anℓ-fold integration by parts based
on the identities:

1

λℓ+1
=

∂ℓ

∂λℓ

{ (−1)ℓ

λ ℓ!

}
and

∂ℓ

∂λℓ

{ eiλx

R(λ)

}
=

∑

s+p=ℓ
s,p≥0

ℓ!
s!p!

(ix)peiλx · ∂
s

∂λs

{ 1
R(λ)

}
. (6.77)

Namely, we obtain – writing the identity forℓ + 1 instead ofℓ – that:

̺ℓ+1(x) − τℓ+1(x) =
(−x)ℓ+1

(ℓ + 1)!
̺0(x) +

∑

s+p=ℓ
s,p≥0

(−x)p̟s+1(x)
p!(s+ 1)!

. (6.78)

According to Definition 6.9, we can thus identifyτℓ+1(x) = bℓ(x) – in this proof, we will nevertheless keep the
notationτℓ. Hence, it remains to focus onτℓ(x). Computing theℓth-orderµ-derivative appearing in its integrand
and then repeating the same integration by parts trick, we obtain that:

τℓ(x) = − iℓ+1

2πβ

∑

s+r+p=ℓ

(ix)r

s!p!r!
∂s

∂µs

( 1
R↑(µ)

)

|µ=0

∫

C (+)
reg

eiλx

λ
· ∂

p

∂λp

{ 1
R↓(λ)

} dλ
2iπ

. (6.79)
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In the second integral, let us move a bit the contourC (+)
reg to a contourC (+)

reg,0 which passes below 0 while keeping

the same asymptotic directions asC (+)
reg . Doing so, we pick up the residue atλ = 0:

∫

C (+)
reg

eiλx

λ
· ∂

p

∂λp

{ 1
R↓(λ)

} dλ
2iπ
= − ∂p

∂λp

{ 1
R↓(λ)

}

|λ=0
+

∫

C (+)
reg,0

eiλx

λ
· ∂

p

∂λp

{ 1
R↓(λ)

} dλ
2iπ

(6.80)

We observe that there exist constantscp;q such that:

1
λ
· ∂

p

∂λp

{ 1
R↓(λ)

}
=

n∑

q=p+1

cp;q
[
i(λ − iς)

]q+1/2
+ ∆

(p)
[n]

[
R−1
↓

]
(λ) , (6.81)

This decomposition ensures that∆(p)
[n]

[
R−1
↓

]
(λ) is holomorphic inH−, has a simple pole atλ = 0 and satisfies

∆
(p)
[n]

[
R−1
↓

]
(λ) = O

(
λ−(n+3/2)

)
.

Sinceς/2 is the distance betweenC (+)
reg andR, we can choose this contour – for a fixedς – such that the branch

cut of the denominators in (6.81) is located on a vertical half-line aboveC (+)
reg,0. This implies that the remainder in

(6.81) is holomorphic belowC (+)
reg,0. So, in the second integral of (6.80), we obtain with the firstsum contributions

involving:

∫

C (+)
reg

eiλx

[
i(λ − iς)

]q+1/2

dλ
2iπ
=

e−ςx xq−1/2

iΓ(q+ 1/2)
(6.82)

in which (after the change of variablet = −ix(λ− iς)) we have recognised the Hankel contour integral representa-
tion of

{
Γ(q+ 1/2)

}−1. In its turn, the contribution of the remainder in (6.81) canbe written:

∫

C (+)
reg,0

eiλx∆
(p)
[n]

[
R−1
↓

]
(λ)

dλ
2iπ
=

∫

C (+)
reg

(
eiλx−

m−1∑

r=0

(iλ)r xr

r!

)
·∆(p)

[n]

[
R−1
↓

]
(λ) · dλ

2iπ
+

m−1∑

r=0

∫

C (+)
reg,0

(iλ)r xr

r!
· ∆(p)

[n]

[
R−1
↓

]
(λ) · dλ

2iπ

︸                                   ︷︷                                   ︸
=0

.

(6.83)

Note that the last sum vanishes since we can deform the contour of integration to−i∞ providedm ≤ n. Also, we
could deformC (+)

reg,0 back toC (+)
reg in the first term since the integrand has no pole atλ = 0. All-in-all, we get

∫

C (+)
reg

eiλx

λ

∂p

∂λp

{ 1
R↓(λ)

} dλ
2iπ
= − ∂p

∂λp

{ 1
R↓(λ)

}

|λ=0
+

n∑

q=p+1

cp;q e−ςx xq−1/2

iΓ(q+ 1/2)

+

∫

C (+)
reg

∆
(p)
[n]

[
R−1
↓

]
(λ)

(
eiλx −

m−1∑

r=0

(ix)rλr

r!

)
dλ
2iπ

. (6.84)

With the bound

∣∣∣∣eiλx −
m−1∑

r=0

(ix)rλr

r!

∣∣∣∣ ≤ xm|λ|m (6.85)
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and theorems of derivation under the integral, we can conclude that the last term in (6.84) is at leastn−m times
differentiable and that it has, at least, anm-fold zero atx = 0. With the decomposition (6.84), we can come back
to τℓ given by (6.79). The second term in (6.84) – which contain derivatives of 1/R↓ – can be recombined with
its prefactor – containing derivatives of 1/R↑ – by using the Leibniz rule backwards for the representationof the
derivative at 0 of 1/R = 1/(R↑R↓). Subsequently, we find there exist a polynomialpℓ;m,n of degree at mostn + ℓ
and a functionfℓ;m,n ∈W∞n−m

(
R
+) such that

τℓ+1(x) =
√

x pℓ;m,n(x)e−ςx + xm fℓ;m,n(x) − iℓ

2πβ

∑

s+p=ℓ

(ix)p

(s+ 1)!p!
∂s+1

∂λs+1

{ 1
R(λ)

}

|λ=0
. (6.86)

The claim then follows upon adding up all of the terms. Finally, the estimates atx → +∞ of aℓ follow readily
from the exponential decay atx→ +∞ of the functions̺ and̟.

To compute the behaviour atx→ 0, we remind that:

a0(x) = b0(x) + u1 = τ1(x) + u1 . (6.87)

We already know from (6.86) thata0(0) = 0, and we just have to look in (6.79)-(6.84) for the coefficient of
√

x in
the caseℓ = 1. For this purpose, it is enough to write (6.79) withn = 1. Then, the square-root behaviour occur for
p = r = 0 ands= 1 in the sum, and gives:

a0(x) =
c0;1 x1/2 e−ςx

2iπβ · Γ(3/2)
∂µR

−1
↑ (µ)|µ=0 + O(x) . (6.88)

The coefficientc0;1 is given by the largeλ asymptotics in (6.81), coming from that ofR↓(λ) given by (4.30):

c0;1 = −1 . (6.89)

On the other hand, we know from (4.27) that:

∂µR
−1
↑ (µ)|µ=0 =

1

i
√
ω1 + ω2

(6.90)

Therefore:

a0(x) =
1
πβ

√
x

π(ω1 + ω2)
+ O(x) . (6.91)

We finally turn to proving thata0 > 0 onR+. It follows from the previous calculations that

a0(x) =
1

2πβ

( 1
µ · R↑(µ)

)

|µ=0

∫

C (+)
reg

eiλx − 1
λR↓(λ)

dλ
2iπ

. (6.92)

The integral can be computed by deforming the contour up to+i∞ and, in doing so, we pick up the residues of the
poles located at

λ =
2iπnω1ω2

ω1 + ω2
, n ≥ 1 . (6.93)

All-in-all this yields

a0(x) =
∑

n≥1

a0;n

(
1 − e−

2πω1ω2
ω1+ω2

nx) with a0;n =
(ω1 + ω2) · (−1)n−1 · κ−nκ · (1− κ)−n(1−κ)

2πβω1ω2 · n2 · n! · Γ( − κn) · Γ( − (1− κ)n) (6.94)
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andκ = ω2/(ω1 + ω2) < 1. By using the Euler reflection formula, we can recasta0;n into a manifestly strictly
positive form

a0;n =
(ω1 + ω2)
2πβω1ω2

·
(sin[πκn]

π

)2
· Γ

(
1+ κn

) · Γ(1+ (1− κ)n)

n2 · n! · κnκ · (1− κ)n(1−κ) . (6.95)

The asymptotics ofa0;n then takes the form

a0;n ∼
n→+∞

(ω1 + ω2)
2βω1ω2

·
√

2κ(1− κ)
πn3

·
(sin[πκn]

π

)2
. (6.96)

Thus the series (6.94) defininga0(x) converges uniformly forx ∈ R+. Since the series only contains positive
summands,a0(x) is positive forx > 0.

The main reason for investigating the properties of the functions aℓ(x) lies in the fact that they describe the
large-N asymptotics of the functionWR;k[H](x, bN−N−α x) +Wbk;k[H](bN−N−α x). In particular,a0(x) arises as
the first term and plays a particularly important role in the analysis that will follow. Let us remind Definition 3.14
for the weighted norm:

N (ℓ)
N [H] =

ℓ∑

k=0

||H||W∞k (R)

Nkα
. (6.97)

Lemma 6.11 Let k≥ 0 be an integer, H∈ C2k+1([aN ; bN]
)
. Define the functions:

W(as)
R;k [H](x) = H′(bN) b0(x) +

k−1∑

ℓ=1

H(ℓ+1)(bN) bℓ(x)

Nℓα
, (6.98)

W(as)
bk;k[H](x) = H′(bN) u1 +

k−1∑

ℓ=1

H(ℓ+1)(bN) uℓ(x)

Nℓα
. (6.99)

The approximants at order k,WR;k[H](x, bN − N−α x) andWbk;k[H](bN − N−α x), admit the large-N asymptotic
expansions:

WR;k[H](x, bN − N−αx) = W(as)
R;k [H](x) + ∆[k]W(as)

R [H](x) , (6.100)

Wbk;k[H](bN − N−αx) = W(as)
bk;k[H](x) + ∆[k]W(as)

bk [H](x) . (6.101)

The remainders have the following structure:

∆[k]W(as)
R [H](x) = N−kα · e−ςx

{
(ln x)R(1)

as;k[H](x) + R(2)
as;k[H](x)

}
, (6.102)

∆[k]W(as)
bk [H](x) = N−kα · R(3)

as;k[H](x) , (6.103)

whereR(a)
as;k[H] ∈W∞

ℓ
(R+) for a = 1, 2, 3. For a= 1, we have:

∣∣∣R(1)
as;k[H](x)

∣∣∣ = O(xk+1) (6.104)

uniformly in N. Moreover, we have uniform bounds for x∈ [0 ; ǫNα], namely forℓ ∈ [[ 0 ; k ]] :
∣∣∣∂ℓξR

(1)
as;k[H](xR)

∣∣∣ ≤ Ck,ℓ · xk−ℓ+1
R · Nℓα · N (ℓ)

N

[
H(k+1)
e

]
, (6.105)

a = 2, 3,
∣∣∣∂ℓξR

(a)
as;k[H](xR)

∣∣∣ ≤ Ck,ℓ · Nℓα · N (ℓ)
N

[
H(k+1)
e

]
, (6.106)

where we remind xR = Nα(bN − ξ).
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Note that we can combine the operators into the asymptotic expansion

W(as)
R;k [H](x) + W(as)

bk;k[H](x) = H′(bN) a0(x)

{
1+

k∑

ℓ=1

H(ℓ+1)(bN) aℓ(x)

H′(bN) Nαℓ

}
. (6.107)

Proof — The form of the large-N asymptotic expansion follows from straightforward manipulations on the Taylor
integral representation forH(ℓ)(ξ) aroundξ = bN for ℓ ∈ [[ 0 ; k ]]. The control on the remainder arising in (6.100),
(6.101) and (6.107) follows from the explicit integral representation for the remainder in the Taylor-integral series:

∆[k]W(as)
R [H](x) = N−kα

1∫

0

dt H(k+1)(bN − N−α tx)

{
− (1− t)k (−x)k+1̺0(x)

k!
−

k∑

ℓ=1

(1− t)k−ℓ(−x)1+k−ℓ̟ℓ(x)
ℓ!(k − ℓ)!

}
,

∆[k]W(as)
bk [H](x) = N−kα

k∑

ℓ=1

uℓ
(−x)k+1−ℓ

(k− ℓ)!

1∫

0

dt (1− t)k−ℓ H(k+1)(bN − N−α tx) . (6.108)

and we remark that̺0(x) – given by (6.35) – has a logarithmic singularity whenx → 0. The details to arrive to
(6.105)-(6.106) are left to the reader.

Collecting the bounds, we have obtained in sup norms, we find in particularWN[H] is bounded whenH is C1:

Corollary 6.12 There exists C> 0 independent of N such that, for any H∈ C1([aN ; bN]),

||WN[H]||W∞0 ([aN ;bN]) ≤ C ||He||W∞1 (R) . (6.109)

7 Asymptotic analysis of single integrals

7.1 Asymptotic analysis of the constraint functionalsXN[H]

Recall that for anyH ∈ C1([aN ; bN]) the linear formXN[H] defined in (3.99):

XN[H] =
iNα

χ11;+(0)

∫

R+iǫ′

dµ
2iπ

χ11(µ)

bN∫

aN

H(η)eiNαµ(η−bN) dη (7.1)

is related to the constraintI11[h] defined in (5.24) whereH andh are related by the rescaling (4.2):

I11[h] = −Nα χ11;+(0)

2πβ
XN[H] , h(x) =

Nα

2iπβ
H(aN + N−αx) . (7.2)

In the following, we shall obtain the large-N expansion of the linear formXN[h] introduced in (3.99) and defining
the hyperplaneXs where we inverse operators. We first need to define new constants:

Definition 7.1 If p ≥ 0 is an integer, we define:

kp = −
R↓(0)

2

∫

R+iǫ′

1
µp+1R↓(µ)

· dµ
2iπ
= (−1)p+1 R↓(0)

2

∫

R−iǫ′

1
µp+2R↑(µ)

· dµ
2iπ

. (7.3)

The equality between the two expressions ofkp follows from the symmetry (4.28).
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Lemma 7.2 Let k≥ 1 be an integer, and H∈ Ck([aN ; bN]
)
. We have an asymptotic expansion:

XN[H] =
k−1∑

p=0

ip
kp

Nαp

{
H(p)(aN) + (−1)pH(p)(bN)

}
+ ∆[k]XN[H] , (7.4)

where:
∣∣∣∆[k]XN[H]

∣∣∣ ≤ C N−kα ||H||W∞k ([aN ;bN]) . (7.5)

Proof — Forλ betweenΓ↑ andR, we decomposeχ into:

χ(λ) = χ
(as)
↑ (λ) + χ

(exp)
↑ (λ) (7.6)

In terms of the various matrices used § 4.4, the main part is:

χ
(as)
↑ (λ) = R−1

↑ (λ) · [υ(λ)
]−σ3 · M↑(λ) ·

(
I2 +

σ−

λ

)
=


− eiλxN

R↓(λ)
+

1
λR↑(λ)

1
R↑(λ)

− R↑(λ) 0


(7.7)

and is such that the remainder is exponentially small inN:

χ
(exp)
↑ (λ) = χ

(as)
↑ (λ) · [δΠ](λ) with [δΠ](λ) =

(
I2 +

σ−

λ

)−1

· Π(λ) · PR(λ) − I2 . (7.8)

Indeed, the large-N behaviour ofθR inferred from (4.18) and (4.35) as well as the estimate (4.50) on the matrix
Π − I2 imply that, forǫ′ fixed but small enough, and uniformly inλ ∈ R + iτ, 0 < τ < ǫ′:

∣∣∣[δΠ]ab(λ)
∣∣∣ ≤ C e−κǫ′ Nα

1+ |λ| . (7.9)

Furthermore, a direct calculation shows that

[χ(exp)
↑ ]11(λ) =

(
1

λR↑(λ)
− eiλxN

R↓(λ)

)
[δΠ]11(λ) +

[δΠ]21(λ)
R↑(λ)

, (7.10)

and taking into account the large-λ behaviour ofR↑/↓ given in (4.25)- (4.26), we also get a uniform bound forλ ∈
R + iτ, 0 < τ < ǫ′:

∣∣∣[χ(exp)
↑ ]11(λ)

∣∣∣ ≤ C′ e−κǫ′N
α

√
1+ |λ|

. (7.11)

In particular, this estimate (7.11) implies:

1
χ11;+(0)

= −R↓(0)

2
+ O(e−κǫ′N

α

) . (7.12)

The decomposition (7.6) in formula (7.1) induces a decomposition:

XN[H] = X(as)
N [H] + X(exp)

N [H] (7.13)
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where

X(exp)[H] =
iNα

χ11;+(0)

∫

C̃ (−)

dµ
2iπ

[
χ

(exp)
↑ (µ)

]
11

bN∫

aN

H(η)eiNαµ(η−bN) · dη (7.14)

andC̃ (−) is a contour surrounding 0 from above, going to∞ in H− along the rayste−
3iπ
4 andte−

iπ
4 and such that

max
{
Im(λ) : λ ∈ C̃ (−)} = ǫ′. Note that we could have carried out this contour deformation sinceΠ(λ) is

holomorphic in the domain delimited byR + iǫ′ andC̃ (−).
Since forλ ∈ C̃ (−), we have:

∣∣∣∣∣

bN∫

aN

H(η)eiNαλ(η−bN) dη
∣∣∣∣∣ ≤

C exNǫ
′

|λ| ||H||L∞([aN ;bN ]) , (7.15)

it is readily seen that
∣∣∣X(exp)

N [H]
∣∣∣ ≤ C′ · Nαe−

κǫ′
2 Nα ||H||L∞([aN ;bN]) . (7.16)

It thus remains to estimate

X(as)
N [H] = X(as)

R [H] + X(as)
R [H∧] (7.17)

where

X(as)
R [H] =

iNα

χ11;+(0)

∫

C (−)
reg

dµ
2iπ

1
µR↑(µ)

bN∫

aN

H(η)eiNαµ(η−bN) dη , (7.18)

and the second term arises upon the change of variables (µ, η) 7→ (−µ, aN + bN − η) in the initial expression. The
dependence inN is implicit in these new notations. Note that we could deformthe contour fromR + iǫ′ up to
R − iǫ′ or C (−)

reg since the integrand is holomorphic in the domain swapped in between. ReplacingH by its Taylor
series with integral remainder at orderk, we get:

X(as)
R [H] = X(as)

R;k [H] + ∆[k]X(as)
R [H] . (7.19)

The first term is:

X(as)
R;k [H] = iNα

k−1∑

p=0

H(p)(bN)
p! χ11;+(0)

∫

R−iǫ′

dµ
2iπ

1
µR↑(µ)

0∫

−∞

ηpeiNαµη dη =
−2

R↓(0)χ11;+(0)

k−1∑

p=0

(−i)p
kp H(p)(bN)

Npα (7.20)

where we have recognised the constantskp of Definition 7.1. The remainder is:

∆[k]X(as)
R [H] =

1
iχ11;+(0)

{ k−1∑

p=0

H(p)(bN)
p! Npα

∫

C (−)
reg

dµ
2iπ

1
µR↑(µ)

−xN∫

−∞

ηpeiµη dη

+

∫

C (−)
reg

dµ
2iπ

Nα

µR↑(µ)

bN∫

aN

dη (η − bN)k

1∫

0

dt
(1− t)k−1

(k − 1)!
eiNαµ(η−bN) H(k)(bN + t(η − bN)

)}
. (7.21)
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X(as)
R;k [H] yields the leading terms of the asymptotic expansion announced in (7.4). Hence, it remains to bound

∆[k]X(as)
R [H]. The first line in (7.21) is exponentially small and boundedby a term proportional to||H||W∞k−1([aN ;bN ]).

The second line is bounded by

Nα · |R↓(0)| · ||H||W∞k ([aN ;bN ])

∫

C (−)
reg

|dµ|
2π k!

1∣∣∣µR↑(µ)
∣∣∣

bN∫

−∞

dη (bN − η)k e−Nα
[
Im µ(η−bN)

]
≤ C N−kα ||H||W∞k ([aN ;bN]) . (7.22)

It thus solely remains to put all the pieces together.

Using these estimates, we obtain the continuity of the linear formXN in sup norms:

Corollary 7.3 There exists C> 0 independent of N, such that:
∣∣∣X̃N[H]

∣∣∣ ≤ C ||H||W∞0 ([aN ;bN]) . (7.23)

Proof — We have shown in the proof of Lemma 7.2 a decomposition:

X(as)
N [H] = X(as)

R [H] + X(as)
R [H∧] + X(exp)

N [H] . (7.24)

X(as)
R [H] is given in (7.18). It hasχ11;+(0) as prefactor, and we have seen in (7.12) that this quantity takes the

non-zero value−2/R↓(0) up to exponential small (inN) corrections. So, we have the bound:

∣∣∣X(as)
R [H]

∣∣∣ ≤ |R↓(0)|
2
· ||H||W∞0 ([aN ;bN]) ·

∫

C (−)
reg

1
|µ||Im µ|R↑(µ)|

|dµ|
2π

(7.25)

where the inverse power of|Im µ| and the loss of the prefactorNα resulted from integrating the decaying expo-
nential|eiNαµ(η−bN)| over [aN ; bN], given that Imµ < 0 for µ ∈ C (−)

reg . We conclude by combining this estimate with
(7.16) which shows that the remainder is exponentially small.

7.2 Asymptotic analysis of simple integrals

In the present subsection, we obtain the large-N asymptotic expansion of one-dimensional integrals involving
WN[H]. This provides the first set of results that were necessary in § 3.4 for a thorough calculation of the large-N
expansion of the partition function.

Definition 7.4 If G and H are two functions on[aN ; bN], we define:

Is
[
G,H

]
=

bN∫

aN

G(ξ) · WN[H](ξ) dξ (7.26)

where theWN is the operator defined in(2.44).

To write the largeN-expansion ofIs, we need to introduce some more constants:
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Definition 7.5 If s, ℓ ≥ 0 are integers, we set:

ks,ℓ =

+∞∫

0

xsbℓ(x) dx (7.27)

where the functionbℓ has been introduced in Definition 6.9.

Proposition 7.6 Let k ≥ 1 be an integer, G∈ Ck−1([aN ; bN]) and H ∈ Ck+1([aN ; bN]). We have the asymptotic
expansion:

Is
[
G,H

]
= u1

bN∫

aN

G(ξ) · H′(ξ) dξ +
k−1∑

p=1

1
Nαp

{
up+1

bN∫

aN

G(ξ)H(p+1)(ξ) dξ

+
∑

s+ℓ=p−1
s,ℓ≥0

ks,ℓ

s!

[
(−1)s H(ℓ+1)(bN) ·G(s)(bN) + (−1)ℓH(ℓ+1)(aN)G(s)(aN)

]}
+ ∆[k]Is

[
G,H

]
. (7.28)

where we remind that u’s are the constants appearing in Definition 6.5. The remainder is bounded as
∣∣∣∆[k]Is

[
G,H

]∣∣∣ ≤ C N−kα ||G||W∞k−1([aN ;bN]) ||He||W∞k+1([aN ;bN]) (7.29)

for some constant C> 0 independent of N, G and H.

Note that the leading asymptotics ofIs
[
G,H

]
, i.e. up to the o(1) remainder, correspond precisely to the

contribution obtained by replacing the integral kernelS
(
Nα(ξ−η)) of SN by the sign function– which corresponds

to the almost sure pointwise limit ofS
(
Nα(ξ − η)), see (2.42) – and then inverting the formal limiting operator.

The corrections, however, are already more complicated as they stem from the fine behaviour at the boundaries.

Proof — Recall from Propositions 6.4 and 6.6 thatWN[H] decomposes as

WN[H](ξ) = WR;k[H](xR, ξ) + Wbk;k[H](ξ) − WR;k[H
∧](xL, aN + bN − ξ) + ∆[k]WN[He](ξ) (7.30)

where
∣∣∣
∣∣∣∆[k]WN[He]

∣∣∣
∣∣∣
L∞([aN ;bN]) ≤ C N−kα ||H(k+1)

e ||L∞(R) . (7.31)

This leads to the decomposition

Is[G,H] = I(bk)
s;k [G,H] + I(∂)

s;k[G,H] − I(∂)
s;k[G∧,H∧] + ∆[k]Is[G,He] (7.32)

where:

I
(bk)
s;k [G,H] =

bN∫

aN

G(ξ) · Wbk;k[H](ξ) dξ ,

I
(∂)
s;k[G,H] =

1
Nα

xN∫

0

G
(
bN − N−αx

) · WR;k[H]
(
x, bN − N−αx

)
dx ,

∆[k]Is[G,He] =

bN∫

aN

G(ξ) · ∆[k]WN[He](ξ) dξ . (7.33)
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Clearly from the estimate (7.31), there exist a constantC′ > 0 such that:
∣∣∣∆[k]Is[G,He]

∣∣∣ ≤ C′ N−kα · ||G||L∞([aN ;bN]) · ||H(k+1)
e ||L∞(R) . (7.34)

The asymptotic expansion ofI(bk)
s;k follows readily from the expression (6.41) forWbk;k[H]. It produces the first

line of (7.28). As a consequence, it remains to focus onI(∂)
s;k. Recall from Proposition 6.11 the decomposition

WR;k[H]
(
x, bN − N−αx

)
= W(as)

R;k [H](x) + ∆[k]W(as)
R [H](x) (7.35)

and especially the bounds (6.104)-(6.106) on the remainder, which imply:
∣∣∣∆[k]W(as)

R [H](x)
∣∣∣ ≤ C e−ςx xk+1 ln x · N−kα · ||He||W∞k+1(R) . (7.36)

The contribution of the first term of (7.35) involves the functions bℓ. it remains to replaceG by its Taylor series
with integral remainder of appropriate order so as to get

I
(∂)
s;k[G,H] =

k−1∑

p=0

1

N(p+1)α

∑

s+ℓ=p
s,ℓ≥0

(−1)s

s!
H(ℓ+1)(bN) ·G(s)(bN)

xN∫

0

xsbℓ(x) dx + ∆[k]I
(∂)
s [G,H] (7.37)

where

∆[k]I
(∂)
s [G,H] =

1

Nkα

k−1∑

ℓ=0

H(ℓ+1)(bN)
(k− ℓ − 2)!

xN∫

0

dxbℓ(x) (−x)k−ℓ−1

1∫

0

dt (1− t)k−2−ℓG(k−ℓ−1)(bN − N−αtx) (7.38)

+
1

Nα

xN∫

0

G(bN − N−αx) · ∆[k]W(as)
R [H](x) dx . (7.39)

Clearly from (7.36), there existsC′′ > 0 such that:
∣∣∣∆kI

(∂)
s;k[G,H]

∣∣∣ ≤ C′′ N−kα ||He||W∞k+1(R) · ||G||W∞k−1([aN ;bN]) . (7.40)

Moreover, one can extend the integration in (7.37) from [0 ;xN] up toR+, this for the price of exponentially small
corrections inN. Adding up all the pieces leads to (7.28).

In the case whenG = 1, i.e. to estimate the magnitude of the total integral ofWN[H], we can obtain slightly
better bounds, solely involving the sup norm.

Lemma 7.7 There exists C> 0 independent of N such that, for any H∈ C1([aN ; bN]),

∣∣∣∣∣

bN∫

aN

WN[H](ξ) dξ
∣∣∣∣∣ ≤ C ||He||W∞0 (R) . (7.41)

Proof — Recall from Propositions 6.4 the decomposition:

WN[H](ξ) = WR[He](xR, ξ) + Wbk[He](ξ) − WR[H∧e ](xL, aN + bN − ξ) + Wexp[H](ξ) . (7.42)
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We focus on the integral of each of the terms taken individually. We have:

bN∫

aN

Wbk[He](ξ) dξ =
Nα

2πβ

∫

R

dy J(y)

N−αy∫

0

[
He(bN + t) − He(aN + t)

]
dt , (7.43)

thus leading to

∣∣∣∣∣

bN∫

aN

Wbk[He](ξ) dξ
∣∣∣∣∣ ≤ C ||He||W∞0 (R) . (7.44)

Next, we have:

bN∫

aN

WR[He](xR, ξ) dξ = − Nα

2πβ

+∞∫

xN

dy J(y)

bN∫

aN

dξ
[
He(ξ + N−αy) − He(ξ)

]

− Nα

2πβ

xN∫

0

dy J(y)

N−αy∫

0

[
He(bN + t) − He(bN − N−αy+ t)

]
dt

+
Nα

2iπβ

∫

C (+)
reg

dλ
2iπ

∫

C (−)
reg

dµ
2iπ

1
(µ − λ)R↓(µ)R↑(λ)

{
eiλxN − 1

λ

bN∫

aN

He(η)e
−iµyRdη +

1
µ

bN∫

aN

He(ξ)e
iλxRdξ

}
. (7.45)

The exponential decay ofJ at+∞ ensures that the first two lines of (7.45) are indeed bounded by C ||He||W∞0 (R) for
someN-independentC > 0. The last line is bounded similarly by using

∀λ ∈ C (±)
reg ,

∣∣∣∣∣

bN∫

aN

He(ξ)e
±iλNα(bN−ξ) dξ

∣∣∣∣∣ ≤
C′ ||He||W∞0 (R)

|λ|Nα
. (7.46)

It thus solely remains to focus on the exponentially small termWexp[H]. In fact, we only discuss the operator
W(++)

N as all others can be treated in a similar fashion. Thanks to the bound (4.50) forΠ(λ)− I2 and the expression
(4.54) of the matrixΨ in terms ofΠ, we have:

Ψ(λ) = I2 + O

(
e−κǫN

α

1+ |λ|

)
(7.47)

which is valid forλ uniformly away from the jump contourΣΨ (see Figure 1). Therefore, using the definition (6.9)
ofW(++)

N :

∣∣∣∣∣

bN∫

aN

W(++)
N [He](ξ) dξ

∣∣∣∣∣ ≤ C′′ ||He||W∞0 (R) e−κǫN
α

∫

C (+)
reg

|dλdµ|
(2π)2

1
|λ − µ| |R↓(λ)R↓(µ) λ| . (7.48)

Adding up all the intermediate bounds readily leads to the claim.
By a slight modification of the method leading to Lemma 7.7, wecan likewise control theL1([aN ; bN]) norm

ofWN in terms of theW∞1 norm of (an extension of)H.

Lemma 7.8 For any H ∈ C1([aN ; bN]) it holds

||WN[H]||L1([aN ;bN]) ≤ C ||He||W∞1 (R) and ||Wexp[H]||L1([aN ;bN ]) ≤ C e−C′Nα ||He||W∞1 (R) . (7.49)
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7.3 The support of the equilibrium measure

In the present subsection we build on the previous analysis so as to prove the existence of the endpoints (aN, bN)
of the support of the equilibrium measure and thus the fact that

ρ
(N)
eq (ξ) = 1[aN ;bN](ξ) · WN[V′](ξ) dξ , (7.50)

whereWN is as defined in (2.44).

Lemma 7.9 There exists a unique sequence(aN, bN) – defining the support of the Lebesgue-continuous equilib-
rium measure which corresponds to the unique solution to theminimisation problem(2.35)-(2.36). The sequences
aN and bN are bounded in N.

Proof — The existence and uniqueness of the solution to the minimisation problem (2.35)-(2.36) is obtained
through a straightforward generalisation of the proof arising in the random matrix case, seee.g. [30].

The endpoint of the support of the equilibrium measure should be chosen in such a way that, on the one hand,
the density of equilibrium measure admits at most a square root behaviour at the endpoints and, on the other
hand, that it indeed defines a probability measure. In other words, the endpoints are to be chosen so that the two
constraints are satisfied

XN[V′] = 0 and Is[1,V
′] =

bN∫

aN

WN[V′](ξ) dξ = 1 . (7.51)

The asymptotic expansion ofXN[V′] and Is[1,V′] is given, respectively, in Lemma 7.2 and Proposition 7.6.
However, the control on the remainder obtained there does depend onaN andbN. ShouldaN or bN be unbounded
in N this could brake thea priori control on the remainder. Still, observe that if (aN, bN) solve the system of
equations (7.51) thenξ 7→ WN[V′](ξ) withWN associated with the support [aN ; bN] provides one with a solution
to the minimisation problem ofEN defined in (2.33). By uniqueness of solutions to this minimisation problem,
it thus corresponds to the density of equilibrium measure. As a consequence, there exists at most one solution
(aN, bN) to the system of equations (7.51).

Assume that the sequenceaN andbN are bounded inN. Then, the leading asymptotic expansion of the two
functionals in (7.51) yields

{
V′(bN) + V′(aN) = O

(
N−α

)

V′(bN) − V′(aN) = u−1
1 + O

(
N−α

) viz.

(
1 1
1 −1

)
·
(

V′(bN) − V′(b)
V′(aN) − V′(a)

)
= O

(
N−α

)
. (7.52)

Note that the control on the remainder follows from the fact that |aN| and |bN| are bounded by anN-independent
constant. Also, (a, b) appearing above corresponds to the unique solution to the system

V′(b) + V′(a) = 0 and V′(b) − V′(a) = u−1
1 . (7.53)

We do stress that the existence and uniqueness of this solution is ensured by the strict convexity ofV.
The smoothness of the remainder in (aN, bN) away from 0, the control on its magnitude (guaranteed by the

boundedness ofaN andbN) as well as the strict convexity ofV and the invertibility of the matrix occurring in
(7.52) ensure the existence of solutions (aN, bN) by the implicit function theorem, this provided thatN is large
enough. Hence, since a solution to (7.51) withaN andbN bounded inN does exists, by uniqueness of the solutions
to (7.51), it is the one that defines the endpoints of the support of the equilibrium measure.
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Corollary 7.10 Let the pair(a, b) correspond to the unique solution to the system

V′(b) + V′(a) = 0 and V′(b) − V′(a) = u−1
1 . (7.54)

Then the endpoints(aN, bN) of the support of the equilibrium measure admit the asymptotic expansion

aN =

k−1∑

ℓ=0

aN;ℓ

Nℓα
+ O

(
N−kα) and bN =

k−1∑

ℓ=0

bN;ℓ

Nℓα
+ O

(
N−kα) , (7.55)

where aN;0 = a and bN;0 = b.

Note that the existence and uniqueness of solutions to the system (7.54) follows from the strict convexity of the
potentialV.

Proof — The invertibility of the matrix occurring in (7.52) as well as the strict convexity of the potentialV ensure
that aN and bN admit the expansion (7.55) fork = 1, viz. up to O

(
N−α

)
corrections. Now suppose that this

expansion holds up to O
(
N−(k−1)α). It follows from Lemma 7.2 and Proposition 7.6 that the asymptotic expansion

of XN[V′] andIs[1,V′] up to O
(
N−kα) can be recast as

(
XN[V′] · k−1

0
Is[1,V′] · u−1

1

)
=

(
V′(bN) + V′(aN) + B1;k−1[V′] + k−1

0 · ∆[k]XN[V′]
V′(bN) − V′(aN) + B2;k−1[V′] + u−1

1 · ∆[k]Is[1,V′]

)
. (7.56)

In this expression, we have
∣∣∣k−1

0 · ∆[k]XN[V′]
∣∣∣ +

∣∣∣u−1
1 · ∆[k]Is[1,V′]

∣∣∣ ≤ CN−kα sinceaN and bN are bounded
uniformly in N, while

(
B1;k−1[V′]
B2;k−1[V′]

)
=

k−1∑

p=1

1
Npα


ip · kpk

−1
0 ·

(
V(p+1)(aN) + (−1)pV(p+1)(bN)

)

(
up+1 + k0,p−1

)
u−1

1 · V(p+1)(bN) − (
up+1 + (−1)p

k0,p−1
)
u−1

1 · V(p+1)(aN)

 . (7.57)

We remind thatkp was introduced in Definition 7.1,up in Definition 6.5, andk0,p in Definition 7.5.
Since bothB1;k−1[V′] andB2;k−1[V′] haveN−α as a prefactor, by composition of asymptotic expansions, there

exist functionsBp;ℓ
(
bN;1, . . . , bN;ℓ−1 | aN;1, . . . , aN;ℓ−1

)
, indexed byp ∈ {1, 2} andℓ ∈ [[ 1 ; k− 1 ]], independent of

k, such that
(
B1;k−1[V′]
B2;k−1[V′]

)
=

k−1∑

ℓ=1

1

Nℓα

(
B1;ℓ

(
bN;1, . . . , bN;ℓ−1 | aN;1, . . . , aN;ℓ−1

)

B2;ℓ
(
bN;1, . . . , bN;ℓ−1 | aN;1, . . . , aN;ℓ−1

)
)
+ O

(
N−αk) . (7.58)

As a consequence, we have the relation:
(

1 1
1 −1

) (
V′(bN) − V′(b)
V′(aN) − V′(a)

)
=

k−1∑

ℓ=1

−1

Nℓα

(
B1;ℓ

(
bN;1, . . . , bN;ℓ−1 | aN;1, . . . , aN;ℓ−1

)

B2;ℓ
(
bN;1, . . . , bN;ℓ−1 | aN;1, . . . , aN;ℓ−1

)
)
+ O

(
N−kα) . (7.59)

This implies the existence of an asymptotic expansion ofaN andbN up to a remainder of the order O
(
N−kα).

8 The operatorU−1
N

Let us remind the definition of the operatorsUN andSN:

UN[φ](ξ) = φ(ξ) ·
{
V′(ξ) − SN[ρ(N)

eq ](ξ)
}
+ SN[φ · ρ(N)

eq ](ξ) (8.1)

SN
[
φ
]
(ξ) =

bN
?

aN

S
[
Nα(ξ − η)]φ(η) dη and S(ξ) =

2∑

p=1

βπωp cotanh
[
πωpξ

]
. (8.2)
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and the fact thatWN defined in § 5.4 is the inverse operator toSN. We also remind that the densityρ(N)
eq of the

N-dependent equilibrium measure satisfies the integral equation:

∀ξ ∈ [aN ; bN], SN[ρ(N)
eq ](ξ) = V′(ξ) . (8.3)

This makes the first term of (8.1) vanish forξ ∈ [aN ; bN], but it can be non-zero outside of this segment.
In this section we obtain an integral representation for theinverse ofUN, which shows thatU−1

N [H] is smooth
as long asH is. Then, in § 8.2, we shall provide explicit,N-dependent, bounds on theW∞

ℓ
(R) norms ofU−1

N [H].
This technical result is crucial in the analysis of the Schwinger-Dyson equation performed in § 3.3.

8.1 An integral representation forU−1
N

Proposition 8.1 The operatorUN is invertible on
(
Xs∩C1)(R), 0 < s< 1/2, and its inverse admits the represen-

tation

U−1
N [H](ξ) =

VN[H](ξ)
VN[V′](ξ)

, (8.4)

whereVN = V[1]
N + V

[2]
N with

V[1]
N [H](ξ) =

bN∫

aN

[H(ξ) − H(s)] ds

(ξ − s)
√

(s− aN)(bN − s)
and V[2]

N [H](ξ) =

bN∫

aN

V[2]
N (ξ, η) ·WN[H](η) dη . (8.5)

and the integral kernel of the operatorV[2]
N reads:

V[2]
N (ξ, η) =

bN∫

aN

Sreg
[
Nα(s− η)] − Sreg

[
Nα(ξ − η)]

(ξ − s)
√

(s− aN)(bN − s)
ds with Sreg(ξ) = S(ξ) − 2β

ξ
. (8.6)

Finally, we have that, for anyξ ∈ [aN ; bN],VN[V′](ξ) , 0.

Note that the above representation is not completely fit for obtaining a fine bound of theW∞
ℓ

(R) norm ofU−1
N [H]

in the large-N limit. Indeed, we will show in Appendix C thatVN[V′](ξ) > cN > 0 for N large enough. Unfor-
tunately, the constantcN → 0 and thus does not provide an optimal bound for theW∞

ℓ
(R) norm. Gaining a more

precise control oncN (eg. its dependence onN) is much harder, but a more precise control is one of the ingredients
that are necessary for obtaining sharpN-dependent bounds for theW∞

ℓ
(R) norm ofU−1

N [H]. We shall obtain such
a more explicit control oncN in the course of the proof of Theorem 8.2.

Proof — Given H ∈ (Xs ∩ C1
c)(R), let φ be the unique solution to the equationSN[φ](ξ) = H(ξ) on [aN ; bN].

Reminding the definition ofSN in (2.42), it means that, forξ ∈]aN ; bN[:

bN
?

aN

φ(η) dη
(ξ − η)iπ = U(ξ) where U(ξ) =

Nα

2iπβ

{
H(ξ) −

bN∫

aN

Sreg
[
Nα(ξ − η)]φ(η) dη

}
. (8.7)

As a consequence, the function

F(z) =
1

q(z)

bN∫

aN

φ(η)
z− η ·

dη
2iπ

with q(z) =
√

(z− aN)(z− bN) (8.8)

solves the scalar Riemann–Hilbert problem
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• F ∈ O(C \ [aN ; bN]) and admits± Lp([aN ; bN]
)

boundary values forp ∈]1 ; 2[ ;

• F(z) = O
(
z−1) whenz→ ∞ ;

• F+(x) − F−(x) = U(x)/q+(x) for anyx ∈]aN ; bN[ .

Note that theLp character of the boundary values follows from the fact that bothφ and the principal value integral
are continuous on [aN ; bN]. The former follows from Propositions 6.4-6.6 whereas thelatter is a consequence of
(8.7). By uniqueness of the solution to such a Riemann–Hilbert problem, it follows that

F(z) =

bN∫

aN

U(s)
q+(s)(s− z)

ds
2iπ

for z∈ C \ [aN ; bN] . (8.9)

By using that, forξ ∈]aN ; bN[,

−φ(ξ) = q+(ξ) ·
(
F+(ξ) + F−(ξ)

)
and

bN
?

aN

1
q+(s) · (s− ξ)

· ds
iπ
= 0 , (8.10)

we obtain that:

φ(ξ) =

√
N2α(ξ − aN)(bN − ξ)

2π2β
VN[H](ξ) (8.11)

with the expression ofVN given by (8.5). Further, given anyξ ∈ R \ [aN ; bN], we have:

SN[φ](ξ) =

bN∫

aN

Sreg
[
Nα(ξ − η)]φ(η) dη +

4iπβ
Nα

q(ξ)F(ξ) . (8.12)

It then remains to use that, for suchξ’s

bN∫

aN

1
q+(s)(s− ξ)

· ds
iπ
=

1
q(ξ)

(8.13)

so as to get the representation

SN[φ](ξ) = H(ξ) − q(ξ)
π
· VN[H](ξ) . (8.14)

We can now go back to the original problem. Letψ be any solution toUN[ψ] = H. Due to the integral
equation satisfied by the density of equilibrium measure on [aN ; bN], it follows that, for anyξ ∈ [aN ; bN] such
thatWN[V′](ξ) , 0,

ψ(ξ) =
WN[H](ξ)
WN[V′](ξ)

. (8.15)

and we can conclude thanks to the relation (8.11). Forξ ∈ R \ [aN ; bN], we rather have:

ψ(ξ) =
SN

[WN[H]
]
(ξ) − H(ξ)

SN
[WN[V′]

]
(ξ) − V′(ξ)

(8.16)
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at any point where the denominator does not vanish. It then solely remains to invoke the relation (8.14). Note that

VN[V′](ξ) =
2π2β ρ

(N)
eq (ξ)

√
N2α(ξ − aN)(bN − ξ)

. (8.17)

It is shown in proof of Theorem 2.4 given in Appendix C, point (ii ), that ρ(N)
eq (ξ) > 0 for ξ ∈]aN ; bN[ for N

large enough and that it vanishes as a square root at the edges. Furthermore, it is also shown in that appendix,
Equation (C.8), thatV′(ξ) − SN

[WN[V′]
]
(ξ) , 0 onR \ [aN ; bN]. Thus the denominator in (8.4) never vanishes

and thus holds for anyξ ∈ R and anyH ∈ Xs ∩ C1
c(R). The result then follows by density ofXs ∩ C1

c(R) in
Xs∩ C1(R).

8.2 Sharp weighted bounds forU−1
N

The aim of the present subsection is to prove one of the most important technical propositions of the paper,
namely sharpN-dependent bounds on theW∞

ℓ
(R) norm ofU−1

N [H]. Part of the difficulties of the proof consists in
obtaining lower bounds forWN[V′] in the vicinity of aN andbN as well as in gaining a sufficiently precise control
on the square root behaviour ofWN[H] at the edges.

Proposition 8.2 below is the key tool for the large-N analysis of the Schwinger-Dyson equations. We insist
that although our result is effective in what concerns our purposes, it isnot optimal. More optimal results can
be obtained in respect to localW∞

ℓ
norms,viz. W∞

ℓ
(J) with J being specific subintervals ofR, or in respect to

milder ones such as theWp
ℓ
(R) ones. However, obtaining these results demands more efforts on the one hand and,

on the other hand, requires much more technical handlings soas to make the best of them when dealing with the
Schwinger-Dyson equations. We therefore chose not to venture further in these technicalities.

Before stating the theorem, we remind the expression for theweighted norm (Definition 3.14):

N (ℓ)
N [φ] =

ℓ∑

k=0

||φ||W∞
ℓ

(R)

Nℓα
. (8.18)

and thead hocnorms on the potential (Definition 3.15):

nℓ[V] =
max

{ ℓ∏
a=1
||Kκ[V′]||W∞ka

(Rn) :
ℓ∑

a=1
ka = 2ℓ + 1

}

{
min

(
1 , inf [a ;b] |V′′(ξ)| , |V′(b+ ǫ) − V′(b)| , |V′(a− ǫ) − V′(a)|

)}ℓ+1
(8.19)

for someǫ > 0 small enough but independent ofN. We also remind thatKκ[H] is an exponential regularisation of
H, see Definition 3.8.

Proposition 8.2 Let ℓ ≥ 0 be an integer, and CV, κ be positive constants. There exist a constant Cℓ > 0 such that
for any H and V satisfying

• Kκ/ℓ[H] ∈W∞2ℓ+1(R) andKκ/ℓ[V] ∈W∞2ℓ+2(R) ;

• ||V||W∞3 ([a−δ ;b+δ]) < CV for someδ > 0 where(a, b) are such that(aN, bN) →
N→+∞

(a, b) ;

• H ∈ Xs([aN ; bN]) ;

we have the following bound:
∣∣∣
∣∣∣Kκ

[U−1
N [H]

]∣∣∣
∣∣∣
W∞
ℓ

(R) ≤ Cℓ · nℓ[V] · N(ℓ+1)α · (ln N)2ℓ+1 · N (2ℓ+1)
N

[Kκ[H]
]
. (8.20)

95



Proof — As discussed in the proof of Proposition 8.1, the operatorU−1
N can be recast as

U−1
N [H](ξ) =

WN[H](ξ)
WN[V′](ξ)

· 1[aN ;bN](ξ) +
SN

[WN[H]
]
(ξ) − H(ξ)

SN
[WN[V′]

]
(ξ) − V′(ξ)

· 1[aN ;bN]c(ξ) . (8.21)

Therefore, obtaining sharp bounds onU−1
N [H] demands to control, with sufficient accuracy, both ratios appearing

in the formula above. Observe that the same Proposition 8.1 and, in particular, equations (8.11)-(8.14) ensure that,
givenǫ > 0 small enough andH of classCk+1, the functions

ξ 7→ WN[H](ξ)
qR(ξ)

and ξ 7→ SN
[WN[H]

]
(ξ) − H(ξ)

qR(ξ)
(8.22)

with:

qR(ξ) =
√

Nα(bN − ξ) = x1/2
R (8.23)

are respectivelyCk([bN−ǫ ; bN]) andCk([bN ; bN+ǫ]). A similar statement holds at the left boundary. Furthermore,
the same proposition readily ensures that both functions are clearlyCk+1 uniformly away from the boundaries.

The large-N behaviour of both functions in (8.22) is not uniform onR and depends on whether one is in a
vicinity of the endpointsaN, bN or not. Therefore, we will split the analysis forξ in one of the four regions, from
right to left on the real axis:

J
(R;out)
N = [bN + ǫ(ln N)2 · N−α ;+∞[ (8.24)

J
(R;ext)
N = [bN ; bN + ǫ(ln N)2 · N−α] (8.25)

J
(R;in)
N = [bN − ǫ(ln N)2 · N−α ; bN] (8.26)

J
(bk)
N = [aN + ǫ(ln N)2 · N−α ; bN − ǫ(ln N)2 · N−α] . (8.27)

Indeed, the behaviour on the three other regions:

J
(L;in)
N = [aN ; aN + ǫ(ln N)2 · N−α] (8.28)

J
(L;ext)
N = [aN − ǫ(ln N)2 · N−α ; aN] (8.29)

J
(L;out)
N = ] −∞ ; aN − ǫ(ln N)2 · N−α] (8.30)

can be deduced by the reflection symmetry

WN[H](ξ) = −WN
[
H∧

]
(aN + bN − ξ) (8.31)

from the analysis on the local intervals (8.24)-(8.26).
The proof consists in several steps. First of all, we bound the W∞

ℓ
(J(∗)N ) norm of the functions in (8.22), this

depending on the interval of interest. Also, we obtainlower bounds for the same functions withH ↔ V′. Finally,
we use the partitioning ofR into the local intervals (8.24)-(8.26) so as to raise the local bounds into global bounds
onU−1

N [H] issuing from those onWN[H] · q−1
R and

{SN
[WN[H]

] − H
} · q−1

R .
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Lower and upper bounds onJ(R;out)
N

Let us decomposeS given in (8.2) into:

S(x) = S∞(x) + (∆S)(x), with S∞(x) = βπ(ω1 + ω2)sgn(x) (8.32)

We observe that whenξ ∈ J(R;out)
N andη ∈ [aN ; bN] one avoids the simple pole in the kernel functionsS[Nα(ξ− η)]

of the integral operatorSN. Besides, the decomposition (8.32) has the property that, for any integerℓ ≥ 0, there
exists constantsc,Cℓ > 0 independent ofN such that:

∀ξ ∈ J(R;out)
N , ∀η ∈ [aN ; bN],

∣∣∣∂ℓξ(∆S)[Nα(ξ − η)]
∣∣∣ ≤ Cℓ Nℓα e−c(ln N)2

. (8.33)

We have proved in Lemma 7.7 and 7.8 that

∣∣∣∣∣

bN∫

aN

WN[H](ξ) dξ
∣∣∣∣∣ ≤ C ||He||W∞0 (R) , ||WN[H]||L1([aN ;bN]) ≤ C ||He||W∞1 (R) (8.34)

for someC > 0 independent ofN. Subsequently:
∣∣∣
∣∣∣SN

[WN[H]
]∣∣∣
∣∣∣
W∞
ℓ

(J(R;out)
N ) ≤ δℓ0 C ||He||W∞0 (R) + Cℓ Nℓα e−c(ln N)2 ||WN[H]||L1([aN ;bN ]) (8.35)

≤ δℓ0 C′N (0)
N

[Kκ[H]
]
+ C′ℓ N(ℓ+1)α e−c(ln N)2

(bN − aN)N (1)
N

[Kκ[H]
]
. (8.36)

We have used: in the first line, the estimates (8.34) ; in the second line, the definition (8.18) of the weighted norm,
and we have included exponential regularisations viaKκ, whose only effect is to change the value of the constant
prefactors. Since (aN, bN)→ (a, b) in virtue of Corollary 7.10, we can write forN large enough:

||Kκ
[SN

[WN[H]
] − H

]||W∞
ℓ

(J(R;out)
N ) ≤ C̃ℓ · Nℓα · N (ℓ)

N

[Kκ[H]
]
. (8.37)

Indeed, a bound from the left-hand side is obtained by addingtheW∞
ℓ

norm ofH to (8.36), which is itself bounded

by a multiple ofNℓαN (ℓ)
N

[Kκ[H]
]
.

Thanks to the decomposition (8.32) using that sgn(ξ − η) = 1 for ξ ∈ JR;(out)
N andη ∈ [aN ; bN], as well as the

exponential estimate (8.33) and theL1 bound ofWN from Lemma 7.8, we can also write:

SN
[WN[V′]

]
(ξ) − V′(ξ) = πβ(ω1 + ω2)︸         ︷︷         ︸

=V′(b)

bN∫

aN

WN[V′](ξ) dξ

︸                ︷︷                ︸
=1

− V′(ξ) +O
(
e−c(ln N)2 ||V′||W∞1 ([aN ;bN ])

)
. (8.38)

The identification of the first term comes from (3.3). Further, we have for|ξ − b| ≤ ǫ andξ ∈ J(R;out)
N :

∣∣∣V′(b) − V′(ξ)| ≥ |ξ − b| · inf
ξ∈[b ;b+ǫ]

|V′′(ξ)| ≥ ǫ

2
(ln N)2

Nα
V′′(b) ≥ ǫ

2
V′′(b)

Nα
(8.39)

To obtain the last bound we have assumed thatǫ was small enough – but still independent ofN – and made use
of |b − bN| = O(N−α) as well as of||V||W∞3 ([a−δ ;b+δ]) < +∞ andN large enough. Finally, it is clear from the strict
convexity ofV that in the case|b− ξ| > ǫ:

|V′(b) − V′(ξ)| ≥ |V′(b+ ǫ) − V′(b)| ≥ ǫ

2
V′(b+ ǫ) − V′(b)

Nα
, (8.40)
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where the last inequality is a trivial one. Therefore, in anycase, forN large enough:
∣∣∣SN

[WN[V′]
] − V′(ξ)

∣∣∣ ≥ ǫ

4Nα
min

{
inf

ξ∈[a ;b]
V′′(ξ) , |V′(b+ ǫ) − V′(b)|

}
. (8.41)

The combination of the numerator upper bound (8.37) appliedto H = V′ (using that the weighted norm is domi-
nated by theW∞ norm) and the denominator lower bound (8.41) implies that, for anyκ > 0 such that both sides
below are well-defined:

||Kκ
[SN

[WN[V′]
] − V′

]||W∞
ℓ

(J(R;out)
N )∣∣∣SN

[WN[V′]
]
(ξ) − V′(ξ)

∣∣∣
≤

N(ℓ+1)α ·Cℓ · ||V′||W∞
ℓ

(R)

min
{
inf ξ∈[a ;b] |V′′(ξ)| , |V′(b+ ǫ) − V′(b)|

} . (8.42)

Implicitly, we have treatedǫ from (8.41) like a constant.

Lower and upper bounds onJ(bk)
N

Consider the decomposition ofWN from (6.70):

WN[H](ξ) = Wbk;k[H](ξ) + ∆[k]Wbk;k[He](ξ) + WR[He](xR)

− WR
[
H∧

]
(xL, bN + aN − ξ) + Wexp[He](ξ) . (8.43)

From the expression ofWbk;k in (6.41), we have the bound:

||Wbk;k[H]||W∞
ℓ

(J(bk)
N ) ≤ ck;ℓ · max

s∈[[ 0 ; ℓ ]]
N (k−1)

N [H(s+1)] (8.44)

and recollecting the estimates of the other terms from Propositions 6.4 and 6.6, we also find:
∣∣∣∣
∣∣∣∣∆[k]Wbk;k[He] + WR[He] − (WR)∧[He] + Wexp[He]

∣∣∣∣
∣∣∣∣
W∞
ℓ

(J(bk)
N )
≤ cℓ N−kα ||H(k+1)

e ||W∞
ℓ

(R) , (8.45)

with the reflected operatorW∧
R as introduced in Definition 6.2. We do stress that, in the present context,He

denotes a compactly supported extension ofH from [aN ; bN] to R that, furthermore, satisfies the same regularity
properties asH. All in all, the bounds (8.44)-(8.45) yield

||WN[H](ξ)||W∞
ℓ

(J(bk)
N ) ≤ c′k;ℓ · max

s∈[[ 0 ; ℓ ]]

{
N (k)

N [H(s+1)]
}
. (8.46)

Besides, fork = 1 we have from (6.41):

Wbk;k[V
′](ξ) = u1 V′′(ξ) . (8.47)

The constantu1 was introduced in Definition 6.5, and according to the expression ofR(λ) in (4.19), it takes the
value:

u1 =
1

2πβ(ω1 + ω2)
> 0 . (8.48)

So, using the bound (8.45) fork = 1 andℓ = 0 to control the extra terms inWN in sup norm, we get

∣∣∣WN[V′](ξ)
∣∣∣ ≥ u1 inf

ξ∈[a ;b]
V′′(ξ) − C

Nα
||Ve||W∞3 (R) ≥

u1

2
· inf
ξ∈[a ;b]

{
V′′(ξ)

}
(8.49)

where the last lower bound holds forN large enough. The above lower bound leads to

||Wbk;k[V′]||W∞
ℓ

(J(bk)
N )∣∣∣WN[V′](ξ)

∣∣∣
≤

Cℓ · ||V′||W∞k+ℓ+1(J(bk)
N )

inf
ξ∈[a ;b]

V′′(ξ)
. (8.50)
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Lower and upper bounds onJ(R;in)
N

In virtue of Lemma 6.11 and Proposition 6.6, givenk ∈ N∗, we have the decomposition

WN[H](ξ) =
(W(as)

R;k + W
(as)
bk;k

)
[H](xR) + ΩR;k[He](xR, ξ) (8.51)

ΩR;k[He](xR, ξ) = ∆[k]W(as)
R [H](xR) + ∆[k]W(as)

bk [H](xR) −WR;k[H
∧](xL, bN+aN−ξ) + ∆[k]WN[He](ξ) (8.52)

where∆[k]WN[He] has been introduced in (6.70). We remind from (6.107) that:

(W(as)
R;k + W

(as)
bk;k

)
[H](xR) = H′(bN)a0(xR) +

k∑

r=1

H(r+1)(bN)
Nrα (a0 · ar )(xR) (8.53)

For any integersn, ℓ such thatn ≥ ℓ + 2, Lemma 6.10 applied to (ℓ,m, n)←֓ (r, ℓ + 1, n) tells us:

a0(x)√
x
= p0;ℓ+1,n(x)e−ςx + xℓ+1/2 f0;ℓ+1,n(x),

(a0 · ar )(x)√
x

= pr ;ℓ+1,n(x)e−ςx + xℓ+1/2 fr ;ℓ+1,n(x) (8.54)

for some polynomialspk;ℓ+1,n(x) of degree at mostn+ k and functionsfk;ℓ+1,n ∈W∞n−(ℓ+1)(R+). We therefore get:

∣∣∣
∣∣∣q−1

R
(W(as)

R;k +W
(as)
bk;k

)
[H]

∣∣∣
∣∣∣
W∞
ℓ

(J(R;in)
N ) ≤ ck;ℓ · Nℓα · (ln N)2ℓ+1 · N (k−1)

N [H′e] . (8.55)

In this inequality, one power ofNα pops up at each action of the derivative ofxR = Nα(bN − ξ). Furthermore, by
putting together the control of the remainders in Proposition 6.6 and Lemma 6.11, we get that:

ΩR;k[He](xR, ξ) =
k∑

m=0

{
c(0)

k;mxm
R + c(1/2)

k;m x
m+ 1

2
R

}
+ fk(xR) (8.56)

where, for any 0≤ ℓ ≤ k, the functionfk satisfies:

∣∣∣∂ℓξ
(
x−1/2

R fk(xR)
)∣∣∣ ≤ Ck;ℓ · x

k+ 1
2−ℓ

R · N(ℓ−k)α · N (ℓ)
N [H(k+1)

e ] · ( ln(xR) e−CxR + 1
)
. (8.57)

Since the functions
(W(as)

R;k +W
(as)
bk;k

)
[H] ·q−1

R andWN[H] ·q−1
R are smooth onJ(R;in)

N , so must beΩR;k[He] ·q−1
R . As

a consequence, we necessarily havec(0)
k;m = 0. The properties of the remainders then ensure that, for any0 ≤ ℓ ≤ k,

∣∣∣c(1/2)
k;m

∣∣∣ ≤ Ck;m · N−kα ·
∣∣∣
∣∣∣H(k+1)
e

∣∣∣
∣∣∣
W∞m (R) . (8.58)

Thus, all-in-all, by choosing properly the compactly supported regular extensionHe of H from [aN ; bN] to R we
get

||q−1
R · WN[H]||W∞

ℓ
(J(R;in)

N ) ≤ Cℓ · (ln N)2ℓ+1 · N(ℓ+1)α · N (2ℓ+1)
N [Kκ[He]] (8.59)

upon choosingk = ℓ. This holds for anyκ > 0, the right-hand side being possibly+∞.
In what concerns the lower bounds, observe that

x−1/2
R · (W(as)

R;1 +W
(as)
bk;1

)
[H](xR) =

a0(xR)√
xR

V′′(bN)

(
1 +

V(3)(bN)
V′′(bN)

· a1(xR)
Nα

)
(8.60)

as well as
∣∣∣c(1/2)

1;0 + c(1/2)
1;1 xR + x−1/2

R f1(xR)
∣∣∣ ≤ C ·

{
N−α · (xR+1)||V′′e ||W∞1 (R) + N−α x

3
2
R

(
ln xR e−CxR+1

)||V′′e ||W∞0 (R)

}
. (8.61)
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These estimates imply, forN large enough:

∣∣∣∣
WN[V′](ξ)

qR(ξ)

∣∣∣∣ >
a0(xR)√

xR
V′′(bN) − (ln N)3

Nα
||Ve||W∞3 (R) . (8.62)

The functionx → a0(x)/
√

x is bounded from below onR+, cf. Lemma 6.10 and (aN, bN) → (a, b) in virtue of
Corollary 7.10. As a consequence, for any potentialV such that||Ve||W∞3 ([a ;b]) < C, there existsN0 large enough
andc > 0 such that

∣∣∣∣
WN[V′](ξ)

qR(ξ)

∣∣∣∣ > c inf
[a ;b]

{
V′′(ξ)

}
. (8.63)

We can deduce from the above bounds that, for anyξ ∈ J(R;in)
N ,

||q−1
R · WN[V′]||W∞

ℓ
(J(R;in)

N )

q−1
R (ξ) · WN[V′](ξ)

≤ Cℓ · (ln N)2ℓ+1 · Nℓα ·
||V′||W∞2ℓ+1(J(R;in)

N )

inf [a ;b]
{
V′′(ξ)

} . (8.64)

Lower and upper bounds onJ(R;ext)
N

Let us go back to the vector Riemann–Hilbert problem discussed in Lemma 4.1. The representation (4.11) and
the fact that the solutionΦ to this vector Riemann–Hilbert problem allows one the reconstruction of the functions
ψ1 andψ2 arising in (4.11) through (4.16). Using the reconstructionformula (5.14) withP1 = P2 = 0 andz0 = ∞
and applying the regularisation trick exactly as in (5.67),we getξ ∈ [bN ;+∞[:

SN
[WN[H]

]
(ξ) = Nα

∫

R+2iǫ

dλ
2π

∫

R+iǫ

dµ
2iπ

bN∫

aN

dηH(η)
eiλNα(bN−ξ)−iµNα(bN−η)

µ − λ ·
{
χ21(λ)χ12(µ) − µ

λ
·χ11(µ)χ22(λ)

}
. (8.65)

The local behaviour of the above integral representation can be studied with the set of tools developed throughout
Section 6. We do not reproduce this reasoning again. All-in-all, we obtain:

||q−1
R · Kκ

[SN
[WN[H]

] − H
]||W∞

ℓ
(J(R;ext)

N ) ≤ Cℓ(ln N)2ℓ+1 · N(ℓ+1)α · N (2ℓ+1)
N

[Kκ[H]
]

(8.66)

and, for anyξ ∈ J(R;ext)
N ,

∣∣∣q−1
R (ξ) · {SN

[WN[V′](ξ)
] − V′(ξ)

}∣∣∣ > c inf
[a ;b]

V′′(bN) (8.67)

provided thatN is large enough. Likewise, we have the bounds:

||q−1
R Kκ

[SN
[WN[V′]

] − V′
]||W∞

ℓ
(J(R;ext)

N )

q−1
R (ξ) ·

{
SN

[WN[V′]
] − V′

} ≤ Cℓ · (ln N)2ℓ+1 · Nℓα ·
||Kκ[V′]||W∞2ℓ+1(J(R;ext)

N )

inf [a ;b]
{
V′′(ξ)

} . (8.68)

Synthesis

Let us now write:

U−1
N [H](ξ) =

∑

A=L,R

{ SN
[WN[H]

]
(ξ) − H(ξ)

SN
[WN[V′]

]
(ξ) − V′(ξ)

· 1
J
(A;out)
N

(ξ) +
WN[H](ξ)
WN[V′](ξ)

· 1
J
(A;in)
N

(ξ)

+
q−1

R (ξ) · {SN
[WN[H]

]
(ξ) − H(ξ)

}

q−1
R (ξ) · {SN

[WN[V′]
]
(ξ) − V′(ξ)

} · 1
J
(A;ext)
N

(ξ)

}
+
WN[H](ξ)
WN[V′](ξ)

· 1
J
(bk)
N

(ξ) , (8.69)
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The piecewise bounds (8.37)-(8.42) onJ(R;out)
N , (8.46)-(8.50) onJ(bk)

N , (8.59)-(8.64) onJ(bk)
N , (8.66)-(8.68) onJ(R;in)

N ,
and those which can be deduced by reflection symmetry on the three other segments defined in (8.28)-(8.30), can
now be used together with the Faá di Bruno formula

dℓ

dξℓ
( f
g

)
(ξ) =

∑

n+m=ℓ

∑
∑

knk=n

ℓ!
( ∑n

k=1 nk
)
!

m!
· f (m)(ξ)

g(ξ)
·

n∏

j=1

{ 1
n j !

(−g( j)(ξ)
j!g(ξ)

)nj
}

(8.70)

to establish the global bound. Note that, in the intermediate bounds, one should use the obvious property of the
exponential regularisation:

Kκ[ f1 · · · fp] =
p∏

a=1

Kκ/p[ fa] . (8.71)

The details are left to the reader.

9 Asymptotic evaluation of the double integral

In this section we study the large-N asymptotic expansion for the double integral in:

Definition 9.1

Id[H,V] =

bN∫

aN

WN ◦ X̃N

[
∂ξ

{
S
(
Nα(ξ − ∗)) · GN

[X̃N[H],V
]
(ξ, ∗)}

]
(ξ) dξ , (9.1)

with

GN
[
H,V

]
(ξ, η) =

WN[H](ξ)
WN[V′](ξ)

− WN[H](η)
WN[V′](η)

. (9.2)

We remind that * indicates the variable on which the operatorWN acts. The asymptotic analysis of the double
integralId;β arising in theβ , 1 large-N asymptotics (cf. (3.118)) can be carried out within the setting of the
method developed in this section. However, in order to keep the discussion minimal, we shall not present this
calculation here.

In order to carry out the large-N asymptotic analysis ofId[H,V], it is convenient to write down a decompo-
sition forGN

[
H,V

]
ensuing from the decomposition ofWN that has been described in Propositions 6.4 and 6.6.

We omit the proof since it consists of straightforward algebraic manipulations.

Lemma 9.2 The functionGN
[
H,V

]
(ξ, η) can be recast as

GN[H,V](ξ, η) = Gbk;k[H,V](ξ, η) + G(as)
R;k [H,V](xR, yR; ξ, η)

− G(as)
R;k

[
H∧,V∧

]
(xL, yL; aN + bN − ξ, aN + bN − η) + ∆[k]GN

[
H,V

]
(ξ, η) . (9.3)

The functions arising in this decomposition read

Gbk;k[H,V](ξ, η) =
Wbk;k[H](ξ)

Wbk;k[V′](ξ)
− (ξ ↔ η) , (9.4)
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and

G(as)
R;k [H,V](x, y; ξ, η) =

{W(as)
R;k [H](x)

Wbk;k[V′](ξ)
−
W(as)

R;k [V′](x)

Wbk;k[V′](ξ)
·
(W(as)

bk;k +W
(as)
R;k

)
[H](x)

(W(as)
bk;k +W

(as)
R;k

)
[V′](x)

}
−

(
ξ ↔ η

x↔ y

)
. (9.5)

Finally, the remainder∆[k]GN takes the form

∆[k]GN[H,V](ξ, η) =
1

Wbk;k[V′](ξ)

{
∆[k]WN[H](ξ) − ∆[k]WN[V′](ξ) · WN[H](ξ)

WN[V′](ξ)

}
−

(
ξ ↔ η

)

+ ∆[k]G(as)
N [H,V](xR, yR; ξ, η) − ∆[k]G(as)

N

[
H∧,V∧](xL, yL; aN + bN − ξ, aN + bN − η) . (9.6)

The reminder∆[k]WN of order k has been introduced in(6.70), while

∆[k]G(as)
N [H,V](x, y; ξ, η) =

1
Wbk;k[V′](ξ)

{
∆[k]W(as)

R [H](x) − ∆[k]W(as)
R [V′](x) · WN[H](ξ)

WN[V′](ξ)

−
[(
∆[k]WN

)
R[H](ξ) − (

∆[k]WN
)
R[V′](ξ) · WN[H](ξ)

WN[V′](ξ)

]
·

W(as)
R;k [V′](x)

(W(as)
bk;k +W

(as)
R;k

)
[V′](x)

}
−

(
ξ ↔ η

x↔ y

)
.

(9.7)

The local right boundary remainder arising above is defined as

(
∆[k]WN

)
R = WN − W(as)

R;k − W
(as)
bk;k . (9.8)

Note that the two termsG(as)
R;k present in (9.3) correspond to the parts ofGN that localise at the right and left

boundary. The way in which they appear is reminiscent of the symmetry satisfied byWN:

WN[H](aN + bN − ξ) = −WN[H∧](ξ) . (9.9)

Lemma 9.3 The double integralId[H,V] can be recast as

Id[H,V] = Id;bk

[
Gbk;k[H,V]

]
+ Id;bk

[
G(as)

R;k [H,V] + G(as)
R;k [H∧,V∧]

]

+ Id;R

[(Gbk;k + G(as)
R;k

)
[H,V] +

(Gbk;k + G(as)
R;k

)
[H∧,V∧]

]
+ ∆[k]Id

[
X̃N[H],V

]
. (9.10)

The bulk part of the double integral is described by the functional

Id;bk[F] =
−N2α

4πβ

∫

[aN ;bN]2

J
(
Nα(ξ − η)) · (∂ξ − ∂η

){
S
(
Nα(ξ − η))F(ξ, η)

}
dξdη . (9.11)

The local (right) part of the double integral is representedas

Id;R[F] = −N2α

2πβ

∫

C (+)
reg

dλ
2iπ

∫

C (−)
reg

dµ
2iπ

bN∫

aN

dξ eiλNa(bN−ξ)

(µ − λ)R↓(λ)R↑(µ)

bN∫

aN

dηe−iµNα(bN−η) ∂ξ
{
S
(
Nα(ξ − η))F(ξ, η)

}
. (9.12)
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Finally, ∆[k]Id represents the remainder which decomposes as

∆[k]Id[H,V] =
4∑

p=1

∆[k]Id;p[H,V] (9.13)

∆[k]Id;1[H,V] =

bN∫

aN

Wexp

[
∂ξ

{
S
(
Nα(ξ − ∗)) · (GN − ∆[k]GN

)[
H,V

]
(ξ, ∗)}

]
(ξ) dξ (9.14)

∆[k]Id;2[H,V] =

bN∫

aN

WN

[
∂ξ

{
S
(
Nα(ξ − ∗)) · ∆[k]GN

[
H,V

]
(ξ, ∗)}

]
(ξ) dξ (9.15)

∆[k]Id;3[H,V] = −
bN∫

aN

WN[1](ξ) · XN

[
∂ξ

{
S
(
Nα(ξ − ∗)) · GN

[
H,V

]
(ξ, ∗)}

]
(ξ) dξ . (9.16)

∆[k]Id;4[H,V] = −Id;R

[(G(as)
R;k [H,V]

)∧
+

(G(as)
R;k [H∧,V∧]

)∧] (9.17)

whereWexp is as defined in(6.33).

Proof — We first invoke the Definition 3.18 of the operator̃XN so as to recastId[H,V] as an integral involving
solelyWN, and another one containing the action ofXN. Then, in the first integral, we decompose the operator
WN arising in the "exterior" part of the double integralId[H,V] asWN = (W(0)

R +W
(0)
bk +W

(0)
L +Wexp), cf.

(6.33). Then, it remains to observe that

bN∫

aN

W(0)
L

[
∂ξ

{
S
(
Nα(ξ−∗))·GN

[
H,V

]
(ξ, ∗)}

]
(xL) dξ =

bN∫

aN

W(0)
R

[
∂ξ

{
S
(
Nα(ξ−∗))·GN

[
H∧,V∧

]
(ξ, ∗)}

]
(xR) dξ (9.18)

and that

−Id;bk

[(G(as)
R;k [H∧,V∧]

)∧]
= Id;bk

[
G(as)

R;k [H∧,V∧]
]
. (9.19)

Putting all these results together, and using that the functionsGbk;k[H,V] andG(as)
R;k [H,V] solely involve derivatives

of H which implies:

Gbk;k
[X̃N[H],V

]
= Gbk;k[H,V] and G(as)

R;k

[X̃N[H],V
]
= G(as)

R;k [H,V] , (9.20)

we obtain the desired decomposition of the double integral.

9.1 The asymptotic expansion related toId;bk and Id;R

Once again, we need to introduce new constants:

Definition 9.4 If ℓ ≥ 0 is an integer, we set:

2ℓג =

∫

R

J(u) u2ℓ

4πβ (2ℓ)!
[
uS′(u) + S(u)

]
du and 2ℓ+1ג =

∫

R

J(u) S(u) u2(ℓ+1)

4πβ (2ℓ + 1)!
du (9.21)

where the function J comes from Definition 6.3 and S is the kernel ofSN and appears lately in(8.2).
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They are useful in the following:

Lemma 9.5 Assume F∈ C2k+2([aN ; bN]2) and antisymmetric viz. F(ξ, η) = −F(η, ξ). We have the asymptotic
expansion:

Id;bk[F] = −Nα · 0ג ·Teven[F](0) −
k∑

ℓ=1

1

N(2ℓ−1)α

{
2ℓג ·T (2ℓ)

even[F](0) + 2ℓ−1ג ·T (2ℓ−1)
odd [F](0)

}
+ O

(
N−2kα) (9.22)

in terms of the integral transforms:

Teven[F](s) =
1
s

2bN−|s|∫

2aN−|s|

F
[
(v+ s)/2, (v− s)/2

]
dv and Todd[F](s) =

2bN−|s|∫

2aN−|s|

∂s
{
s−1 F

[
(v+ s)/2, (v− s)/2

]}
dv .

(9.23)

The integral transformsTeven,Todd can be slightly simplified in the case of specific examples of the functionF. In
particular, ifF takes the formF(ξ, η) = g(ξ) − g(η) for some sufficiently regular functiong, then we have:

Teven[F](0) =

2bN∫

2aN

g′(v/2) dv = 2
[
g(bN) − g(aN)

]
. (9.24)

Proof — We first implement the change of variables
{

u = Nα(ξ − η)
v = ξ + η

i.e.

{
ξ = (v+ N−αu)/2
η = (v− N−αu)/2

(9.25)

in the integral representation forId;bk[F]. This recasts the integral as

Id;bk
[
F
]
= −N2α

4πβ

xN∫

−xN

du J(u)

2bN−|u|N−α∫

2aN+|u|N−α
∂u

{
S(u) · F

[v+ uN−α

2
,
v− uN−α

2

]}
dv

= − Nα

4πβ

xN∫

−xN

(
J(u)

[
uS′(u) + S(u)

]Teven[F](uN−α) + N−αJ(u) · uS(u) · Todd[F](uN−α)

)
du (9.26)

Both J(u) · uS(u) andJ(u)
[
uS′(u) +S(u)

]
decay exponentially fast at infinity. Hence, the expansion (9.22) readily

follows by using the Taylor expansion with integral remainder for the functionsTeven/odd[F](uN−α) aroundu = 0,
and the parity properties ofTeven/odd[F].

Lemma 9.6 Let F(x, y; ξ, η) be such that

• F(x, y; ξ, η) = −F(y, x; η, ξ) ;

• the map(x, y; ξ, η) 7→ F(x, y; ξ, η) isC3(
R
+ × R+ × [aN ; bN]2) ;

• F – and any combination of partial derivatives of total orderat most3 – decays exponentially fast in x, y
uniformly in(ξ, η) ∈ [aN ; bN] , viz.

max
{∣∣∣∂p1

x ∂
p2
y ∂

p3
ξ
∂

p4
η F(x, y; ξ, η)

∣∣∣ :
4∑

a=1

pa ≤ 3
}
≤ C e−cmin(x,y) . (9.27)
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• the following asymptotic expansion holds uniformly in(x, y) ∈ [0 ; ǫNα], for someǫ > 0 and with a differ-
entiable remainder in the sense of(9.27).

F
(
x, y; bN − N−αx, bN − N−a y

)
=

k∑

ℓ=1

fℓ(x, y)

Nℓα
+ O

(Ck e−cmin(x,y)

N(k+1)α

)
, (9.28)

where fℓ ∈ C3(R+ × R+) for ℓ ∈ [[ 1 ; k ]] while

max
{∣∣∣∂p

x∂
q
y fℓ(x, y)

∣∣∣ : p+ q ≤ 3 and ℓ ∈ [[ 1 ; k ]]
}
≤ Ck e−cmin(x,y) . (9.29)

Then, denoting FN(ξ, η) = F
(
Nα(bN − ξ),Nα(bN − η); ξ, η

)
, we have an asymptotic expansion:

Id;bk[FN] = −
k∑

ℓ=1

1

N(ℓ−1)α

∫

R

du J(u)
4πβ

+∞∫

|u|

dv ∂u

{
S(u) · fℓ

[
(v− u)/2, (v+ u)/2

]}
+ O

(
1

Nkα

)
, (9.30)

Note that, necessarily,fℓ are antisymmetric functions of (x, y).

Proof — The change of variables

{
u = Nα(ξ − η)
v = Nα

(
2bN − ξ − η

) i.e.

{
ξ = bN − N−α(v− u)/2
η = bN − N−α(v+ u)/2

(9.31)

recasts the integral as

Id;bk[F] = −Nα

xN∫

−xN

du J(u)
4πβ

2xN−|u|∫

|u|

dv ∂u

{
S(u) · F

[v− u
2

,
v+ u

2
; bN −

v− u
2Nα

, bN −
v+ u
2Nα

]}
. (9.32)

At this stage, we can limit all the domains of integration to|u|, |v| ≤ ǫNα, this for the price of exponentially small
corrections. Then, we insert the asymptotic expansion (9.28) and extend the domains of integration up to+∞ this,
again, for the price of exponentially small corrections, and we get the claim.

Very similarly, but under slightly different assumptions on the functionF, we have the large-N asymptotic
expansion of the right edge double integral.

Lemma 9.7 Let F(x, y; ξ, η) be such that

• F(x, y; ξ, η) = −F(y, x; η, ξ);

• the map(x, y; ξ, η) 7→ F(x, y; ξ, η) isC3(
R
+ × R+ × [aN ; bN]2);

• F decays exponentially fast in x, y this uniformly in(ξ, η) ∈ [aN ; bN] and for any combination of partial
derivatives of total order at most3, viz.:

max
{∣∣∣∂p1

x ∂
p2
y ∂

p3
ξ
∂

p4
η F(x, y; ξ, η)

∣∣∣ :
4∑

a=1

pa ≤ 3
}
≤ C e−cmin(x,y) . (9.33)
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• the following asymptotic expansion holds uniformly in(x, y) ∈ [0 ; ǫNα], for someǫ > 0 and with a differ-
entiable remainder in the sense of(9.33).

F
(
x, y; bN − N−αx, bN − N−αy

)
=

k∑

ℓ=1

fℓ(x, y)

Nℓα
+ O

(Ck (xk + yk + 1)

N(k+1)α

)
, (9.34)

where fℓ ∈ C3(R+ × R+) for ℓ ∈ [[ 1 ; k ]] while

max
{∣∣∣∂p

x∂
q
y fℓ(x, y)

∣∣∣ : p+ q ≤ 3 and ℓ ∈ [[ 1 ; k ]]
}
≤ Ck (xk + yk + 1) . (9.35)

Then, we have the following asymptotic expansions

Id;R[FN] =
k∑

ℓ=1

1

N(ℓ−1)α

∫

C (+)
reg

dλ
2iπ

∫

C (−)
reg

dµ
2iπ

(2πβ)−1

(λ − µ)R↓(λ)R↑(µ)

+∞∫

0

eiλx−iµy∂x
{
S(x−y)· fℓ(x, y)

}
dxdy + O

(
1

Nαk

)
. (9.36)

The function FN occurring above is as defined in the previous Lemma.

Proof — The change of variablesx = Nα(bN − ξ) andy = Nα(bN − η) recasts the integral in the form

Id;R
[
F
]
= Nα

∫

C (+)
reg

dλ
2iπ

∫

C (−)
reg

dµ
2iπ

(2πβ)−1

(λ − µ)R↓(λ)R↑(µ)

xN∫

0

eiλx−iµy∂x
{
S(x− y) · F(

x, y; bN − N−αx, bN − N−αy
)}

dxdy .

We can then conclude exactly as in the proof of Lemma 9.6.

9.2 Estimation of the remainder∆[k]Id[H,V].

Lemma 9.8 Let k≥ 1be an integer. Given CV > 0, assume V strictly convex, smooth enough and||Ve||W∞3 (R) < CV.
There exists C> 0 such that, for any H∈ Xs(R) smooth enough, the remainder integral∆[k]Id[H,V] satisfies:

∣∣∣∆[k]Id[H,V]
∣∣∣ ≤ C N−(k−5)α · nk+4[Ve] · ||He||W∞max{k,5}+4(R) . (9.37)

Proof — It follows from Lemma 6.11 and 6.10, as well asV′′(bN) , 0 by strict convexity, that:

x 7→
(W(as)

bk;k + W
(as)
R;k

)
[H](x)

(W(as)
bk;k + W

(as)
R;k

)
[V′](x)

(9.38)

is smooth atx = 0. As a consequence, the function

(ξ, η) 7→ Gbk;k
[
H,V](ξ, η) + G(as)

R;k

[
H,V](xR, yR; ξ, η)

=
∆[k]W(as)

bk

[
H](ξ)

Wbk;k
[
V′](ξ)

+
W(as)

bk;k

[
V′]

(
xR

)

Wbk;k
[
V′](ξ)

·
(W(as)

bk;k + W
(as)
R;k

)
[H]

(
xR

)
(W(as)

bk;k + W
(as)
R;k

)
[V′]

(
xR

) −
(
ξ ↔ η

)
(9.39)

is smooth in (ξ, η). Furthermore, it follows from Theorem 8.1 that (ξ, η) 7→ GN[H,V](ξ, η) is smooth on [aN ; bN]
as well. SinceG(as)

R;k

[
H,V](xR, yR; ξ, η) is smooth inξ – resp.η – as soon as the latter variable is away frombN or

aN, it follows that (ξ, η) 7→ ∆[k]GN[H,V](ξ, η) is smooth as well.
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The remainder∆[k]GN described in (8.36) involves the remainders∆[k]W(as)
R/bk studied in Lemma 6.11, and

(∆[k]WN)R defined in (9.8) and for which Proposition 6.6 and Lemma 6.11 also provide estimates. Using the
properties of thea’s obtained in Lemma 6.10 and involved in the asymptotic expansion of the (as) quantities, it
shows the existence of constantsc(0)

ℓ;k, c
(1/2)
ℓ;k and of functionsfm;k ∈W∞m

(
R
+
)
bounded uniformly inN and satisfying

fm;k(x) = O
(
xm+1/2) such that

∆[k]GN[H,V](ξ, η) =
1

Nkα

m∑

ℓ=0

(
c(0)
ℓ;k xℓR + c(1/2)

ℓ;k xℓ−1/2
R

)
+

fm;k(xR)

Nkα
−

(
xR↔ yR

)
, (9.40)

for (xR, yR) ∈ [0 ; ǫ]2. Since∆[k]GN[H,V](ξ, η) is smooth, we necessarily have thatc(1/2)
ℓ;k = 0 for ℓ ∈ [[ 0 ; m]]. The

representation (9.40) thus ensures that

max
0≤ℓ+p≤n

max
(xR,yR)
∈[0 ;ǫ]2

∣∣∣∂ℓξ∂
p
η∆[k]GN[H,V](ξ, η)

∣∣∣ ≤ Cn

N(k−n)α
· nn+k[V] · ||He||W∞n+1+k(R) . (9.41)

Here, the explicit control on the dependence of the bound onV andH issues from the control on the remainders
entering in the expression for∆[k]GN[H,V].
Similar types of bounds can, of course, be obtained for (xL, yL) ∈ [0 ; ǫ]2. Finally, as soon as a variable, be itξ
or η, is uniformly (in N) away from an immediate neighbourhood of the endpointsaN andbN, we can use more
crude expressions for the remainders so as to bound derivatives of the remainder∆[k]GN[H,V]. This does not spoil
(9.41) and we conclude:

max
0≤ℓ+p≤n

max
(ξ,η)

∈[aN ;bN ]2

∣∣∣∂ℓξ∂
p
η∆[k]GN[H,V](ξ, η)

∣∣∣ ≤ Cn

N(k−n)α
· nn+k[V] · ||He||W∞n+1+k(R) . (9.42)

Having at disposal such a control on the remainder∆[k]GN[H,V], we are in position to bound the double integral
of interest. The latter decomposes into a sum of four terms

∆[k]Id[H,V] =
4∑

p=1

∆[k]Id;p[H,V] (9.43)

that have been defined in (9.14)-(9.17).

Bounding∆[k]Id;1[H,V]

Let

τ(ξ, η) = ∂ξ
{
S
(
Nα(ξ−η)) ·GN

[
H,V

]
(ξ, η)

}
and ∆[k]τ(ξ, η) = ∂ξ

{
S
(
Nα(ξ−η)) ·∆[k]GN

[
H,V

]
(ξ, η)

}
. (9.44)

Observe that given (ξ, η) 7→ f (ξ, η) sufficiently regular, we have the decomposition:

bN∫

aN

Wexp
[
f (ξ, ∗)](ξ) dξ =

bN∫

aN

Wexp
[
f (aN, ∗)

]
(ξ) dξ +

bN∫

aN

dξ

ξ∫

aN

dηWexp
[
∂η f (η, ∗)](ξ) . (9.45)

The latter ensures that

∣∣∣∣
bN∫

aN

Wexp
[
f (ξ, ∗)](ξ) dξ

∣∣∣∣ ≤
∣∣∣
∣∣∣Wexp

[
f (aN, ∗)

]∣∣∣
∣∣∣
L1([aN ;bN]) + (bN − aN) sup

η∈[aN ;bN]

∣∣∣
∣∣∣Wexp

[
∂η f (η, ∗)]

∣∣∣
∣∣∣
L1([aN ;bN]) .
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(9.46)

The two terms can be estimated directly using theL1 bound (7.49) obtained in Lemma 7.8. For the first one:
∣∣∣
∣∣∣Wexp

[
f (aN, ∗)

]∣∣∣
∣∣∣
L1([aN ;bN]) ≤ C1e−C2Nα || fe(aN, ∗)||W∞1 (R) ≤ C1 e−C2Nα || f ||W∞1 (R2) (9.47)

for someC1,C2 > 0 independent ofN and f , and likewise for the second term. But theW∞p (R2) norm of fe is also
bounded by a constant times theW∞p ([aN ; bN]2) norm of f , and we can make the constant depends only on the
compact support of the extensionfe. Therefore:

∣∣∣
∣∣∣Wexp

[
f (aN, ∗)

]∣∣∣
∣∣∣
L1([aN ;bN]) ≤ C′1 e−C′2Nα || f ||W∞1 ([aN ;bN ]2) (9.48)

for someC′1,C
′
2 > 0. Taking f = τ − ∆[k]τ to match the definition (9.14) of∆[k]Id;1, this implies:

∣∣∣∆[k]Id;1[H,V]
∣∣∣ ≤ C′1e−C2Nα

{
||τ||W∞2 ([aN ;bN]2) + ||∆[k]τ||W∞2 ([aN ;bN]2)

}
. (9.49)

It solely remains to bound theW∞2 ([aN ; bN]2) norm of τ and∆[k]τ. We remind that, forξ ∈ [aN ; bN], we have
from the definition (9.2) and the expression ofU−1

N given in (8.21):

GN[H,V](ξ) = U−1
N [H](ξ) −U−1

N [H](η) . (9.50)

By invoking the mean value theorem and the estimate of Proposition 8.2 forW∞
ℓ

norm ofU−1
N [H], we obtain:

||τ||W∞
ℓ

([aN ;bN]2) ≤ C Nα

∣∣∣∣∣∣

∣∣∣∣∣∣(ξ, η) 7→
GN

[
H,V

]
(ξ, η)

ξ − η

∣∣∣∣∣∣

∣∣∣∣∣∣
W∞
ℓ+1([aN ;bN]2)

≤ C′ Nα
∣∣∣
∣∣∣U−1

N [H]
∣∣∣
∣∣∣
W∞
ℓ+2([aN ;bN ]) (9.51)

≤ C′ℓ · (ln N)2ℓ+5 · N(ℓ+4)α · nℓ+2[V] · N (2ℓ+5)
N

[Kκ[H]
]

(9.52)

≤ C′′ℓ · (ln N)2ℓ+5 · N(ℓ+4)α · nℓ+2[V] · ||He||W∞2ℓ+5(R) (9.53)

where the last step comes from domination of the weighted norm by theW∞ norm of the same order – and the
exponential regularisation can easily be traded for a compactly supported extension up to increasing the constant
prefactor. Similarly, in virtue of the bounds (9.42), we get:

||∆[k]τ||W∞
ℓ

([aN ;bN]2) ≤ C′ · N(ℓ+3−k)α · nk+ℓ+2[V] · ||He||W∞k+ℓ+3(R) . (9.54)

Putting these two estimates back in (9.49) withℓ = 2, we see that:
∣∣∣∆[k]Id;1[H,V]

∣∣∣ ≤ C′1 · N6α · e−C2Nα

nk+4[V] · ||He||W∞max{k,5}+4(R) . (9.55)

which is exponentially small whenN → ∞.

Bounding∆[k]Id;2[H,V]

∆[k]Id;2[H,V] has been defined in (9.15) and can be bounded by repeating theprevious handlings. Indeed, using
(7.49) on theL1 norm ofWN and then following the previous steps, one finds:

∣∣∣∣∆[k]Id;2[H,V]
∣∣∣∣ ≤ ||∆[k]τ||W∞2 ([aN ;bN]2) (9.56)

with ∆[k]τ defined in (9.44) and bounded inW∞
ℓ

norms in (9.54). Hence, we find:
∣∣∣∆[k]Id;2[H,V]

∣∣∣ ≤ C′1 · N(5−k)α · nk+4[V] · ||He||W∞k+5(R) . (9.57)
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Bounding∆[k]Id;3[H,V]

This quantity is defined in (9.16), and it follows from the explicit expression forWN[1](ξ) given in (5.72) that

∣∣∣∆[k]Id;3[H,V]
∣∣∣ ≤ C Nα||τ||W∞0 ([aN ;bN]2) ·

∣∣∣χ12;+(0)
∣∣∣ · |bN − aN| · sup

ξ∈[aN ;bN]

∣∣∣∣∣∣

∫

R+iǫ′

χ11(λ)
λ

e−iNαλ(ξ−aN) · dλ
2iπ

∣∣∣∣∣∣ (9.58)

whereτ is as defined in (9.44). The decomposition (7.6) forχ and its properties show the existence ofC,C′ > 0
such that:

∀λ ∈ R + iǫ′, |χ11(λ)| ≤ C |λ|−1/2, and |χ12(λ)| ≤ C′ e−Nα
κǫ′ . (9.59)

Hence, by invoking the bounds (9.53) satisfied byτ, we get:
∣∣∣∣∆[k]Id;3[H,V]

∣∣∣∣ ≤ C′′ · N5α · (ln N)5 · e−Nα[κǫ′−ǫ′(bN−aN)] · n2[V] · ||He||W∞5 (R) . (9.60)

Sinceκǫ′ > 0 is bounded away from 0 whenǫ′ → 0 according to its definition (4.42), we also haveκǫ − ǫ′xN > 0
uniformly in N for some choice ofǫ′ small enough but independent ofN.

Bounding∆[k]Id;4[H,V]

This quantity is defined in (9.17), and it involves integration of:

τL(ξ, η) = ∂ξ
{
S
(
Nα(ξ − η)) · G(as)

R;k

[
H,V

]
(xL, yL; bN + aN − ξ, bN + aN − η)

}
(9.61)

whereG(as)
R;k was defined in (9.5). It only involves the operatorsW(as)

bk;k andW(as)
R;k , whose expression is given in

Lemma 6.11. Let us fixǫ > 0. Straightforward manipulations show that, for (ξ, η) ∈ [aN + ǫ ; bN]2, we have:
∣∣∣τL(ξ, η)

∣∣∣ ≤ CN3αe−C′ min(xL ,yL) · nk+1[V] · ||He||W∞k (R) ≤ C̃ · N3α · e−ǫC′Nα · nk+1[V] · ||He||W∞k (R) (9.62)

which is thus exponentially small inN. Similar steps show that, for

(ξ, η) ∈
{
[aN + ǫ ; bN] × [aN ; aN + ǫ]

}
∪

{
[aN ; aN + ǫ] × [aN + ǫ ; bN]

}
∪

{
[aN ; aN + ǫ] × [aN ; aN + ǫ]

}
, (9.63)

we have:
∣∣∣τL(ξ, η)

∣∣∣ ≤ C N3αnk+1[V] ||H||W∞k (R) . (9.64)

Here, the exponential decay inN will come after integration ofτL as it appears in (9.17). Indeed, given Imλ > 0
and Imµ < 0 we have:

∣∣∣∣∣

bN∫

aN

eiλxRe−iµyRτL(ξ, η) dξdη
∣∣∣∣∣ ≤ C N3αe−ǫC

′Nα

nk+1[V] ||H||W∞k (R)

bN∫

aN+ǫ

e−|Im λ|Nα(bN−ξ)−|Im µ|Nα(bN−η) dηdξ

+CN3αnk+1[V] ||H||W∞k (R)

{ bN∫

aN+ǫ

dξ

aN+ǫ∫

aN

dη +

aN+ǫ∫

aN

dξ

bN∫

aN+ǫ

dη +

aN+ǫ∫

aN

aN+ǫ∫

aN

dξdη

}
e−|Im λ|Nα(bN−ξ)−|Im µ|Nα(bN−η)

≤ nk+1[V] ||H||W∞k (R) ·
C̃ N3αe−C̃′Nα

|λ · µ| . (9.65)
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Note that, above, we have used that forλ ∈ C (+)
reg andµ ∈ C (−)

reg , we can bound:

|Im λ|−1 ≤ c1|λ|−1 , |Im µ|−1 ≤ c1|µ|−1 (9.66)

for some constantc1 > 1. Hence, all in all, we have:

∣∣∣∣Id;R

[(G(as)
R;k [H,V]

)∧]∣∣∣∣ ≤ C′′N3αe−C̃′Nα ·
∫

C (+)
reg

|dλ|
∫

C (−)
reg

|dµ| ·
nk+1[V] ||H||W∞k (R)

|µ − λ| · |λR↓(λ)R↑(µ)µ|

≤ C′′′ N−3α e−C̃′Nα · nk+1[V] ||H||W∞k (R) . (9.67)

Then, putting together all of the results for each∆[k]Id;p for p ∈ [[ 1 ; 4 ]] entails the global bound (9.37).

9.3 Leading asymptotics of the double integral

We need to introduce two new quantities before writing down the asymptotic expansion of the double integralId.

Definition 9.9 We define the function:

c(x) =
b1(x) − b0(x)a1(x)

u1
(9.68)

and the constant:

ℵ0 = −
∫

R

du J(u)
4πβ

+∞∫

|u|

dv ∂u

{
S(u) ·

(
c
[v− u

2
] − c[v+ u

2
])}

+
1

2πβ

∫

C (+)
reg

dλ
2iπ

∫

C (−)
reg

dµ
2iπ

1
(λ − µ)R↓(λ)R↑(µ)

+∞∫

0

eiλx−iµy∂x

{
S(x− y)

[
c(x) − c(y)

] − x+ y
}
dxdy (9.69)

Proposition 9.10 We have the large-N behaviour:

Id[H,V] = 0ג2− · Nα ·
{ H′(bN)
V′′(bN)

− H′(aN)
V′′(aN)

}
+ ℵ0 ·

{( H′

V′′
)′

(bN) +
( H′

V′′
)′

(aN)
}
+ ∆Id[H,V] (9.70)

and the remainder is bounded as:

∆Id[H,V] ≤ C
Nα
· n10[Ve] · ||He||W∞11(R) . (9.71)

Proof — We first need to introduce two universal sequences of polynomials P ℓ
({xp}ℓ1

)
andQ ℓ

({yp}ℓ1; {ap}ℓ1
)
. Given

formal power series

f (z) = 1 +
∑

ℓ≥1

fℓ zℓ and g(z) = 1 +
∑

ℓ≥1

gℓ zℓ (9.72)

they are defined to be the coefficients arising in the formal power series

1
f (z)

= 1+
∑

ℓ≥1

P ℓ
({ fp}ℓ1

)
zℓ and

g(z)
f (z)

= 1+
∑

ℓ≥1

Q ℓ
({gp}ℓ1; { fp}ℓ1

)
zℓ . (9.73)
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Note that

Q ℓ
({gp}ℓ1; { fp}ℓ1

)
=

∑

r+s=ℓ
r,s≥0

gr · P s
({ fp}s1

)
, (9.74)

where we agree upon the conventionP0 = 1 andg0 = 1. This notation is convenient to write down the large-N
expansion ofGbk;k – defined in (9.4) – ensuing from the largeN-expansion ofWbk;k provided by Lemma 6.11.
We find, uniformly in (ξ, η) ∈ [aN ; bN]2:

Gbk;k[H,V](ξ, η) =
k−1∑

ℓ=0

Gbk;ℓ[H,V](ξ, η)

Nαℓ
+ O

(
N−kα) (9.75)

where

Gbk;ℓ[H,V](ξ, η) = gbk;ℓ[H,V](ξ) − gbk;ℓ[H,V](η) (9.76)

with

gbk;ℓ[H,V](ξ) =
H′(ξ)
V′′(ξ)

· Q ℓ
({ H(ℓ+1)(ξ)

H′(ξ)
uℓ+1

u1

}

ℓ
;
{ V(ℓ+2)(ξ)

V′′(ξ)
uℓ+1

u1

}

ℓ

)
. (9.77)

Also, in the case of a localisation of the variables aroundbN, we have:

Gbk;k[H,V](bN − N−αx, bN − N−ay) =
H′(bN)
V′′(bN)

k∑

ℓ=1

N−ℓα · Q ℓ
({H(p+1)(bN)

H′(bN)

up(x)

u1

}
;
{V(p+2)(bN)

V′′(bN)

up(x)

u1

})

− (x ↔ y) + O

(
xk + yk + 1

N(k+1)α

)
. (9.78)

Finally, we also have the expansion,

G(as)
R;k [H,V](x, y; bN − N−αx, bN − N−αy) =

k∑

ℓ=1

GR;ℓ[H,V](x, y)

Nαℓ
+ O

(
e−cmin(x,y)

N(k+1)α

)
(9.79)

whereGR;ℓ[H,V](x, y) = gR;ℓ[H,V](x) − gR;ℓ[H,V](y) and

gR;ℓ[H,V](x) =
1

u1V′′(bN)

∑

m+s=ℓ
m,s≥0

Pm

({V(q+2)(bN)
V′′(bN)

uq(x)

u1

}

q

)
· H(s+1)(bN)

H′(bN)
· bs(x)

− H′(bN)

u1
[
V′′(bN)

]2
∑

m+s+p=ℓ
m,s,p≥0

Pm

({V(q+2)(bN)
V′′(bN)

uq(x)

u1

}

q

)

× Q p

({H(q+1)(bN)
H′(bN)

aq(x)
}

q
;
{V(q+2)(bN)

V′′(bN)
aq(x)

}

q

)
· V(s+2)(bN)

V′′(bN)
· bs(x) . (9.80)

We can now come back to the double integralId. It has been decomposed in Lemma 9.3. If we want a
remainder∆[k]Id decaying withN, we should takek = 6 in Lemma 9.8. Then, up to O(N−α), we are thus left
with operatorsId;bk andId;R, and Lemmas 9.5 and 9.7 describe for us their asymptotic expansion knowing the
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asymptotic expansion of the functions to which they are applied. Here, they are applied to the various functions
involving Gbk;k andG(as)

R;k whose expansion has been described in (9.78) and (9.79). As these expression shows, in
order to getId up to O(N−α), one just need the expressions ofgbk;0[H,V](ξ) from (9.77) andgR;1[H,V](x) from
(9.80). These only involve the universal polynomialsP1 andQ1, whose expression follows from their definitions
in (9.73):

P1
({ f1}

)
= − f1 Q1

({g1}; { f1}
)
= g1 − f1 . (9.81)

Therefore, we get

gbk;1[H,V](ξ) =
H′(ξ)
V′′(ξ)

and gR;1[H,V](x) =
b1(x) − a1(x)b0(x)

u1
·
(

H′

V′′

)′
(bN) . (9.82)

and we recognize in the prefactor of the second equation the functionc(x) of Definition 9.9. Finally, we remind that
we take the remainder at orderk = 6. The claim then follows upon recognising the constantℵ0 from Definition 9.4
in the computation of the leading term by Lemma 9.7.

A Several theorems and properties of use to the analysis

Theorem A.1 (Hunt, Muckenhoupt, Wheeden [57])The Hilbert transform, defined as an operator

H : L2(R,w(x)dx) → L2(R,w(x)dx)

is bounded if and only if there exists a constant C> 0 such that, for any interval I⊆ R:
{ 1
|I |

∫

I

w(x)dx
}
·
{ 1
|I |

∫

I

dx
w(x)

}
< C (A.1)

In particular, the operators "upper/lower boundary values"C± : F [
Hs(R)

] → F [
Hs(R)

]
are bounded if and

only if |s| < 1/2.

A less refined version of this theorem takes the form :

Proposition A.2 For anyγ > 0, the shifted Cauchy operatorsCγ : f 7→ Cγ[ f ] with Cγ[ f ](λ) = C[ f ](λ + iγ) are
continuous onF [

Hs(R)
]

with |s| < 1/2.

Theorem A.3 (Calderon [22]) LetΣ be a non-self intersecting Lipschitz curve inC and CΣ the Cauchy transform
on L2(Σ, ds):

∀ f ∈ L2(Σ, ds) CΣ[ f ](z) =
∫

Σ

f (s)
s− z

· ds
2iπ
∈ O(C \ Σ) . (A.2)

For any f ∈ L2(Σ, ds), CΣ[ f ] admits L2(Σ, ds) ± boundary valuesCΣ;±[ f ]. The operatorsCΣ;±[ f ] are continuous
operators on L2(Σ, ds) which, furthermore, satisfyCΣ;+ − CΣ;− = id.

Theorem A.4 (Paley, Wiener [74]) Let u∈ L2(R±). ThenF [u] is the L2(R) boundary value onR of a function̂u
that is holomorphic onH±, and there exists a constant C> 0 such that:

∀µ > 0,
∫

R

∣∣∣̂u(λ ± iµ)
∣∣∣2 · dλ < C (A.3)

Reciprocally, every holomorphic function onû onH± that satisfies the bounds(A.3) and admits L2(R) ± boundary
valueŝu± onR, is the Fourier transform of a function u∈ L2(R±), viz. û(z) = F [u](z), z∈ H±.
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B Proof of Theorem 2.1

We denote bypN the rescaled probability density onRN associated withzN, namely

pN(λ) =
NαqN

zN

N∏

a<b

{
sinh

[
πω1Nαq(λa−λb)

]
sinh

[
πω2Nαq(λa−λb)

]}β ·
N∏

a=1

e−W(Nαqλa) with αq =
1

q− 1
.

To obtain the above probability density, we have rescaled inthe variables in (1.9) asya = Nαqλa with the value
of αq guided by the heuristic arguments that followed the statement of Theorem 2.1. We shall denote byPN

the probability measure onM1(R) induced bypN, viz. the measurable sets inM1(R) are generated by the Borel
σ-algebra for the weak topology, and for any open subset inM1(R), we have:

PN
[
O
]
=

∫

{L(λ)
N ∈O}

pN(λ) dNλ . (B.1)

The strategy of the proof consists in proving thatPN is exponentially tight and then establishing a weak large
deviation principle, namely upper and lower boundingPN on balls of shrinking radius this for balls relatively to
the bounded Lipschitz topology, seee.g.[4].

B.1 Exponential tightness

Lemma B.1 The sequence of measuresPN is exponentially tight, i.e.:

lim sup
L→+∞

lim sup
N→∞

N−(2+αq) lnPN
[
Kc

L
]
= −∞ . (B.2)

where KL =
{
µ ∈ M1(R) :

∫

R

|x|q dµ(x) ≤ L
}
.

Proof — By the monotone convergence theorem,

∫

R

|x|q dµ(x) = sup
M∈N

∫

R

min(|x|q ,M) dµ(x). (B.3)

The left-hand side is lower semi-continuous as a supremum ofa continuous family of functionals onM1 (R).
Thus,KL is closed as a level set of a lower semi-continuous function.For anyµ ∈ KL, we have by Chebyshev
inequality:

µ
[
[−M ; M]c] ≤ 1

Mq

∫

[−M ;M]c

|x|q dµ(x) ≤ L
Mq . (B.4)

As a consequence,

KL ⊆
⋂

M∈N

{
µ ∈ M1(R) : µ

[
[−M ; M]c] ≤ L

Mq

}
. (B.5)
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The right-hand side is uniformly tight, by construction andis closed as an intersection of level sets of lower semi-
continuous functions onM1(R). Thence by Prokhorov theorem, it is compact. AsKL is closed, it must be as well
compact.

We now estimatePN
[
Kc

L

]
. We start by a rough estimate for the partition function. It follows by Jensen

inequality applied to the probability measure ofRN

N∏

a=1

e−W(λa)dλa
∫

R

e−W(λ)dλ
, (B.6)

that

ln
[
zN[W]

] ≥ N ln
[ ∫

e−W(λ)dλ
]
+

∫

RN

∑

a<b

β ln
{
sinh

[
πω1(λa − λb)

]
sinh

[
πω2(λa − λb)

]} N∏

a=1

e−W(λa)dλa
∫

e−W(λ)dλ

≥ N ln
[ ∫

e−W(λ)dλ
]
+
βN(N − 1)

2

∫

R2

ln
{
sinh

[
πω1(λ1 − λ2)

]
sinh

[
πω2(λ1 − λ2)

]} · e
−W(λ1)−W(λ2)dλ1dλ2
( ∫

e−W(λ)dλ

)2

(B.7)

As a consequence,zN ≥ e−N2κ for someκ ∈ R. It now remains to estimate the integral arising from the integration
overKc

L. Using that|sinh(λ)| ≤ e|λ| we get:

N∏

a<b

{
sinh

[
πω1Nαq(λa − λb)

]
sinh

[
πω2Nαq(λa − λb)

]}β ≤
N∏

a<b

exp
{
πβ(ω1 + ω2)Nαq |λa − λb|

}

≤
N∏

a<b

exp
{
πβ(ω1 + ω2)Nαq

(|λa| + |λb|
)} ≤

N∏

a=1

exp
{
πβ(ω1 + ω2)Nαq+1|λa|

}
. (B.8)

Hence,

PN
[
Kc

L
] ≤ eκN

2
NαqN

∫

{
L(λ)

N ∈Kc
L

}

N∏

a=1

exp
{
πβ(ω1 + ω2)Nαq+1 |λa| −W(Nαqλa)

}
· dNλ (B.9)

Since|ξ|1−q −→
|ξ|→+∞

0 there exists a constantC ∈ R such that

∀ξ ∈ R, πβ(ω1 + ω2)|ξ| ≤
cq |ξ|q

2
+C . (B.10)

Likewise it follows from (2.2) that given anyǫ > 0 there existsτǫ ∈ R+ such that

∀ξ ∈ R, −cq(1+ ǫ) |ξ|q − τǫ ≤ −W(ξ) ≤ −cq(1− ǫ) |ξ|q + τǫ . (B.11)
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In the following, ǫ will be taken small. Taking into account thatqαq = αq + 1, (B.10) and the upper bound of
(B.11) lead to:

PN
[
Kc

L
] ≤ eκN

2
NαqN

∫

{
L(λ)

N ∈Kc
L

}

N∏

a=1

exp

{
Nαq+1C +

cq

2
Nαq+1 |λa|q + τǫ − cq(1− ǫ)Nqαq |λa|q

}
· dNλ

≤ NαqNeκN
2+CN2+αq+τǫN

∫

{
L(λ)

N ∈Kc
L

}

( N∏

a=1

e−ǫcqNαq+1|λa|q
)
exp

{
−

cq(1− 4ǫ)

2
N2+αq

∫

R

|x|q dL(λ)
N (x)

}
· dNλ

≤ NαqNeC′N2+αq+τǫN−[cq(1−4ǫ)/2]LN2+αq

( ∫

R

e−ǫcq|λa|qdλ

)N

(B.12)

for some constantC′ > C andN large enough. As a consequence,

lim sup
N→+∞

N−(2+αq) lnPN
[
Kc

L
] ≤ C − Lcq(1− 4ǫ)/2 ,

and this upper bound goes to−∞ whenL→ +∞.

B.2 Lower bound

In the following we focus on the renormalised measure onM1(R) defined asPN = zN[W] · PN. We will now
derive a lower bound for thePN volume of small Vasershtein balls, in terms of the energy functional E(ply) of
(2.1), namely:

E(ply)[µ] =
∫

E(ξ, η) dµ(ξ)dµ(η), E(ξ, η) =
cq

2
( |ξ|q + |η|q ) − βπ(ω1 + ω2)

2
|ξ − η| (B.13)

Lemma B.2 Let Bδ(µ) be the ball inM1(R) centred atµ and of radiusδ in respect to DV. Then, for anyµ ∈
M1(R), it holds

lim inf
δ→0

lim inf
N→∞

N−(2+αq) lnPN
[
Bδ(µ)

] ≥ −E(ply)[µ] (B.14)

Proof — Let µ ∈ M1(R) andδ > 0. If
∫
|x|q dµ(x) = +∞, thenE(ply)[µ] = +∞ and there is nothing to prove.

Thus we may assume from the very beginning that
∫
|x|q dµ(x) < +∞. If M > 0 is large enough, we have

µ([−M ; M]) , 0, and we can introduce:

µM =
1[−M ;M] · µ
µ
(
[−M ; M]

) (B.15)

which is now a compactly supported measure. We will obtain the lower bound forPN
[
Bδ(µ)

]
by restricting to

configurations close enough to the classical positions ofµM, and only at the end, see how the estimate behaves
whenM → ∞. For any given integerN, we define:

∀a ∈ ~1,N�, xN,M
a = inf

{
x ∈ R :

x∫

−∞

dµM ≥
a

N + 1

}
. (B.16)
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WhenN → ∞, L(xN,M )
N approximatesµM for the Vasershtein distance, so there existsNδ such that, for anyN ≥ Nδ,

we have the inclusion:

Ωδ :=
{
λ ∈ RN : ∀a ∈ ~1,N�,

∣∣∣λa − xN,M
a

∣∣∣ < δ/2
}
⊆

{
λ ∈ RN : DV

(
µM, L

(λ)
N

)
< δ

}
. (B.17)

Subsequently:

PN
[
Bδ(µM)

] ≥ NNαq

∫

Ωδ

N∏

a<b

{
sinh

[
πω1Nαq(λa− λb)

]
sinh

[
πω2Nαq |λa − λb|

]}β N∏

a=1

e−W(Nαqλa) · dNλ . (B.18)

It follows from the lower bound

|sinh(x)| ≥ e|x|

2
|x|

1+ |x| (B.19)

from the lower bound forW in (B.11), andqαq = αq + 1, that:

PN
[
Bδ(µ)

] ≥ eN(αq ln N+τǫ )

2βN(N−1)

∫

Ωδ

exp

{
πβ(ω1+ω2)Nαq

N∑

a<b

|λa − λb|−Nαq+1cq(1+ǫ)
N∑

a=1

|λa|q
} N∏

a<b

{
gN(λa−λb)

}β·dNλ .

(B.20)

where we have set

gN(λ) =
πω1Nαq |λ|

1+ πω1Nαq |λ| ·
πω2Nαq |λ|

1+ πω2Nαq |λ| (B.21)

Now, we would like to replaceλa by xN,M
a . Since the configurationsλ ∈ Ωδ satisfy|xN,M

a − λa| < δ/2, we have:

∑

a<b

|λa − λb| ≥ −N(N − 1)
δ

2
+

∑

a<b

(xN,M
b − xN,M

a ) (B.22)

Sinceq > 1, we also deduce from the mean value theorem:

|λa|q ≤
∣∣∣xN,M

a

∣∣∣q + qδ
2

(|xN,M
a | + δ/2)q−1 (B.23)

and thus

−(1+ ǫ)|λa|q = −(1+ ǫ)
∣∣∣xN,M

a

∣∣∣q + δ

cq
hǫ,δ(x

N,M
a ) hǫ,δ(x) =

qcq

2
(1+ ǫ) · ( |x| + δ/2)q−1 (B.24)

These inequalities yield the lower bound:

PN
[
Bδ(µ)

] ≥ exp

{
C N2−N2+αq

(
δ
{
C′+

∫
hǫ,δ(ξ)dL(xN,M )

N (ξ)
}
+E(ply)[L

(xN,M )
N ]+ǫcq

∫
|ξ|q dL(xN,M )

N (ξ)

)}
·GN,δ (B.25)

for some irrelevant,N andδ independent, constantsC,C′ > 0. Furthermore, the factorGN,δ reads

GN,δ =

∫

Ωord
δ

N∏

a>b

{
gN(λb − λa)

}β · dNλ (B.26)
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in whichΩord
δ
= Ωδ ∩ {λ ∈ RN : λ1 < · · · < λN}.

To find a lower bound forGN,δ, we can restrict further to configurations such thatua = λa − xN,M
a increases

with a ∈ ~1,N�, and satisfies|u1| < δ/(2N) and|ua+1 − ua| ≤ δ/2N for anya ∈ ~1,N − 1�. Using thatξ 7→ gN(ξ)
is increasing onR+, we have:

GN,δ ≥
∫

[−δ/2,δ/2]N

N−1∏

a=1

{
gN(ua+1 − ua)

}β(N−a) · dNu ≥
∫

[0,δ/2N]N

N∏

a=2

{
gN(va)

}β(N−a+1) · dNv (B.27)

Now, using an arithmetic-geometric upper bound for the denominator ingN(v), we can write:

∀v ∈ [0, δ/2N], gN(v) ≥
Nαq+1π

√
ω1ω2

2δ
· |v|2 ≥ C̃Nαq+1 · |v|2 (B.28)

for some irrelevantC′ > 0 independent ofδ provided thatδ < 1. So, we arrive to:

GN,δ ≥
δ

2N
· (C̃ Nαq−1)βN(N−1)/2 ·

N−1∏

a=2

(δ/2N)2β(N−a+1)

2β(N − a+ 1)+ 1
≥ eC̃′ N2 ln N (B.29)

for someC̃′ > 0 independent ofδ. Hence, ultimately

PN
[
Bδ(µ)

] ≥ eC̃′′N2 ln N exp

{
−N2+αq

[
δ

(
C′+

∫
hǫ,δ(ξ) dL(xN,M )

N (ξ)
)
+E(ply)

[
L(xN,M )

N

]
+ǫcq

∫
|ξ|q dL(xN,M )

N (ξ)

]}
(B.30)

To establish the desired result (B.14), we only need to focuson the last exponential. Ifφ is aC1 function of p real
variables, we denote:

φ[M](ξ) = min
[
φ(ξ) ; ||φ||L∞([−M ;M]p)

]
(B.31)

which has the advantage of being bounded and Lipschitz. Since µM is supported on [−M ; M], so must be the

classical positionsxN,M
a , and we can apply the truncation to all the functions againstwhich L(xN,M )

N is integrated. In
particular, we make appear the truncated functional:

E[M]
(ply)[µ] =

∫
E[M](ξ, η) dµ(ξ)dµ(η) . (B.32)

The advantage is that now, all functions to be integrated areLipschitz bounded. Since,DV
(
µM, L

(xN,M )
N

)→ 0 when
N → ∞, we get:

lim inf
N→∞

lnPN
[
Bδ(µ)

]

N2+αq
≥ −δ

(
C +

∫
hǫ,δ(ξ) dµM(ξ)

)
− E[M]

(ply)[µM] − ǫcq

∫ {
max(|ξ|,M)

}q dµM(ξ) . (B.33)

The right-hand is an affine function ofǫ, and at this stage, we can sendǫ to 0:

lim inf
N→∞

N−(2+αq) lnPN
[
Bδ(µM)

] ≥ −δ
(
C +

∫
h0,δ(ξ) dµM(ξ)

)
− E(ply)[µM] . (B.34)
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Now, for any fixedδ, there existsMδ such that, for anyM ≥ Mδ, DV(µ, µM) ≤ δ, and consequently:

lim inf
N→∞

N−(2+αq) lnPN
[
B2δ(µ)

] ≥ −δ
(
C +

∫
h0,δ(ξ) dµM(ξ)

)
− E(ply)[µM ] . (B.35)

We could replaceE[M]
(ply) by E(ply) here becauseµM is supported on [−M ; M]. Now, we can consider sending

M → ∞. Since we have the bound:

∀ξ, η ∈ R, E(ξ, η) ≤ C′
(
1+ |ξ|q + |η|q )

, h0,δ ≤ C′
(
1+ |ξ|q )

(B.36)

and we assumed that
∫
|ξ|q dµ(ξ) < +∞, we get by dominated convergence:

lim inf
N→∞

N−(2+αq) lnPN
[
B2δ(µ)

] ≥ −δ
(
C +

∫
h0,δ(ξ) dµ(ξ)

)
− E(ply)[µ] . (B.37)

Last but not least, sendingδ→ 0, the first term disappears and we find:

lim inf
δ→0

lim inf
N→∞

N−(2+αq) lnPN
[
B2δ(µ)

] ≥ −E(ply)[µ] . (B.38)

B.3 Upper bound

In this paragraph, we complete our estimate by an upper boundon the probability of small Vasershtein balls:

Lemma B.3

lim sup
δ→0

lim sup
N→∞

N−(2+αq) lnPN
[
Bδ(µ)

] ≤ −E(ply)[µ] (B.39)

Proof — Let µ ∈ M1(R). In order to establish an upper bound, we use that|sinh(x)| ≤ e|x| and the upper bound in
(B.11) for the potentialW. This makes appear again the functionE(ply) of (B.13):

PN
[
Bδ(µ)

] ≤ eN(αq ln N+τǫ )
∫

L(λ)
N ∈Bδ(µ)

exp

{
−N2+αq

(
−2cqǫ

∫
|ξ|q dL(λ)

N +E(ply)[L
(λ)
N ]

)} N∏

a=1

e−Nαq+1 cqǫ |λa|q ·dNλ (B.40)

where we have put aside one exponential decaying with rateǫ to ensure later convergence of the integral. IfM > 0,
let us define the truncated functional:

E{M,ǫ}(ply) [µ] =
∫

E{M,ǫ}(ξ, η) dµ(ξ)dµ(η), E{M,ǫ} = min
[
M ; E(ξ, η) − cqǫ

( |ξ|q + |η|q )]
. (B.41)

SinceE{M,ǫ} is a Lipschitz function bounded byM, with Lipschitz constant bounded byO(M1−1/q), we deduce the
following bounds when the eventL(λ)

N ∈ Bδ(µ) is realised:

∣∣∣E{M,ǫ}(ply) [L(λ)
N ] − E{M,ǫ}(ply) [µ]

∣∣∣ ≤ C δM , (B.42)
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for some constantC > 0 independent ofN, δ andǫ. Therefore:

PN
[
Bδ(µ)

] ≤ exp

{
C′N ln N + Nαq+2

(
CM · δ − E{M,ǫ}(ply) [µ]

)}
·
( ∫

R

e−cqǫ |λ|q dλ

)N

(B.43)

It follows that:

lim sup
N→∞

N−(2+αq) ln P̃N
[
Bδ(µ)

] ≤ CM · δ − E{M,ǫ}(ply) [µ] (B.44)

We observe that−E{M,ǫ} is an increasing function ofǫ. We can now letǫ → 0 by applying the monotone conver-
gence theorem:

lim sup
N→∞

N−(2+αq) ln P̃N
[
Bδ(µ)

] ≤ C M · δ − E{M,0}(ply) [µ] . (B.45)

Then, sendingδ→ 0 erases the first term, and finally lettingM → ∞ using again monotone convergence:

lim sup
δ→0

lim sup
N→∞

N−(2+αq) ln P̃N
[
Bδ(µ)

] ≤ −E(ply)[µ] , (B.46)

Notice that monotone convergence proves this last inequality even in the case whereE(ply)[µ] = +∞.

B.4 Partition function and equilibrium measure

By applying the reasoning described in [37], to the lower bounds (Lemma B.2) and upper bounds (Lemma B.3),
along with the property of exponential tightness (Lemma B.1), we deduce thatE(ply) is a good rate function for
large deviations,i.e.

for any open setΩ ⊆ M1(R), lim inf
N→+∞

N−(2+αq) lnPN[Ω] ≥ − inf
µ∈Ω
E(ply)[µ] ,

for any closed setF ⊆ M1(R) lim sup
N→+∞

N−(2+αq) lnPN[F] ≤ − inf
µ∈F
E(ply)[µ] . (B.47)

These two estimates, taken forΩ = F =M1(R), lead to

lim
N→∞

N−(2+αq) ln zN = − inf
µ∈M1(R)

E(ply)[µ] . (B.48)

The proof of the statements relative to the existence, uniqueness and characterisation of the minimiser ofE(ply) is
identical to those for the usual logarithmic energy [77] – and even simpler since there is no log singularity here.
The minimiser is denotedµ(ply)

eq and it is characterised by the existence of a constantC(ply)
eq such that:

cq |ξ|q − πβ(ω1 + ω2)
∫
|ξ − η|dµ(ply)

eq (η) = C(ply)
eq for ξ , µ

(ply)
eq everywhere (B.49)

cq |ξ|q − πβ(ω1 + ω2)
∫
|ξ − η|dµ(ply)

eq (η) ≥ C(ply)
eq for any ξ ∈ R (B.50)

The construction of the solution of this regular integral equation is left as an exercise to the reader. We only give
the final result in the announcement of Theorem 2.3. Actually, the fact that (2.4) is a solution can be checked
directly by integration by parts, and we can conclude by uniqueness.
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C Properties of theN-dependent equilibrium measure

We give here elements for the proof of Theorem 2.4, which establishes the main properties of the minimiser of:

EN[µ] =
1
2

∫ V(ξ) + V(η) − β

Nα
ln

{ 2∏

p=1

sinh
[
πNαωp(ξ − η)]

} dµ(ξ)dµ(η) . (C.1)

among probability measureµ onR, with N considered as a fixed parameter. As for any probability measuresµ, ν
andα ∈ [0, 1],

EN[αµ + (1− α)ν] − αEN[µ] − (1− α)EN[ν] = −α(1− α)D2[µ − ν, µ − ν] ,
EN is strictly convex, and the standard arguments of potentialtheory [69, 77] show that it admits a unique min-
imiser, denotedµ(N)

eq . More precisely, one can prove thatµ(N)
eq has a continuous densityρ(N)

eq (as soon asV isC2) and
is supported on a compact ofR (since the potential here is confining for any given value ofN) a priori depending
on N, seee.g. [17, Lemma 2.4]. What we really need to justify in our case is that:

(0) the support ofµ(N)
eq is contained in a compact independent ofN ;

(i) µ(N)
eq is supported on a segment ;

(ii ) ρ(N)
eq does not vanish on the interior of this segment and vanishes like a square root at the edges.

As a preliminary, we recall that the characterisation of theequilibrium measure is obtained by writing that
EN[µ(N)

eq + ǫν] ≥ EN[µ(N)
eq ] for all ǫ > 0, all measuresν with zero mass and such thatµ(N)

eq + ǫν is non-negative. The
resulting condition can be formulated in terms of the effective potential introduced in (3.3):

VN;eff(ξ) = UN;eff(ξ) − inf
R

UN;eff , UN(ξ) = V(ξ) − 2
?

sN(ξ − η) dµ(N)
eq (η) (C.2)

with the two-point interaction kernel:

sN(ξ) =
β

2Nα
ln

[
sinh

(
πω1Nαξ

)
sinh

(
πω2Nαξ

)]
. (C.3)

The equilibrium measure is characterised by the condition:

VN;eff(ξ) ≥ 0 , with equalityµ(N)
eq almost everywhere (C.4)

Proof — of (0). LetmN > 0 such that the support ofµ(N)
eq is contained in [−mN,mN]. For |ξ| > 2mN, we have an

easy lower bound:

∣∣∣∣
∫

sN(ξ − η) dµ(N)
eq (η)

∣∣∣∣ ≥
β

2Nα
ln

[
sinh

(
πω1NαmN

)
sinh

(
πω2NαmN

)] ≥ βπ(ω1 + ω2)
2

mN +O(1) (C.5)

where the remainder is bounded uniformly whenN → ∞ and mN → ∞. By the growth assumption on the
potential, there exists constantC,C′ > ǫ > 0 such that

V(ξ) ≥ C|ξ|1+ǫ +C′ (C.6)

Therefore, we can choosem := 2mN large enough and independent ofN such thatVN;eff(ξ) > 0 for any|ξ| > m.
This guarantees that the support ofµ

(N)
eq is included in the compact [−m; m] for any N.
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Proof — of (i).
We observe that−sN is strictly convex:

s′′N(ξ) = − βNa

2

2∑

p=1

(πωp)2

(
sinhπωpξ

)2 < 0 . (C.7)

SinceV is assumed strictly convex andµ(N)
eq is a positive measure, it implies thatVN;eff is strictly convex. Therefore,

the locus where it reaches its minimum must be a segment. So, there existsaN < bN such that [aN ; bN] is the
support ofµ(N)

eq . This strict convexity also ensures that

V′N;eff(ξ) > 0 for any ξ > bN, V′N;eff(ξ) < 0 for any ξ < aN . (C.8)

Proof — of (ii ).
This piece of information is enough so as to build the representation:

ρ
(N)
eq (ξ) =WN[V′] · 1[aN ;bN ](ξ) (C.9)

for the equilibrium measure. Indeed, we constructedWN[H] in Section 5.4 so that it provides the unique solution
to:

∀ξ ∈]aN ; bN[,

bN
?

aN

sN[Na(ξ − η)] dµ(N)
eq (η) = V′(ξ) (C.10)

which extends continuously on [aN ; bN], and this was only possible whenXN[V′] = 0 in terms of the linear form
introduced in Definition 3.18. Since the equilibrium measure exists, this imposes the constraint:

XN[V′] = 0 . (C.11)

Besides, since the total mass of (C.9) must be 1, we must also have:

bN∫

aN

WN[V′] = 1 . (C.12)

At this stage, we can use Corollary 7.10, which shows that (C.11)-(C.12) determine uniquely the large-N asymp-
totic expansion ofaN andbN, in particular there existsa < b such that (aN, bN) → (a, b) with rate of convergence
N−α. Besides, the leading behaviour atN → ∞ ofWN is described by Proposition 6.4 and 6.6. It follows from
the reasonings outlined in the proof of Proposition 8.2 that

ρ
(N)
eq (ξ) = WN[V′](ξ) =



V′′(ξ)
2πβ(ω1+ω2) +O(N−α) ξ ∈

[
aN +

(ln N)2

Nα
; bN −

(ln N)2

Nα

]

V′′(bN) a0
(
Nα(bN − ξ)

)
+ O

( (ln N)3

Nα

√
Nα(bN − ξ)

)
ξ ∈ [bN − (ln N)2 · N−α ; bN]

V′′(aN) a0
(
Nα(ξ − aN)

)
+ O

( (ln N)3

Nα

√
Nα(ξ − aN)

)
ξ ∈ [aN ; aN + (ln N)2 · N−α]

(C.13)

Therefore, forN large enough,ρ(N)
eq (ξ) > 0 on [aN ; bN]. The vanishing like a square root at the edges then

follows from he properties of thea’s established in Lemma 6.10. In fact, one even has
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lim
ξ→b−N

ρ
(N)
eq (ξ)

√
bN − ξ

= Nα/2
(
V′′(bN) · lim

x→0
x−1/2a0(x) + O(N−α)

}
=

Nα/2V′′(b)

πβ
√
π(ω1 + ω2)

+O(N−α/2) . (C.14)

This concludes the proof.

D The Gaussian potential

In this appendix we focus on the case of a Gaussian potential and establish two results. On the one hand, we
establish in Lemma D.1 that, forN large enough, there exists a unique sequence of Gaussian potential VG;N =

gNλ
2 + tNλ such that their associated equilibrium measure has supportσ

(N)
eq = [aN ; bN]. On the other hand

we show, in Proposition D.2, that the partition function associated with any Gaussian potential can be explicitly
evaluated, and thus is amenable to a direct asymptotic analysis whenN → ∞.

Lemma D.1 There exists a unique sequence of Gaussian potentials

VG;N = gNλ
2 + tNλ (D.1)

such that their associated equilibrium measure has supportσ
(N)
eq = [aN ; bN]. The coefficients gN, tN take the form

gN = πβ(ω1 + ω2)

{
bN − aN + N−α

2∑

p=1

1
πωp

ln
( ω1ω2

ωp(ω1 + ω2)

)}−1

+ O
(
N−∞) (D.2)

and

tN = −(aN + bN)gN + O
(
N−∞

)
. (D.3)

Proof — Let VG(λ) = gλ2 + tλ be any Gaussian potential. Since it strictly convex, all previous results apply.
Suppose thatVG gives rise to an equilibrium measure supported onσ

(N)
eq = [aN ; bN]. This means that the potential

VG has to satisfy the system of two equations that are linear inV′G:

bN∫

aN

WN[V′G](ξ) dξ = 1 and
∫

R+iǫ′

dµ
2iπ

χ11(µ)

bN∫

aN

V′G(η)eiNαµ(η−bN) dη = 0 . (D.4)

It follows from the multi-linearity in (g, t) of VG and from the evaluation of single integrals carried out in
Lemma 7.2 and Proposition 7.6 that there exist two linear forms L1, L2 of (g, t) whose norm is a O(N−∞) and
such that

1 =
g

πβ(ω1 + ω2)

{
(bN − aN) +

1
Nα
·

2∑

p=1

1
ωpπ

ln
( ω1ω2

ωp(ω1 + ω2)

)}
+ L1(g, t) (D.5)

where we have used that

+∞∫

0

b0(x) dx =
1

2πβ(ω1 + ω2)
·

2∑

p=1

1
ωpπ

ln
( ω1ω2

ωp(ω1 + ω2)

)
(D.6)
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a formula that can be established with the help of (6.72) and (6.92). One also obtains that

0 =
2

Nα
√
ω1 + ω2

(
g(bN + aN) + t

)
+ L2(g, t) . (D.7)

In virtue of the unique solvability of perturbations of linear solvable systems, the existence and uniqueness of the
potentialVG;N follows.

Proposition D.2 The partition function ZN[VG] at β = 1 associated with the Gaussian potential VG(λ) = gλ2+ tλ
can be explicitly computed as

ZN[VG] |β=1 =
N!

2N(N−1)

(
π

gN1+α

)N/2

exp
{N2+αt2

4g
+
π2(ω1 + ω2)2

12g
Nα(N2−1)

} N∏

j=1

(
1−e−

2 jNα

gN π2ω1ω2
)N− j

. (D.8)

Proof — We can get rid of the linear term in the potential by a translation of the integration variables. Then

ZN[VG] |β=1 = exp
{N2+αt2

4g

}
· ZN[ṼG] |β=1 where ṼG(λ) = gλ2 . (D.9)

Further, the products over hyperbolic sinh’s can be recast as two Van-der-Monde determinants

N∏

a<b

{
sinh

[
πω1Nα(λa−λb)

]
sinh

[
πω2Nα(λa−λb)

]}
=

N∏

a=1

{e−π(ω1+ω2)Nα(N−1)λa

2N−1

}
·

2∏

p=1

detN
[
e2πωpNαλ j (k−1)

]
. (D.10)

Inserting this formula into the multiple integral representation forZN[VG] |β=1 and using the symmetry of the
integrand, one can replace one of the determinants byN! times the product of its diagonal elements. Then, the
integrals separate and one gets:

ZN[ṼG] |β=1 =
N!

2N(N−1)
· detN

[ ∫

R

e−π(ω1+ω2)Nα(N−1)λe2πNα[ω1(k−1)+ω2( j−1)]λ · e−gN1+αλ2
dλ

]
. (D.11)

The integral defining the (k, j)th entry of the determinant is Gaussian and can thus be computed. This yields, upon
factorising the trivial terms arising in the determinant,

ZN[ṼG] |β=1 =
( π

gN1+α

)N
2 N!

2N(N−1)
·

N∏

j=1

e
π2
4g Nα−1(ω2

1+ω
2
2)(2 j−1−N)2 · DN , (D.12)

where

DN = detN
[
exp

{π2

2g
Nα−1ω1ω2(2k − N − 1)(2j − 1− N)

}]
. (D.13)

The last determinant can be reduced to a Van-der-Monde. Indeed, we have:

DN = exp
{π2

2g
ω1ω2(N−1)2Nα

}
·

N∏

j=1

{
e−2π

2
g ω1ω2Nα−1(N−1)( j−1)

}
· detN

[
exp

{
2
π2

g
Nα−1ω1ω2(k−1)( j −1)

}]

= exp
{
− π

2

2g
ω1ω2(N − 1)2Nα

}
·

N∏

k> j

(
e2π

2
g Nα−1ω1ω2(k−1) − e2π

2
g Nα−1ω1ω2( j−1)

)
. (D.14)
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In order to present the last product into a convergent form, we factor out the largest exponential of each term. The
product of these contributions is computable as

N∏

k>l

(
e2π

2
g Nα−1ω1ω2(k−1)

)
=

N−1∏

k=1

e2π
2
g Nα−1ω1ω2k2

= exp
{π2

3g
ω1ω2Nα(N − 1)(2N − 1)

}
, (D.15)

where we took advantage of

N∑

p=1

p2 =
N(N + 1)(2N + 1)

6
. (D.16)

Putting all of the terms together leads to the claim.
The large-N asymptotic behaviour of the partition function atβ = 1 and associated to a Gaussian potential can

be extracted from (D.8).

Proposition D.3 Assume0 < α < 1. We have the asymptotic expansion:

ln ZN[VG]|β=1 = N2+α ·
[ t2

4g
+
π2(ω1 + ω2)2

12g

]
− N2 · ln 2 − N2−α · g

12ω1ω2

+ N2−2α · g2 ζ(3)
(
2π2ω1ω2

)2 + (1− α) N ln N + N · ln
( 2/e√

ω1ω2

)

− Nα · π
2(ω1 + ω2)2

12g
+ ln N · α + 5

12
+

1
12

ln

(
128π8ω1ω2

g

)
+ ζ′(−1) + o(1) . (D.17)

Proof — The sole problematic terms demanding some further analysisis the last product in (D.8). The latter can
be recast as :

N∏

ℓ=1

(1− e−τNℓ)N−ℓ =

[
M0

(
e−NτN ; e−τN

)

M0(1; e−τN )

]N

· M1(1; e−τN )
M1

(
e−NτN ; e−τN

) where τN =
2Nα

gN
π2ω1ω2 (D.18)

andMr(a, q) corresponds to the infinite productsMr(a; q) =
∏∞

ℓ=1(1− aqℓ)−ℓ
r
.

We will exploit the fact that asymptotics ofMr(a; e−τ) whenτ → 0+ up to o(1) can be read-off from the
singularities of the Mellin transform of its logarithm

Mr (a; s) =
∫ ∞

0
ln Mr(a; e−t) ts−1dt where lnMr(a; q) ≡ −

+∞∑

ℓ=1

ℓr ln
(
1− aqℓ

)
. (D.19)

The above Mellin transform is well-defined for Re(s) > r + 1 and can be easily computed. For any|a| ≤ 1, we
have:

Mr (a; s) =
∞∑

ℓ=1

∞∑

m=1

ℓr am

m

∫ ∞

0
ts−1 e−tℓm dt = Γ(s) ζ(s− r) Li s+1(a) . (D.20)

Above, ζ refers to the Riemann zeta function whereas Lis(z) is the polylogarithm which is defined by its series
expansion in a variablez inside the unit disk:

Li s(z) =
∑

k≥1

zk

ks (D.21)
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Note that, when Res> 1, the series also converges uniformly up to the boundary of the unit disk. We remind that
the first two polylogarithms can be expressed in terms of elementary functions:

Li0(z) =
z

1− z
and Li1(z) = − ln(1− z) . (D.22)

In both cases|a| < 1 or a = 1,Mr(a; s) admits a meromorphic extension from Res > 1 toC. When|a| < 1 this
is readily seen at the level of the series expansion of the polylogarithm whereas whena = 1, this follows from
Li s+1(1) = ζ(s+ 1). Furthermore, this meromorphic continuation is such that Mr(a; x + iy) = O(e−c|y|), c > 0,
wheny → ±∞. This estimate is uniform fora in compact subsets of the open unit disk and forx belonging to
compact subsets ofR. The same type of bounds also holds fora = 1, namelyMr(1; x + iy) = O(e−c|y|), c > 0,
wheny→ ±∞ for x belonging to a compact subset ofR. This is a consequence of three facts:

• Γ(x+ iy) decays exponentially fast when|y| → +∞ andx is bounded, as follows from the Stirling formula ;

• |ζ(x+ iy)| ≤ C|x+ iy|c for somec > 0 valid provided thatx is bounded [41] ;

• Li x+iy(a) is uniformly bounded forx in compact subsets ofR anda in compact subsets of the open unit disk,
as is readily inferred from the series representation (D.21).

Thanks to the inversion formula for the Mellin transform

ln Mr(a, e
−τ) =

c+i∞∫

c−i∞

τ−sMr(a; s)
ds
2iπ

with c > r + 1 , (D.23)

we can compute theτ → 0 asymptotic expansion of lnMr(a, e−τ) – this principle is the basis of the transfer
theorems of [47]. To do so, we deform the contour of integration to the region Res < 0. The residues at the
poles ofMr(a; s) are picked up in the process. There are two cases to distinguish since the polylogarithm factor in
(D.20) is entire if|a| < 1, while fora = 1 one has Lis+1(1) = ζ(s+ 1) what generates an additional pole ats = 0.
We remind that:

Γ(s) =
s→0

1
s
− γE + O(s) , ζ(s) =

1
s− 1

+ γE + O(s) (D.24)

whereγE is the Euler constant. Fora < 1,Mr (a; s) has simple poles ats= 1+ r ands= 0:

Mr (a; s) =
Li2+r (a) r!
s− (1+ r)

+ O(1) , Mr(a; s) =
−ζ(−r) ln(1− a)

s
+ O(1) . (D.25)

Notice that herer ∈ {0, 1} and the Riemann zeta function has the special valuesζ(0) = −1/2 andζ(−1) = −1/12.
Therefore,

ln Mr(a; e−τ) =
r! Li 2+r (a)

τ1+r
− ζ(−r) ln(1− a) + o(1), τ→ 0+ (D.26)

and the remainder is uniform fora uniformly away from the boundary of the unit disk. Fora = 1,Mr (a; s) has the
same simple pole ats= 1+ r with residuer! ζ(2+ r), but now a double pole ats= 0:

Mr (1; s) =
ζ(−r)

s2
+
ζ′(−r)

s
+ O(1), Mr(1; s) =

r! ζ(2+ r)
s− (1+ r)

+ O(1) (D.27)

and we remind the special valueζ′(0) = − ln(2π)/2. In this case, we thus have:

Mr(1;e−τ) =
r! ζ(2+ r)

t2
− ζ(−r) ln t + ζ′(−r) + o(1), τ→ 0+ . (D.28)
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Collecting all the terms from (D.26)-(D.28), we obtain the asymptotics of the product (D.18) that are uniform in
a belonging to compact subsets of the unit disk:

ln

[ N−1∏

ℓ=1

(1− e−τN )N−ℓ
]
=
ζ(3)− Li2

(
e−NτN

)

τ2
N

+
N
τN

(
Li1

(
e−NτN

) − π
2

6

)

+

(
N
2
− 1

12

)
ln

(
1− e−NτN

τN

)
+

N ln(2π)
2

+ ζ′(−1) + o(1) . (D.29)

Here, we have used the special valueζ(2) = π2/6. It remains to insert in (D.29) the value of the parameter of
interestτN = Nα−1 2π2ω1ω2/g, and return to the original formula. The announced result for the Gaussian partition
function (D.17) follows, upon using the Stirling approximation N! ∼

√
2πNN+1/2e−N for the factorial prefactor.

We remark that forα ≥ 1, τN ≥ 0 is not anymore going to 0 whenN → ∞, therefore the asymptotic regime
will be different.

E Summary of symbols

Empirical and equilibrium measures

E(ply)[µ] (B.13) energy functional for the baby integral of § 2.1
E(ξ, η) (B.13) its kernel function
µ

(ply)
eq § B.4 minimiser ofE(ply)

EN[µ] (2.33) N-dependent energy functional
E∞[µ] (2.27) same one atN = ∞
D[µ, ν] Def. 3.2 pseudo-distance between probability measures induced byEN

µ
(N)
eq (2.35)-(2.36) N-dependent equilibrium measure (maximiser ofEN)
ρ

(N)
eq Thm. 2.4 density ofµ(N)

eq

[aN, bN] Thm. 2.4 support ofµ(N)
eq

xN
a Def. 3.4 classical positions forµ(N)

eq

VN;eff (3.3) effective potential
L(λ)

N (2.48) empirical measure
λ̃ Def. 3.6 deformation ofλ enforcing a minimal spacing
L(λ)

N;u Def. 3.6 convolution ofL(bsλ)
N with uniform law of small support

L(λ)
N Def. 3.1 centred empirical measure with respect toµ

(N)
eq

M
(n)
N;κ Def. 3.8 probability measure including exponential regularization ofn variables

Partition functions

ZN[V] (1.10) partition function of the sinh model with potentialV
VG;N Lemme D.1 Gaussian potential leading to support [aN, bN]
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Pairwise interactions

sN(ξ) (3.2) pairwise interaction kernel
S(ξ) (2.42) derivative ofβ ln

∣∣∣sinh(πω1ξ)sinh(πω2ξ)
∣∣∣ viz. 1

2∂ξsN(N−αξ)
Sreg(ξ) (8.6) S minus its pole at 0
SN (2.42) integral operator with kernelS(Nα(ξ1 − ξ2))
SN;γ (4.1) same one with extended support
SN;γ (4.3) same one in rescaled and centered variables

Operators

Kκ Def. 3.8 multiplication by a decreasing exponential
Ξ(p) Def. 3.12 operator inserting a copy ofξ1 at positionp
UN (3.54) master operator
DN (3.57) hyperbolic analog of the non-commutative derivative
VN Prop 8.1 building block ofU−1

N
WN (2.44) inverse ofSN

XN Def. 3.18 linear form related toI11

X̃N Def. 3.18 projection to the hyperplaneXs([aN ; bN]) = KerXN

Ũ−1
N , W̃N (3.101) operators composed to the right withX̃N

WN (5.58) operatorWN in rescaled and centered variables
W̃ϑ;z0 (5.15) a pseudo-inverse ofSN;γ.
I11,I12 Prop. 5.4 functionals appearing in the inversion ofSN;γ

J1a(λ) (5.34) related functionals
w

(1/2)
k;a , w (1)

k;a (5.36) functionals appearing in the largeλ expansion of the latter
H∧ Def. 6.2 reflection of the functionH (exchanging left and right boundary)
GN (9.2) 2-variable operator related toWN

Teven,Todd (9.23) some even/odd averaging operator

Decomposition of operators for asymptotic analysis

W(∞), δW (6.1) leading and subleading terms inWN whenN→ ∞
WR,WL (6.4) contribution of the right/left boundary toWN

WR;k Prop. 6.6 terms contributing to the latter up toO(N−kα) . . .
∆[k]WR Prop. 6.6 . . . and the remainder
W(as)

R;k ,∆[k]W(as)
R;k Lemma 6.11 putting aside exponentially small terms inWR;k

Wbk (6.4) contribution of the bulk toWN

Wbk;k Prop. 6.6 the terms contributing to the latter up toO(N−kα) . . .
∆[k]Wbk Prop. 6.6 . . . and the remainder
W(as)

bk;k,∆[k]W(as)
bk;k Lemma 6.11 putting aside exponentially small terms in the bulk operator

Wexp (6.4) exponentially small contribution
(∆[k]WN)R (9.8) local right boundary remainder

Similar notations are used throughout Section 9 for the decompositions ofG and the variousI.
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Riemann-Hilbert problems

R(λ) (4.19) reflection coefficient
κN (4.18) coefficient of 1/λ term
R↑/↓(λ) (4.25)-(4.26) Wiener-Hopf factors ofR(λ)
υ(λ) (4.24) related, piecewise holomorphic function
Φ Lemma 4.1 2d-vector in correspondence with solutions ofSN;γ[ f ] = g.
χ(λ) Prop. 4.3 2× 2 matrix solution of the homogeneous Riemann–Hilbert problem with jumpGχ

χ
(as)
↑/↓(λ) (7.7) leading part ofχ(λ) whenN →∞
χ

(exp)
↑/↓ (λ) (7.8) exponentially small part ofχ(λ)
χk (4.65) matrix coefficients in the largeλ expansion ofχ(λ)
Gχ (4.8) jump matrix of the Riemann–Hilbert problem ofΦ andχ
Ψ(λ) (4.55) and Fig. 1 2× 2 matrix related toχ(λ)
Π(λ) (4.49) and Fig. 2 related 2× 2 matrix
∆Π(λ) (7.8) difference betweenΠ(λ) minus identity
GΨ (4.39)-(4.40) jump matrix of the auxiliary Riemann–Hilbert problem
κǫ (4.42) rate of exponential decay ofGΨ − I2

R↑/↓(λ) (4.31) some factors of the jump matrix
R(∞)
↑/↓ (4.32) their non-oscillatory parts

M↑/↓(λ) (4.33) some factors of the jump matrix
PR(λ),PL;↑/↓(λ) (4.34) some factors in the auxiliary Riemann–Hilbert problem
θR (4.55) a constant involved in the auxiliary Riemann–Hilbert problem
Υ(λ) (5.5)-(5.13) polynomial remainder in the inhomogeneous Riemann–Hilbert problem
H(λ) (4.8) 2d-vector on the right-hand side of the inhomogeneous Riemann–Hilbert problem
Ĥ(λ) (5.14) related quantity

Auxiliary functions, contours, and constants

Jk(λ) (5.41) model integral appearing in the asymptotics ofJ1a(λ)
xR, xL Def. 6.1 reduced variables centered at the right and left boundary
Γ↑/↓ Figure 4 contours in the upper/lower half-plane
C (±)

reg Def. 6.3 and Figure 4 contours betweenΓ↑/↓ andR
J(x) Def. 6.3 related to the Fourier transform of 1/R(λ)
̺0(x) (6.34)-(6.35) proportional to a primitive ofJ(x)
̺ℓ(x) Def. 6.5 related to higher primitives
̟ℓ(x) Def. 6.5 integrals ofxℓJ(x) from x to∞
uℓ Def. 6.5 coefficients in the Taylor expansion of 1/R(λ) atλ = 0
uℓ(x) Def. 6.9, (8.48) related to theℓth order truncation of the Taylor series of 1/R
aℓ(x),bℓ(x) Def. 6.9 combinations of the above, involved in asymptotics ofWN

kp Def. 7.1 negative moments of 1/R↓
ks,ℓ Def. 7.5 sth order moment ofbℓ
ℓג Def. 9.4 ℓth order moments related toJ andS
P ℓ, Q ℓ (9.73) some universal multivariable polynomial
gR;ℓ, gbk;ℓ (9.77)-(9.80) a specialisation of the latter involving thefunctions above
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Answer for the partition function

Is[H,G] Def. 7.4 bilinear pairing induced byWN

I
(1)
s;β[H,G] (3.115) related expression appearing only forβ , 1

I
(1)
s;β[H,G] (3.116) related expression appearing only forβ , 1
Id[H,G] (9.1) related expression
Id;β[H,G] (3.118) related expression appearing only forβ , 1
�[V,V0] (2.22) a functional appearing in the interpolation
c(x) Def. 9.9 a function involving thea’s andb’s appearing in expansion ofId

ℵ0 Def. 9.9 a constant involving integrals ofJ, S andR↑/↓, appears in expansion ofId

Norms

N (ℓ)
N [φ] Def. 3.14 weighted norms involvingW∞k norms fork ∈ [[ 0 ; ℓ ]]
nℓ[V] Def. 3.15 some estimates for the magnitude of potential

Miscellaneous

q(z) (8.8) squareroot
qR(z) (8.23) squareroot at the right boundary
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