On weakly stable Yang-Mills fields over positively pinched manifolds and certain symmetric spaces

Yoshihiro OHNITA and PAN Yanglian

Y. Ohnita
Max-Planck-Institiut für Mathematik
Gottfried-Claren-Strasse 26
5300 Bonn 3
Federal Republic of Germany and
Department of Mathematics
Tokyo Metropolitan University
Fukasawa, Setagaya, Tokyo 158
Japan
Y. L. Pan
Institute of Mathematics
Fudan University
Shanghai
People's Republic of China

ON WEAKLY STABLE YANG-MILLS FIELDS OVER POSITIVELY PINCHED MANIFOLDS AND CERTAIN SYMMETRIC SPACES

Yoshihiro OHNITA and PAN Yanglian (Y. L. Pan)

Abstract

In this paper it is proved that for $n \geq 5$ there exists a constant $\delta(n)$ with $\delta \leq \delta(n)<1$ such that any weakly stable Yang-Mills connection over a simply connected compact Riemannian manifold M with $\delta(n)$-pinched sectional curvatures is always flat. The pinching constants are possible to compute by elementary functions. Moreover we give some remarks on stability of Yang-Mills connections over certain symmetric spaces.

Introduction.

Let M be an n-dimensional compact Riemannian manifold with a metric g and G be a compact Lie group with the Lie algebra g. Let E be a Riemannian vector bundle over M with structure group G, and let \mathcal{C}_{E} denote the space of G connections in E, which is an affine space modeled on the vector space $\Omega^{1}\left(g_{E}\right)$ of smooth 1 -forms with values in the adjoint bundle g_{E} of E. The Yang-Mills functional $\mathcal{Y} \mathcal{M}: \mathcal{C}_{E} \longrightarrow \mathbf{R}$ is

$$
\mathcal{Y} \mathcal{M}(\nabla)=\frac{1}{2} \int_{M}\left\|F^{\nabla}\right\|^{2} \mathrm{dvol}
$$

for each $\nabla \in \mathcal{C}_{E}$, where F^{∇} is the curvature form of the connection ∇. Note that F^{∇} is a smooth section of $\Omega^{2}\left(g_{E}\right)$. The Yang-Mills connection $\nabla \in \mathcal{C}_{E}$ is a critical point of $\mathcal{Y} \mathcal{M}$. A Yang-Mills connection ∇ is called weakly stable if, for each variation $\nabla^{t} \in \mathcal{C}_{E}$ with $\nabla=\nabla^{0}$,

$$
\left.\left(d^{2} / d t^{2}\right) \mathcal{Y} \mathcal{M}\left(\nabla^{t}\right)\right|_{t=0} \geq 0
$$

M is called Yang-Mills unstable (cf. [K-O-T]) if for every vector bundle (E, G) over M, any weakly stable Yang-Mills connection on E is always flat. First Simons proved that the Euclidean n-sphere S^{n} for $n \geq 5$ is Yang-Mills unstable ([B-L]). Ever since several persons have investigated the instability of Yang-Mills fields over various Riemannian manifolds ; convex hypersurfaces, submanifolds, compact symmetric spaces (cf. [Ka],[K-O-T],[Pal],[Sh],[Ta],[We]). In [K-O-T] it was shown that the Cayley projective plane P_{2} (Cay) and the compact symmetric space of exceptional type E_{6} / F_{4} are Yang-Mills unstable.

In this paper we first establish the instability theorem for Yang-Mills fields over a simply connected compact Riemannian manifold with sufficiently pinched
sectional curvatures. Okayasu [Ok] used the construction and results of Ruh, Grove and Karcher ([Ru],[G-K-R1],[G-K-R2]) to show the instability of harmonic maps into a Riemannian manifold with sufficiently pinched sectional curvatures. By using the same idea, the second named author $[\mathrm{Pa} 2]$ showed an instability theorem for harmonic maps from a Riemannian manifold with sufficiently pinched sectional curvatures to an arbitrary Riemannian manifold. We will also use it. Next we shall prove some results on weakly stable Yang-Mills fields over certain symmetric spaces. Some of them were stated in [K-O-T] without proof. They supplement results of Laquer [La] which determined the stablity of canonical connections over simply connected compact irreducible symmetric spaces. Moreover we prove that a weakly stable Yang-Mills field satisfying a certain condition over a quaternionic projective space $P_{m}(\mathbf{H})$ is a B_{2}-connection in a sense of $[\mathrm{Ni}]$, or equivalently a self-dual connection in a sense of [C-S], and hence it minimizes the Yang-Mills functional.

1. Preliminaries on Yang-Mills fields.

Let $\nabla \in \mathcal{C}_{E}$. For any $B \in \Omega^{1}\left(\mathbf{g}_{E}\right)$, set $\nabla^{t}=\nabla+t B \in \mathcal{C}_{E}$. The second variational formula for the Yang-Mills functional is given as follows ([B-L]);

$$
\begin{align*}
\left.\left(d^{2} / d t^{2}\right) \mathcal{Y} \mathcal{M}\left(\nabla^{t}\right)\right|_{t=0} & =\mathcal{I}^{\nabla}(B, B) \tag{1.1}\\
& =\int_{M}\left(\mathcal{S}_{0}^{\nabla}(B), B\right) \mathrm{dvol} \\
& =\int_{M}\left\{\left(\mathcal{S}^{\nabla}(B), B\right)-\left(\delta^{\nabla} B, \delta^{\nabla} B\right)\right\} \mathrm{dvol}
\end{align*}
$$

where $\mathcal{S}_{0}^{\nabla}(B)=\delta^{\nabla} d^{\nabla} B+\mathcal{F}^{\nabla}(B)$ and $\mathcal{S}^{\nabla}(B)=\Delta^{\nabla}(B)+\mathcal{F}^{\nabla}(B)$. Here d^{∇} and δ^{∇} denote the exterior covariant differentiation induced by the connection $\nabla \in \mathcal{C}_{E}$ and its adjoint differential operator, and \mathcal{F}^{∇} is a symmetric bundle endomorphism of $T^{*} M \otimes \mathrm{~g}_{E}$ defined by $\left(\mathcal{F}^{\nabla}(b)\right)(X)=\sum_{i=1}^{n}\left[F^{\nabla}\left(e_{i}, X\right), b\left(e_{i}\right)\right]$ for $b \in T_{x}^{*} M \otimes\left(\mathbf{g}_{E}\right)_{x}$ and $X \in T_{x} M$, where $\left\{e_{i}\right\}$ is an orthonormal basis of $T_{x} M$.

Let $\left\{\omega^{i}\right\}$ be the dual frame of a local orthonormal frame field $\left\{e_{i}\right\}$ in M. Throughout this paper we use the summation convention. Set $B=B_{i} \omega^{i}$ and $F^{\nabla}=(1 / 2) F_{i j} \omega^{i} \wedge \omega^{j}$. Then we have

$$
\begin{aligned}
d^{\nabla} B & =\left(\nabla_{i} B_{j}-\nabla_{j} B_{i}\right) \omega^{i} \wedge \omega^{j}, \\
\delta^{\nabla} d^{\nabla} B & =\left(\nabla_{j} \nabla_{i} B_{j}-\nabla_{j} \nabla_{j} B_{i}\right) \omega^{i}, \\
\mathcal{F}^{\nabla}(B) & =\left[F_{i j}, B_{i}\right] \omega^{j}, \\
\left\|F^{\nabla}\right\|^{2} & =\left(F_{i j}, F_{i j}\right) / 2
\end{aligned}
$$

And (1.1) becomes

$$
\begin{aligned}
& \left.\left(d^{2} / d t^{2}\right) \mathcal{Y} \mathcal{M}\left(\nabla^{t}\right)\right|_{t=0} \\
= & \int_{M}\left\{\left(\nabla_{j} \nabla_{i} B_{j}, B_{i}\right)-\left(\nabla_{j} \nabla_{j} B_{i}, B_{i}\right)+\left(\left[F_{i j}, B_{i}\right], B_{j}\right)\right\} \text { dvol. }
\end{aligned}
$$

Let D be a Riemannian connection of M and let R denote the curvature tensor field of $D ; R\left(e_{i}, e_{j}\right) e_{k}=R_{i j k l} e_{l}$. The Ricci tensor field Ric of M is defined by $R_{i j}=R_{i k k j}$. The scalar curvature R of M is defined by $R=R_{i i}$. The Ricci identities are as follows:

$$
\begin{aligned}
& D_{k} D_{j} X^{i}-D_{j} D_{k} X^{i}=R_{k j l i} X^{l} \quad \text { for } \quad X=X^{i} e_{i} \\
& \nabla_{l} \nabla_{k} F_{i j}-\nabla_{k} \nabla_{l} F_{i j}=-F_{m j} R_{l k i j}-F_{i m} R_{l k j m}+\left[F_{l k}, F_{i j}\right]
\end{aligned}
$$

The curvature form F^{∇} always satisfies the Bianchi identity $d^{\nabla} F^{\nabla}=0$, or equivalently

$$
\begin{equation*}
\nabla_{k} F_{i j}+\nabla_{i} F_{j k}+\nabla_{j} F_{k i}=0 \tag{1.2}
\end{equation*}
$$

The Yang-Mills equation is $\delta^{\nabla} F^{\nabla}=0$, namely

$$
\begin{equation*}
\nabla_{j} F_{i j}=0 \tag{1.3}
\end{equation*}
$$

Let $\nabla \in \mathcal{C}_{E}$. Assume that $\varphi=(1 / 2) \varphi_{i j} \omega^{i} \wedge \omega^{j} \in \Omega^{2}\left(\mathrm{~g}_{E}\right)$ is harmonic with respect to ∇, that is, $d^{\nabla} \varphi=0$ and $\delta^{\nabla} \varphi=0$. Note that if ∇ is a Yang-Mills connection, we can take $\varphi=F^{\nabla}$. Let $V \in C^{\infty}(T M)$ with $V=V^{i} e_{i}$. Set $B=$ $i_{V} \varphi=B_{i} \omega^{i} \in \Omega^{1}\left(\mathrm{~g}_{E}\right)$. Here $B_{i}=V^{j} \varphi_{j i}$. Then by the harmonicity of φ and the Bochner-Weitzenböck formula (cf. [B-L]) we compute

$$
\begin{align*}
\left(\mathcal{S}^{\nabla}(B)\right)(X)= & \varphi\left(D^{*} D V, X\right)-2 \sum_{i=1}^{n}\left(\nabla_{e_{i}} \varphi\right)\left(D_{e_{i}} V, X\right) \tag{1.4}\\
& +\varphi(V, \operatorname{Ric}(X))-\{\varphi \circ(\operatorname{Ric} \wedge I-2 \mathcal{R})\}(V, X) \\
& -\sum_{i=1}^{n}\left\{\left[F^{\nabla}\left(e_{i}, V\right), \varphi\left(e_{i}, X\right)\right]+\left[F^{\nabla}\left(e_{i}, X\right), \varphi\left(e_{i}, V\right)\right]\right\}
\end{align*}
$$

where $D^{*} D V=-\sum_{i=1}^{n} D^{2} V\left(e_{i}, e_{i}\right)$, and \mathcal{R} denotes the curvature operator of (M, g) acting on $\bigwedge^{2} T M$. We define a quadratic form Q_{φ} on $C^{\infty}(T M)$ as

$$
Q_{\varphi}(V)=\left.\left(d^{2} / d t^{2}\right) \mathcal{Y} \mathcal{M}\left(\nabla^{t}\right)\right|_{t=0}=\int_{M} q_{\varphi}(V) \mathrm{dvol},
$$

where $\nabla^{t}=\nabla+t\left(i_{V} \varphi\right) \in \mathcal{C}_{E}$. By straightforward computations we have

$$
\begin{align*}
q_{\varphi}(V)= & D_{j} D_{i} V^{k} V^{l}\left(\varphi_{k j}, \varphi_{l i}\right)-D_{j} D_{j} V^{k} V^{l}\left(\varphi_{k i}, \varphi_{l i}\right) \tag{1.5}\\
& +D_{j} V^{k} V^{l}\left(\nabla_{i} \varphi_{k j}, \varphi_{l i}\right)-2 D_{j} V^{k} V^{l}\left(\nabla_{j} \varphi_{k i}, \varphi_{l i}\right) \\
& +V^{k} V^{l}\left(\left[F_{j k}^{\nabla}, \varphi_{i j}\right]+\left[F_{j i}^{\nabla}, \varphi_{k j}\right], \varphi_{l i}\right) \\
& +V^{k} V^{l}\left\{R_{i k m j}\left(\varphi_{m j}, \varphi_{l i}\right)-R_{j i k m}\left(\varphi_{m j}, \varphi_{l i}\right)+R_{k m}\left(\varphi_{i m}, \varphi_{l i}\right)\right\} .
\end{align*}
$$

2. The construction of Ruh for a δ-pinched manifold.

We recall the idea and construction of Ruh ([Ru],[G-K-R1],[G-K-R2]). Let (M, g) be an n-dimensional simply connected compact Riemannian manifold with δ-pinched sectional curvature, namely $\delta<K \leq 1$. We fix a normalized Riemannian metric $g_{0}=\{(1+\delta) / 2\} g$ on M. Then we have $2 \delta /(1+\delta)<K_{g_{0}} \leq 2 /(1+\delta)$. Consider a vector bundle $\Xi=T M \oplus \varepsilon(M)$ with a fibre metric \langle,$\rangle over M$. Here $\varepsilon(M)$ is a trivial line bundle with a fiber metric and it is orthogonal to $T M$. Let e denote a smooth section of lengh 1 in $\varepsilon(M)$. Now we define a metric connection $D^{\prime \prime}$ in Ξ as follows;

$$
\begin{aligned}
& D_{X}^{\prime \prime} Y=D_{X} Y-g_{0}(X, Y) e \\
& D_{X}^{\prime \prime} e=X
\end{aligned}
$$

for $X, Y \in C^{\infty}(T M)$. It was proved that if δ is sufficiently close to 1 , there exists a flat connection D^{\prime} in Ξ close to $D^{\prime \prime}$ ([G-K-R1]). Define

$$
\begin{aligned}
& \left\|D^{\prime}-D^{\prime \prime}\right\| \\
:= & M a x\left\{\left\|D^{\prime}{ }_{X} Y-D_{X}^{\prime \prime} Y\right\| ; X \in T_{x} M, g_{0}(X, X)=1, Y \in \Xi_{x},\|Y\|=1\right\} .
\end{aligned}
$$

Note that it is a half of that one in [G-K-R2]. Set

$$
\begin{aligned}
& k_{1}(\delta)=(4 / 3)(1-\delta) \delta^{-1}\left\{1+\left(\delta^{1 / 2} \sin (1 / 2) \pi \delta^{-1 / 2}\right)^{-1}\right\} \\
& k_{2}(\delta)=\{(1+\delta) / 2\}^{-1} k_{1}(\delta) \\
& k_{3}(\delta)=k_{2}(\delta)\left[1+\left\{1-(1 / 24) \pi^{2} k_{2}(\delta)^{2}\right\}^{-2}\right]^{1 / 2}
\end{aligned}
$$

[G-K-M 2] proved that $\left\|D^{\prime}-D^{\prime \prime}\right\| \leq k_{3}(\delta) / 2$. The curvature form $R^{\prime \prime}$ of the connection $D^{\prime \prime}$ is

$$
\begin{align*}
& R^{\prime \prime}(X, Y) Z=R(X, Y) Z-\langle Y, Z\rangle X+\langle X, Z\rangle Y \tag{2.1}\\
& R^{\prime \prime}(X, Y) e=0 \tag{2.2}
\end{align*}
$$

3. Trace formula for second variations of Yang-Mills fields over a δ-pinched manifold.

Assume that M is a simply connected compact Riemannian manifold with δ pinched sectional curvatures. Let $P=\left\{v \in C^{\infty}(\Xi) ; D^{\prime} v=0\right\}$, which is linerly isometric to $\mathbf{R}^{\mathbf{n + 1}}$. For each $v \in P$, we denote by $V=v^{T}$ the $T M$-component of v in Ξ. Set $\mathcal{V}=\left\{V \in C^{\infty}(T M) ; V=v^{T}\right.$ for some $\left.v \in P\right\}$, which has a natural inner product so that it is linearly isometric to P. Choose an orthonormal basis $\left\{V_{\alpha}\right\}_{\alpha=0, \ldots, n}$ of \mathcal{V}. Set $V_{\alpha}=\left(v_{\alpha}\right)^{T}$. Then $\sum_{\alpha=0}^{n} V_{\alpha}^{k} V_{\alpha}^{l}=\delta^{k l}$. In this section we compute the trace $\operatorname{Tr} \mathcal{V} Q_{\varphi}=\sum_{\alpha=0}^{n} Q_{\varphi}\left(V_{\alpha}\right)$ of Q_{φ} on \mathcal{V} relative to the inner product.

A straightforward computation shows

Lemma 3.1.

$$
\begin{align*}
& D_{j} V^{k}=\left\langle D_{e_{j}}^{\prime \prime} v, e_{k}\right\rangle-\langle v, e\rangle \delta_{j k} \tag{3.1}\\
& D_{j} D_{i} V^{k} \tag{3.2}\\
= & \left\langle\left(D^{\prime \prime 2} v\right)\left(e_{i}, e_{j}\right), e_{k}\right\rangle-\delta_{j k}\left\langle D_{e_{i}}^{\prime \prime} v, e\right\rangle-\delta_{i k}\left\langle D_{e_{j}}^{\prime \prime} v, e\right\rangle-\delta_{i k}\left\langle v, e_{j}\right\rangle
\end{align*}
$$

Lemma 3.2.

$$
\begin{align*}
& \int_{M}\left\{D_{j} D_{i} V^{k} V^{l}\left(\varphi_{k j}, \varphi_{l i}\right)+D_{j} V^{k} V^{l}\left(\nabla_{i} \varphi_{k j}, \varphi_{l i}\right)\right\} \mathrm{dvol} \tag{3.3}\\
= & \int_{M}\left\{R_{j i m k} V^{m} V^{l}\left(\varphi_{k j}, \varphi_{l i}\right)-D_{j} V^{k} D_{i} V^{l}\left(\varphi_{k j}, \varphi_{l i}\right)\right\} \mathrm{dvol} \\
& \int_{M}-2 D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\nabla_{j} \varphi_{k i}, \varphi_{l i}\right) \mathrm{dvol} \tag{3.4}\\
= & \int_{M}\left\{-2 D_{k} D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\varphi_{i j}, \varphi_{l i}\right)-2 D_{j} V_{\alpha}^{k} D_{k} V_{\alpha}^{l}\left(\varphi_{i j}, \varphi_{l i}\right)\right. \\
& -D_{i} D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\varphi_{i j}, \varphi_{k l}\right)-D_{j} V_{\alpha}^{k} D_{i} V_{\alpha}^{l}\left(\varphi_{i j}, \varphi_{k l}\right) \\
& \left.-2 D_{i} D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\varphi_{j k}, \varphi_{l i}\right)-2 D_{j} V_{\alpha}^{k} D_{i} V_{\alpha}^{l}\left(\varphi_{j k}, \varphi_{l i}\right)\right\} \mathrm{dvol} .
\end{align*}
$$

Proof. (3.3) is due to the Ricci identity and the divergence theorem. We show (3.4). By $d^{\nabla} \varphi=0$, we have

$$
\begin{aligned}
& -2 D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\nabla_{j} \varphi_{k i}, \varphi_{l i}\right) \\
= & 2 D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\nabla_{k} \varphi_{i j}, \varphi_{l i}\right)+2 D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\nabla_{i} \varphi_{j k}, \varphi_{l i}\right) .
\end{aligned}
$$

By using the divergence theorem, we get

$$
\begin{aligned}
& \int_{M} 2 D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\nabla_{i} \varphi_{j k}, \varphi_{l i}\right) \mathrm{dvol} \\
= & \int_{M}\left\{-2 D_{i} D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\varphi_{j k}, \varphi_{l i}\right)-2 D_{j} V_{\alpha}^{k} D_{i} V_{\alpha}^{l}\left(\varphi_{j k}, \varphi_{l i}\right)\right\} \mathrm{dvol}
\end{aligned}
$$

We compute

$$
\begin{aligned}
& 2 D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\nabla_{k} \varphi_{i j}, \varphi_{l i}\right) \\
= & 2 D_{k}\left\{D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\varphi_{i j}, \varphi_{l i}\right)\right\}-2 D_{k} D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\varphi_{i j}, \varphi_{l i}\right) \\
& -2 D_{j} V_{\alpha}^{k} D_{k} V_{\alpha}^{l}\left(\varphi_{i j}, \varphi_{l i}\right)-2 D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\varphi_{i j}, \nabla_{k} \varphi_{l i}\right) .
\end{aligned}
$$

Since

$$
\begin{equation*}
D_{j} V_{\alpha}^{k} V_{\alpha}^{l}=-V_{\alpha}^{k} D_{j} V_{\alpha}^{l} \tag{3.6}
\end{equation*}
$$

we have

$$
D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\varphi_{i j}, \nabla_{k} \varphi_{l i}\right)=D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\varphi_{i j}, \nabla_{l} \varphi_{i k}\right)
$$

Hence by Bianchi identity we get

$$
-2 D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\varphi_{i j}, \nabla_{k} \varphi_{l i}\right)=D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\varphi_{i j}, \nabla_{i} \varphi_{k l}\right)
$$

Thus by using the divergence theorem we obtain

$$
\begin{aligned}
& \int_{M} 2 D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\nabla_{k} \varphi_{i j}, \varphi_{l i}\right) \mathrm{dvol} \\
= & \int_{M}\left\{-2 D_{k} D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\varphi_{i j}, \varphi_{l i}\right)-2 D_{j} V_{\alpha}^{k} D_{k} V_{\alpha}^{l}\left(\varphi_{i j}, \varphi_{l i}\right)\right. \\
& \left.-D_{i} D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\varphi_{i j}, \varphi_{k l}\right)-D_{j} V_{\alpha}^{k} D_{i} V_{\alpha}^{l}\left(\varphi_{i j}, \varphi_{k l}\right)\right\} \mathrm{dvol} .
\end{aligned}
$$

q.e.d.

By (1.5),(3.3) and (3.4), we get

$$
\begin{align*}
& \operatorname{Tr} v \tag{3.7}\\
& =\int_{M} \\
& \begin{aligned}
& \left\{-D_{j} V_{\alpha}^{k} D_{i} V_{\alpha}^{l}\left(\varphi_{k j}, \varphi_{l i}\right)-D_{j} D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\varphi_{k i}, \varphi_{l i}\right)\right. \\
& -2 D_{k} D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\varphi_{i j}, \varphi_{l i}\right)-2 D_{j} V_{\alpha}^{k} D_{k} V_{\alpha}^{l}\left(\varphi_{i j}, \varphi_{l i}\right) \\
& -D_{i} D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\varphi_{i j}, \varphi_{k l}\right)-D_{j} V_{\alpha}^{k} D_{i} V_{\alpha}^{l}\left(\varphi_{i j}, \varphi_{k l}\right) \\
& -2 D_{i} D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\varphi_{j k}, \varphi_{l i}\right)-2 D_{j} V_{\alpha}^{k} D_{i} V_{\alpha}^{l}\left(\varphi_{j k}, \varphi_{l i}\right) \\
\quad & +R_{j i l k}\left(\varphi_{k j}, \varphi_{l i}\right)+R_{i k m j}\left(\varphi_{m j}, \varphi_{k i}\right) \\
& \left.-R_{j i k m}\left(\varphi_{m j}, \varphi_{k i}\right)+R_{k m}\left(\varphi_{i m}, \varphi_{k i}\right)\right\} d v o l .
\end{aligned}
\end{align*}
$$

Lemma 3.3.

$$
\begin{align*}
& -2 D_{i} D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\varphi_{j k}, \varphi_{l i}\right) \tag{3.8}\\
= & D_{j} V_{\alpha}^{k} D_{i} V_{\alpha}^{l}\left(\varphi_{j k}, \varphi_{l i}\right)+D_{i} V_{\alpha}^{k} D_{j} V_{\alpha}^{l}\left(\varphi_{j k}, \varphi_{l i}\right) \\
& +R_{j i m k} V_{\alpha}^{m} V_{\alpha}^{l}\left(\varphi_{j k}, \varphi_{l i}\right) \\
- & D_{i} D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\varphi_{i j}, \varphi_{k l}\right)=-(1 / 2) R_{i j m k} V_{\alpha}^{m} V_{\alpha}^{l}\left(\varphi_{i j}, \varphi_{k l}\right) \tag{3.9}
\end{align*}
$$

Proof. (3.9) is due to the Ricci identity. We show (3.8). Differentiating covariantly (3.6), we have

$$
\begin{align*}
D_{i} D_{j} V_{\alpha}^{k} V_{\alpha}^{l} & +V_{\alpha}^{k} D_{i} D_{j} V_{\alpha}^{l} \tag{3.10}\\
& +D_{j} V_{\alpha}^{k} D_{i} V_{\alpha}^{l}+D_{i} V_{\alpha}^{k} D_{j} V_{\alpha}^{l}=0
\end{align*}
$$

(3.8) follows from (3.10) and the Ricci identity.
q.e.d.

Lemma 3.4.

$$
\begin{align*}
-D_{j} D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\varphi_{k i}, \varphi_{l i}\right)= & \left\langle D_{e_{i}}^{\prime \prime} v_{\alpha}, D_{e_{i}}^{\prime \prime} v_{\beta}\right\rangle V_{\beta}^{k} V_{\alpha}^{l}\left(\varphi_{k i}, \varphi_{l i}\right) \tag{3.11}\\
& +\left\{2\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, e\right\rangle+\left\langle v_{\alpha}, e_{k}\right\rangle\right\} V_{\alpha}^{l}\left(\varphi_{k i}, \varphi_{l i}\right)
\end{align*}
$$

Proof. From $\left\langle v_{\alpha}, v_{\beta}\right\rangle=\delta_{\alpha \beta}$, we have

$$
\begin{align*}
& \left\langle\left(D^{\prime \prime 2} v_{\alpha}\right)\left(e_{i}, e_{j}\right), v_{\beta}\right\rangle+\left\langle\left(D^{\prime 2} v_{\beta}\right)\left(e_{i}, e_{j}\right), v_{\alpha}\right\rangle \tag{3.12}\\
= & -\left\langle D_{e_{i}}^{\prime \prime} v_{\alpha}, D_{e_{j}}^{\prime \prime} v_{\beta}\right\rangle-\left\langle D_{e_{j}}^{\prime \prime} v_{\alpha}, D_{e_{i}}^{\prime \prime} v_{\beta}\right\rangle .
\end{align*}
$$

Using (3.2) and (3.12), we obtain (3.11).
q.e.d.

Lemma 3.5.

$$
\begin{align*}
& \quad \int_{M} \quad-2 D_{k} D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\varphi_{i j}, \varphi_{l i}\right) \mathrm{dvol} \tag{3.13}\\
& =\int_{M}\left[2\left\langle D_{e_{j}}^{\prime \prime} v_{\alpha}, e\right\rangle V_{\alpha}^{\prime}\left(\varphi_{i j}, \varphi_{l i}\right)\right. \\
& \quad+2\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, e_{k}\right\rangle\left\langle D_{e_{j}}^{\prime \prime} v_{\alpha}, e_{l}\right\rangle\left(\varphi_{i j}, \varphi_{l i}\right) \\
& \quad+2\left\{(2-(n / 2))\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, e_{k}\right\rangle\left\langle v_{\alpha}, e\right\rangle-(1 / 4)\left\langle R^{\prime \prime}\left(e_{l}, e_{k}\right) e_{k}, e_{l}\right\rangle\right. \\
& \\
& \quad-(1 / 4)\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, D_{e_{l}}^{\prime \prime} v_{\beta}\right\rangle\left\langle v_{\beta}, e_{k}\right\rangle\left\langle v_{\alpha}, e_{l}\right\rangle \\
& \\
& \quad-(1 / 4)\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, D_{e_{l}}^{\prime \prime} v_{\beta}\right\rangle\left\langle v_{\beta}, e_{l}\right\rangle\left\langle v_{\alpha}, e_{k}\right\rangle \\
& \\
& \left.\quad-(1 / 2)\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, e\right\rangle V_{\alpha}^{k}+(1 / 2)\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, e_{k}\right\rangle\left\langle D_{e_{l}}^{\prime \prime} v_{\alpha}, e_{l}\right\rangle\right\}\|\varphi\|^{2} \\
& \quad \\
& \quad-2\left\langle R^{\prime \prime}\left(e_{k}, e_{j}\right) e_{l}, e_{k}\right\rangle\left(\varphi_{i j}, \varphi_{l i}\right)+2(n+1)\left\langle D_{e_{j}}^{\prime \prime} v_{\alpha}, e\right\rangle V_{\alpha}^{l}\left(\varphi_{i j}, \varphi_{l i}\right) \\
& \left.\quad+2\left\langle v_{\alpha}, e_{j}\right\rangle V_{\alpha}^{l}\left(\varphi_{i j}, \varphi_{l i}\right)\right] \mathrm{dvol} .
\end{align*}
$$

Proof. By (3.2), we have

$$
\begin{align*}
& -2 D_{k} D_{j} V_{\alpha}^{k} V_{\alpha}^{l}\left(\varphi_{i j}, \varphi_{l i}\right) \tag{3.14}\\
= & -2\left\{\left\langle\left(D^{\prime \prime 2} v_{\alpha}\right)\left(e_{j}, e_{k}\right), e_{k}\right\rangle-(n+1)\left\langle D_{e_{j}}^{\prime \prime} v_{\alpha}, e\right\rangle\right. \\
& \left.-\left\langle v_{\alpha}, e_{j}\right\rangle\right\} V_{\alpha}^{l}\left(\varphi_{i j}, \varphi_{l i}\right)
\end{align*}
$$

By using the Ricci identity we get

$$
\begin{align*}
& \left\langle\left(D^{\prime \prime} v_{\alpha}\right)\left(e_{j}, e_{k}\right), e_{k}\right\rangle V_{\alpha}^{\prime}\left(\varphi_{i j}, \varphi_{l i}\right) \tag{3.15}\\
= & \left\{\left\langle\left(D^{\prime \prime 2} v_{\alpha}\right)\left(e_{k}, e_{j}\right), e_{k}\right\rangle+\left\langle R^{\prime \prime}\left(e_{k}, e_{j}\right) v_{\alpha}, e_{k}\right\rangle\right\} V_{\alpha}^{l}\left(\varphi_{i j}, \varphi_{l i}\right)
\end{align*}
$$

We compute

$$
\begin{align*}
& \left\langle\left(D^{\prime \prime} v_{\alpha}\right)\left(e_{k}, e_{j}\right), e_{k}\right\rangle V_{\alpha}^{\prime}\left(\varphi_{i j}, \varphi_{l i}\right) \tag{3.16}\\
= & D_{j}\left\{\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, e_{k}\right\rangle V_{\alpha}^{l}\left(\varphi_{i j}, \varphi_{l i}\right)\right\}-\left\langle D_{e_{j}}^{\prime \prime} v_{\alpha}, e\right\rangle V_{\alpha}^{\prime}\left(\varphi_{i j}, \varphi_{l i}\right) \\
& -\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, e_{k}\right\rangle\left\langle D_{e_{j}}^{\prime \prime} v_{\alpha}, e_{l}\right\rangle\left(\varphi_{i j}, \varphi_{l i}\right)-\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, e_{k}\right\rangle\left\langle v_{\alpha}, e\right\rangle\left(\varphi_{i j}, \varphi_{i j}\right) \\
& -\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, e_{k}\right\rangle V_{\alpha}^{\prime}\left(\varphi_{i j}, \nabla_{j} \varphi_{l i}\right)
\end{align*}
$$

By the Bianchi identity we get

$$
\begin{equation*}
-\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, e_{k}\right\rangle V_{\alpha}^{l}\left(\varphi_{i j}, \nabla_{j} \varphi_{l i}\right)=(1 / 4)\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, e_{k}\right\rangle V_{\alpha}^{l} D_{l}\|\varphi\|^{2} \tag{3.17}
\end{equation*}
$$

We compute

$$
\begin{align*}
& \left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, e_{k}\right\rangle V_{\alpha}^{l} D_{l}\|\varphi\|^{2} \tag{3.18}\\
= & D_{l}\left\{\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, e_{k}\right\rangle V_{\alpha}^{l}\|\varphi\|^{2}\right\}-\left\langle\left(D^{\prime \prime} v_{\alpha}\right)\left(e_{k}, e_{l}\right), e_{k}\right\rangle V_{\alpha}^{l}\|\varphi\|^{2} \\
& +\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, e\right\rangle V_{\alpha}{ }^{k}\|\varphi\|^{2}-\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, e_{k}\right\rangle\left\langle D_{e_{l}}^{\prime \prime} v_{\alpha}, e_{l}\right\rangle\|\varphi\|^{2} \\
& +n\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, e_{k}\right\rangle\left\langle v_{\alpha}, e\right\rangle\|\varphi\|^{2} .
\end{align*}
$$

By using (3.12) and the Ricci identity we get

$$
\begin{align*}
& \left\langle\left(D^{\prime 2} v_{\alpha}\right)\left(e_{k}, e_{l}\right), e_{k}\right\rangle V_{\alpha}^{l} \tag{3.19}\\
=- & (1 / 2)\left\{\left\langle R^{\prime \prime}\left(e_{l}, e_{k}\right) e_{k}, e_{l}\right\rangle+\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, D_{e_{l}}^{\prime \prime} v_{\beta}\right\rangle V_{\beta}^{k} V_{\alpha}^{l}\right. \\
& \left.+\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, D_{e_{l}}^{\prime \prime} v_{\beta}\right\rangle V_{\beta}^{l} V_{\alpha}^{k}\right\} .
\end{align*}
$$

Hence, by the divergence theorem, (3.13) follows from (3.14), (3.15), (3.16), (3.17), (3.18) and (3.19).

Therefore, by (2.1), (3.8), (3.9), (3.11) and (3.13), (3.7) reduces to the follwing trace formula.
(3.20) $\operatorname{Tr}_{\mathcal{V}} Q_{\varphi}$

$$
\left.\left.\begin{array}{rl}
= & \int_{M}\left[2\{5-2 n+(n(n-1)-R) / 4\}\|\varphi\|^{2}+R_{j l}\left(\varphi_{i j}, \varphi_{i l}\right)\right. \\
& +\left\langle D_{e_{i}}^{\prime \prime} v_{\alpha}, D_{e_{i}}^{\prime \prime} v_{\beta}\right\rangle V_{\beta}^{k} V_{\alpha}^{\prime}\left(\varphi_{k i}, \varphi_{l i}\right)-2\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, e_{k}\right\rangle\left\langle D_{e_{j}}^{\prime \prime} v_{\alpha}, e_{l}\right\rangle\left(\varphi_{i j}, \varphi_{i l}\right) \\
& +2\left\{(2-(n / 2))\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, e_{k}\right\rangle\left\langle v_{\alpha}, e\right\rangle\right. \\
& -(1 / 4)\left\langle D_{e_{e}}^{\prime \prime} v_{\alpha}, D_{e_{e}}^{\prime \prime} v_{\beta}\right\rangle\left\langle v_{\beta}, e_{k}\right\rangle\left\langle v_{\alpha}, e_{l}\right\rangle \\
& -(1 / 4)\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, D_{\left.e_{l} v_{\beta}\right\rangle}^{\prime \prime}\right\rangle\left\langle v_{\beta}, e_{l}\right\rangle\left\langle v_{\alpha}, e_{k}\right\rangle \\
& \left.-(1 / 2)\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, e\right\rangle V_{\alpha}^{k}+(1 / 2)\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, e_{k}\right\rangle\left\langle D_{e_{l}}^{\prime \prime} v_{\alpha}, e_{l}\right\rangle\right\}\|\varphi\|^{2} \\
& -2(n+1)\left\langle D_{e_{j}}^{\prime \prime} v_{\alpha}, e\right\rangle V_{\alpha}^{\prime}\left(\varphi_{i j}, \varphi_{i l}\right)-8\left\langle D_{e_{j}}^{\prime \prime} v_{\alpha}, e_{k}\right\rangle\left\langle v_{\alpha}, e\right\rangle\left(\varphi_{i j}, \varphi_{i k}\right) \\
& +2\left\langle D_{e_{j}}^{\prime \prime} v_{\alpha}, e_{k}\right\rangle\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, e_{l}\right\rangle\left(\varphi_{i j}, \varphi_{i l}\right)-\left\langle D_{e_{j}}^{\prime \prime} v_{\alpha}, e_{k}\right\rangle\left\langle D_{e_{i}}^{\prime \prime} v_{\alpha}, e_{l}\right\rangle\left(\varphi_{i j}, \varphi_{k l}\right) \\
& +
\end{array} D_{e_{l}}^{\prime \prime} v_{\alpha}, e_{j}\right\rangle\left\langle D_{e_{i}}^{\prime \prime} v_{\alpha}, e_{k}\right\rangle\left(\varphi_{i j}, \varphi_{k l}\right)\right] \operatorname{dvol} .
$$

4. Instability theorem for Yang-Mills fields over a δ-pinched Riemannian manifold.

Note that if $\delta=1$, then $D^{\prime}=D^{\prime \prime}$, hence (3.20) becomes

$$
\operatorname{Tr}_{\mathcal{V}} Q_{\varphi}=2(4-n) \int_{M}\|\varphi\|^{2}
$$

Since the sectional curvatures of M are δ-pinched, we have

$$
\begin{aligned}
& 2\{5-2 n+(1 / 4)(n(n-1)-R)\}\|\varphi\|^{2}+R_{j l}\left(\varphi_{i j}, \varphi_{i l}\right) \\
\leq & 2[5-2 n+(1 / 4) n(n-1)\{1-2 \delta /(1+\delta)\}+2(n-1) /(1+\delta)]\|\varphi\|^{2}
\end{aligned}
$$

We can make estimates for each other term of (3.20) as follows:

$$
\begin{aligned}
& \left\langle D_{e_{i}}^{\prime \prime} v_{\alpha}, D_{e_{i}}^{\prime \prime} v_{\beta}\right\rangle V_{\beta}^{k} V_{\alpha}^{l}\left(\varphi_{k i}, \varphi_{l i}\right) \leq(n / 2) k_{3}(\delta)^{2}\|\varphi\|^{2}, \\
& -2\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, e_{k}\right\rangle\left\langle D_{e_{j}}^{\prime \prime} v_{\alpha}, e_{l}\right\rangle\left(\varphi_{i j}, \varphi_{i l}\right) \leq n(n+1) k_{3}(\delta)^{2}\|\varphi\|^{2}, \\
& (2-(n / 2))\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, e_{k}\right\rangle\left\langle v_{\alpha}, e\right\rangle \leq n(n / 4-1) k_{3}(\delta) \\
& -(1 / 4)\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, D_{e_{i}}^{\prime \prime} v_{\beta}\right\rangle\left\langle v_{\beta}, e_{k}\right\rangle\left\langle v_{\alpha}, e_{l}\right\rangle \leq\left(n^{2} / 16\right) k_{3}(\delta)^{2} \\
& -(1 / 4)\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, D_{e_{i}}^{\prime \prime} v_{\beta}\right\rangle\left\langle v_{\beta}, e_{l}\right\rangle\left\langle v_{\alpha}, e_{k}\right\rangle \leq\left(n^{2} / 16\right) k_{3}(\delta)^{2}, \\
& -(1 / 2)\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, e\right\rangle V_{\alpha}^{k} \leq(n / 4) k_{3}(\delta) \\
& (1 / 2)\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, e_{k}\right\rangle\left\langle D_{e_{i}}^{\prime \prime} v_{\alpha}, e_{l}\right\rangle \leq\left(n^{2} / 8\right) k_{3}(\delta)^{2} \\
& -2(n+1)\left\langle D_{e_{j}}^{\prime \prime} v_{\alpha}, e\right\rangle V_{\alpha}^{l}\left(\varphi_{i j}, \varphi_{i l}\right) \leq 2(n+1) k_{3}(\delta)\|\varphi\|^{2}, \\
& -8\left\langle D_{e_{j}}^{\prime \prime} v_{\alpha}, e_{k}\right\rangle\left\langle v_{\alpha}, e\right\rangle\left(\varphi_{i j}, \varphi_{i k}\right) \leq 8 k_{3}(\delta)\|\varphi\|^{2}, \\
& 2\left\langle D_{e_{j}}^{\prime \prime} v_{\alpha}, e_{k}\right\rangle\left\langle D_{e_{k}}^{\prime \prime} v_{\alpha}, e_{l}\right\rangle\left(\varphi_{i j}, \varphi_{i l}\right) \leq n k_{3}(\delta)\|\varphi\|^{2}, \\
& \left\langle D_{e_{i}}^{\prime \prime} v_{\alpha}, e_{j}\right\rangle\left\langle D_{e_{i}}^{\prime \prime} v_{\alpha}, e_{k}\right\rangle\left(\varphi_{i j}, \varphi_{k l}\right) \\
& \quad-\left\langle D_{e_{j}}^{\prime \prime} v_{\alpha}, e_{k}\right\rangle\left\langle D_{e_{i}}^{\prime \prime} v_{\alpha}, e_{l}\right\rangle\left(\varphi_{i j}, \varphi_{k l}\right) \leq k_{3}(\delta)\|\varphi\|^{2} .
\end{aligned}
$$

Hence we get

$$
\begin{align*}
& \operatorname{Tr} v Q_{\varphi} \tag{4.1}\\
& \leq 2[5-2 n+(1 / 4) n(n-1)\{1-2 \delta /(1+\delta)\}+2(n-1) /(1+\delta) \\
& \left.\quad+(1 / 4)\left(n^{2}+n+20\right) k_{3}(\delta)+(1 / 4)\left(3 n^{2}+5 n+2\right) k_{3}(\delta)^{2}\right] \int_{M}\|\varphi\|^{2}
\end{align*}
$$

Therefore we obtain
Theorem 4.1. If $n \geq 5$ and

$$
\begin{align*}
& 5-2 n+(1 / 4) n(n-1)\{1-2 \delta /(1+\delta)\}+2(n-1) /(1+\delta) \tag{4.2}\\
& \quad+(1 / 4)\left(n^{2}+n+20\right) k_{3}(\delta)+(1 / 4)\left(3 n^{2}+5 n+2\right) k_{3}(\delta)^{2}<0
\end{align*}
$$

then M is Yang-Mills unstable.
Corollary 4.2. For $n \geq 5$, there exists a constant $\delta(n)$, which depends only on n, with $1 / 4 \leq \delta(n)<1$ such that any n-dimensional simply connected compact Riemannian manifold M with $\delta(n)$-pinched sectional curvatures is Yang-Mills unstable.

Remark. As n tends to the infinity, the right hand side of (4.2) divided by $(1 / 4)\left(3 n^{2}+5 n+2\right)$ tends to $(1 / 3)\{1-2 \delta /(1+\delta)\}+(1 / 3) k_{3}(\delta)+k_{3}(\delta)^{2}>0$. In
our argument it is not possible to find a pinching constant δ independent of the dimension of the base manifold M such that M is Yang-Mills unstable.

5. Trace formula for second variations of Yang-Mills fields over submanifolds in Euclidean space.

Assume that M is isometrically immersed in a Euclidean space \mathbf{R}^{N}. Let Φ denote the immersion. We may assume that $\Phi(M)$ is not contained in any hyperplane of \mathbf{R}^{N}. Set $\mathcal{U}=\left\{U \in C^{\infty}(T M) ; U=\operatorname{grad} f_{u} \quad\right.$ for some $\left.u \in \mathbf{R}^{N}\right\}$. Here f_{u} denotes the hight function on M defined by $f_{u}(x)=\langle\Phi(x), u\rangle$. Suppose that ∇ is a connection on a Riemannian vector bundle (E, G) over M and $\varphi \in \Omega^{2}\left(\mathbf{g}_{E}\right)$ is harmonic with respect to ∇. Then we recall
Proposition $5.1([K-O-T])$. For $U=\operatorname{grad} f_{u} \in \mathcal{U}$,

$$
\begin{align*}
& \quad \mathcal{S}^{\nabla}\left(i_{U} \varphi\right)(X) \\
& =-\{\varphi \circ(\operatorname{Ric} \wedge I-2 \mathcal{R})\}(U, X) \tag{5.1}\\
& \quad+n \varphi\left(A_{\eta}(U), X\right)+\varphi(U, \operatorname{Ric}(X))-\varphi(\operatorname{Ric}(U), X) \\
& \quad-\sum_{i=1}^{n}\left\{\left[F^{\nabla}\left(e_{i}, U\right), \varphi\left(e_{i}, X\right)\right]+\left[F^{\nabla}\left(e_{i}, X\right), \varphi\left(e_{i}, U\right)\right]\right\} \\
& \quad-2 \sum_{i, j=1}^{n}\left\langle B\left(e_{i}, e_{j}\right), u\right\rangle\left(\nabla_{e_{j}} \varphi\right)\left(e_{i}, X\right)-n \sum_{i=1}^{n}\left\langle D^{\perp} e_{i} \eta, u\right\rangle \varphi\left(e_{i}, X\right) \\
& \operatorname{tr}_{\mathcal{U}} Q_{\varphi}=2 \int_{M}\left(\varphi \circ\left\{(n / 2)\left(A_{\eta} \wedge I\right)-\operatorname{Ric} \wedge I+2 \mathcal{R}\right\}, \varphi\right) \mathrm{dvol} \tag{5.2}
\end{align*}
$$

where \mathcal{R}, B, A, η and D^{\perp} denote the curvature operator of M acting on $\wedge^{2} T M$, the second fundamental form, the shape operator, the mean curvature and the normal connection of Φ, respectively.

Consider a compact Riemannian homogeneous space with irreducible isotropy representation M.
Lemma 5.2. If ∇ is a weakly stable Yang-Mills connection, then we have

$$
\begin{equation*}
\sum_{i=1}^{n}\left\{\left[F^{\nabla}\left(e_{i}, Y\right), \varphi\left(e_{i}, X\right)\right]+\left[F^{\nabla}\left(e_{i}, X\right), \varphi\left(e_{i}, Y\right)\right]\right\}=0 \tag{5.3}
\end{equation*}
$$

for every $X, Y \in T_{x} M$.
Proof. Let K be the group of isometries of M and let \mathbf{k} be its Lie algebra of Killing vector fields on M. Since M has irreducible isotropy representation, we can
fix a K-invariant inner product on \mathbf{k} which induces the K-invariant Riemannian metric of M. By [B-L, (10.4) Lemma], for each $V \in \mathbf{k}$

$$
\mathcal{S}_{0}^{\nabla}\left(i_{V} \varphi\right)(X)=-\sum_{i=1}^{n}\left\{\left[F^{\nabla}\left(e_{i}, V\right), \varphi\left(e_{i}, X\right)\right]+\left[F^{\nabla}\left(e_{i}, X\right), \varphi\left(e_{i}, V\right)\right]\right\}
$$

Hence $\operatorname{tr}_{\mathbf{k}} Q_{\varphi}=0$. Since ∇ is weakly stable, we have $\mathcal{I}^{\nabla}\left(i_{V} \varphi, i_{V} \varphi\right)=0$ for all $V \in \mathbf{k}$. For any $B \in \Omega^{1}\left(\mathrm{~g}_{E}\right)$,

$$
0 \leq \mathcal{I}^{\nabla}\left(i_{V} \varphi+t B, i_{V} \varphi+t B\right)=2 t \mathcal{I}^{\nabla}\left(i_{V} \varphi, B\right)+t^{2} \mathcal{I}^{\nabla}(B, B)
$$

hence $\mathcal{I}^{\nabla}\left(i_{V} \varphi, B\right)=0$. Thus $\mathcal{S}_{0}^{\nabla}\left(i_{V} \varphi\right)=0$ for all $V \in \mathbf{k}$.
q.e.d.

Consider $\Phi: M \longrightarrow S^{N-1}\left(\sqrt{n / \lambda_{1}}\right) \subset \mathbf{R}^{N}$ be the first standard minimal immersion of M (cf. [K-O-T]). Since M is an Einstein manifold and Φ is a minimal immersion onto a sphere of radius $\sqrt{n / \lambda_{1}}$, if $\varphi=F^{\nabla}$, then (5.1) becomes

$$
\begin{align*}
\mathcal{S}^{\nabla}\left(i_{U} \varphi\right)(X)= & {\left[\varphi \circ\left\{\left(\lambda_{1}-2 c\right) I+2 \mathcal{R}\right\}\right](U, X) } \tag{5.4}\\
& -2 \sum_{i, j=1}^{n}\left\langle B\left(e_{i}, e_{j}\right), u\right\rangle\left(\nabla_{e_{j}} \varphi\right)\left(e_{i}, X\right)
\end{align*}
$$

where c and λ_{1} denote the Einstein constant of M and the first eigenvalue of the Laplace-Beltrami operator of M acting on functions, respectively.

Assume that M is a compact irreducible symmetric space. Let

$$
\begin{equation*}
\bigwedge^{2} T_{x} M=\mathbf{h}_{0}+\mathbf{h}_{1}+\ldots+\mathbf{h}_{p} \tag{5.5}
\end{equation*}
$$

be the orthogonal decomposition into eigenspaces of \mathcal{R}, where \mathbf{h}_{0} is the eigenspace with eigenvalue 0 and \mathbf{h}_{s} is the eigenspace with eigenvalue $\mu_{s}>0$. We decompose $\varphi=\varphi_{0}+\varphi_{1}+\ldots+\varphi_{p}$ along (5.5). Note that $\nabla \varphi=0$ if and only if $\nabla \varphi_{s}=0$ for each $s=0, \ldots, p$. Assume that $\nabla \varphi=0$. If ∇ is weakly stable Yang-Mills field, then by (5.3) we have

$$
\begin{equation*}
\mathcal{S}^{\nabla}\left(i_{V} \varphi_{s}\right)=\left(\lambda_{1}-2 c+2 \mu_{s}\right)\left(i_{V} \varphi_{s}\right) \quad \text { for each } s=0, \ldots, p \tag{5.6}
\end{equation*}
$$

6. Remarks on Yang-Mills fields over compact symmetric spaces.

First we remark on the stability of the canonical connections over compact globally Riemannian symmetric spaces. Laquer [La] determined the indices and nullities of the canonical connection on the standard principal bundle of each simply connected compact irreducible symmetric spaces. We denote by $i(\nabla)$ and $n(\nabla)$ the index and nullity of a Yang-Mills connection ∇ (cf. [B-L] for their definitions).

Theorem 6.1 ([La]). Let $M=K / H$ be a simply connected compact irreducible symmetric space associated with a symmetric pair (K, H) and let ∇ the canonical connection of the principal bundle $K \longrightarrow K / H$.
(1) If M is a group manifold, then $\mathrm{i}(\nabla)=1$ and $\mathrm{n}(\nabla)=0$.
(2) If $M=S^{n}(n \geq 5), P_{2}$ (Cay), E_{6} / F_{4}, then $\mathrm{i}(\nabla)=n+1,26,54$ and $\mathrm{n}(\nabla)=0$, respectively.
(3) If $M=P_{m}(\mathbf{H})(m \geq 1)$, then $\mathrm{i}(\nabla)=0, \mathrm{n}(\nabla)=10(m=1)$ or $m(2 m+3)(m \geq$ 2).
(4) If M is otherwise, then $\mathrm{i}(\nabla)=\mathrm{n}(\nabla)=0$.

We should note that the values $\mathrm{i}(\nabla)$ for $M=S^{n}(n \geq 5), P_{2}$ (Cay), E_{6} / F_{4} and $\mathrm{n}(\nabla)$ for $M=P_{m}(\mathbf{H})(m \geq 2)$ are equal to the dimension of the first eigenspace of the Laplace-Beltrami operator of M acting on functions, and $n(\nabla)$ for $M=$ $P_{1}(\mathbf{H})=S^{4}$ is equal to its twice. It is known that, in the cases of $M=S^{n}, P_{m}(\mathbf{H})$, P_{2} (Cay), the space of all gradient vector fields for the first eigenfunctions on M coincides with the space of all proper infinitesimal conformal transformations or projective transformations on M.

We observe the case when M is a non-simply connected, compact irreducible symmetric space. From [La] we see that if M is a group manifold, then $\mathrm{i}(\nabla)=$ $1, \mathrm{n}(\nabla)=0$. Suppose that M is not a group manifold. We easily check that if the canonical connection of the universal covering \tilde{M} of M has $i(\nabla)=n(\nabla)=0$, then the canonical connection of M also has $\mathrm{i}(\nabla)=\mathrm{n}(\nabla)=0$. When $\tilde{M}=S^{n}$, by virtue of $[B-L,(9.1)$ Theorem], we have $i(\nabla)=n(\nabla)=0$. From the theory of symmetric spaces (cf. [He]) we know that if $\tilde{M}=P_{n}(\mathbf{H})$ or $P_{2}(\mathbf{C a y})$, then $\tilde{M}=M$, and if $\tilde{M}=E_{6} / F_{4}$, then $M=E_{6} / F_{4} \cdot \mathbf{Z}_{3}$. We show that the canonical connection of $M=E_{6} / F_{4} \cdot \mathbf{Z}_{3}$ has $\mathrm{i}(\nabla)=\mathrm{n}(\nabla)=0$. From Theorem 6.1 we see $\mathrm{n}(\nabla)=0$. First we recall the realization of E_{6} / F_{4} and $E_{6} / F_{4} \cdot \mathrm{Z}_{3}$ (cf. [Yo]). Consider the Jordan algebra $\mathcal{T}=\left\{u \in \mathrm{M}(3\right.$, Cay $\left.) ; u^{*}=u\right\}$ of (real) dimension 27. Let $\mathbf{R}^{54}=\mathbf{C}^{27}=\mathcal{T}^{\mathbf{C}}$ be the complexification of \mathcal{T} with a natural real inner product \langle,$\rangle . Let S^{53}=$ $\left\{u \in \mathbf{R}^{54} ;\langle u, u\rangle=3\right\}$, a hypersphere of $\mathcal{T}^{\mathbf{C}}$. Set $\tilde{M}=\left\{u \in S^{53} ; \operatorname{det}(u)=1\right\}$ and let Φ denote the embedding $\tilde{M} \longrightarrow S^{53} \subset \mathbf{R}^{54}$.
Proposition 6.2. (1) \tilde{M} is isometric to a simply connected compact irreducible symmetric space E_{6} / F_{4} (cf. [Yo]).
(2) The embedding Φ is the first standard minimal immersion of $\tilde{M}=E_{6} / F_{4}$ (cf. $[O h]$).

Now we define a finite group Γ acting freely and isometrically on $\mathbf{R}^{54}-\{0\}$ and \tilde{M} by

$$
\begin{aligned}
& \Gamma=\left\{1, \sigma, \sigma^{2}\right\} \cong \mathbf{Z}_{3} \\
& \sigma(u)=e^{(2 / 3) \pi \sqrt{-1}} u \text { for each } u \in \mathbf{R}^{54}
\end{aligned}
$$

Then the quotient $M=\tilde{M} / \Gamma$ is isometric to the symmetric space $E_{6} / F_{4} \cdot \mathbf{Z}_{3}$.

Set $K=E_{6}, H=F_{4}$ and $N=54$. Let R^{∇} be the curvature form of the canonical connection ∇ for (K, H). Then we have

$$
\bigwedge^{2} T_{x} \tilde{M}=\mathbf{s o}\left(T_{x} \tilde{M}\right)=\mathbf{h}_{0}+\mathbf{h}_{1}
$$

where \mathbf{h}_{1} is isometric to the Lie algebra of F_{4}, which is the holonomy algebra of \tilde{M}. Since $\lambda_{1}-2 c+2 \mu_{1}<0$ by virtue of the result of [K-O-T], from (5.4) we see that

$$
\Theta=\left\{i_{U} R^{\nabla} ; U=\operatorname{grad} f_{u} \quad \text { for some } u \in \mathbf{R}^{N}\right\}
$$

is an eigenspace of \mathcal{S}^{∇} of dimension 54 with a negative eigenvalue. From Theorem 6.1 we see $i(\nabla)=\operatorname{dim} \Theta$. In order to show that the canonical connection of M has $\mathrm{i}(\nabla)=0$, it suffices to show that if $i_{U} R^{\nabla} \in \Theta$ is invariant by Γ, then $U=0$. It follows from the following two lemmas.

Lemma 6.3. Let $V \in C^{\infty}(T M)$. If

$$
\gamma\left(i_{V} R^{\nabla}\right)=i_{V} R^{\nabla} \quad \text { for each } \gamma \in \Gamma
$$

then $\gamma_{*} V=V \quad$ for each $\gamma \in \Gamma$.
Proof. For any $X \in T_{x} M$,

$$
\begin{aligned}
R^{\nabla}\left(V_{x}, X\right) & =\gamma\left(i_{V} R^{\nabla}\right)(X)=\gamma\left(R^{\nabla}\left(V_{\gamma^{-1}(x)}, \gamma_{*}^{-1} X\right)\right) \\
& =R^{\nabla}\left(\gamma_{*} V_{\gamma^{-1}(x)}, X\right)
\end{aligned}
$$

hence $R^{\nabla}\left(\gamma_{*} V_{\gamma^{-1}(x)}-V_{x}, X\right)=0$. If we let the canonical decomposition $\mathbf{k}=\mathbf{h}+\mathbf{m}$ at $x \in \tilde{M}$ and we use the identification $\mathbf{m}=T_{x} M$, then $R^{\nabla}(X, Y)=-\operatorname{ad}_{\mathbf{m}}[X, Y]$ (cf. [K-N]). Thus $\operatorname{ad}_{\mathrm{m}}\left[\gamma_{*} V_{\gamma^{-1}(x)}-V_{x}, X\right]=$ for each $X \in \mathbf{m}$. Since $\mathbf{h}=[\mathbf{m}, \mathbf{m}]$ and \mathbf{k} is semisimple, $\gamma_{*} V_{\gamma^{-1}(x)}-V_{x}=0$.
Lemma 6.4. Let $U=\operatorname{grad} f_{u} \in C^{\infty}(T M)$ for some $u \in \mathbf{R}^{N}$. If $\gamma \in \Gamma-\{1\}$ and $\gamma_{*} U=U$, then $u=0$.

Proof. For each $x \in \tilde{M}$ and $X \in T_{x} M$,

$$
\left\langle\gamma_{*} U, X\right\rangle=\left\langle U, \gamma_{*}^{-1} X\right\rangle=\left\langle\gamma^{-1}(X), u\right\rangle=\langle X, \gamma(u)\rangle=\langle U, X\rangle=\langle X, u\rangle
$$

hence $\langle X, \gamma(u)-u\rangle=0$ Thus $\langle x, \gamma(u)-u\rangle$ is constant in $x \in \tilde{M}$. Since $\Phi(\tilde{M})$ is not contained in any hyperplane of \mathbf{R}^{N}, we have $\gamma(u)=u$. Since Γ acts freely on $\mathbf{R}^{N}-\{0\}$, we get $u=0$.
q.e.d.

Next we remark on weakly stable Yang-Mills fields over a quaternionic projective space $M=P_{m}(\mathbf{H})$. Generally let M be a quaternionic Kähler manifold. The $\mathbf{S p}(m) \cdot \mathbf{S p}(1)$-structure induces the orthogonal decomposition

$$
\bigwedge^{2} T^{*} M=W_{0}+W_{1}+W_{2}
$$

where $\left(W_{0}\right)_{x},\left(W_{1}\right)_{x} \cong \mathbf{s p}(1),\left(W_{2}\right)_{x} \cong \mathbf{s p}(m)$ are irreducible $\mathbf{S p}(m) \cdot \mathbf{S p}(1)$-modules. The curvature form $F^{\nabla}=F_{0}^{\nabla}+F_{1}^{\nabla}+F_{2}^{\nabla}$ of a connection ∇ on the vector bundle E over M splits into components F_{i} to $E n d(E) \otimes W_{i}$ at each point. A connection ∇ with $F^{\nabla}=F_{2}^{\nabla}$ (resp. $F^{\nabla}=F_{1}^{\nabla}$) is called a B_{2}-connection (resp. A_{1}^{\prime}-connection) as in [Ni], or a self-dual conncetion (resp, an anti-self-dual connection) as in [C-S]. They are Yang-Mills connections which minimizes the Yang-Mills functional ([C-S],[Ni$]$).
Proposition 6.5. Let E be a Riemannian vector bundle over $P_{m}(\mathbf{H})$. If ∇ is a weakly stable Yang-Mills connection on E satisfying $F_{1}^{\nabla}=0$, then ∇ is a B_{2} connection (self-dual).

Proof. We may suppose that g is an $\mathbf{S p}(m+1)$-invariant Riemannian metric on $P_{m}(\mathbf{H})=\mathbf{S p}(m+1) / \mathbf{S p}(m) \times \mathbf{S p}(1)$ induced by the Killing form of the Lie algebra of $\operatorname{Sp}(m+1)$. From [K-O-T] we know

$$
\begin{align*}
& \mathcal{R}=\mathcal{R}_{0}+\mathcal{R}_{1}+\mathcal{R}_{2} \\
& \mathcal{R}_{0}=0 \tag{6.1}\\
& \mathcal{R}_{1}=(m / 2(m+2)) I, \\
& \mathcal{R}_{2}=(1 / 2(m+2)) I
\end{align*}
$$

Hence by virtue of (5.2), we get

$$
\begin{aligned}
& \operatorname{Tr}_{\mathcal{U}} Q_{F^{\nabla}} \\
= & 2 \int_{M}\left(F^{\nabla} \circ\{2 \mathcal{R}-(1 /(m+2)) I\}, F^{\nabla}\right) \mathrm{dvol} \\
= & 2\left\{-1 /(m+2) \int_{M}\left(F_{0}^{\nabla}, F_{0}^{\nabla}\right) \mathrm{dvol}+(m-1) /(m+2) \int_{M}\left(F_{1}^{\nabla}, F_{1}^{\nabla}\right) \mathrm{dvol}\right\} .
\end{aligned}
$$

Proposition 6.5 follows from this equation.
q.e.d.

From the proof of Proposition 6.5, we see that if ∇ satisfies the assumption, then

$$
\begin{equation*}
\sum_{i, j=1}^{n}\left\langle B\left(e_{i}, e_{j}\right), u\right\rangle\left(\nabla_{e_{j}} F^{\nabla}\right)\left(e_{i}, X\right)=0 \tag{6.2}
\end{equation*}
$$

for all $u \in \mathbf{R}^{N}$ and all $X \in T_{x} M$. Using the properties of the second fundamental form of Φ and the curvature tensor field of $P_{m}(\mathbf{H})$, we can check that (6.2) implies that the restriction of F^{∇} to every quaternionic projective line $P_{1}(\mathbf{H}) \subset P_{m}(\mathbf{H})$ is always a Yang-Mills field. Hence by (5.6) and (6.1) we obtain that, for any B_{2}-connection ∇ over $P_{m}(\mathbf{H})$ and any infinitesimal projective transformation U on $P_{m}(\mathbf{H})$, we have $\mathcal{S}^{\nabla}\left(i_{U} F^{\nabla}\right)=0$. This means the existence of an infinitesimal action of the projective transformation group of $P_{m}(\mathbf{H})$ on the space of all B_{2}-connections over $P_{m}(\mathbf{H})$. In fact, it is known that the projective transformation group of $P_{m}(\mathbf{H})$ acts on the moduli space of all B_{2}-connections on E.

By (5.4), (5.6) and (6.1) we obtain that the indices $\mathrm{i}(\nabla)$ and the nullity $\mathrm{n}(\nabla)$ of the canonical connection of $M=S^{n}(n \geq 5), P_{2}($ Cay $)$ and E_{6} / F_{4} come from $\operatorname{span}_{\mathbf{R}}\left\{i_{U} R^{\nabla} ; U \in \mathcal{U}\right\}$, and the nullities for $M=P_{1}(\mathbf{H})=S^{4}$ and $P_{m}(\mathbf{H})(m \geq 2)$ comes from $\operatorname{span}_{\mathbf{R}}\left\{i_{U} R_{1}^{\nabla}, i_{U} R_{2}^{\nabla} ; U \in \mathcal{U}\right\}$ and $\operatorname{span}_{\mathbf{R}}\left\{i_{U} R_{2}^{\nabla} ; U \in \mathcal{U}\right\}$, respectively. We do not know whether each weakly stable canonical connection over a compact symmetric space minimizes the Yang-Mills functional. And it is interesting to investigate relationships of Yang-Mills fields with holonomy groups and the classification of vector bundles with Yang-Mills connections satisfying $\nabla F^{\nabla}=0$ over compact symmetric spaces. From results of [B-L, p. 211] and [K-O-T] we can find gap phenomena for Yang-Mills fields over every compact irreducible symmetric space which is not locally Hermitian symmetric. The classification of such Yang-Mills connections may also be useful to establish accurately isolation theorems for Yang-Mills fields over compact symmetric spaces.

Acknowledgements. This joint work has done while the second named author stayed at the Max-Planck-Institut für Mathematik in autumn, 1988. The authors would like to thank the Max-Planck Institut for the support and the hospitality.

References

[B-L] J. P. Bourguignon and H. B. Lawson, Stability and isolation phenomena for Yang-Mills fields, Comm. Math. Phys. 79 (1981), 189-230.
[C-S] M. M. Capria and S. M. Salamon, Yang-Mills fields on quaternionic spaces, Nonlinearity 1 (1988), 517-530.
[G-K-R1] K. Grove, H. Karcher and E. A. Ruh, Group actions and curvature, Invent. Math. 23 (1974), 31-48.
[G-K-R2] K. Grove, H. Karcher and E. A. Ruh, Jacobi fields and Finsler metrics on compact Lie groups with an application to differentiable pinching problems, Math. Ann. 211 (1974), 7-21.
[He] S. Helgason, Differential Geometry, Lie groups and Symmetric Spaces, Academic Press, New York, San Francisco, London, 1978.
[Ka] S. Kawai, A remark on the stability of Yang-Mills connections, Kodai Math. J. 9 (1986), 117-122.
[K-N] S. Kobayashi and N. Nomizu, Foundations of Differential Geometry I,II, WileyInterscience, New York, 1963, 1969.
[K-O-T] S. Kobayashi, Y. Ohnita and M. Takeuchi, On instability of Yang-Mills connections, Math. Z. 193 (1986), 165-189.
[La] H. T. Laquer, Stability properties of the Yang-Mills functional near the canonical connection, Michigan. Math. J. 31 (1984), 139-159.
[Ni] T. Nitta, Vector bundles over quaternionic Kähler manifolds, Tohoku Math. J. 40 (1988), 425-440.
[Oh] Y. Ohnita, The first standard minimal immersions of compact irreuducible symmetric spaces, Lecture notes in Math. 1090, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984, 37-49.
[Ok] T. Okayasu, Pinching and nonexistence of stable harmonic maps, Tohoku Math. J. 40 (1988), 213-220.
[Pa1] Y. L. Pan, Pinching conditions for Yang-Mills instability of hypersurfaces, preprint, International Center for Theoretical Physics, Trieste, 1988.
[Pa2] Y. L. Pan, Stable harmonic maps from pinched manifolds, preprint, Max-Planck-Institut für Math., Bonn, 1988.
[Ru] E. A. Ruh, Curvature and differential strucure on spheres, Comment. Math. Helv. 46 (1971), 127-136.
[Sh] C. L. Shen, Weakly stability of Yang-Mills fields over the submanifold of the sphere, Arch. Math. 39 (1982), 78-84.
[Ta] C. H. Taubes, Stability in Yang-Mills theories, Comm. Math. Phys. 91 (1983), 235-263.
[We] S. W. Wei, On topological vanishing theorems and the stability of Yang-Mills fields, Indiana Univ. Math. J. 33 (1984), 511-529.
[Yo] I. Yokota, Simply connected compact Lie groups $E_{6(-78)}$ of type E_{6} and its involutive automorphisms, J. Math. Kyoto Univ. 20-3 (1980), 447-473.
Y. Ohnita :

Max-Planck-Instutut für Matematik
Gottfried-Claren-Strasse 26
5300 Bonn 3
Federal Republic of Germany and
Department of Mathematics
Tokyo Metropolitan University
Fukasawa, Setagaya, Tokyo 158
Japan
Y. L. Pan :

Institute of Mathematics
Fudan University
Shanghai
People's Republic̣ of China

