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Periods of Lnriques surfaces

-
Yukihiko Namikawa

§0. Introduction.

The aim of this article is twofold. The first is to give simplified
and more arithmetic proof of the Torelli theorem and the surjectivity
theorem of the period map for Enriques surfaces due to Horikawa [5]. The
main theorem is precisely stated in §1 (1.14). Our statement is even more
refined than Horikawa's in two minor points (Remark 1.15). The second is
to apply the Torelli fheoren in studying Enriques surfaces more precisely.

Such a theory was developed extensively in the case of K3 surfaces by
Pjate!kii-§apiro aﬁd Safarevi’ and others. Here we take a way to follow
this model as far as possible and reduce the problem to the corresponding
one in the case of k3 surfacé. It turns out that this method is remarkably
far-reaching to obtain better results than those by our predecessors. We
should say, however, that thi; was made possible thanks to a deep study
in lattice theory mainly due to Nikulin. The lattice theory plays an
essentjal role here, and instead the only essential geometric fact we use
other than the results on K3 surface is that the universal covering of an
Enriques surface is isomorphic to a K3 surface. To the contrary we deduce
other important geometric properties of Enriques surface from our results
(see §§5,6).

Ip §1 we recall fundamental properties of Enriques surfaces and state
the main result precisely. Roughly saying, we can define the socalled
period ‘space D/T of Enriques surface (1.7) and with each Enriques

surface S we can associate a point wg in D/F called the period of

*) Supported partially by SFB 40, Theoretische Mathematik.



S (1.13). The Torclli thcorem (in a weaker form) asserts that the period
determines S uniquely and the surjectivity theorem asserts that except
for an explicitly defined irreduciblc divisor all points in D/T corre-
spond to periods of Enriques surface (1.14). The irreducibility of this
exceptional sct was noticed here for the first time.

The next §2 is devoted to a lattice-thcoretic study of the cohomology
group of an Enriques surface which is the essential part of oﬁr method.
One of the key fact is Theorem 1.4. We collect in §3 the corresponding
results for K3 surfaces which we need for the proof of our main result.
Here we also give a lattice-theoretic characterization of a finite auto-
morphism group of a K3 surface in the group of isometries of K3 lattice,
which is inspired by Nikulin [11] and is a key to reduce the surjectivity
theorem for Enriques surfaces to that for K3 surfaces.

The Torelli theorems for Enriques surface are formulated and proved
in §4. The proof in this method was announced by Nikulin in [10] . Our
formulation is as similar as possible to that for K3 surface.

The next two sections are devoted to applications of the Torelli
theorem. Thanks to our formulation we can obtain synthetically several
recent results on the automorphism group of an Enriques surface due to
Dolgachev [4] and Barth-Peters [1], which we exhibit in §5. We here make
no use of the structure of a double covering over a rational surface as
[5] or [2], but we can prove the existence of such a structure purely
with lattice theory ((5.11) and (5.15)). In §6 we study smooth rational
curves and smooth elliptic curves. A generic Enriques surface contains
no smooth rational curves and the set of periods of Enriques surfaces
containing rational curves forms an irreducible divisor in the period

space defined explicitly (Theorem 6.4). 1In contrast with this any
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Enriqﬂes surface contains smooth elliptic curves forming a pencil (Theorem
6.7). However in any case there are only a fini;ely many rational and
elliptié curves up to Aut(S) and linear equivalence (Theorem 6.5, 6.7).
We count this number for one interesting example of Enriques surface which
was treated in [5], [4], [1].

The surjectivity theorem of the period map is proved in the last
section §7. A proof essentially in the same line is given also in [2].

The aithor would like to express his sincere gratitude to Professor
Dolgachev, Professor Barth and Dr. Mukai for stimulating discussions with
them and last but not least to Professor Hirzebruch who gave the author the
opportunity to make this study in the most comfortable atmosphere at the

new Max-Planck-Institut fur Mathematik at Bonn.

(2]



8). Definitions and statement of the main theorem

Definition (1.1). A complex analytic surface S is called an
Enriques surface if i) the geometric genus pg of S and the irreg-
ularity q of S vanish, and ii) with K denoting the canonical
divisor of S, 2K is linearly equivalent to zero.

(1.2) An Enriques surface S has an unramified covering p : Y48
with the covering transformation i where ¥ s isomorphic to a K3
surface. Let 1 = {* be the involution of Hz(g, Z) induced from i.
If we denote by w the cohomology class of a holomorphic 2-form on §
(unique up to constant) in Hz(’g, Z), called the period of 3, then w =
-w since there is no global holomorphic 2-form on S.

(1.3) A lattice H is a free abelian group of finite rank endpwed
with an integral quadratic form. For a lattice H and an integer n we
denote by H(n) the lattice whose quadratic form is the one on 'H multi-
plied by n. '

The second cohomology group HZ(S, Z) is isomorphic to Em

e (Z/2)
where Z/2 is generated by cl(Kj. The free part HZ(S,E)O admits a
canonical structure of a lattice induced from the cup product <,> which
is a symmetric bilinear form. It is even, unimodular and of index (1, 9),

hence isomorphic to E = Es(-l) 1 U where E_, is the positive definite

8
lattice associated with the Dynkhin diagram of type E8 and U is the
hyperbolic lattice (‘l’ b.

In the same way -Hz(g, Z) 1is also an even unimodular lattice isomor-
phic to L = (fsa(-m;(im. The induced map p* : H(S, Z)_+ W (3, 2)
has a homothetic property that <p*(x),p*(y)> = 2<x,y>, hence p*H *

EB(-Z) 1 U(2) as a lattice. The covering involution 1 determines two



primitive sublattices (i.e. quotients have no torsion)
M= {xeL;ix=x}] and N= {xe€ L; 1x = -x}

such that M1 N and rk M + rk N = 22. Clearly p*E c M, but it turns
out that the equality holds (Prop. (2.3)) in fact. Hence M = E(2) =
Eg(-2) 2 U(2) and N = Eg(-2) 1+ U(2) 1 U. In particular M and N are
2-primitive (M*/M and N*/N are 2-torsion groups), from which we can
deduce the following important uniqueness property of the embedding of M
into L.

Theorel_(1.4). Let jl’ j2 : E(2) » L be two primitive embeddings.
Then any isometry @ : E(2) + E(2) extends to an isometry 3 t L=+L
vith @3, = §,'0.

The same property holds for E(2) 1AU also.

The proof is given in §2. In [5) this arithmetic theorem was proved
with geometric method. This way is, however, much longer, though it has
a nice biproduct [4].

(1.5) Now we consider the abstract lattices L and E defined in
(1.3). By virtue of Theorem (1.4), without loss ofvgenerality we may
choose and fix the following embedding of E(2) into L.

For x ¢ L. we write its decomposition as

L= 58(-1) 1 Ea(-l) 101010
v v

X = X, -+ ¢ X

1 2 *‘\114“24‘0.

3

We define an involution 1 on L by sending (xl. Xys Ups Uy, “3) to
(xz, Xy "2’ ugs °"3]' Let M (refp. N) be the /(41)- (resp. (-1)-)
eigenspace of 1 in L. We have two emdeddings of E(2) = 58(-2) 1 U(2):

*) Actually this follows first from theé proof of Theorem 1.4 in (2.9).



58(-2) 4 U(2) -+ L

- -
il ¢ (x, u) » (x, x, u, u, 0),
i, @ (x, u) * (x,-x, u,-u, 0),

which give isomorphisms M = E(2) and N=E(2) 1 U respectively.

(1.6) A K3 surface g has a holomorphic 2-form 2 unique up to
multiplicative constants. Denote by w the cohomology class of £ in
H2 (E,(I) defined by the De Rham isomorphism. This is equivalent to say

that ® is the cohomology class determined by the periods:

a
fg:0,82) » ¢
L L 4

Y > SYO.

This w satisfies Riemann's equality and inequality

™) w,w> =0, <w,w> >0

where <,> denotes the bilinear form on Hz(g.t) coming from the cup
product and ' " the complex conjugate in Hz(g.t) with respect to

Hz(g,R). Moreover we have
**) w = -0

a
i.e. we NC since the quotient surface S = S/<i> has no global

holomorphic 2-forms.

Definition (1.7). We construct the so-called period domain as follows.
We use the notation above in (1.6).

i) D={(v) e P(N) ; <v,v> =0, <v,v> > 0},



i {(v) ¢ P(Lcl; <v,v» = 0, <v,v> > 0}.

The former (resp. the latter) iscalled the period domain of Enriques
surfaces (resp. of K3 surfaces). They are of dimension 10 and 20 respect-
ively. Moreover D 4is a union of 2 copies of bounded symmetric domain of
type IV. There is a natural embedding D - ¥ induced from Nc L, by
which we consider D as a closedrsubset of ¥.

On D (resp. 3) the orthogona} group O(NR) (resp. O(LR)) acts
transitively.

ii) Let T = O(N) (resp. I'' = O(M)) be the group of isometries of
N (resp. M) and T "the group of isometries of L which commute with
1, or equivalently to say, preserve subspaces M and N. We have a
canonical homomorphism o : Tar (resp. p' : f I') defined by the
restriction.

ii1) D/ is called the pariod space of Enriques surfaces. Denote

by w» the canonical surjection of P onto D/r.

(1.8) Since r 1is arithmetric, I acts properly discontinuously
on D, hence by H. Cartan's theorem 0U/T' admits a canonical structure
of a normal analytic space such that the canonical surjection = : D »
D/T is holomorphic. It is even a quasi-projective algebraic variety.
It is also connected (o = (*I)IE(ZJ ) (-IJIU ¢ O(N) interchanges the
two connected components of D c P(Nc)), hence irreducible as an algebraic

variety.

Definition (1.9). We set



D0 = {(v) e D ; for each ¢ ¢ N with <2,0> = -2, <g,v> # 0}.

In other words Do is the complement of the union of all reflexion

hyperplanes H_, = {(v) ; <v,2> = 0} in D.
2

(1.10) For a root 2 (i.e. <2,® = -2) in N we set I, = {g ¢ O(N);
g(2) = 22}, D, = Dn H, is again a union of 2 copies of bounded symmettic
domains of type IV but of dimension 9 on which I, acts properly discon-
tinuously. D,'/l‘,’ is an irreducible closed subvariefy of D/T. Theorem

2.13 in §2 implies that
/T U D,/T, = D/T.

Definition (1.11). A marked Enriques surface is a pair (S,¥) of
an Enriques surfaces S and an isometry (called marking) ¥ : HZ(S,Z) o
E. A morphism of marked Enriques surfaces is an isomorphism a : s1 - Sz
such that q;loa" = *2 with thé induced isometry a* : nzcsz,z)o hd
2 :
H(8,,2) -

A marking of K3 surface is defined similarly by using L.

(1.12) By virtue of Theorem 1.4, for a marked Enriques surface
(S,¥), we can extend the marking to that of the covering K3 surface
(g,h satisfying the following commutative diagram

v

HZ(S,E)O -+ E
+ id
p* ~ E(2)

" v
wW@ES,z) »1 !

under the notation in (1.5).



Then the cohomology class w of g (1.6) defines a point (z‘[(m))
in P(Lﬁ)' but in fact in D by the pﬂ:erties (*) and (**) in (1.6).
This point dcpend’s on the marking 3, but it is uniquely determined by
(S.4) modulo . Moreover by Corollary 2.9 (for p') ..’s = ($g®)) mod T

depends only on S and not on the marking .

Definition (1.13). The point wg = ($o(®)) mod T in D/T is called
the period of S.

Main Theorem (1.14). The correspondence: {S} + wg gives a bijection
between the set of isomorphy classes of Enriques surfaces and vo/r (not

the whole 9/r).

Remark (1.15). There are two improvements in our statement than in
[S]. The first is that the arithmetic group of quotient T is O(N)
itself (by virtue of Theorem 1.4). The second is the remark thit the
complement of D /T 1is irreducible (1.10).

More important remark would be that as a corollary of the above

theorem we obtain the following.

'Coroll!z (l.l@). Any two Enriques surfaces can be deformed to each
other.
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§2. Enriques lattice.

(2.1) 1In this section we prove some properties of the Enriques
lattice which play an essential role in the proof of the first part of the

main Theorem.

(2.2) Let S be an Enriques surface and p : § + S bdbe the universal
covering with the covering involution i (1.2). We consider the induced
homomorphism p* .: HZ(S,Z) -+ HZ(E,E) and the (+1)-eigenspace M = {x ¢
H®,2Z); 1x = x) of 1 =i* (1.3).

Proposition (2.3). p*(H2(S,Z)) = M.

Proof (due to Mukai). With the Poincaré dual p, : Hz(g.Z)* Hz(S,Z) o
we have p*p,(x) = x + 1(x) for xe Hz(g-,Z). hence p'(Hz(S,Z)) c M
and M/p*(H2(S,Z)) 1is at most 2-torsion group.

Since S is algebr;ic, there is an ample cycle a ¢ HZ(S.ZJ. Note
that p*(a) is also ample on 3

Let x be an element in M. By adding mp*(a) for =m >> 0 we may
assume that x is a class of a curve C whose linear system |C| has
no fixed points. On |C| the involution 1 acts linearly, hence has a
fixed point t. Then pg(C.) (C, is the member of Ic] corresponding
to t) is in the form 2C' for a (maybe reducible) curve C'. Therefore

2p*([C']) = 2x, which implies p*([C']) = x since Hz(g,Z) has no torsion.
Q.E.D.
Remark (2.4). One can prove the above proposition also purely

topologically by using the fact that H!(¥,Z) = 0.

Corollary (2.5). M is isomorphic to E(2) = Eg(-2)1 U(2), and in
particular M*/M is a 2-torsion group (such lattice is called 2-primitive
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in {12D.

Corollary (2.6). We use the notation in (1.7) ii). The homomorphisms
p and p' arc surjective and their kernels are isomorphic respectively
to the groups' I''(2), r(2) of isometries of M and N which acts trivially
on M*/M (= M/2M) and N*/N. |

Proof. The first part is a special case of Theorem 1.4. The second

is ‘a mere restatement of Proposition 1.5.1 in [12].

(2.7) To prove the next results (Proof of Theorem 1.4, and Theorems
2.13, 2.15) we make use of Nikulin's deep study on integral quadratic forms

[12). The most important fact is the following:

non-degenerate
Theorem (2.8) ([12]) Theorem 1.14.2). Let T be an even indefinite

lattices satisfying the following conditions: i) rank T 2 i((’l"/‘l‘)p)+2
for each prime p # 2 where !,(Ap) denotes the number of minimal gener-
ators of the p-part of a finite abelian group A, and ii) if rank T =
z((‘l‘*/‘l’)z) then q,r’z o u(2).|.q5 or v(2).|.q5 where q’l‘.p denotes the
p-co-ponent of the discriminant form q of T*/T and u(zk) (resp.
v(2 )) denotes the discriminant form of U(2 ) (resp. V(2 ) with V =
[ ]) Then the genus of T contains only one isomorphy class, and the

ho.o-orphisn o(T) » O(qT) is surjective.

(2.9) Proof of Theorem 1.4.

By (2.5) M is 2-primitive, hence so is N = M', and their discrimi-
nant forms are isomorphic to iu(Z). Therefore we can apply for N the
above Theorem 2.8 to conclude that the genus of N contains a unique

lattice and O(N) » o.(q") is surjectivek. By (1.5) we see that
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N = Es(-Z) 1 U(2) 1+ U. A similar result holds for M also by (2.8).
Then combining Proposition 1.14.1 in [12] with the above fact we

obtain Theorem 1.4.

Remark (2.10). One can also apply James' theorem ([6], Theorem 6) to

M but not to N.

(2.11) As the last topic we study vectors £ in N with <g,0> = -2
and -4. The former are called roots in N. Our main result is that there
are only one g with <g£,8> = -2 (Theorem 2.13) and two &'s with <f,0> =
-4 (Theorem 2.15) up to O(N).

The next fundamental fact we use is again due to Nikulin.

Proposition (2.12)([12], Proposition 1.15.1). A primitive embedding
of A into an even lattice N is determined by the set (H ; HN. v:K, yK)
where HA c A*/A and ~Hﬁ c N*/N are subgroups, y:qA'“A’¢-qN|HN is an
isometry preserving the restrictions of the quadratic forms to these
subgroups, K is an even lattice with the complementary index and discrimi-
nant form -§ where § = (qA ° (-q“)|r¢)/rv where I'Y is the "graph" of
y in A*/pA @ N*/N, and g9 * (-8) 1is an isomorphism of quadratic forms.

Two such sets (H , HN’ v:K, YK)' (H','H}", v';:X', Yi') determine
isomorphic primitive embeddings if and only if i) HA = HA and ii) there
exist ¢ e O(qy) and ¢ € Isom(K,K') for which y' = -y and E.yx =
yi,-;' where E 1is the isomorphism of discriminant forms § and §'

induced by E.

Theoren:(2.13). For any two roots & and 2* in ﬁ there is an

isometry ¢ € T = O(N) with ¢(2) = 2°.



Proof. We consider the sublattice A gencrated by t and show

that the embedding j:A + N jsunique up to O(N).

We calculate the invariants of the embedding in (2.12). First A*/j

= Z/2 with q, = <1/2> and N*/N= (2/2)!° with q = Ju(2) where
u{2) is the discriminant form of U(2). This lattice is Z-valued, hence

q, cannot be embedded in Q- Therefore Hy = HN = (0) and &= iu(Z) 1

13

<-1/2>. By Theorem 2.8 K = A' is unique, hence isomorphic to E(2) 1 <2>

and the canonical homomorphism O(K) + O(qx) is surjective. Again by
Proposition 2.12 this implies that the embedding j:A + N is unique up
to O(N). Q. E. D.

Remark (2.14). We do not know an elementary direct proof. It is

easy to see that the similar result holds for U 1 U(2).

Theorem (2.15). Let 2 be a vector in N with <g,2> = -4. Then
2! is isomorphic to either 28(~2) LU 1< or Eg(-2) 1U(2) 1 <#.
In the former case we call ¢ of even type and in the latter case of
odd type. |

Two vectors in N with length -4 are equivalent modulo O(N) if

and only if they have the same type.

Proof. Again, let A be the sublattice generated by g and we
calculate the invariants of the embedding j:A * N in (2.12). In this
case A*/A = Z/4 with q, * <-1/4>. Since qy is Z-valued, HA x Z/2
or O, and then § » 1\:(2) 1 <_-1/4> or iu(Z) 1 <-1/4> respectively.
(Note that, when HN L HA = Z/2, . such HN is generated by a vector n

in N*/N with qN(n) = 1 and it is easy to see such n is unique up

to 0(q").) 7
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Therefore we can apply Nikulin's Theorem 2.8 for t'  to conclude
that Ll is uhiquc in cach case and 0(11) -+ 0(q 1) is surjective. By
choosing & in U{2) or U we sce that ot isiisomorphic,to one of
the lattices given above.

Again by (2.12) the uniqueness of the embedding in each type follows
from the uniqueness of HN modulo O(QN) and the surjectivity of 0(:*)

+ 0(q l) above. Q. E. D.
L

We close this section by giving a characterization of vectors of

length -4 of even type.

Proposition (2.16). Let 2 be a vector in Nc L with <g,%> = -4,
Then ¢ is of even type if and only if there is a vector m in M= N

with <m,m> = -4. and (g+m)/2 ¢ L.

Proof. Since any isometry in N lifts to that in L (Corollary 2.6),
the above property is invariant under the action of O(N), hence it suf-
fices to see this for concrete examples.

We use the notation in (1.5) and write with a2 basis as u, =a.e, +

g.f. with a.,, B, € Z and with <e,,e.,> = 0 = <f,,f.> and <e ,f.> =1
i“i i’ Ti i’7i i i’7i

i
(i=1,2,3). Then lO = el-fl-e2+f2 e N is of even type and zl = e3-2f3
€ N is of odd type. Now with m = e, -f +e_-f_ the former &, satisfies

171 72 "2 0

the condition and it is easily seen that &. does not satisfy the condi-

1

tion because all vectors in M have zero coefficient at e3. 0. E.*D.



§3. Period of K3 surfaces

(3.1) 1In this section we recall the corresponding facts on periods
for K3 surfaces to which we reduce our main theorem. For the complete
proof we refer the reader to [13].\[3]; {7] on Torelli theorem and [15],
[9] for the surjectivity theoremf)

For the reduction we make use of the theory of hyperbolic reflexion
groups as in [7]. This enables us to see the key of the proof more trans-
parently. We also prove a general theorem on a characterization of
isometries in the K3 lﬁttice which come from finite automorphisms of a
K3 surface nodﬁlo reflexions. This is a slight generalization of Nikulin's

and from it we derive the surjectivity theorem for Enriques surfaces (§7).

Another application is given in [8] (cf. Remark 5.4).

(3.2) Let X be a K3 surface and w the period in H2(X,) (1.6).
We define
Hl’l(X)'s {x ¢ H2(X,IR); <w,x> = 0},
HIE’I(X) = 1y 0 Hi(x,2).

On Hl’l(X) the bilinear form <,> has index (1.19).

We set
1,1
V={xe H’ (X); <x,x> > 0}

+ -
which is a union of 2 opposite homogeneous convex cones V and V

(= -V*). We set also
1,1
P={8¢ H, (X); <8,6> = -2},
and

P' = (6§ ¢ P; & is an effective algebraic cycle},

*) See also a very beautiful survey on this subject by Beauville in
Séminaire Bourbaki.



P" = {8 c P; -5 ¢ P').

A member of P is called a root. By the Riemann-Roch fheoren p=p'up,

Lastly we define the Kihler cone K as
K={xe¢ V*; <x,6> > 0 for all § ¢ Ph).

Clearly any K#hler class falls into K, butconversely an element
in K corresponds to a K¥hler form (see Theorem 3.13 below), since every

K3 surface admits a Kédhler metric as Sid has proved recently [14].

(3.3) One 6f-the important aspects in the proof of Torelli theorem
for K3 surfaces is that we interprete the Kihler cone in a different wvay.

Each &8 ¢ P defines a reflexion S5 i x+Tx+ <x,8>8 which is an
isometry in Hz(x,l) and fixes the period w, hence preserves V and
P. Let W be the group generated by S5 8§ ¢ P. Since Sg = S_g» Ve
can repalce P by P'. Now the theory éf reflexion group asserts that
W acts properly discontinuously on v’ and X is a fundamental domain

of W in V',

(3.4 A point which we want to emphasize here, though known and

used by specialists, is to consider a subset P; of P‘ defined as

P; = {8 ¢ P‘;'G is an effective cycle of a smooth rational

curve in XJ}.

- - + ‘
We set P = {8epP; -8 ¢ Pol.

The fact that H'*l(X) is of index (1.19) implies that

16
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™ ‘<x,y>» > 0 for x €V, yeV - {0).

Also the genus formula says that for any irreducible curve C we have
C2 2 -2 and !’.’2 = -2 if and only if C is a smooth rational curve. By
these two Wrtiu ‘we see that the following conditions are equivalent

for x € HI’I(X);

i) <«x,e> >0 kfor all effective algebraic cycles e on X;
ii) <x,6> > 0 for all S e P';
i) <x,86> > 0 for all 6§ ¢ P';

o

iv) <x,C> > 0 for all irreducible algebraic curves C on X.

Hence we can replace p* by P; in the definition of K.

The last property implies that W is in fact generated by P;.

Remark (3.5). i)b We can show moreover that P; is a minimal
generator of W, or equivalently {<x,8> > 0 for & ¢ P;} is the minimal
set of inequalities &efining K. This can be seeﬁ as follows. Choose
an element & ¢ K. For each § e_P; consider' x(A) = 28 + a with
A>0. Then <x(2),8'> > 0 for any &' ¢ P; different from & since
<8',8> 2 0. Therefore if we substitute A = (<6,a;+e)/2 for sufficiently
small ¢, then <x(1),x(A)> = <6,a>2/2 + <a,a> - cz >0 and <x(1),6> =
- < 0.

1i) The set P;- is a "fundamental root system'" and satisfies the
condition <«<§,8'> 2 0 for different 8, 8' ¢ P;, which enables us to
have an algorithm to find an element weW which transformsa given element

xeV to w(x) e X snalogous to the Kac-Moody theory.



(3.6) The Torelli theorem for K3 surfaces which we use here is as

follows:

Theorem (Global Torelli theorem for Kihler K3 surfaces). Let X
and X' be two Kihler K3 surfaces, and ¢ : HZ(X',E) -+ HZ(X.E) an
isometry of lattices such that i) Qth, = Aux for A € € - {0} where
wy (resi:. ux,) is the period of X(resp. X') (1.6); ii) ¢R(V‘(X')) =
v'(X) where V'(X) and .V‘EX') are the connected components of V(X)
and V(X') which contain Kithler classes; ili) ¢ maps effective cycles
to effective cycles. Then ¢ is induced by a unique isomorphism

a: X=X

18
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, Progg' sition (3.7). LlLet X, X' as above. For an isometry ¢ :
H2x', Z) + HA(x, Z) satisfying i) above in (3.6) the following conditions
are equivalent:

8) 1i) and i) in (3.6);

b) ii) and #(P*(x") € P*(X);
) 11) ad (L") < PT(0);
d) $(K(X')) = K(X);

e) $(K(X')) n K(X) £ ¢.

Proof. Clear from (3.3), (3.4) (cf. [7])).
(3.8) Together with the above (3.3) we can derive a modified form.

Theorem (Modified global Torelli theorem). Let X and X' be two
Kihler X3 surfaces and ¢ : H2(X', z) ~» Hz(x. Z) an isometry of lattices
which satisfies the condition i) (resp. i) and ii)) above in (3.6). Then
there exists tmique isomorphism a : X + X' and a unique element w € W(X)

such that w*¢ = a* or -a* (resp. a*).

(3.9) For the proof of the surjectivity theorem we also need the
global Torelli theorem. We apply this to prove the following lattice-
theoretical characterization of finite automorphism group of a K3 surface,

which isaslight ieneriliution of Nikulin's [11] (4.2) and (4.15).

Theorem (3.10). Let X be a K3 surface and G a finite subgroup
of the group of isometries in L = Hz(x, Z). Denote by w the period of



X in Le = HX,0) and set S, = (L5 0 (@)t (= S in H;{l(X)).

1

C G

Then there exists an element w ¢ W(X) such that wGw = ¢ Aut (X} if and

only if i) @w is G-invariant, ii) S contains no element L of

G,X
length -2, and i) (in case Lg » w, i.e. w is G-invariant) SG X is
»
non-degenerate and negative definite if Sg. x 0, or iii)* (in case
»

1

Lg; w) LG contains an element x with <x,x> > 0. (If wGw = ¢ Aut(X),

then iii) and i)' hold always.)

Proof. Necessity. Since each reflexion is an isometry which preserves

w, it suffices to prove for G < Aut(X). The property i) is clear. Suppose

that !.2 2 -2 forsome L €S .
G’x

4 G
¢t =[C]. Then C= Eg(C)el’ns

G,X
geG ’
follow ii) and ii). Lastly take an element X, in V'. Then x =

Then & or -% is effective. Say

= 0, which is impossible. Hence

£ g (x) € (LR)G_ nv'. since 1L I Ker(g* - 1), it is rational,
geG geG

hence (LR)G = (LG)R, in which (l.‘;)Q is dense. Therefore we have ii)‘.

Sufficiency. First we show that iii) or iii)' imply that vin Li 9.

In case o ¢ LG, the condition iii) says that LG has index (3, 19 - rank

g
1,1 G G
SG,X)’ hence HR’ n I‘R has 1 positive eigenvalue. In case o ¢ l‘t’

it is enough to observe that LG < le’l. The latter holds since there is
g € G with g(w) = aw with o # 1, hence <x,w> = <g(x), gluw)> = a<x,uw>
G

for x e L.

Then by the condition ii) there exists a G-invariant x € H;’l with
<x,x> >0 and <x,2> # 0 for all LecP. Wesot P, ={tcP; <x,t>>0},
which is clearly G-invariant. There is a reflexion w € li(X) which

transforms P; to P‘. Then take G' = wGw'l.
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We now check the conditions in (3.6) for g' ¢ G'. The period w
is relative invariant by i). "l'he cone V' is preserved because v
, ; ;
l‘gt # 4. The set P’ is also preserved by the above modification.

Therefore our theorem follows from the global Torelli theorem (3.6).

Remark (3.11). ‘i) The above gives another proof for the fact that
for a nonollgebfaic K3 surface w is. always G-invariant ([11]), Theorem
0.1 a)).

ii) By the above theorem the condition of representability of a
group G by automorphisms is closed if w is G-invariant but not closed
if w is not G-invariant. Because of this the real surjectivity of the

period map of Enriques surface is false (cf. Theorem 6.2).

(3.12) Now we formulate the surjectivity theorem for the period
map of K3 surface. We use the notation in (1.7). Moreover for p = (v)

3 9 “ set:

1,1 _ : or
: "p {x ¢ LR’ <x,v> = 0},
vp = {x € H;’l; <x,x> > 0},
1,1
= {8 eH"’ nL; <§,6> = -2},
Pp {8 € b , }

v; ={xev; forall éc¢ Por <x,8> # o},

and let wp be the subgroup of O(L) generated by the reflexions s P
for & ¢ Pp (cf. (3.2), (3.3)).

Then by the same reason as (3.3) wp acts on Vp properly discon-
tinuously and it gives a bijection between Wn and the set of connected

components of V;.
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The surjectivity theorem essentially due to Todorov (for algebraic

case essentially due to Kulikov) is stated as fqllows.

Theorem (3.13) (Surjectivity theorem for the peridd map of K3 surfaces).
For any given p € B and p ¢ V; there exists a (unique) marked X3
surface (X,¢) and a Kihler metric ‘¥ on X such that the period
(b)) =p and yp(a) = p where w, is the period of X in H(X,0)

and w, is the K#hler class of u in HZ(X,R).
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$4. Global Torelli theorem for Enriques shffnces.

'(4'.‘1:)' In this ieciim we prove the gidbal Torclli theorem for Enriques
surfaces, by ieduéing it to that for' K3 surfaces (3.6). For the reduction
we use again the théory of i:yperbolic reflexions.

-(4.2) Let S be an Enriques surface. We define similar notations
as (3.2). Recall that az(s, R) has index (1,9) (since pg = 0, we may
regard Hz as Hl’l‘ itself).

V(S) = {x € HZ(S,.R); <x, x> > 0}.

V(S) has two connected components v’ and V- opposite to each other,

We choose V' as the one containing ample classes.

P'(S) = (8 ¢ H(5,2) ; <6,8> = -2, & 1is effective),
P(S) = {6 € HE(S, zZ),; -6 ¢« P°(5)),

P(S) = P'(S) 1 PT(S).

This modification of P is necessary because it can happen that neither

¢ nor -§ 1is effective for § ¢ Hz(s, Z)o with <§,86> = -2,

P;(S) = {8 ¢ Hz(s, Z),; & 1is an effective cycle of a
smooth rational curve on S},

P2(S) = {8 ¢ H(S, 2) ; -6 € PL(S)),

K(S) = {x € v’; <x, 6> >0 for all § ¢ P*}.

Let W be the subgroup of O(H’(S, Z),) generated by the reflexions s,
for & € P(S). With the same reason as (3.4) W .is generated by Ss for
8¢ P;(S) and X(S) is a fundamental domain of W with respect to its
action on | V’.

(4.3) Let p : ¥ S be the universal covering. For X = & we have
also the notions defined in (3.2), (3.3). To avoid the confusion we put

"a " for all the notations concerning [ (V. 'Iy. v etc.).



We want to study their relations through p* : HZ(S, 2)0 -> 1!2(g, Z).
We identify IP(S,Z), with the invariant subspace M of W (3, Z) with
respect to the covering involution 1 = i* by (2.3). We should, however,

take note on the fact that the quadratic form is doubled by p*.

Lemma (4.4). We have

v-VnMR,.
v*-V*nMR.

Proof. Trivial.

PO . +
Proposition (4.5). There is a canonical bijection between Po and the
set of pairs {('31, '82) : ?i € 3:, <3'1, %’2> =0, 1(31) = 'Xz} such that
L 2
p,%’i =6 e Po and p*é = 3’1 + '82.'

Proof. 1f C is a smooth rational curve on S, then p'l C) isa
disjoint union of two smooth rational curves ?:1 and Ez on S since

p is unramified. The converse is also clear.

Remark (4.6). i) More generally, if an effective cycle 6 ¢ P is a
tree, then p*é is a disjoint union of cycles isomorphic to &, which
i interchanges one to another. The proof is easy by induction.

ii) Such decomposition is not possible for a general ¢ ¢ P+, because
Im p, is not primitive in H2 (S, Z)o. For example consider elliptic
pencil and take the elliptic curve e in a multiple fibre and a smooth
rational curve &8 in a fibre. Then we have p*(e+§) = :0 3'1 4'32..

An element & € HX(S, Z) with <6, 6> = -2 is in P*(S) and has
such decomposition if and only if there is a vector & in le,l(g) nN
(i.e. <2, wy> = 0 and 1(f) = -2) with <2, l>; -4 such that (p*§+1)/2

€ Hz(g, Z). Recall that such ¢ is called of even type in Theorea 2.15.
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‘Note that, since all vectors in ka(S) “are as such, this gives a
char:cterii;tionjof tbenﬁeyl group ﬁ‘ only‘in terms of latiice and the period.
iii) The above remark i) shows that no Enriques surface can contain

smooth rational curves with the cdnfiguration 15.3’7 (Figure 1), for they
would induce rational curves on S with 2 copies of T2’3’7
figuration, which is impossible by the Hodge index theorem (Té

as the con-
3.7 2 E =
Es(-l) 1 H). This gives risé‘to an interesting problem on sutomorphism

groups of Enriques surfaces (cf. Remark 5.4, ii)).

Figure 1 | Figure 2

Therefore Horikawa's example ([S], 1, §5, [4]) is an Enriques surface
which coritains th; most smooth rational curves, whose configuration is as
Figure 2. The lattice generated by these cycles has index 2 in E.

See (6.6) for further discussion on this example.

Proposition (4.7). We have

x-inﬁn.

Proof. It is clear that K > ¥aM by the above Proposition 4.5.

Take x ¢ K. We must show that «x, ¥ >l; for all ¥ ?:. Note that

<3, 1(x)> 2 0 since ¥ and 1(35 are different irreducible cycles.

If <8, 1(¥)> = 0, then <x, ¥ > 0 again by Proposition 4.5. If <¥,

1(¥)> >0, then <8+ 1(T), ¥+ 1(X)> = -4+2<¥, 1(B)>. Since ¥+ 1Me N,
we have 43, t(k)> £ 0 (mod 2), a fortiori <¥, 1(2)> ¢ -1, hence

<& x(h, ‘8+ 1(3)> 20, i.g. ¥ t(?) e V- {0). Therefore 0 < <¥ + 1(3').

x> = 2¢8, x> (cf. (3.4)%)). Q.E.D.



(4.8) Let & ¢ P; and decoiposq P*$§ into %, and Xz as in Pro-
position 4.5. Consider 36 = g'gl?gz = gxz°gz], and tﬁe subgroup W of
W c O(L) generated by such 's\'a's for all & ¢ P;..

Recall ((1.7), ii)) the group ¥ of isometries of H>(S, Z) which
preserve M and the canonical homomorphism ,' : ¥ 5 O(M) defined by the
restriction, which we know to be surjective (2.9). Since p*: az(s, E)o -+
M is a homothety, their groups of isometries are canonically isomorphic,
hence we have an epimorphism S: ¥ O(HZ(S, Z)o). The key lemma is the

following:

Lemma (4.9) i) W c T
ii) 3(3’5) = s, hence p(M)-= W,
Proof. 1) By definition we have
Sgx) = X+ X, XY+ X, ¥
3 » 0126 ’ 2’32’
hence clearly 3'6 preserves M. (if x € M, then <x, 215 = <1(x); 1(%'1)> =
<X, '32>).
ii) Note that, for x € H>(S, R) and & e P,
<p*x, '31 *3'2> = <p*x, p*8> = 2<x, &>,
hence <p*x, '81>= <p*x, %2> = <x, §>. Therefore
P*o(S,) (x) = S,(p*(x))
= p*(x) + p*(x),¥ 53, + *(x), %53,
= p*(x) + <x,8>p*($).
Q.E.D.

(4.10) . Now we can state and prove :

Theorem (Global Torelli theorem for Enriques surfaces). Let S and
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S' be two Enriques surfaces and Y HZ{S', z), ~ 2 (S. Z), an isometry

of lattices such that i) ¢ extends to an isometry § : HA(S', Z) = W (S, 2)
of universal coverings which preserves the period (i.e., 3‘c(...g,) = xnrg),

ii) ¢ waps each effective cycle on S' to an effective cycle on S. Then

¢ is induced from an iéonorphisn a:S$-+S'.

Remark (4.11). i) As an analogy of (3.7) we have the following equi-
valent statements under the condition i) in (4.10),

a') i) in (4.10),

b') #p (V'(sM) < V'(8) and #(P*(sM) < P'(9),

c') g V' (s1)) <V'(S) and 4(Fi(SM) < P°(S),

d') 4 (K(S") = K(S),

0') g (K(S) n K(S) # 4.

ii) The uniqueness of an isomorphism a holds "generically”, i.e.
except for three caies (cf. ‘Iv(mrk 5.4, 1)).

(4.12) Proof. of (4.10). We consider the isometry 3 and apply
Theorem 3.6, which is possible because 3 and _g‘ are algebraic hen;g
Kshler. Since g (K(5")) = K(S) and K(s') = R(B") n Mg, K(S) = R3) n
MR’ (4.7), the above condition (4.11), d') implies (3.7) e). Hence : is
induced from an isomorphism 2:8 + 3 vhich commutes with the covering
involutions. Therefore ¢ is induced from an isomorphism a:S + S*
induced from 4a. Q.E.D.

(4.13) From the global Torelli theorem we derive a modified form
whose Corollary 4.14 is the most definite result in our case.

Theorem (Modified global Torelli theorem for Enriques surfaces).
Let S and S' be two Enriques ;urfaces and ¢: HZ(S', Z)o -+ l-l2 (S, Z)o

an isometry of lattices which extends to an isometry zzﬂz(g'. Z) »
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"2 (’5“, Z) which preserves the period (resp. and ‘R (V‘(S')) c V’(S)).
Then there is an isomorphism a:S + S' and a unique element w ¢ W(S)

such that a* or -a* (resp. a*) = we$,

Proof. By replacing ¢ by -¢ if necessary, we may assume that
#(v'(5')) ¢ V'(S). Since K(S) is a fundamental domain with respect to
the operation of W(S), there is a unique element w in W(S) with
w($(X(S))) = K(S). Note that this w has .an extension v in ?1(3)‘ which
preserves the period by virtue of Lemma 4.9, ii). Now apply (4.10) for

wed,

Corollary (4.14) (Weak Torelli theorem). If two Enriques surfaces
S and S' have the same period in D/r (cf. (1.7), (1.13)), then they
are isomorphic.

Proof. Let ¢ and ' be (drbitrary) markings of S and S' res-
pectively and 3’ and 3'. their respective extensions to those of the
universal coverings g and . Corollary 2.9 asserts that by changing
the marking suitably we may assume that zc(uig) = 3&(«@,). Then apply
Theorem 4.13 for ¢ = flw‘ :HZ(S', Z)o +> HZ(S, Z)o with extension

Fe iy
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$S. _Mto-orphisu’s of Enriques surfaces

(5.1) In this section we exhibit ;'one properties on the autonorphisa
group of an Enriques surface. Most of the results have been already known
essentially (due to Barth-Peters [1] and Dolgachev [4]). but we hope our
treatment would give clearer insight to thel.

(5.2) !.et S be an Enriques surface. We make free use of the nota-
tion in $4. We define moreover a subgroup G = G(S) of O(M) (= O(H’(S, Z) )
consisting of elements which have period preserving extensions to O(H2 (g, Z)).
Denote aléo by A‘(S) the image of the homomorphism Aut(S) + O(Hz (S, Z) o)’
= O(M), and by D = {#1)} the centre of O(N).

The first result is a small refinement of Dolgachev's main theorem in

[4].

Theorem (5.3) (cf. [13]}, §6, Theorem 1). i) The group W(S) is a
normal subgroup of G(S)..

ii) G(S) = A*(S)°W(S)*D (semi-direct product).

iii) C(S) contains TI'(2), hence in particular G(S) is of finite
index in T' = O(M). |

Proof. 1) .We know that W(S) is normal in O(M). Each generator
sg» § € PoUS), has an extension 3, = 3y -s“2 (4.8) in 0(H2(§ Z)) which
preserves the period (s'g € ﬁ(g)), hence W(S) < G(S).

ii) This is nothing but a restatement of (4.13).

1ii) Let ¢ beé an element in T'(2). By definition it acts trivially
on H*/H.V 'l'hcnby 1] «'Proposition 1.1 ¢ on M and id on N extend

to an isometry z of Hz(g, Z), which clearly preserves the period of g

Remark (5.4). i) The homomorphism Aut(S) -+ l-l2 X, Z2) o is not injective
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in three cases which can be described explicitly ([8]). We here say only
that two cases are involutions and pave 2-dimensi§nal ﬁoduli, and the last
case is an automorphism of order 4 having 1-dimensional moduli. The involu-
tions act trivially even on H2 (S, Z) (including torsion). A geometric
construction of such automorphisms is due to Barth-Peters [1] and Lieberman

ii) The claims ii) and ii) in (5.3) imply that the auromorphism group
Aut(S) of S js finite if aﬁd only if W(S) 1is of finite index in O(M).
Such an example is given by Dolgachev [4], in which case the automorphism
group turns out to be a dihedral group D4 [1] (see 6.10 below).

Recently I was informed from Barth that Nikulin had classified all
Enriques surfaces with finite auromorphism groups. |

(5.5) Now we consider '"generic'" Enriques surfaces, by which we mean
those whose periods are contained in the complement of countably many closed

analytic sets in U;/P.

Proposition (5.6). For a generic Enriques surface S its covering
K3 surface has N as the space of transcendental cycles and M as the

space of algebraic cycles.

Proof. Since the period is contained in "t’ ghe space T of trans-
cendental cycles is contained in N (by a marking t : H?(g, Z) » L). Take
n € N. For a marked K3 surface S the cycle corresponding to n is algebraic
in § if and only if it is orthogonal to the period, hence the set of
periods corresponding to such surfaces is a divisor in D/I (a hyperplane
section in D). Then T = N if and only if the period is not contained

in this countable union of such divisors in 0D/T.

Corollary (5.7). A genéric Enriques surface S does not contain a
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smooth rational curve (i.e. P(S) = 4).

Proof. Take an 'Entiques surface S whose univeisal covering ¢ has
M as the s'pacé of algebraic cycles. Then 3 does not contain any smooth

rational curves (since M contains no element of length -2), hence neither S.

Remark (5.8) In the next section (Proposition 6.2) we shall make the
statement (5.7) more precise.

(5.9)» Next we determine the automorphism group of a generic Enriques
surface. This result is due to Barth and Peters [1]. We state it in a
slightly more precise form than theirs.

| Take 0’( ¥ 21) € T = O(N), and let E’ be the union of eigenspaces
of ¢ in N_.. Denote by E the union of E

C ¢
consists of countably many proper linear subspaces of Nc and is invariant

for all ¢(# %1) ¢ I which

by T. Again E/T is a union of countably many closed subvarieties in
osr.
Note that, since ¢ is an element of an orthogonal group defined over
Q, all eigenvalues are roots of unity, and that tﬁe degree does not exceed
12 = the rank of N, hence the possible orders are 1,---,16,18,20,21,22,24,
26,28,30,36,42.
The set E is hence written also as

E= 1] v KerN (Qc-xi N)’
li:l-th roots of unity ¢ e¢T - {1} (4

_ with 2 < 42



32

Theorem (5.10). The automorphism group of an Enriques surface S
is isomorphic to T'(2)/¢1 if and only if S contains no smooth rational
curves (this condition can be stated in terms of the period — cf. Theorem

6.4) and the period of S is not contained in E/T.

Proof. The surface S contains no smooth rational curve if and only
if WN(S) = {1).

On the other hand take ¢ ¢ T'' = O(M) with ¢ £ I''(2). For an arbit-
rary extension ¢ of ¢ to I we have 3']N # 21 since ¢ £ I'(2).
Then by definition ? preserves the period of (g, :) if and only if
%(ug) € E}m-

Combining these two observations together and applying (5.3) ii),
we obtain the desired result. Q.E.D.

As the last topic we show a theorem on the existence of automorphisms

of Enriques surfaces in general.

Theorem (5.11). Every Enrique surface S admits an involutive

automorphism.

Proof. Let ¥ be the covering K3 surface of S with the involution
i, which induces an isometry 1 in L = K (¥, Z), (2.2).

We shall construct another involution on & which commutes with i.
For that purpose we construct an isometry o ¢ O(L) commuting with 1

so that Proposition (3.10) can be applied.



We use the notations in the previous sections such as M, N (2.2),

u;_". P for § (3.2).

Recall that N = U(2) 1 53'('2)~ We choose a sublattice isomorphic to

U(2) and fix it. We denote by V the orthogonal complements of U(2)
1,1

inllu’.

-(*) 1) even and negative definite; ii) i1-invariant; ii) if x is

It has the following properties:

t-invariant, then <x,x> =2 0 (mod 4); iv) P(V) = {8 ¢ P; 8 ¢ V] are the
roots of union of Dynkhin diagrams. In particular it has s decomposition
{6eP*; 6ecVIH(8cP;8ecV) which is 1-invariant.

Lemma (5.12). Let V be a primitive sublattice-of 1 satisfying (*).
Then, if P(V) # ¢, there is & ¢ P(V) with <§,16> = 0.

Proof. Take a &8 which corresponds to a fundamental root. Since

1\ preserves root system, ;6.16) 2 0. By i) and #i) we have also
0 > <8418,8418> = -4 + 2<§,18> = 0 (mod 4).

Hence <§,18> = 0. ' Q. E. D.

The crucial step in our proof is to show the following claim.
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Proposition (S.13). Let V be as above. Then V admits an orthogonal

decomposition V_ 1 V_ (by this we mean that V_ and V_ are primitive
sublattices in V orthogonal to each other and [V: V 1V ] < =) satis-

fying the following conditions: i) 1 preserves the decomposition; ii) Vv,

is 2-primitive (i.e. V’ Vi c -;-V‘) ; ii) the primitive hull E of (Nan V R

@ (MnV) is isc;-'otphic to Eg€2d; iv) the primitive hull H of NaV,

@ V_ contains no element & with <§8,6> = -2,



Proof. At first we replace iv) by a weaker condition: iv") v
contains no element § with <§,8> = -2,

We construct inductively a series of decreasing sublattices
W), (2 ... 0
V_ 3 V- 3 3 v. »

satisfying i), ii), ii) (ka) = (V_(k))"). After a finite number of steps
an) satisfies iv'), then we put V_= V_(n) {and V* = an)).

First let V_(l) = V.

Suppose that we have constructed ka). and it still contains roots
§ (<6,6> = -2). Since V_(k) also has the property (*), we can choose
6 ¢ V) uith <6,165 = 0 by Lemma (5.12). Then we set

v_fkﬂ) = the primitive hull of ka) +Z8 + IS,

The conditions i) and ii) hold clearly for v(**1),

To prove iii) it is enough to note that
NavED 20 v L z6-08)
MavE < uga v | z(6008))
(where H(Q) denotes the primitive hull of Q) since § - \cevfk) and
8§ + 186 € N, hence we have |
5 (H((N n vfk)) + (Mn V_m)))

= H(N 0 VD) oy v oDy,

(note that 36(16 -8) =8 +18 and S5 is the identity on 61) where

s, 1is the reflexion defined by & (3.3).

[
Now we shall prove that under i) - ii) the condition iv') implies iv)

in fact (hence actually true for each V_(k)).
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Take 6§ in H and decompose it into orthogonal components as

Hoqa'(Nnv‘)oq J.(MnV_)QQ.L(Nnv-)OQ

- w
We have 26‘_ =8 +8eMnyV_ and <6’,6*> = -1. Next 260 € V+ cL

since, for all x e V,, <x,8,> = <x,8> € Z, hence 8 € V3 < -;-v* by ii).

Hence 25, ¢ V, n N and <26,,26 > = O (mod 4), or <8,,8,> ¢ Z.

0 0 0’0
'On the other hand §_ # 0 since & ¢ 58(2); hence <§ ,8 > < 0.

11ms we have

-2 = <5,8> = <5°,6°> + <6‘,6‘> + <6-,5-> < <60,50> -1,

which is possible only when <60,60> = 0. Q. E. D.

(5.14) Now ‘we: are ready to prove the theorem.

Definé M , 8s the primitive hull of U(2) 1 V . and Nc its orthogonal
complement in L. By the construction M, and N, are invariant by
and 2-primitive, hence there is an involution ¢ of L with of, =1
and °'N = -1 which commutes with 1. ‘ °

Not: that o = \d is also an involution and L°' = E',

Consider a finite group G = <1,0> (c O(L)) which is isomorphic to
(Z/ZZ)Z. We check the conditions to apply Theorem (3.10) for G. The
condition 1) is clear since 11w = ow = -w. The condition ii) holds since
Sc.g = HecV in Proposition (5.13) by definition. The last condition
ii) is also clear since LG > U(2).

Hence by changing the marking with a suitable reflexion w, G can be

realized as a group of automorphisas of 8. By Torelli theorem for Enriques



surfaces the involution wiw™’ induces the same Enriques surfaces S and
wow! induces a non-trivial involution on S.

Therefore the theorem is proved.

Remark (5.15). The above theorem is & lattice-theoretic version of
the socalled U(2)-marking [2] or presentation of an Enriques surface
as a double covering of rational surfaces [5]. The involution ¢ corre-
sponds to the covering involution and two primitive elements e, f of
length 0 in U(2) correspond to fibres in two fulled fibre structures
on the rational surface. The (quasi) polarization defined by e+f gives
an quartic embedding into P3 of (eventually singular) quotient g/o
where (-2)-curves in LG are contracted. For detail see the literature

cited above.
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$6. Rational curves and elliptic curves on an Enriques surface.

(6.1) In this section we study smooth rational curves and smooth
elliptic curves on sn Enriques surface. |

First we give the characterization of the periods of Enriques surfaces
containing smooth rational curves.)and show that they form an irreducible
divisor in thevperiod space. Next we show that the number of smooth rational
curves and smooth elliptic curves on an Enriques surface S is finite
modulo, Aut(S) . and linear equivalence. This fact was first pointed out
by Looijenga in the case of K3 surfaces. By virtue of the similitude of
(5.3) to the cofresponding theorem for K3 surfaces, the way of proof is
also the same. Lastly we calculate the concrete number of such curves in

one example.

Proposition (6.2). Let- S be an Enriques surface and w ¢ H>(¥, €)
the period of its covering K3 surface Ag (1.6). Then S contains a
smooth.rational curve if and only 'if there is a vector ¢ in Nn le,l(g)
(i.e. <2, » -’0 and ((2) = -2) with <¢, 2> = -4 and of even type

(2.15).

Proof. The surface S contains a smooth rational curve if and only
if the Weyl group W(S) is non-trivial (4.2). Then the above follows from
the characterization of W(S) with the period given in Remark 4.6 ii).

Q.E.D.

(6.3) Using the notations in (1.5) and (1.7), we denote by N the
union of all hyperplane sections H, n D with 2 being of length -4 and
of even type. This set N is invariant by T.

Then with the same reason as (1.10), by virtue of Theorem 2.15 (instead

*) Other interesting characterizations were found by F. Cossec.
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of 2.13) together with the above Proposition 6.2 we obtain the following

theorem.

Theorem (6.4). The set N/T is a closed irreducible divisor in the
period space D/T. An Enriques surface S contains a smooth rational curve

if and only if the corresponding period wg is in N/T.

Theorem (6.5). On an Enriques surface S there are only a finite

number of nonsingular rational curves modulo automorphisms of S.

Proof. We consider the group G(S) in (5.2), which is a subgroup
of O(M) of finite index, hence is arithmetic. Therefore there is a funda-
mental domain F in V(S) = {x ¢ Hz(s, Z); <x, x> > 0} (4.2).

Consider a set of roots G-P; = {g&; ge€G, §¢ P;}. Then for only
a finite number of v;'s in G-P) ; HYi nF#g¢, for F has only a finite
number of faces and if HY nF° # ¢ then sy-F‘ nF#o.

Therefore F - g HYi decomposes into ; finite number of connected
components {Fr}r each of which has also only a finite number of faces.

3 2t - =
For each Fr there is w. € W(S) such that Fr 'rpr c K. Let 4

s " Fr ¢4

{6_}_ be the set of smooth rational curves in P; with H
a

a'a
for some r. This is a finite set.

We claim that
<+
L =
A*eA Po.

To see this we note first that A*(u F;) fills up K. Then for each

S ¢ P;. H. appears as a face of K of codimension 1 (3.5), hence so does

6
as a face of g-F; for some g ¢ A* and r, uhich implies 2'16 € A.

Q.E.D.
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Next we treat elliptic curveés. We usc the notation in §4. The follow-
ing result was more or less known and partly proved in [5] with a different

method.

Proposition (6.6). Let S be an Enriques surface. There is a bi-
jective comspondence between the set of elliptic pen?:ils on S . and the
set of isotropic lines in’ Hz(s, z),, (through 0) and contained ix; K(S)~
(i.e. there is a generating vector e ¢ Hz(s, Z) (with <e, e> = 0) and
<e, a> 2 0 for all a ¢ P;(S) (henée for every effective chles a on 8).
(Note that this ‘condition is nothing but the numerical effectivity of a
divisor.) |

For each isotropic line 2 as sbove there is a unique generator e
in Hz(S. zZ) o such that 2e is the cycle of general fibres of the corres-
ponding elliptic pencil and e is the cycle of a multiple fibre in it
(in this case, if considered in Hz'(s, Z), e and e+X are both effective

and each corresponds to one of the two multiple fibres).

Proof. Let e be a primitive isotropic vector in Hz(s, Z) o‘> Re-
placing e by .- if necessarily, we may assume that p*e ¢ l-l2 (g, Z) is
effective.

i) By the sn& argument as in the proof of Proposition 4.7, p*e is
also mmerically effective. Then by [lij, §3, Theorem 1, p*e is a cycle
of an irreducible elliptic éurves which form a pencil. Since p*e is-also
invariant by 1, 1+ acts on the pencil and have two fixed points. This
induces an elliptic pencil on S with two multiple fibres (of multiplicity
2).

Conversely if there is an elliptic peﬁcil on an Enriques surface S,



40

then the inverse image p'l(E) of a general fibre E 1is a disjoint union
of two irreducible elliptic curves El + 52 where the involution i inter-
changes the components, for otherwise (i.e. if p'l(E) is irreducible) on
the induced elliptic pencil in ¢ the involution i acts trivially on
parameter and as translations in general fibres (since i has,no fixed
points), and this implies that the non-zero holomorphic 2-form on $ is
i-invariant, which is absurd. Therefore p*([E]) = 2[51] and [le is
primitive in Hz(g, Z). Note that E is numerically effective.

It is clear that the above two correspondence are inverse to each

other. Q.E.D.

Theorem (6.7). On an Enriques surface S there are only a finite
number of non-singular elliptic curves up to Aut(S) and linear equi-
valence.

Moreover this number is always positive.

Proof. By (6.6) before the claim is equivalent to say that there are
only a finite number of rational isotropic lines in K(S)~ modulo A*SS)'_
(the notation in (5.2)). On the other hand by Theorem 5.3 G(S) (cfiESj;))
is an arithmetic subgroup, hence there are only a finitely many rational
isotropic vectors modulo G(S).

Moreover we know that a fundamental domain of V‘(S) with respect to
()(H2 (S, Z) o) contains unique rational isotropic vector modulo constant
multiple in its closure ([16], p. 340). Since G(S) is a subgroup of
o’(S, Z) ) any fundamental domain with respect to G(S) also contains

rational isotropic vectors. Q.E.D.

Remark (6.8). A generic Enriques surface $ has exactly 527 elliptic
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fibrations modulo Aut(S) ([1]).

Before calculating an example we make one observation as preliminary.

Proposition (6.9). Let S be an Enriques surface and D ---,Ds

l’
msutually different smooth rational curves on S. Denote by éi the class
corresponding to Di in Hz(s, Z)o. Suppose that the polyhedral cone

X={xc¢ Hz(s, R)»; <x, §;>20 for all i} is contained in V(S) the

i
closure of V’(S). Then Di's are the only smooth rational curves on S

and Aut(S) 1is finite.

Proof. 1f there exists another smooth rational curve D, then <D, D,>
20 for all i, hence by .ags‘hption KeV) <D, D
impossible.

Now X is a fundamental domain with respect to W(S) with finite

e 2 0, which is

volume, hence W(S) 1is of finite index in O(Hz(s, Z) o) ([16])). Therefore
by Theores 5.3 Aut(S) is finite (cf. Remark 5.4 ii)). Q.E.D.

Example (6.10). We shall consider the Enriques surface S in [1] §4,
Case 3. Barth and Peters have shown that Aut(S) = D‘ (the dihedral group).
Hence the nmumbers of smooth rational curves and elliptic curves are also
finite. We want to determine them. We mention here that this example
was first considered by Horikawa. [S] and he is Dolgachev who observed that
its sutomorphisa is finite. His proof in {4] can be_slightly simplified
by the argument given here. {(cf. Remark 4.6, iii), 5.4, ii).)

In [1) ,it. is shown that this surface S contains smooth rational curves
Fl, 2."". 8’31’52’" (cf. ibid. $4 for the precise definition). There is,
Wn. one more uoc;th rational curve 83 which is the irreducible com-
ponent other than E, in the fibration with parameter u. Summing up,
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we have obtained the rational curves on S with the following éonfiguration

(we write 54

instead of N) :

By direct calculation one can check that these rational curves satisfy

the assumption in Proposition 6.5. Hence these are the only rational curves

on S. The action of Aut(S) on the set of rational curves P;(S) is

nothing but the symmetry of the above configuration, which is clearly iso-

morphic to (2/2)2 (= D4/;:entre). Therefore OP;(S) = 12 and O(P;(S)/

Aut(S)) = 5.

The same computation shows also that there are the following 9 ellipw

tic fibrations on

each fibration) :

mﬁ bﬁ uﬂ (2 I~ ]

mﬁ

(2]

S (we list the cohomology class of singular fibres of

2 3E+2F,+4F (+6F  +5F +4F +3F +2F_+E

4 "2 3 S 677871

¢ 3E,+2F_+4F_+6F ,+SF_+4F_+3F_+2F_+E

476 5 475 6781

351+2F6+4F7+6F8+SF104F203F3+2F‘+£ .

381*2F2*4F1+6F8+5F7*4F643F5+2F‘OE ’

254+F1+2F2+3F3+4F‘¢3F502F6+F7 ~ Z(EI+EZ) (~ B; in (1)),

231+P5*2F6+3F7+4F843F1OZFZ*FS ~v2(83¢E‘)

El+R7+2F8+2F1#2F5*2F3+2F‘+FS0E‘



68 : E‘0F342F442FS¢ZF602F7+2F8+Flolil

69 : 52053 ~ 2(Fl+F20F3+F‘*F50F6*F7‘Fa) (~ FY in [1]).

They are equivalent modulo Aut(S) if and only if the above configurations
of the singular fibres are the same, hence there are 4 classes of elliptic
pencils up to Aut(S).

Lastly we remark that these rational curves on S induces those in
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the covering X3 3 with the following configuration (this is a dual graph):

This has symmetries isomorphic to D " from which we can reprove that

4

Aut(S) = D,. The lattice generated by these curves is isomorphic to
Eg(-1) LU L <4> and prinitive in K (S, 2). '



§7. Surjectivity of the period map for Enriques surfaces.
(7.1) Recall the notation in §1:
D= ((v) e P(Ng) 5 <v,v> = 0, <v,v> > 0} 1.7y,

D, = {(v) ¢ D;<v,2> # 0 forall LecN with <2,2> = -2} (1.9).

What we prove in this section is the following :

9 :
Theorem ({.2) (surjectivity theorem of the period map for Enriques
surfaces). For any point p ¢ 0B/r there exists an Enriques surface S

whose period ug (1.13) is p.

Proof. Take a representative (w) ¢ 0 of p. By the inclusion
N cL, D is embedded into the period domain ¥ of K3 surfaces (1.7).
The surjectivity of the period for K3 surfaces (3.13) asserts that there
exists a marked K3 surface ,(g, Qb such that 3&(mg) = w,

Consider the involution induced from 1 in L via t. We denote it

by the same letter 1. We see that we can apply Theorem 3.10 for G = <>
i

and X = g. Note that S = w in N. Since u ¢ Na, we have 1(mg) =

G,X
- hence (€ is 1-invariant. The property that S contains no
wy hence Cuy 1-inv n property G.X n n
roots is exactly the condition that (w) Do by definition. Lastly

Sg.x is negative definite because N has index (2.10), Ng 0 (twe Cw)
»

is a positive definite subspace of dimension 2 and SG X is its orthogonal
2

complement in N.

Therefore by Theorem 3.10, changing the marking by a suitable w ¢ wcg)

the involution wxw'l comes from an automorphism i of S Let S be
the quotient §/<i> with the canonical holomorphic map p: s,

It remains to prove that S is an Enriques surface, i.e., i has no

fixed locus. The involution can be expressed near a fixed point in the form
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(zl, 22) - (121, zzz).

Since i"(d';l A dzz)'- -dz. A dzz, it must be the form

1
(245 25) = (24, -2)) or (-z,, 2,),

in other words i may have only a fixed curve. Suppose that there exists
a fixed curve. Then S is non-singular and q(S)‘-= pg(s) = 0, since
there are no holomorphic i-invariant 1-forms nor 2 forms on $. Observe
that S is minimal, for an exceptional curve C on S induces an i-
invariant algebraic cycle p*[C] of length <p*[C], p*[C]> = 2C2 = -2,
which is impossible in M.

Denote the irreducible (= connected) components of the fixed curve
by Cl,-°',ds. Via p each C, is isomorphic to Ei on S. Since &

s
is a ramified double covering, we have 2Ks = - I Ci‘ In particular S
i=1

is rational, since S is algebraic and -2Ks is effective, An elenentary'

calculation shows that cz(S) = 12 +-% i’x(ci) where x(ci) is the Euler
i=1

number of C.. On the other hand the (generalized) Lefschetz fixed point

formula says that tx(Ci) = ?‘. (-l)k‘l‘r(i" IH“(Q', Z)) = 2 + 1‘r(i*|l-12) = 0.
k=0

Hence cz(S) = 12, which is impo§sib1e for this number should be 3 or 4

for minimal rational surfaces (according to Pz or ruled surface).

Remark (7.3). As an analogy to (3.13) we can say that each element in
K cv' e ns, R) corresponds to a Kihler class, for K n H>(S, Z) is
nothing but the set of ample classes by Nakai criterion and K n uz(s. Q)
is dense in K.

A coﬁplete analogue to (3.13) is possible, but difficultito
formulate (espeéiilly'defining tl.\e set V;) because the lattice-theoretic

characterization -of the set P’ is rather complicated (cf. Remark 4.6, ii)).
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