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1. Results

Let G be a finite group, and let M(G) := H2(G, Q/Z) be its Schur
multiplier. Denote by B0(G) the subgroup of M(G) consisting of the
cohomology classes whose restriction to any abelian subgroup of G is
zero. We call B0(G) the Bogomolov multiplier of G. This subgroup
was introduced in [Bo87] in order to provide an explicit expression for
the unramified Brauer group of the quotient V/G where V stands for
any faithful linear representation of G over C. This birational invari-
ant had earlier on been used by Saltman to give a negative answer to
Noether’s problem [Sa]. The reader interested in historical perspective
and geometric context is referred to [Sh], [CTS], [Bo07].

We say that G is quasisimple if G is perfect and its quotient by the
centre L = G/Z is a nonabelian simple group. We say that G is almost
simple if for some nonabelian simple group L we have L ⊆ G ⊆ Aut L.
Our first observation is

Theorem 1.1. If G is a finite quasisimple group, then B0(G) = 0.

As a particular case, Theorem 1.1 contains the assertion on vanishing
of B0(G) for all finite simple groups stated as a conjecture in [Bo92]
and proved for the groups of Lie type An in [BMP].

Theorem 1.1 implies

Theorem 1.2. If G is a finite almost simple group, then B0(G) = 0.

Remark 1.3. In Theorems 1.1 and 1.2 we consider top and bottom
decorations of simple groups, respectively. Apparently one can com-
plete the picture, allowing both perfect central extensions and outer au-
tomorphisms, by deducing from Theorems 1.1 and 1.2 that B0(G) = 0
for all nearly simple groups G (see the definition in Section 2.3 below).
In particular, this statement holds true for all finite “reductive” groups
such as the general linear group GL(n, q), the general unitary group
GU(n, q), and the like.
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Our notation is standard and mostly follows [GLS]. Throughout
below “simple group” means “finite nonabelian simple group”. Our
proofs heavily rely on the classification of such groups.

2. Preliminaries

In order to make the exposition as self-contained as possible, in this
section we collect the group-theoretic information needed in the proofs.
All groups are assumed finite (although some of the notions discussed
below can be defined for infinite groups as well).

2.1. Schur multiplier. The material below (and much more details)
can be found in [Ka].

The group M(G) := H2(G, Q/Z), where G acts on Q/Z trivially, is
called the Schur multiplier of G. It can be identified with the kernel of
some central extension

1 → M(G) → G̃ → G → 1.

The covering group G̃ is defined uniquely up to isomorphism provided
G is perfect (i.e. coincides with its derived subgroup [G, G]).

We will need to compute M(G) in the case where G is a semidirect
product of a normal subgroup N and a subgroup H. If A is an ableian
group on which G acts trivially, the restriction map ResH : H2(G, A) →
H2(H, A) gives rise to a split exact sequence [Ka, Prop. 1.6.1]

1 → K → H2(G, A) → H2(H, A) → 1.

The kernel K can be computed from the exact sequence [Ka,
Th. 1.6.5(ii)]

1 → H1(H, Hom(N, A)) → K
ResN→ H2(N, A)H → H2(H, Hom(N, A)).

If H is perfect and A = Q/Z, we have Hom(H, A) = 1 and thus [Ka,
Lemma 16.3.3]

(2.1) M(G) ∼= M(N)H × M(H).

2.2. Bogomolov multiplier. The following properties of B0(G) :=
ker[H2(G, Q/Z) →

∏
A H2(A, Q/Z)] are taken from [Bo87], [BMP].

(1) B0(G) = ker[H2(G, Q/Z) →
∏

B H2(B, Q/Z)], where the prod-
uct is taken over all bicyclic subgroups B of G [Bo87], [BMP,
Cor. 2.3].
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(2) For an abelian group A denote by Ap its p-primary component.
We have

B0(G) =
⊕

p

B0,p(G),

where B0,p(G) := B0(G)∩M(G)p. For any Sylow p-subgroup S
of G we have B0,p(G) ⊆ B0(S). In particular, if all Sylow sub-
groups of G are abelian, B0(G) = 0 [Bo87], [BMP, Lemma 2.6].

(3) If G is an extension of a cyclic group by an abelian group, then
B0(G) = 0 [Bo87, Lemma 4.9].

(4) For γ ∈ M(G) consider the corresponding central extension:

1 → Q/Z
i
→ G̃γ → G → 1,

and denote

Kγ := {h ∈ Q/Z | i(h) ∈
⋂

χ∈Hom( eGγ ,Q/Z)

ker(χ)}.

Then γ does not belong to B0(G) if and only if some element
of Kγ can be represented as a commutator of a pair of elements

of G̃γ [BMP, Cor. 2.4].
(5) If 0 6= γ ∈ M(G), we say that G is γ-minimal if the restriction

of γ to all proper subgroups H ⊂ G is zero. A γ-minimal group
must be a p-group. We say that a γ-minimal nonabelian p-group
G is a γ-minimal factor if for any quotient map ρ : G → G/H
there is no γ′ ∈ B0(G/H) such that γ = ρ∗(γ′) and γ′ is G/H-
minimal. A γ-minimal factor G must be a metabelian group
(i.e. [[G, G], [G, G]] = 0), with a central series of length at most
p, and the order of γ in M(G) equals p [Bo87, Theorem 4.6].
Moreover, if G is a γ-minimal p-group which is a central exten-
sion of Gab := G/[G, G] and Gab = (Zp)

n, then n = 2m and
n ≥ 4 [Bo87, Lemma 5.4].

2.3. Finite simple groups. We need the following facts concerning
finite simple groups (see, e.g., [GLS]) believing that the classification
of finite simple groups is complete.

(1) Classification. Any finite simple group L is either a group of
Lie type, or an alternating group, or one of 26 sporadic groups.

(2) Schur multipliers. As L is perfect, it has a unique covering

group L̃, and L ∼= L̃/ M(L). The Schur multipliers M(L) of all
finite simple groups L are given in [GLS, 6.1].
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(3) Automorphisms. The group of outer automorphisms Out(L) :=
Aut(L)/L is solvable. It is abelian provided L is an alternating
or a sporadic group. For groups of Lie type defined over a finite
field F the structure of Out(L) can be described as follows.

Every automorphism of L is a product idfg where i is an
inner automorphism (identified with an element of L), d is a
diagonal automorphism (induced by conjugation by an element
h of a maximal torus which normalizes L), f is a field auto-
morphism (arising from an automorphism of the field F ), and g
is a graph automorphism (induced by an automorphism of the
Dynkin diagram corresponding to L); see [GLS, 2.5] for more
details.

The group Out(L) is a split extension of Outdiag(L) :=
Inndiag(L)/L by the group ΦΓ, where Φ is the group of field
automorphisms and Γ is the group of graph automorphisms of
L. The group O = Outdiag(L) is isomorphic to the center of

L̃ by the isomorphism preserving the action of Aut(L) and is
nontrivial only in the following cases:

L is of type An(q); O = Z(n+1,q);
L is of type 2An(q); O = Z(n+1,q−1);
L is of type Bn(q), Cn(q), or 2D2n(q); O = Z(2,q−1);
L is of type D2n(q); O = Z(2,q−1) × Z(2,q−1);
L is of type 2D2n+1(q); O = Z(4,q−1);
L is of type 2E6(q); O = Z(3,q−1);
L is of type E7(q); O = Z(2,q−1).
If L is of type dΣ(q) for some root system Σ (d = 1, 2, 3),

the group Φ is isomorphic to Aut(Fqd). If d = 1, then Γ is
isomorphic to the group of symmetries of the Dynkin diagram
of Σ and ΦΓ = Φ × Γ provided Σ is simply-laced; otherwise,
Γ = 1 except if Σ = B2, F4, or G2 and q is a power of 2, 2, or
3, respectively, in which cases ΦΓ is cyclic and [ΦΓ : Φ] = 2. If
d 6= 1, then Γ = 1.

The action of ΦΓ on O is described as follows. If L 6∼= D2n(q),
then Φ acts on the cyclic group O as Aut(Fqd) does on the
multiplicative subgroup of Fqd of the same order as O; if L ∼=
D2n(q), then Φ centralizes O. If L ∼= An(q), D2n+1(q), or E6(q),
then Γ = Z2 acts on O by inversion; if L ∼= D2n(q) and q is odd,
then Γ, which is isomorphic to the symmetric group S3 (for
m = 2) or to Z2 (for m > 2) acts faithfully on O = Z2 × Z2.

(4) Decorations. It is often useful to consider groups close to finite
simple groups, namely, quaisimple and almost simple groups, as
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in the statements of Theorems 1.1 and 1.2 above. As an exam-
ple, if the simple group under consideration is L = PSL(2, q),
the group SL(2, q) is quasisimple and the group PGL(2, q)
is almost simple. More generally, one can consider semisim-
ple groups (central products of quasisimple groups) and nearly
simple groups G, i.e. such that the generalized Fitting sub-
group F ∗(G) is quasisimple. F ∗(G) is defined as the product
E(G)F (G) where E(G) is the layer of G (the maximal semisim-
ple normal subgroup of G) and F (G) is the Fitting subgroup
of G (or the nilpotent radical, i.e. the maximal nilpotent nor-
mal subgroup of G). The general linear group GL(n, q) is an
example of a nearly simple group.

3. Proofs

Proof of Theorem 1.1. As G is perfect, there exists a unique universal

central covering G̃ of G whose centre Z(G̃) is isomorphic to M(G) and

any other perfect central extension of G is a quotient of G̃. So we
can argue exactly as in [Bo87, Remark after Lemma 5.7] and [BMP].
Namely, B0(G) coincides with the collection of classes whose restriction
to any bicyclic subgroup of G is zero, see 2.2(1). Therefore, to establish

the assertion of the theorem, it is enough to prove that any z ∈ Z(G̃)

can be represented as a commutator z = [a, b] of some a, b ∈ G̃. More-
over, it is enough to prove that such a representation exists for all
elements z of prime power order, see 2.2(2).

It remains to apply the results of Blau [Bl] who classified all elements
z having a fixed point in the natural action on the set of conjugacy

classes of G̃ (such elements evidently admit a needed representation as
a commutator):

Theorem 3.1. ([Bl, Theorem 1]) Assume that G is a quasisimple
group and let z ∈ Z(G). Then one of the following holds:

(i) order(z) = 6 and G/Z(G) ∼= A6, A7, F i22, PSU(6, 22), or 2E6(2
2);

(ii) order(z) = 6 or 12 and G/Z(G) ∼= PSL(3, 4), PSU(4, 32) or
M22;

(iii) order(z) = 2 or 4, G/Z(G) ∼= PSL(3, 4), and Z(G) is noncyclic;

(iv) there exists a conjugacy class C of G such that Cz = C.

This theorem implies that the only possibility for an element of G of
prime power order to act on the set of conjugacy classes without fixed
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points is case (iii) where G̃/Z(G̃) ∼= PSL(3, 4) and z is an element of
order 2 or 4. So the classes γ ∈ H2(G, Q/Z) corresponding to such z’s
are the only candidates for nonzero elements of B0(G).

A more detailed analysis of the case PSL(3, 4) is sketched in [Bl,

Remark (2) after Theorem 1]. Namely, in that case Z(G̃) ∼= Z3 ×

Z4 × Z4. Of the twelve elements of order 4 in Z(G̃) exactly six fix

a conjugacy class of G̃. If z is one of the remaining six elements, we
consider y = z2. According to the same remark from [Bl], the only case
when a central element of order 2 in a quasisimple group does not fix
a conjugacy class is y acting on the conjugacy classes of the subgroup
G0 of index 2 in G̃. However, the action of y on the conjugacy classes

of G̃ has a fixed point, so y can be represented as a commutator in G̃.
By 2.2(4), the element γ ∈ H2(G, Q/Z) corresponding to z does not
belong to B0(G).

�

Remark 3.2. It is interesting to compare [BMP, Lemma 3.1] with a
theorem from the PhD thesis of Robert Thompson [Th, Theorem 1].

Proof of Theorem 1.2. Let L ⊆ G ⊆ Aut(L) where L is a simple group.
Clearly, it is enough to prove the theorem for G = Aut(L). The group
Out(L) = Aut(L)/L of outer automorphisms of L acts on M(L), and
since L is perfect, we have an isomorphism

(3.1) M(G) ∼= M(L)Out(L) × M(Out(L))

(see (2.1)).

Lemma 3.3. B0(Out(L)) = 0.

Proof of Lemma 3.3. We maintain the notation of Section 2.3. If
Out(L) is abelian, the statement is obvious. This includes the cases
where L is an alternating or sporadic group. So we may assume L is
of Lie type. If O = 1, i.e. L is of type E8, F4, or G2, the result follows
immediately. If the group ΦΓ is cyclic, the result follows because O
is abelian (see 2.3(3)). This is the case for all groups having no graph
automorphisms, in particular, for all groups of type Bn or Cn (n ≥ 3),
E7, and for all twisted forms. For the groups of type B2, the group ΦΓ
is always cyclic. It remains to consider the cases An, Dn, and E6. In
the case L = E6 all Sylow p-subgroups of Out(L) are abelian, and the
result holds. Let L = D2m(q). If q is even, we have O = 1, Γ = Z2 (if
m > 2) or S3 (if m = 2); in both cases the Sylow p-subgroups of Out(L)
are abelian, and we are done. If q is odd, we have O = Z2 ×Z2, and Φ
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centralizes O (see Section 2.3), so every Sylow p-subgroup of Out(L)
can be represented as an extension of a cyclic group by an abelian
group, and we conclude as above. Finally, let L be of type An(q) or
D2m+1(q). Then we have O = Zh, h = (n + 1, q − 1) or h = (4, q − 1),
respectively, Γ = Z2, Φ = Aut(Fq). The action of both Γ and Φ on O
may be nontrivial: Γ acts by inversion, Φ acts on O as Aut(Fq) does
on the multiplicative subgroup of Fq of the same order as O. Hence we
can represent the metabelian group Out(L) in the form

(3.2) 1 → V → Out(L) → A → 1,

where V , the derived subgroup of Out(L), is isomorphic to a cyclic
subgroup Zc of O, and the abelian quotient A is of the form Za×Zb×Z2

for some integers a, b, c. Since it is enough to establish the result for
the Sylow 2-subgroup, we may assume that a, b and c are powers of
2. Then the statement of the lemma follows from the properties of
γ-minimal elements described in Section 2.2. Indeed, if γ is a nonzero
element of B0(G) and G is γ-minimal, then G is metabelian, both V
and A are of exponent p, and in any representation of G in the form
(3.2) the group A must have even number s = 2t of direct summands
Zp with t ≥ 2. However, if G is the Sylow 2-subgroup of Out(L), this
is impossible because A contains only three direct summands. Thus
B0(Syl2(Out(L))) = 0, and so B0(Out(L)) = 0. The lemma is proved.

�

We can now finish the proof of the theorem. Let γ be a nonzero
element of B0(G). Using the isomorphism (3.1), we can represent γ as
a pair (γ1, γ2) where γ1 ∈ M(L), γ2 ∈ M(Out(L)). Restricting to the
bicyclic subgroups of G, we see that γ1 ∈ B0(L), γ2 ∈ B0(Out(L)), and
the result follows from Theorem 1.1 and Lemma 3.3. �
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