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Let F[G] be the group algebra of a polycyclic-by-finite 

group G over a field F. Then F[G] is a left and right 

Noetherian ring and it is well-known that F[G] has an Artinian 

ring of quotients, Q(F[G]) , which is obtained from F[G] by 

inverting the regular elements of F[G] . The composition length 

of Q(F[G]) is an interesting invariant of F[G] , usually 

called the Goldie rank of F[G] and written 

p(F[G]) 

In general, the explicit determination of p(F[G]) presents a 

formidable task. If G is finite, then Q(F[G]) = F[G] and 

the problem of finding p(F[G]) belongs to the realm of repre-

sentation theory. In another direction, a celebrated result due 

to Farkas, Snider, and Cliff [F-S],[C] asserts that if G is 

torsion-free then F[G] has no zero divisors or, equivalently, 

p(F[G]) = 1 . Beyond this, little is known for infinite 

polycyclic-by-finite groups G. It has been conjectured 
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([F],[Ro1]) that, in case G has no finite normal subgroups 

of < 1 > , the Goldie rank of F [G] is given by the formula 

p (F[G]) = Lc.m. {lUI I U is a finite subgroup of G} • 

The relevance of the assumption on G here stems from the fact 

that it is satisfied precisely when F[G] is a prime ring. The 

conjecture has been confirmed in a number of special cases 

([Ga-Ro],[Lo2],[Pa2],[Ro2]), but in general it is open at 

present. 

The r81e of GO(F[G]) , the Grothendieck group of the 

category of all finitely generated F[G]-modules , in this 

context is as follows. For any finitely generated F[G]-module 

v , the reduced rank of V is defined by 

p(V) = composition length of V0F [G]Q(F[G]) over Q(F[G]). 

Thus p(F[G]) is the reduced rank of the regular F[G]-module. 

Inasmuch as Q(F[G]) is flat over F[G], P defines an integer-

valued function on GO(F[G]) . Put 

and 

F = F(G) = {U I U is a finite subgroup of G} 

I I nd g GO (F [ U] ) 
UEf 

a ; AS 
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where is the usual induction 

homomorphism. Then GO(F[G])F is a subgroup of GO(F[G]) and, 

under certain special circumstances, one can in fact show that 

GO(F[G]) = GO(F[G])F (see Proposition 1.4 below). In general, 

however, the exact relationship between GO(F[G]) and GO(F[G])F 

is qUite unclear. Indeed, the above conjectural Goldie rank 

formula in the situation where F[G] is prime is equivalent to 

the equality 

(Corollary 1.3i below). We mention two partial results towards 

clarifying the structure of GO(F[G])/GO(F[G])F 

(a) If G is finitely generated abelian-by-finite, then 

GO(F[G])/GO(F[G])F is a torsion group, of exponent dividing 

[G : A]rank A for any abelian normal subgroup A having 

finite index in G ([Br-H-Lo, Theorem A]). 

(b) Let G again be an arbitrary polycyclic-by-finite group. 

Then for any normal subgroup N of G having finite index 

in G and such that F[N] has finite global dimension, one 

can define a map Y = YF[G],N : GO(F[G]) --> GO(F[G/N]) · 

In Proposition 4.4 below, we show that Y(~O(F[G])F) always 

has finite index in Y(GO(F[G]» . 

For further results along these lines see [Qu], in particular 

[Qu, Corollary 1.5c]. At present, no example seems to be known 
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In this article, we discuss a number of general techniques 

that are especially useful in dealing with GO(F[G]) for G 

polycyclic-by-finite, and hence for computing the Goldie rank 

p(F[G]) . In particular, we derive all major known partial 

solutions of the Goldie rank problem, as well as a number of new 

estimates of p(F[G]) as consequences of more fundamental 

results on GO(F[G]) . The general approach, namely via GO ' 

has been motivated by the work of Rosset ([ Ro f] , [Ro2] , [Ga- Ro] ) . 

We now outline the contents of this article. Section 1 is 

devoted to the normalized reduced rank function, X ,which was 

introduced in [Lo1]. This is a slight modification of the above 

reduced rank p which behaves especially well under restriction 

and induction. These "functoriality" properties of X very 

easily yield all basic divisibility results for p(F[G]) . Most 

of these are known, but the proofs presented here are new. The 

central theme in Section 2 is the cokernel of the Cartan map 

c : KO (F [G]) -> GO (F [G]) in the case where char F = P > 0 

We show that the exponent, e, of GO(F[G])/CKO(F[G]) is 

finite and divides the p-part of [G: N] for any subgroup N 

of finite index in G without elements of order p. Moreover, 

if F[G] is prime, then the p-part of p(F[G]) divides e 

(Proposition 2.2). As an application, we offer a slightly 

extended version of Passman's solution of the Goldie rank problem 

for "elementary abelian p-tops" in characteristic p (Theorem 2.5) . 

In Section 3, we describe the familiar decomposition map and. 

its basic features in a setting suitable for application to 
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polycyclic group algebras. This tool can be used to shed some 

light on the effect of varying t"he coefficient field F on 

p(F[G]) . It is still unclear, however, that p(F[G]) is in-

dependent of F whenever G has no finite normal subgroups, 

as it would be implied by the above explicit conjectural formula 

for p(F[G]) . Finally, in Section 4, we study certain maps 

YF[G],N: GO(F[G]) --> GO(F[G/N]) ,where N is normal of 

finite index in G and without elements of order p in case 

char F = P > 0 (cf. (b) above). This yields a somewhat technical 

upper bound for p(F[G]) in terms of the representations of 

suitable finite images of G which does at least imply the 

main result of [Ga-Ro]. The major part of this section elaborates 

on ideas from [Ga-Ro]. 

We have opted to work over coefficient fields throughout, 

although some of the results could easily be transferred to 

more general (commutative) coefficient rings. vTe hope that this 

helps to keep the technicalities in the exposition at a 

tolerable level. 

Aaaa.a .• au Z£ t ;;;CI ; 6. . 6 
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NOTATIONS AND CONVENTIONS,-_-

The following notations will be kept fixed throughout 

this article: 

F 

G 

F=f(G) 

f(G) 

wG 

PRor 

n p 

P 

is a commutative field, 

is a polycyclic-by-finite group, 

denotes the set of all finite subgroups of G, 

is the least common mul tiple of the' orders I U I , U E F (G) , 

is the augmentation ideal of the group algebra F[G] , 

denotes Goldie's reduced rank for R-modules 
(R a given Noetherian ring) , 

for a rational prime p , denote s the p-part of n € Z , 
i.eQ the largest p-power dividing n. 

All modules will be left modules. In general, we follow the 

notation of [Pa1] for groups and group algebras, and of [Ba1] 

for KO and GO . In particular, [V] denotes the element of 

(resp. KO(F[G]» corresponding to the finitely 

generated (projective) F[G]-module V. Furthermore, 

c : KO(F[G] --> GO(F[G]) will denote the Cartan map. Following 

[Sw] we put, for any family II of subgroups of G 

lInd g (Go (F [U] ) ) 
UEll 
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1. THE NORMALIZED REDUCED RANK 

For any finitely generated F[G]-module V, define the 

normalized reduced rank of V by 

X(V) = XF[G] (V) = p(V)/p(F[G]) 

Here, p = PF[G] denotes the reduced rank of F[G]-modules. 

Since p is additive on short exact sequences, the same is true 

for X which can therefore be viewed as a function on GO(F[G]). 

The following lemma describes· some basic properties of X in 

the case when F[G] is prime. 

LEMMA 1. 1 . Assume that F[G] is prime, and let H ~ G be 

a subgroup of finite index. 

i. For any finitely generated F[G]-module, 

XF[G] (V) 
-1 = [G: H] • XF[H] (V) 

ii. Let W be a finitely generated F[H]-module. Then 

PROOF. (i) is [Lo1, Lemma 7]. 

(ii). Choose a normal subgroup ·N of G having finite 

index in G and such that N ~ H . Then, by part (i), we have 

RAW.ARPP'; I .. i4i4",,;:P;4;U;P,WUiAJUh hS $1.( < 4""WI ;catn@"Jutii PAt' t ! 1 t At ¥ Lt Lt t, ( .Me.$ $ 
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XF[G] (F[G] ® F[H]W) 
-1 (x) = [G:N] .XF[N](~W ) , 

where x runs over a set of right coset representatives for 

H in G and W(x) is the x-conjugate module of W. As 

(x) 
XF[N] (W ) = XF[N] (W) for all x, we obtain 

-1 
= [G : N] • [G : H] • X F [ N] nv) = X F [ H] (W) 

Here, the latter equality again follows from part (i). (Note 

that F[H] is prime.) 

• 

The above definiton of X is taken from [Lo1]. Rosset [Ro1] 

works with a similar "Euler characteristic" which coincides with 

XF[G] in the case when F[G] is prime, but not in general. Let 

us quickly derive a number of standard facts about the relations 

between the Goldie ranks of F[G] and F[H] for subgroups 

H ~ G (cf. [Lo2, Lemma 1.. 1 ] ) . 

COROLLARY 1.2. Assume that F[G] is prime. 

i) Let H ~ G be a subgroup of finite index. Then 

P (F[H]) I P (F[G]) I [G: Hl • P (F[H]) 

In particular, p (F[G]) divides [G: H] for any torsion-free 

subgroup H ~ G of finite index. 
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ii) Let N ~ G be a torsion-free normal subgroup of 

finite index and let U ~ G be a finite subgroup. Set 

H = <N, U> ~ G • Then 

p(F[Hll = lui I p(F[Gll 

In particular, f(G) I p(F[G]) • 

PROOF. (i). Set r = p (F[G]) and s = p (F[H]) • If V is a 

finitely generated F[G]-module then, by definition of X 

s • XF[H] (V) is an integer. Thus Lemma 1.1 (i) implies that 

s • [G : H] • XF[G] (V) is an integer. Taking V with p (V) = 1 

we see that r Is· [G: H] . Similarly, if W is a finitely 

generated F[H]-module then, using Lemma 1.1 (ii), we get that 

r· XF[G] (F[G] ~F[H]W) = r· XF[H] (W) is an integer, whence 

sir • The last assertion follows from the Farkas-Snider-Cliff 

theorem [F-S],[C]. 

(ii). The group algebra F[N] is an F[H]-module via 

a.. ~ a. u = l: (eta) u (a.,a. E F[N)) ~Cf.- By_Lemroa_ 1.1 (i) , 
uEU u uEU u u---

XF[H] (F[N]) = IUI-
1

XF [N] (F[N]) = IUI-
1 

. On the other hand, 

XF[H] (F[N]) = PF[H] (F[N])/p(F[H]) and PF[H] (F[N]) = 1 , since 

F[N] is a domain by the Farkas-Snider-Cliff theorem. Therefore, 

p(F[H]) = lUI. 

• 



- 10 -

We remark that Corollary 1e2i is a special case of much 

more general "additivity principles" which relate the Goldie 

ranks of suitable prime factor rings of F[H] and F[G] 

For example, using the above notation, if Q is a prime ideal 

of F[H] and P1 , ... ,P s 

the induced ideal QG of 

are the ~inimal covering primes of 

F[G] (see [Lo-Pa] for the defini-

tion of induced ideals) ,then there are positive integers 

with 

s 
L Z.· p(F[G]/P i ) = [G:H]. p(F[H]/Q) 

i=1 ~ 

This can be proved using results of Warfield [W]. For details 

and further results along these lines see [Br-H-Lo]. 

In the next corollary, we give a number of equivalent 

formulations of the Goldie rank conjecture p(F[G]) = f(G) 

for prime F[G] • Recall that 

L Ind~ GO (F [U] ) 
UEF 

where F = F(G) is the set of finite subgroups of G. Since 

F falls into finitely many G-conjugacy classes ([Ma] or [S, 

Theorem 5 on p. 175]) and since each GO(F[U]) , UEF , is a 

finitely generated free abelian group, it follows that 

GO(F[G])F is a finitely generated subgroup of GO(F[G]) 

Note also that the factor group GO(F[G])/GO(F[G])F + KerX is 

certainly a finite cyclic group whose order divides p(F[G]) 

. ! 
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(because [F[G]] E GO (F[G] )f) • Part (i) of the next corollary 

shows that the Goldie rank conjecture, for F[G] prime, holds 

precisely if the above factor group is trivial. 

COROLLARY 1.3. Assume that F[G] is prime. 

i) The following are equivalent: 

(a) p(F[G]) = f(G) ; 

(b) The function f(G) ,. XF[G] on GO(F[G]) is integer-valued; 

(c) GO(F[G]) = GO(F[G])F + KerXF[G] 

ii) (Reduction to "p-tops" [Lo2],[Ro2])'. Fix a normal sub-

group N of G having finite index in G. For each prime p 

let G ~ G denote the inverse image in p- G of a Sylow p-subgroup 

of GIN • Then 

p(F[G]) = p(F[N]). np(F[G ])/p(F[N]) 
p p 

In particular, if p(F[G
p

]) = f(Gp ) holds for all primes p , 

then p (F [G ]) = f (G) . 

PROOF. (i). (c) ~ (b): Let U E F , let· M be a finitely 

generated F [U ]-module, and set . V = F [G] ® F [U]M . We show tha t 

-1 . 
XF [G] (V) = I U I • dJ.m F M which will clearly prove (b). Choose 

a torsion-free normal subgroup N of finite index in G and 

set H = <N,U> and 

XF [G] (V) = XF [H] (W) 

W = F [H] ® F [U]M . Then, by Lemma 1. 1 , 

-1 = I U I XF [N] n·n . But 

MAMkA_WAWa"." ; ilt, 14 '04. hO . WWii • 
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dim F M 
F[N] = F[N] 

and so XF [N] (W) = dim F H. , as required 0 

(b) ~ (a) : (b) says that p(F[G]) divides f(G) , so 

equality must hold in view of Corollary 1.2ii. 

(a) ~ (c) : If f denotes the p-part of f = f (G) , then 
p 

there exists U E F (G) with IUpl = f . Choose integers z 
p p P 

with I: z f/f = 1 and I: 
G 

set a = z • Indu ([ F]) E GO (F [G] ) F 
P P P P P P 

, 

where F denotes the trivi~l one-dimensional F[U ]-module. Then 
. p 

the formula established in the proof of (c) ~ (b) above shows 

-1 -1 
that XF[G](al : ~ zp. IUpl : f . Thus (al implies that 

XF[G] (GO(F[G])) = <XF[G] (a» = XF[G] (GO(F[G])F) 

(ii). By Corollary 1.2i, p(F[G])/p(F[N]) and each 

p(F[G ])/p(F[N]) are integers, the latter is a p-power, and 
p 

p (F[G]) 

p(F[N]) 

p(F[G ]) 
p 

p(F[N]) 
• [G: G ] 

P 

We conclude that p(F[G ])/p(F[N]) is the p-part of 
p 

p(F[G])/p(F[N]) which proves the formula for p(F[G]) · 

An analogous argument, based on [L02, Lemma 1.2] instead 

of Corollary 1.2i, shows that f(G) = f(N)· nf(G )/f(N) . The 
p p 

last assertion follows from this. 

• 
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Part (ii) of the above corollary together with the 

Farkas-Snider-Cliff theorem can be used to show that, for F[G] 

prime, p(F[G]) and f(G) have the same prime divisors. To see 

this, fix a torsion-free normal subgroup N of finite index 

in G and, for each prime p , define G ~ G as in the 
p 

corollary. Then, as we have seen, P(F[Gp ]) is the p-part of 

p(F[G]) (this uses the Farkas-Snider-Cliff theorem for F[N] 

and f(G) is the p-part of f(G) . But, by the Farkas-Snider­p 

Cliff theorem again, f(Gp ) = 1 implies p(F[Gp ]) = 1 and 

so all primes dividing p(F[G]) must also divide f(G) . The 

converse is clear, by Corollary 1.2ii. 

We now show that a much stronger statement than (c) in 

Corollary 1.3i above holds for the very special class of finite-

by-poly-(infinite cyclic or infinite dihedral) groups, i.e. 

groups G having a finite subnormal series 

< 1 > <3 G 0 ~ G 1 ~ · • · ~ G s = G with . GO finite and G./G. 1 
~ ~-

infinite 

cyclic or infini te dihedral (i ~ 1) • By a resul t of Formanek 

[Fo], all finite-by-supersolvable groups are of this form. Our 

proof follows the lines of [R02, proof of Theorem (0.3)] and 

ultimately rests on results of Waldhausen [Wale 

PROPOSITION 1.4. It G is finite-by-poly-(infinite cyclic or 

infinite dihedral), then GO(F[G]) = GO(F[G])F (In particular, 

the Goldie rank conjecture holds for prime supersolvable group 

algebras [L02],[R02].) 

LiQ£U •• MStZL _d . JQAlUA,WUUA ; ; 
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PROOF. We argue by induction on the Hirsch number h(G) of 

G (= s in the above subnormal series), the assertion being 

trivial for h(G) = 0 ,iee. G finite. If G is infinite then 

G has a normal subgroup N such that GIN is either infinite 

cyclic or infinite dihedral. In the former case, it follows from 

[Wa, Proposition 4.1] or [Q, Exercise on p. 122] that 

Ind~ : GO(F[N]) --> GO(F[G]) is surjective. By induction, we 

know that GO(F[N]) = GO(F[N])F(N) and so the corresponding 

equality follows for F[G]. 

If GIN is infinite dihedral we can write G = G
1 

*N G
2 

with G. IN cyclic of order 2 (i = 1 ,2) • The group algebra F[G] ]. 

is a free product viith aMalganc::.tion, F[G] == F[G
1

] *F[N] F[G
2

] 

and [Wa, Proposition 4.1] again implies that the map 

Ind: GO(F[G1 ]) @GO(F[G2 ]) -> GO(F[G]) is surjective. The 

induction hypothesis again yields the result. 

For G finitely generated abelian-by-finite, the main 

result of [Br-H-Lo] asserts that 

periodic, of exponent dividinq 

GO(F[G])/GO(F[G])F 
rank A [G : A] , where 

is any abelian normal subgroup of finite index in G. 

is 

A 

• 
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/\ 
2. THE ROLE OF PROJECTIVE MODULES IN CHARACTERISTIC P 

In this section, we study the structure of the cokernel of 

the Cartan map c: KO(F[G]) --> GO(F[G]) . Of course, this is 

of interest only when char F divides f (G) , because other-

wise F[G] has finite global dimension and c is an isomor-

phism. Thus the ground field F will always have characteristic 

Furthermore, we will use the following 

NOTATION. For any family U of subgroups of the group G 

define P(U) sGO(F[G]) to be the subgroup of GO(F[G]) gene­

rated by all [V] with V a finitely generated F[G]-module 

such that V I F [U] has finite homological dimension for all 

U E U or, equivalently, by all [V] wi th V I F [U] projective 

for all U E U . If U consists of a single subgroup U, we 

also write P(U) instead of P(U) • 

REMARKS. (1) Clearly, P (U) contains c KO (F [G]) = P (G) , and 
.-

_li_-all U E U have finite index in G, then P (U) is contained in 

R(U) := kernel of GO (F[G]) Res> E9 GO (F[U]) /CKO (F[U]) 
UEU 

The incl us ion P ( U) ~ R (U) is proper in general. For example, 

if G is cyclic of order pn (n > 1 ) and U ~ G is cyclic of 

order p, then P(U) = CKO(F[G]) = <[F[G]]> , so 

GO(F[G])/P(U) ~Z/pnz , but 

, I 

, i 
I 
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Go (F [ G] ) / R (U ) = GO (F [ U] ) / c K 0 (F [ U]) = z / pZ . Another, pe r ha p s 

more interesting example is given by 

H = <x, y I z : = [x, y ] is central, xP = yP = 1 > , 

the non-abelian group of order p3 and exponent p $ One easily 

checks that GO(F[H])/P«z» ~ z/p2z , whereas 

GO(F[H])/R«z» - Z/pZ e On the other hand, 

GO(F[H])/P«x» - GO(F[H])/R«X» = Z/pZ so that 

P«x» = R«x» . Further examples with P(U) = R(U) can be 

obtained from Lemma 203 below. 

(2) Let V be an F[G]-module. Then, by a theorem of Serre 

([Se3], cf. also [Pa2, Proposition 1]), V has finite homolo­

gical dimension if and only if V\F[U] is projective for all 

U E f = f (G) . !-1oreover, by Chouinard I s theorem [Ch], V is 

projective over F[U] if and only if vIF[A] is projective 

for. all elementary abelian p-subgroups A of U (p = char F) . 

Therefore, if U is any family of subgroups of G which is 

closed under taking subgroups and 

UfO 
~n 

Up-el.ab 

u* 

then 

= {U E U I u is f ini~te } , 

= {U E Ufin U 

p-group} , 

= {V ~ G I all 

p-subgroups 

p (U) = P (U
f

. ) 
~n 

is an elementary abelian 

and 

finite elementary abelian 

of V belong to U } 
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In particular, 

c KO (F [G]) = P (F) = P (f' p-el.ab) 

(3) Let H bea finite group and let II be a family of 

subgroups of H which is closed under taking subgroups and 

consists of p-groups OVLOG) • If ElF is an algebraic 

pI-extension (i.e. each finite subextension has pI-degree), 

then identifying GO(F[H]) with its image in GO(E[H]) under 

the scalar extension map (cf. [Se1, Sec.14.6]), we have 

P
F 

(ll) = GO (F [H]) n P
E 

(ll) 

with the obvious notation P F (.) and PE (.) . Indeed, we may 

clearly assume ElF to be Galois. Then each fin. gen. E[H]-

module V has the form V = E ®L V 0 for some f ini te Galois 

subextension L/F of ElF and some L[H]-module Vo . Moreover, 

setting 
1\ 
U = L uEF[U] (UE ll) we have 

uEU 

VIE[U] 
1\ 

IUI- 1 is ·free <=> di~ U·V = di~V 

1\ 
IUI- 1 

<==> dimL U·V = dimL Vo 0 

<==> VOIL[u] is free 

This shows that each a E PE (ll) is contained in P
L 

(11) for 

some finite Galois subextension L/F of ElF, and so we may 

assume that ElF is finite Galois. Set r = Gal(E/F) and, 

nthfH~ 
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for any fin. gen. E[H]-module V set V = m vcr , where vcr 
a E r 

is the a-conjugate module of V " Then V ~ E ~ V' 
F 

with VI 

denoting the restriction of 

E [U] (U E U) , then each vcr 

V to F[H] G If V is free over 

is free over E[U] and hence 

so is V. As we have just seen, this implies that VI is free 

over F [U] . Now let a. E GO (F [H]) n PE (U) be given and write 

with fin. gen. E[H]-modules V . 
.1. 

which 

are free over E [U] for all U E U . Then, under the action 

of r on GO(E[U]) , we have 

Thus Irl annihilates the group X:= GO(F[H]) n PE(U)/PF(U) 

so that X has pi-order. On the other hand, X is a subgroup 

(cf. Lemma 2.1 below) , whence 

X must be trivial, as we have claimed. 

The first lemma is a refinement of Brauer's well-knowri 

theorem that, for finite groups, the determinant of the Cartan 

map is a power of p = char F (cf. [Se1, Theoreme 35], for 

example) . 

LEMMA 2.1. Let char F = P > 0 , let H be a finite group, and 

let U be a family of subgroups of H which is closed under 

conjugation and taking subgroups. Then P(U) is an ideal of 

GO(F[H]) and GO(F[H])/P(U) is a finite p-group. Its exponent 

satisfies 

. I 
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exp (GO (F [H] ) /p (U) ) I [H: N] 
. P 

where N is any subgroup of H with p J INn U I for all 

U E U • 

PROOF. Clearly, P(U) is an ideal of GO(F[H]) with 

CKO(F[H]) cP(U) . The fact that GO(F[H])/P(U) is a finite 

p-group now follows from Brauerl,s theorem. Moreover, if U E U 

is a p-group, then restriction yields a surjection 

GO(F[H])/P(U) -» GO(F[U])/CKO(F[U]) ~ z/Iulz . Inasmuch 

as P(U) = P(U*) , this establishes the lower bound for the 

exponent of GO(F[H]/P(U» . It remains to check the upper bound. 

Let X (p) denote the set of subgroups X ~ H which are 

semidirect products of the form X = C ~ P with C a cyclic 

pi-group and Pap-group. Then, by [Se1, Theoreme 28, cf. 

also the proof of Theoreme 39], 

a finite pi_group. Since GO(F[H])/P(U) is a p-group, it 

follows that GO(F[H])X(p) maps onto GO(F[H])/P(U) . Now, 

for any subgroup N ~ H , write 

unN= {unNluEU} = {uEuluSN} 

Then it is easily seen, using Mackey decomposition, that 

H IndN maps p(UnN) to P(U) . Therefore, GO(F[H])/P(U) is 

an image of ED GO (F [X] ) /p (U n X) , and so we may assume that 
XEX (p) 
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H has the form H = C ~ P ,where C is a pi-group and P a 

p-groupe But, in this case, GO(F[H])/P(U) is a module over 

GO (F [P]) /p(lln P) via inflation and ®F ' because inflation 

from P to H maps P (U n P) to P (U) .and· P (U) is an ideal 

of GO (F[H]) This shows that the exponent of GO(F[H])/P(U) 

divides the exponent of GO (F[P]) Ip (U n P) f thereby reducing the 

problem to the case where H is a p-group.. Finally, if N;£ H 

satisfies N n U = {<1 >} ,then consider V = Ind: (F) ,where 

~ is the trivial F[N]-module. We have [V] EP(U) and 

di~V = [H: N] . Therefore, GO(F[H])/<[V]> == Z/[H: N]Z maps 

onto GO(F[H])/P(U) which completes the proof of the lemma. 

• 

We now apply the above to group algebras of polycyclic-by-finite 

groups G .. 

PROPOSITION 2.2. Assume that char F = P > 0 .. 

i. GO(F[G])/cKO(F[G]) is a torsion group of finite 

exponent dividing [G: N]p ,where N is any subgroup of 

finite index in G with p ~ f (N) . 

ii. If F[G] is prime, then the group 

Go (F [ G ] ) I c K 0 (F [ G ]) + Ker XF [ G ] is cyclic of order p(F[G]) • 
p 

PROOF. (i) Let M be any normal subgroup of finite index in 

G , let G --> G/M denote the canonical map, and let U be 

...... Z .. ~.k~. ~ ................ ----~------------------------------------------~ 
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any family of subgroups of G. Then, viewing GO(F[G]) as 

a module over GO(F[G]) via inflation and ®F ' it is straight­

forward to check that 

P (M n U) · P (U) c P (U) 

He re , H n U = {!-1 nul u E U } and U = {U I U E U} • In particular, 

exp(GO(F[G])/P(U» I exp(GO(F[G])/P(Mn U» • exp(Go(F[C;])/P(U» . 

Now take N as in part (i) above and set M = n NX. Then 
xEG 

GO(F[G]) = p(MnF) and CKO(F[G]) = P(F) , by Serre1s theorem, 

and so it suffices to quote Lemma 2.1, with H = G and N = N , 

to finish the proof of (i) . 

(ii). Let N be a normal torsion-free subgroup of G 

having finite index in G and, for each prime q, define 

G ~ G to be the preimage of a Sylow q-subgroup of G/N. Then 
q 

induction yields an epimorphism 

m GO(F[G ])/KerXF[G ] .-»GO(F[G])/KerXF[G] 
q q q 

To prove surjectivity, choose integers z with 
q 

1: z · [G : G ] = 1 • Then, for each a. E GO (F [G]) , Lemma 1. 1 
q q q 

implies 

( 
G G ) = XF [ G] 1: z · Ind G Re s G ( a. ) 

q q q q 
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which proves surjectivity. Therefore, induction also yields 

an epimorphism 

(9 GO (F [ G q]) -> > GO (F [ G] ) 
q 

where we have set GO(F[G]) = GO(F[G])/CKO(F[G]) + KerXF[G] 

and similarly for Gq • By our above remarks, GO(F[Gq ]) is 

trivial for all primes q f. p so that GO (F[Gp ]) maps onto 

GO(F[G]) • Moreover, since 
l' .. z 

cyclic of order at most p(F[G ]) = p(F[G]) . We claim that 
p p 

XF[G ](P) E Z holds for every finitely generated projective' 
p 

F[Gp]-module P. Indeed, by Lemma 1.1i and [L01, Proposition 8], 

we have 

XF[G ] (P) 
P 

. -1 1 
= [Gp : N] • XF[N] (P) = [Gp : N]- • dim F HO (N,P) · 

Here, HO(N,P) = P/(wN)P is projective and hence free over the 

local ring F[Gp/N] . Thus dimFHO(N,P) is divisible by 

[Gp : N] , as required. This proves that GO (F[Gp ]) is cyclic 

of order precisely p(F[G]) . It remains to check that p 

GO(F[G]) is isomorphic to GO(F[Gp ]) . For this, we show that 

the map GO(F[G]) --> GO(F[Gp ]) given by restriction is sur­

jective. For a. E GO (F [Gp ]) we have, by Lemma 1. 1 , 

X F [G 1 ( Re s ~ Ind ~ (Cd) = 
p p p 

[G: G ] XF[G ] (cd 
p p 
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whence 

G G 
[G : G ] a. - Re s G Ind G (a. ) E Ker X F [ G ] 

P P P P 

Letting a. denote the image of a in GO(F[Gp ]) and using 

the fact that multiplication by [G : G ] 
P 

is bijective on 

- [ ] -1 G d G (-;::;) a. = G: Gp Re s G In G u-

p P 

G 
= Res G 

p 

G This proves surjectivity of the map Res G : GO (F[G]) ->GO (F[Gp ]) 
p 

and thus completes the proof of the proposition. 

COROLLARY 2.3. (of proof). Let char F = P > 0 and assume that 

F[G] is prime. Then P(F[G])p divides the exponent of 

GO(F[G])/P(f) ,where G = GIN is any finite image of G with 

p r f(N) ,and F = {UN/N I UEf(G)} . 

PROOF. By part (ii) above, P(F[G])p divides the exponent of 

GO (F [G]) I c KO (F [G]) which in turn, by the proof of part (i), 

divides the exponent of GO(F[G])/P(f) 

Presumably the bound [G : N] in Proposition 2.2i can be 
p 

improved to f(G) . In view of part (ii) of the proposition, 
p 

MMRAAAA' P;) j F tJUfAA4P. Ajij@".j PI"I 

• 

• 
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this would prove the equality p(F[G]) = f(G) for p p 

char F = P > 0 II It would also prove the Goldie rank conjecture 

for any prime group algebra F[G] with charF = 0 (Corollary 

1.3 ii and Corollary 3.3 ii below). By [Se, Theoreme 35], the 

image of GO(F[G])f in GO(F[G])/CKO(F[G]) does indeed 

have exponent f(G)p. 

We now apply the techniques developed so far to derive 

a slightly polished version of Passman's solution of the Goldie 

rank problem for "elementary 'abelian p-tops in characteristic pIt 

[Pa2] . The following lemma is an interpretation in terms of GO 

of Lemma 4 in [Pa2]. For the reader's convenience, we sketch 

the argument. For brevity, any subgroup of the group H which 

has a normal complement in H will be called a splitting 

subgroup of H. 

LEMr .. 1A 2. 4 • Let F be a field with char F = P > 0 and let H 

be a finite group. Let U ~ H be an abelian p-subgroup of H 

which is a splitting subgroup of H and let U denote the 

set of all splitting subgroups of H which are isomorphic to 

U • The n GO (F [ H]) • I u I s; P ( U ) • 

PROOF. By Remark (3) above, we may assume that F is 

infinite. Note that 

an affine space over 

Sylow p-subgroup of 

we get 

H := Hom(H,1 + wU) has the structure of 

F . Indeed, letting' (Hab)p denote the 

H
ab = H/ [H,H] and writing (H

ab ) = ~ <h. > 
P i=1 ~ 
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((Hab ) 
s 

H - Hom , 1 + wU) - n Hom « h. > , 1 +w U) 
P i=1 

]. 

s s 
- n (1 +wU)o(h.) - n (wU) 0 (h. ) (as sets) 

i=1 ]. i=1 ]. 

Here, o (h. ) denotes the order of h. and, for each n~O , 
]. ]. 

(1 + WU)n = {aE 1 +wU I n 1 } (wU) = {aE wU I a. 
n O} As a. = , = . n 

o (h. ) is a p-power, (wU)o(h.) is an F-vector space (even an 
]. 

]. 

ideal of F [U] ) , and so H - Fm for some m , by selecting 

bases for the (wU)o(h.) . Viewing H as a subset of 
]. 

Hom F 1 (F[H] , F[U]) , one checks that for each aEF[H] 
~a g 

the set V (a.) = {cr E H I cr (a) = O} is Zariski-closed in H . 
Moreover, if X E U then there exists a homomorphism 

cr : H --> U which is an isomorphism when restricted to X. 
A 

Therefore, writing X = 2 x E F[X] as usual, we see that 
A A AX E X A 

cr (X)·· = U * 0 so that V (X) * H • Since F· X is the unique 

smallest ideal of F [X] , each 
A 

aEH\V(X) yielGs ~ ~o~omorphism 

F[H] --> F[U] whose restriction to F[X] is an isomorphism, 

thereby making F[U] an F[H]-module which is free over F[X] . 

Moreover, 'in GO(F[H]) we have [F[U]] = lui · [F] ,where F 

is the trivial one-dimension F[H]-module. Finally, since F 

is infinite and there are only finitely many X E U , we can 
A 

s e 1 e c t cr E H \ U V (X) , sot ha t [ F [ U] ] E: P (U) v i a cr. 
XEU 

The lemma now follows from the fact that P(U) is an ideal 

and [F] is the identity of the ring GO(F[H]) 

."AS' ant i;;"'""'" "'''';;'"'- I. Pffi4PiJ4WAW4P.M." •• " A'. i4j'Jt . c' ;;W;;;S;1 

• 

·r I ttwilli 
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THEOREM 2.5. (cf. [Pa2])" Let F be a field with 

char F = P > 0 and assume that F [G] is prime .. Assume further 

that G has a normal subgroup N of finite index such that 

p ~ .f (N) and the Sylow p-subgroup of GIN is 'abelian, of 

exponent e p . If m = max rank U , 
U 

where u runs over the 

finite elementary abelian p-subgroups of G, then 

In particular, if e = 1 , i.e. if the Sylow p-subgroup of G 

is elementary abelian, then p(F[G]) = f(G) . 
p p 

PROOF. Using Corollary 1.3 ii, we immediately reduce to the 

case where G = GIN is a finite abelian p-group of exponent 

pe 

Embed G into an abelian group of the form H = (Z/peZl r 

for some r ~ m and let U denote the set of all subgroups of 

H which are isomorphic to (Z/peZ)m. These are all direct 

summands of H .. Moreover, if F = {uN/N I U a finite p-subgroup 

of G} then, for all U E f , there exists U E U with U ~ U . 

Therefore, Res ~ : GO (F[H]) -> GO (F[G]) maps P (U) to P (F) .. 

By Lemma 2.3, we conclude that p em · [F] E P (f) and so 

divides pem. Finally, Corollary 2.3 implies that p(F[G]) p 

if 1 then clearly m 
f(G)p e = p = , and this divides 

P (F [G] ) p , by Corollary 1 .2 ii. 

• 
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3. THE DECOMPOSITION ¥~P 

The decomposition map is a basic tool in representation 

theory of finite (or algebraic) groups (cf. [C-R, §16]). In 

this section, we describe some of its basic features in a 

setting suitable for application to polycyclic group algebras. 

The following notations will be kept fixed: 

A is a discrete valuation ring with maximal ideal m= (rr) , 

k. = Aim is the residue field of A , and 

K = Fract(A) is the field of fraction of A . 
R1 will be a (left) Noetherian A-algebra which is 

torsion-free over A , 

R = K ®A R1 , so R1 ~R and 

R1 = k. ®A R1 = R1/mR1 

Consider a finitely generated R-module V . Then V contains a 

finitely generated R1-submodule V1 such that V = K · V1 

(e.g. , if V = L R v. 
l. 

then one can take V1 = L R1 vi ) . Such 

a V1 is called an ~1-form of V . The proof of the first 

proposition follows traditional lines, except for minor modi-

fications caused by the extra bit of generality in our 

assumptions. 

PROPOSITION 3.1. Let V be a finitely generated R-module and 

let V 1 be an R1-form of V. Then the element [\71] t GO (R1 ) 

corresponding to V 1 = V 1 Imv 1 ~ k. ®A V 1 does not depend on the 

choice of the particular R1-form V1 of V. The map 
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is a well-defined homomorphism 5 

m 
PROOF. Suppose that V

2 
= \' R

1
W

J
. 

j ~1 
is another R1-form of V. 

Then, since V
2 

~ V = K II V1 ' there are finitely ~any v £ f V1 

and ~£j f K with 

(j = 1, .•. ,m) 

Choose a cornmon denominator a E A for all ~ £j 's so that 

a - ~£j fA for all £ and j • Then aW j fV 1 for all j and 

so a - V 2 ~ V 1 • Similarly, one finds b E: A with b - V 1 S V 2 c 

n 
Thus V12 a " V

2 
2.ab - V1 = m V

1 
' where n is chosen so that 

abA = mn . Now V is certainly torsion-free over A, being 

a K-vector space, and so V
2 

and a-V 
2 

are isomorphic 

R1-modules. Thus, in order to show that [~2] = [~1] holds in 

by a-V 
2 

and thus assume that 

We argue by induction on n . First suppose that n = 1 and 

set T = V1/V2 • Then T is a finitely generated R1-module, and 

we have an exact sequence of finitely generated R1-modules 

o -> T .:2!:.> ~ 2 = V 2/ rr - V 2 -> V 1 = V 1 / rr - V 1 -> T -> 0 · 

[T] - [\72] + [~1] - [T] = 0 , whence 

---
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I"V I"V n-1 
[V 2] = [V 1] · If n > 1 , then set V 3 = m V 1 + V 2 . Then 

n-1 V3 is an R1-form of V with V1 =:?'V3 =:?m V1 and 

V3 ~V2 ~ mV3 

[V 1] = [V 3] = 

By induction, we conclude that 

Now let 0 --> U --> V Jl> w --> 0 be an exact sequence 

of finitely generated R-modules and choose an R1-form V1~V 

of V 0 Then, clearly, W1 = ~(V1) is an R1-form of W. 

Also, U1 = U n V1 is finitely generated over R1 ' since R1 

is Noetherian, and 

so is an R1-form of U • Finally, since W 
1 

is torsion-

free and hence flat over A, the exact sequence 

o --> U
1 

--> V1 --> W
1 

--> 0 remains exact under tensoring 

with k.®A (.) · This shows that [\71] = [01] + [W1 ] holds in 

GO(R1 ) · Therefore, the map [V] ~> [\71] 

phism GO(R) --> GO(R1) · 

defines a homomor-

The homomorphism d: GO(R) --> GO(R1) constructed above 

is called the decomposition map. 

The foregoing applies in particular to group algebras of 

polycyclic-by-finite groups. It is routine to verify that, for 

any subgroup H of G, the following diagram commutes: 

• 

- iAAWPPPUWiJ Ph' 'WP'Jq!i!iiWJ,iidi¥jQA;:..t , ., L@M."WWWD.;;apUC#C$2404,(4 4 t hi ; . 4 ij 
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GO(K[H]) 
d 

> GO(k[H]) 

G 
Ind H 

G 
Ind H 

'i/ 'i/ 

GO(K[G]) 
d GO (k[G]) > 

Since, for all U E f = f (G) , the decomposition map 

GO(K[U]) --> GO(k[U]) is onto if K is complete 

[Se , Theorem 33] , we conclude in particular that 

= GO(k[G])f (K complete) 

An analogous commutative diagram exists for G 
Res H ' H ~ G a 

subgroup of finite index. 

LE~MA 3.2. Assume that G has no finite normal subgroups 

*<1> • Then the following diagram commutes: 

Go (K[G]) d 
> GO (k[G]) 

x~ ~Gl 
Q 

In-particular, p(K[G]) I p(k[G]) . 

PROOF. Using the fact that, for H ~ G of finite index, the 

decomposition maps commute with G 
Res H in connection with 



- 31 -

Lemma 1.1 (i), we immediately reduce to the case where G is 

poly-Z . But then the "twisted Grothendieck theorem" 

[Q, Exercise on p.122] or [Fa-H, Theorem 27] implies that 

GO(K[G]) is generated by [K[G]] . Finally, d([K[G]]) = [keG]] 

and X[G] (k[G]) = 1 = XK[G] (K[G]) . This shows that the diagram 

commutes. The remaining assertion is obvious from the definition 

of X. 

COROLLARY 3.3. Assume that G has no finite normal subgroups 

*<1> • 

i. p(F[G]) I p(E[G]) for some finite extension E of the 

prime subfield of F. Consequently, if the Goldie rank conjec-

ture holds for all E[G] where E is a finite extension of 

the prime subfield of F, then it also holds for F[G] 

ii. Let p be a rational prime and assume that 

charF = 0 . Then p(F[G]) I p(E[G]) holds for some finite 

field E with char E = p. In particular, if the Goldie rank 

conjecture holds for all E[G] ,where E is a finite field 

of char p, then it also holds for all F[G] with 

char F = 0 [Ro 2 ] . 

PROOF. (i). We may assume that F is finitely generated over 

its prime subfield FO ,because p(F[G]) = p(F'[G]) for some 

finitely generated subextension F'/Fo of FIFo. (Consider 

the F-coefficients of the generators in a direct sum of nonzero 

• 
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right ideals of maximal length in F[G]). In order to apply 

Lemma 3.2, we only have to exhibit a discrete valuation of F 

whose residue field is a finite extension of FO . For this, 

let F1~ FO be a purely transcendental subextension of FIFO 

such that F/F1 is finite and let FO((T)) be the field of 

Laurent power series over FO . Then FO((T)) has infinite 

transcendence degree over FO and so the embedding 

F 0 S F 0 ( (T) ) extends to an embedding of F 1 into F 0 ( (rr)) c 

Now FO((T)) has a discrete valuation, the "order valuation", 

with valuation ring FO [[T]] and maximal ideal rr· F 0 IT T]] . 

By. restriction, this yields a discrete valuation of F 1 with 

residue field FO . Finally, v extends to a discrete valuation 

Vi of F with residue field a finite extension of FO ' as 

required. 

(ii). As above, it suffices to show that every finitely 

generated field extension of Q has a discrete valuation with 

residue field a finite field of char p. The existence of such 

a valuation is well-known [MacL] . 

It would be interesting to know whether or not the decom­

posi tion map cL: GO tI~-[G]) -> GO (k. [G] ) is surjective for 

(K,A,R) as above, with K complete of characteristic 0 and 

char k. = p > 0 • Since the image of d contains GO (R[G]) f 

d is of course surjective whenever GO(R[G]) = GO(R[G])f 

II 

---. i 

.& as , 4 "'fI!-
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We close this section with a characteristic 0 version 

of Theorem 2.5, also due to D.S.Passman. 

THEOREM 3.4. (Passman [Pa2]). Let F be a field of characte­

ristic 0 and assume that F[G] is prime. If G has a normal 

subgroup N of finite index with p t f(N) and such that the 

Sylow p-subgroup of GIN is elementary abelian, then 

P(F[G])p = f(G)p . 

PROOF. This follows from Theorem 2.5 and Corollary 3.3ii. 

ai, _ ~A~:PJQ4Ji'~th" iJMi4PAA""'PIh " , i , iN4J;WA!$iI)SZpa4MJM4A""W,UAili""";'h fA.';; " 4 ""'*"_" ( ' ~ , , 

• 

" 
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4. FACTORING OUT TORSION-FREE NOru~L SUBGROUPS OF FINITE INDEX 

Throughout this section, N denotes a normal subgroup of 

G such that 

char F ¥ f (N) or, equivalently~ gl.dim F[N] < co 

(cf. [Pa 1, Theorem 10. 3 . 13 ] ) . The canonical map 

F[G] -.-> F[G/N] extending the group homomorphism G,--> G/N 

will be denoted by . We also set 

F = {U I UEf = F(G)} 

Our main interest will be in the case when N is torsion-free 

and has finite index in G. 

Since F[N] has finite global dimension (equal to the 

Hirsch number h(N) of N), any F[G]-module V satisfies 

F[G] ~ F[G] F[N] 
Torn ' (FLG] ,V) = Torn (F[G] ®F[N]F,V) == 'Ibrn (F,V) = Hn (N,V) = 0 

for all sufficiently large n. This allows us to define a 

homomorphism 

Y = YF[G],N : GO (F[G]) --> GO (F[G]), [V] 1-> l (-1) i[H. (N ,V)] 
i~ 0 1. 

(cf. [Ba1, p.454]). For example, if VIF[N] is projective, 

TI 

I 

I 

I 
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then H. (N, V) = 0 for all i > 0 and so y ( [V]) = [V / (wN) V] • 
1 

In particular, if F[G] itself has finite global dimension 

(i.e. char F % f (G)) , then GO (F[G]) == KO (F[G]) and y reduces 

to the canonical map KO(F[G]) ---> KO(F[G]) Cartan> GO(F[G]) . 

In this s-ection, we describe some properties of the map y • 

The connection of y with (normalized) Goldie ranks is 

explained in the following lemma. 

LEMMA 4.1. Assume that F[G] is prime and that N is 

torsion-free and has finite index in G. Then, for any finitely 

generated F[G]-module V, 

XF[G] (V) 
-1 = [G: N] • d imF 0 y:? [ G] ,N ( [ V] ) 

PROOF. This is part of [L01, Corollary 9]. 

• 

In the next lemma, we collect some elementary properties 

of the map y. 

LEMMA 4.2. i. If N is finite, then y is onto. 

ii. Let H ~ G be a subgroup of G. Then the following 

diagram commutes: 
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--- G 
Ind­

H 

v 
---y---> GO (F[G]) 

iii. Let (K,A,~) be as in Section 2, notations, and let 

d : GO(K[G]) --> GO(~[G]) and a: GO(K[G]) --> GO(~[G]) 

denote the decomposition maps. Then the following diagram 

commutes: 

> GO(K[G]) 

d 

v v 

-----> 

iv. Assume that N has finite index in G. Then 

Y(GO(F[IT]» is an ideal of GO(F[G]) . Indeed, viewing GO(F[G~ 

as a module over GO (F [G]) via inflation and ®F ' we have 

y(a-S) = y(a)-S (etEGO(F[G]),SEGO(F[G]» 

PROOF. (i). Let V be a finitely generated F[G]-module and 

let N<lG be finite, with charF t INI . Then vIF[N] is 
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projective and so y([V]) = [V/(wN)V] . Therefore, 

is the identity on GO(F[G]) . 

y 0 Inf § 
G 

(ii). Let V be a finitely generated F[H]-module. Since 

F [N n H] has finite global dimension, we may assume that. 

Vi F[N n H] is projective so that YF[H] ,NnH ([V]) = [V/w (NnH) .V] 

~10reover , 

Res~ Ind~(V) 

(x runs over a set of right coset representatives of NH in G) 

is projective over F[N]. Therefore, 

G G = [IndHV/wN.IndHV] 

G = [Inda(V/w(NnH) .V)] 

This proves the commutativity of the diagram. The equality 

Y(GO(F[G])f) = GO(F[G])f now follows from the fact that 

YF[U],NnU is onto for all U E f , by (i). 

The proofs of (iii) and (iv) are similarly straightforward 

and are omitted. 

• 

In the proof of Proposition 4.4 below, we will need a 

version of the Artin induction theorem for finite groups which 

we now explain. For this, let H denote a finite group and set 
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H = {x E H I char F Y order (x) } reg (= H if char F = 0)" 

Furthermore, let U denote a family of subgroups of Hand 

set 

GO(F[H]iU) = {ex E GO(F[H])I 4J ex vanishes on H "U U} 
reg UEll 

Here, 4J denotes the virtual character or, in case char F = P ex 

> 0, the virtual modular character of ex E GO(F[H]) (cf" [Se 1, 

p. 161]). Recall that GO(F[H])U is the image of 

H 
IndU: ~ GO(F[U]) + Go(F[H]). GO(F[H])U and GO(F[H]ill) 

UEll 
are ideals of GO (F [H] ), with GO (F [H] ) 11 c: GO (F [H] i U ) • 

Fix an integer m which is a multiple of the exponent of 

H. Then (Z/rnZ) * acts as a permutation group on H via 

x ~ xt (x E H, t E Z/rnZ). This action commutes with the conju-

gation action of H, so H x (Z/rnZ)* acts, and H is reg 

stable under this action. Let F1 be the field obtained from F 

by adjoining to Fall m-th roots of unity or, equivalently, 

all m'-th.roots of unity, where ml is the part of m which 

is prime to char F (= m if char F = 0). Then the extension 

~1/F is Galois, and 

r F := Gal(F1/F) c: (Z/m'Z)* c (Z/mZ)* . 

Thus H x r F acts on H. 

....' 
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LEMMA 4.3. (notation as above) The groups GO(F[H] ill) and 

GO (F[ H] ) II both have rank equal to the number of (H x r F)­

conjugacy classes in n u uh . In particular, 
hEH UEll reg 

GO(F[H]ill)/GO(F[H])ll is finite. 

PROOF. First assume that char F = O. Using [Se 1 , Cor. 1 on 

p. 110] , we identify each G (U) : = F®GO (F[ U]) , UEll or U = 
Z 

with the algebra of (U x r F) -invariant F-valued functions on 

We will show that 

X:= F®GO (F[H]) 
z 

= Y: = {q> E G (H) I q> vanishes on H" U U} 
UEll 

H , 

U. 

= {q> E G (H>'! q> vanishes on H" n U Uh }. 
hEH UEll 

Since, clearly, X = F®GO(F[H]ill) c Y , this will prove that 
Z 

GO(F[H])ll and GO(F[H]ill) both have rank equal to the number 

of (H x r F) -conjugacy classes in 

The usual scalar product <.,.>U 

n u uh , as required. 
hEH UEll 
of central functions on U 

satisfies Frobenius reciprocity, and the different characters 

of irreducible representations of U over F form an orthogonal 

basis of G(U) [Se 1, Theoreme 13 on p. 73, Prop. 32 on p. 105, 

and Cor. 2 on p. 111]. Using this, we obtain 

Y n X.L {q> E Y ! H 0 for all tJ; EGO (F[U]), U E ll} = <q>,IndutJ;>H = 

{q>EY! 
H 0 for all tJ; E GO (F [U] ) , U E ll} = <Resuq>,tJ;>u = 

{q> E Y I Res H 0 for all U E ll} = q>= 
U 

= (0) . 
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Since Y ::::> X , we conclude that X n x.l = (0) and .1 
G (H) = X + X " 

whence Y = X , as we have claimed. 

In the case when char F = p> 0 I let (K,A,F) be a 

p-modular system (ice., A is a discrete valuation ring with 

residue' field F = Aim and field of fractions K ) such that 

A is m-adically complete and char K = 0 • Consider the decom-

position map d: GO(K[H]) --> GO(F[H]) . By [Se1, Remarque and, 

Cor. 2 on p. 161], we have 

and 

Go (F[R] ill) = d (Z) 

Z := {a. E GO (K[H]) 

with 

cp vanishes on 
a. H "­reg 

Ker d = {a. E GO (K[ H] ) I c.pa. vanishes on H
reg

} 

u U} 
UEll 

Therefore, GO (K [H] ill) + Ker d ~ Z • Again identifying 

K®GO(K[H]) with the algebra G(H) of (HxrK)-invariant 
Z 

K-valued functions on H, we will show that 

K ® (GO (K [H] ) + Ker d) = K ® Z 
z II Z 

= I := {c.pEG(H) I c.p vanishes on H "­reg 
n u • uh } 

hEH UEll 

First note that, under the above identification of K ~ GO (K [H] ) 
z 

with G(H) , the map 

w 

a. 

---> { 
K-valued E-invariantl 
functions on H r 

reg " 

~----------------> c.p a. 

,~--------------------------------
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(K = algebraic closure of K) becomes restriction of functions 

from H to H 
reg (cf. [Se 1, p. 163]). Therefore, K~Kerd, 

Z 

the kernel of this map, corresponds to the ideal J:= 

{lP E G (H) I lP vanishes on H }. Moreover, as we have shown reg 

above, K~GO(K[H])ll corresponds to the ideal Y = {lPEG(H) I lP 
Z 

vanishes outside of n u Uh }. Now, for any lP E I, define lP I 
hEH UEll 

to be identical with lP outside of H but lPl = 0 on 
reg 

Hreg · Then lP I E K~Ker d and lP - lP I E K~GO (K [H] ) ll' because 
Z 

lP - <p I vanishes outside of H and on H "n u uh 
reg reg hEH UEll 

hence on H...... n u uh
. As the inclusions K69 (GO (K[H]) II + Ker d ) 

hEH UEll Z 
c K69Z c I are clear, this shows that equality holds throughout. 

Z 

In particular, d(GO(K[H])ll) = GO(F[H])ll has finite index in 

d(Z) = GO(F[H]ill). Moreover, 

rank GO (F [H] ill) = dimK I - dim
K 

J 

= # (H ...... HUn u uh 
) / H x r K - # (H ...... H ) / H x r K 

reg hEH UEll reg reg 

= # (n u uh 
) / H x r K 

hEH UEll reg 

It remains to replace r
K 

by rF in this formula. For this, 

let m be a multiple of the exponent of H and let ml denote 

the pi-part of m, as in the paragraph preceding the statement 

of the lemma. Note that the action of (Z/rnZ) * on H factors 
reg 

through (Z/mIZ)*. Let K1 ,resp. K1, denote the field obtained 

from K by adjoining the m-th , resp. m'-th , roots of unity, 

and similarly for F (so F1 = Fi). Then r
K 

= Gal(K1 /K) = (Z/mZ)* 

maps onto r~:= Gal(Ki/K) c (Z/mIZ)* , and the action of r
K 

on 
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H factors through r K' ~ Finally, as subgroups of (Z/m'Z)*, 
reg 

r ' K 
and r F 

coincide (cf" [Se 2, Prop. 16, p. 77])" This 

finishes the proof of the lemma. 

• 

We now app~y the foregoing to study the image of the map 

Y = YF[G],N for N normal of finite index in G . The essence 

of the following proof is extracted from [Ga-Ro]. 

PROPOSITION 4.4. Let N be normal of finite index in G, 

with char F t f (N) 0 Then GO (F[G]) F + Ker Y has finite index 

in GO(F[G]). 

PROOF. tole have to show that y (GO (F[G]) f} = GO (F[G]) F (Lemma 

4.2ii) has finite index in Y(GO(F[G]). In view of Proposition 

2.2i, this amounts to showing that the image of Y ( c KO (F[G]» 

modulo GO(F[G])F is finite. By Lemma 4.3, it suffices to 

show that for all finitely generated projective F[G]-modules P, 

we have Y ( [P]) E GO (F (G] iF). For this, we recall some facts about 

Hattori-Stallings ranks (cf. [Ba 2]). 

Let R be any commutative ring and let P denote a 

finitely generated projective R[G]-"module. Then the Hattori-

Stallings rank rp of P is an R-valued function on G which 

is central (i.e., constant on G-conjugacy classes) and vanishes 

on all but finitely many conjugacy classes of G. More precisely, 

an important result due to Formanek, Farkas and Snider, and Cliff 

(cf. [Ga-Ro, Theorem 2.2]) asserts that r P (x) = 0 for all x E G 

of infinite order. The rank r­p of the finitely generated 
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projective R[G]-module P = p/(wN).P is given by 

where c(.) denotes G-conjugacy classes [Ba 2, 5.4]. Now 

suppose that x E Gsatisfies x f/.. U for all U E F = F (G) . 

Then each y E G with c (y) = c (x) has infinite order. Therefore, 

and so rp(x) = O. The rank r­
P 

and the character 

xp of P (i.e., the traces of the operators given by the 

action of G on the finitely generated projective R-module P, 

cf. [Bou, p. 78]) are related by the formula 

x-(x) = IC-(x) l·r-(x- 1 ) P G P 

[Ba 2,5.8]. Thus, if xEG satisfies x t U for all UEF, 

then Xp(x) = O. 

In the case when char F = 0 simply take R = F in the 

above to conclude that y([p]) = [P] EGO(F[G];F) holds for 

all finitely generated projective F[G]-modules P, as required. 

Thus assume that char F = P > 0 and let (K,A,F) be a p-modular 

system, with K complete of characteristic O. Let m denote 

the maximal ideal of 

Since the kernel of 

A and, for each n > 1, set A 
n 

n = Aim . 

A [G] ~ F[G] 
n 

is nilpotent, there exists 

a unique (up to isomorphism) finitely generated projective 

An [G]-module Pn whose reduction modulo mn is P [Ba 1, p. 90]. 

By the result of the preceding paragraph of the proof, applied 

to R = A 
n 

and 

satisfies rp (x) = 0 
n 

we know that the rank of P l(wN)·P n n 
- -for all x E G....... U U . Let Q denote 

UEF 
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the unique (up to isomorphism) .finitely generated projective 

A[G]-module whose reduction modulo mn equals P for all 
n 

n ~ 1 (cf. [Se, p. 133]) .. Then the rank rp of P n is the 
n 

reduction of rQ modulo mn ([Ba2, 2.9]). From the foregoing 

we conclude that, for all 

Therefore, the character of 

- - - - n xEG\U U, rQ(x) En m = (0) G 

UEF n _ _ 
Q also vanishes on G \ U u .. 

UEF 
As the restriction of this character to G 

reg is the Brauer 

character of P, we have again shown that 

y ([p]) = [p] E GO (F[G] if) • This completes the proof of the 

proposition. 

For finitely generated abelian-by-finite groups G, 

• 

Proposition 4.4 above is an immediate consequence of the main 

result of [Br-H-Lo] which asserts that GO(F[G])/GO(F[G])F 

is periodic. Indeed, it is not hard to show directly, using 

the Artin induction theorem, that if G has a finitely 

generated free abelian normal subgroup A of finite index 

a , then 

a · GO (F [ G] ) eGO (F [ G] ) F + Ke r y 
F[G] ,A 

Proposition 4.4 can be used to derive an upper bound 

for the Goldie rank p(F[G]) entirely in terms of finite 

images of G. For this, let H denote any finite group and 
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U a family of subgroups of H. We put 

I u I : = L c .m. { I u I I U E U } 

for some n} I 

t (Jl) : = # Dim T (U) I Dim GO (F [ H] ) U 

where Dim: GO (F [H]) -> Z sends [V] to dim F V for any 

F[H]-module V. Note that DimGO(F[H])U = IHI e lul-
1 

e Z • 

COROLLARY 4.5 (::.iotaticli c:~s above).- [:.ssume that F[G] is 

prime and that N is torsion-free and has finite index in 

G • Let U be any family of subgroups of G = GIN such 

-that for all U E f (G) there exists U
1 

E U with Us; U
1 

• 

Then 

p(F[G]) I U let (U) 

PROOF. Setting Y = YF[G],N we have, by Proposition 4.4 

and our assumption on U, y(Go (F[G])) sTefl s;T(U) • Thus, 

by d~finition of t(U) , 

t (U) e Dim 0 y (GO (F [ G ] ) ) S Dim GO (F [ G] ) U = I G I e·. I U I -1 e Z 
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Finally, Lemma 4. 1 implies that, for any a. E GO (F [G]) , 

Dim (y (a.)) = I G I C XF [G] (a.) • So we get 

I II I • t (ll) • XF [G] (a.) E Z , 

which proves the corollary. 

Note that, in the situation of the corollary, we always 

have fIG) = 11'111111 • The troublesome part of the above 

formula is the factor tell) whose explicit qeterT.1ination 

appears far from trivial in general. Clearly, t(ll) divides 

the exponent of T(ll)/GO(F[G])ll ' and our next lemma gives 

a bound for the latter in the very special case where II 

consists of a single normal subgroup. So let H be a finite 

• 

group and let B be a normal subgroup of H. For any simple 

F[B]-module V, let IH(V) denote its inertia group in H 

and put 

( V) - -. {d im W 1 w s : = mln dim V . a simple F [IH (V) ] __ -module vli th 

(cf. Remark 4.7 below). 

LE~U~A 4.6 (notation as above). Assume that F is a splitting 

field for B with char F t H . Then the exponent of 

T(B)/GO(F[H])B divides 2.c.m.{s(V) I V a simple F[B]-module}. 
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{V. I j E J} of pairwise non­
J 

isomorphic and not H-conjugate simple F[B]-modules and let 

a. E GO (F [H] ) be torsion modulo GO (F [H])B • Then 

GO (F [H] ) B = r z, '. Ind BH [V.] and so ra. = 2 z. • Ind BH [V
J
,] 

jEJ J j EJ J 
for sui table r, z. E Z • For each j , choose a simple 

J 

F[IH(Vj)]-module Wj with and 

Wj IB2Vj , and put 

onto 8. , and 

maps 

J 

_ (S(V j ) ) (x) 
8'IB= ® V. 

J x€-X. J 
J 

where Xj is a transversal for IH(V
j

) in Hand (.) (x) 

denotes conjugate modules. Therefore, writing 

<. , · >H = dim F Hom F [H] (. , • ) as usual, we obtain 

. H 
r • <a., 8 j >H = ·2 z < Ind B V ,8. >H cEJ c c J 

= 2 z < V ,8. I B >B 
cEJ c c J 

= l: l: z • s (V . ) • <V V ~x) >B 
xEX. cEJ c J c' J 

J 

= z. • s (V . ) 
J J 

80 r divide s z . • s , where s = £. c • m. {s (V .) I j E J} , 
J J 

and we conclude that g·.c.d. (r,s) • a.E GO(F[H])B ' as it 

was to be shown. 

• 
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REMARKS 4. 7 • We now comment on the numbers s(V) 0 Let 

H,B, and F be as in Lemma 406 and let V be a simple 

F[B]-module, with corresponding representation 

Then V yields a 2-cocycle Wv of H(V) with values in 

F* whose class in H2 (H(V),F*) is uniquely determined by 

V . Explicitely, let X = X (V) = {xh I hE H (V)} be a fixed 

transversal for B in IH(V) and let M (x E X) be fixed x 

matrices in GL(VF ) (unique up to scalars E F) such 

that, for all b E B , 

Then is given by the scalar matrices 

for h l ,h2 E H (V) • The number s (V) is the smallest 

dimension of a (nonzero) module for the twisted group algebra 
w 

l\r = F V [H (V) ] (cf . [C-R, Theorem 11.20]). In particular, 

the order of the class of Wv in H2 (H(V),F*) divides s(V) 
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In the special case where H(V) is abelian and F is 

algebraically closed, s(V) can be determinded as follows. 

Put 

lfv = {h E H(V) I wV(h,k) = wV(k,h) for all k E H(V)} 

It is easily checked that Rv is a subgroup of H(V) which 

only depends on the class of Wv in H2 (H(V) ,F*) . Moreover, 

the center Zv of Rv is the subalgebra generated by 

Rv ,Zv is isomorphic to the group algebra F[Rv] , and 

RV is free of rank IH(V)/RvI over ZV. Finally, it is not 

hard to show that all two-sided ideals of ~ are generated 

by their intersections with ZV. Consequently, the dimension 
1 

of all simple ~-modules equals I H (V) lEv 12 , lJ.Thence 

1 

s(V) = IH(V)/Hv I2 

In particular, if H(V) is cyclic, then s(V) = 1 ([Sri]). 

Of course, if B is a direct factor of H, or if H 

is abelian and F is a splitting field for H, then 

s(V) = 1 holds for all simple F[B]-modules V. R. Knorr 

has pOinted out to me that if s(V) = 1 holds for all 

one-dimensional F[B]-modules V, then all subgroups D 

of H wi th B s D S H sa ti s fy [ D , B] = [ D , D] n B 

A ••••••••• :a •• R&U JiJti4i.i (""I4M14k"".;;;""»:"'.; £ I.p, ii4i44i4UWPA,._'tt (,1 _ t t. (; ( ( - ttl ( t A , Cl, , 
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THEOREM 4.8. Assume that F[G] is prime and that 

char F t f (G) . Let N be a torsion-free normal subgroup of 

finite index in G. For each prime £, let G£ denote the 

pre image in G of a Sylow £-subgroup of G = GIN , and let 

B£ be a normal subgroup of G£ = G£/N containing the images 

of all finite subgroups of G£. Then: 

i. p(F[G]) R.IIBR.I • R..c.m. {s(V) Iv a simple 

E[B£]-module} , where E is any splitting field for B£ with 

E.2 F • 

iio If G£ is abelian, or G£/B£ is cyclic, or B£ is 

a direct factor of G£ 1 then p(F[G])£ IB£I 

iii. (Gabber-Rosset [Ga-Ro]) If G£ is cyclic, then 

p(F[G])£ = f(G) £ 

PROOF.' Since p(F[G]) divides p(E[G]) for any field 

extension ElF (by [W, Theorem 3], for example), we may 

assume that F is large enough. ~loreover, using 

Corollary 1.3 ii, we reduce to the case where G = G 
£ 

for 

some £ and char F ~ I GI • Part (i) is now immediate from 

Corollary 4.5 and Lemma 4.6. In view of our preceding remarks, 

(ii) is a special case of (i). Finally, if G£ is cyclic, then 

its subgroups are linearly ordered by inclusion, and we can 

take B£ 

G£ . Then 

(ii) . 

to be the largest image of a finite subgroup of 

IB£I = f(G£) = f(G)£ ' and so (iii) follows from 

• 
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