Go and Goldie ranks of polycyclic group algebras
by

Martin LORENZ

Max-Planck-Institut
fuir Mathematik
Gottfried-Claren-Straße 26
5300 Bonn 3 MPI 85-66

Martin Lorenz
Max-Planck-Institut für Mathematik
Gottfried-Claren-Str. 26
D-5300 Bonn 3, Fed. Rep. Germany

INTRODUCTION

Let $\mathrm{F}[\mathrm{G}]$ be the group algebra of a polycyclic-by-finite group G over a field F. Then $F[G]$ is a left and right Noetherian ring and it is well-known that $F[G]$ has an Artinian ring of quotients, $Q(F[G])$, which is obtained from $F[G]$ by inverting the regular elements of $F[G]$. The composition length of $Q(F[G])$ is an interesting invariant of $F[G]$, usually called the Goldie rank of $F[G]$ and written

$$
\rho(F[G])
$$

In general, the explicit determination of $\rho(F[G])$ presents a formidable task. If G is finite, then $Q(F[G])=F[G]$ and the problem of finding $\rho(F[G])$ belongs to the realm of representation theory. In another direction, a celebrated result due to Farkas, Snider, and Cliff [F-S],[C] asserts that if G is torsion-free then $F[G]$ has no zero divisors or, equivalently, $\rho(F[G])=1$. Beyond this, little is known for infinite polycyclic-by-finite groups G . It has been conjectured
([F],[Ro1]) that, in case G has no finite normal subgroups $\neq\langle 1\rangle$, the Goldie rank of $F[G]$ is given by the formula

```
\rho(F[G])= \ell.c.m. {|U| | is a finite subgroup of G}.
```

The relevance of the assumption on G here stems from the fact that it is satisfied precisely when $F[G]$ is a prime ring. The conjecture has been confirmed in a number of special cases ([Ga-Ro],[Lo2],[Pa2],[Ro2]), but in general it is open at present.

The rôle of $G_{0}(F[G])$, the Grothendieck group of the category of all finitely generated $F[G]$-modules, in this context is as follows. For any finitely generated F[G]-module V, the reduced rank of V is defined by

```
\rho(V)= composition length of V | | [G]Q(F[G]) over Q(F[G]).
```

Thus $\rho(F[G])$ is the reduced rank of the regular $F[G]$-module. Inasmuch as $Q(F[G])$ is flat over $F[G], \rho$ defines an integervalued function on $G_{0}(F[G])$. Put

$$
\mathcal{F}=\mathcal{F}(G)=\{U \mid U \text { is a finite subgroup of } G\}
$$

and

$$
G_{0}(F[G])_{F}=\sum_{U \in \mathcal{E}} \operatorname{Ind}_{U}^{G} G_{0}(F[U])
$$

where $\operatorname{Ind}_{U}^{G}: G_{0}(F[U]) \rightarrow G_{0}(F[G])$ is the usual induction homomorphism. Then $G_{0}(F[G])_{F}$ is a subgroup of $G_{0}(F[G])$ and, under certain special circumstances, one can in fact show that $G_{0}(F[G])=G_{0}(F[G])_{F}$ (see Proposition 1.4 below). In general, however, the exact relationship between $G_{0}(F[G])$ and $G_{0}(F[G]) F$ is quite unclear. Indeed, the above conjectural Goldie rank formula in the situation where $F[G]$ is prime is equivalent to the equality

$$
\rho\left(G_{0}(F[G])\right)=\rho\left(G_{0}(F[G])_{F}\right)
$$

(Corollary 1.3 i below). We mention two partial results towards clarifying the structure of $G_{0}(F[G]) / G_{0}(F[G])_{F}:$
(a) If G is finitely generated abelian-by-finite, then $G_{0}(F[G]) / G_{0}(F[G])_{F}$ is a torsion group, of exponent dividing [G:A]rankA for any abelian normal subgroup A having finite index in G ([Br-H-LO, Theorem A]).
(b) Let G again be an arbitrary polycyclic-by-finite group. Then for any normal subgroup N of G having finite index in G and such that $F[N]$ has finite global dimension, one can define a map $\gamma=\gamma_{F[G], N}: G_{0}(F[G]) \rightarrow G_{0}(F[G / N])$. In Proposition 4.4 below, we show that $\gamma\left(G_{0}(F[G])_{F}\right)$ always has finite index in $\gamma\left(G_{0}(F[G])\right)$.

For further results along these lines see [Qu], in particular [Qu, Corollary 1.5c]. At present, no example seems to be known with $G_{0}(F[G]) \neq G_{0}(F[G])_{F}$.

In this article, we discuss a number of general techniques that are especially useful in dealing with $G_{0}(F[G])$ for G polycyclic-by-finite, and hence for computing the Goldie rank $\rho(F[G])$. In particular, we derive all major known partial solutions of the Goldie rank problem, as well as a number of new estimates of $\rho(F[G])$ as consequences of more fundamental results on $G_{0}(F[G])$. The general approach, namely via G_{0}, has been motivated by the work of Rosset ([Ro1],[Ro2],[Ga-Ro]).

We now outline the contents of this article. Section 1 is devoted to the normalized reduced rank function, X, which was introduced in [Lo1]. This is a slight modification of the above reduced rank ρ which behaves especially well under restriction and induction. These "functoriality" properties of X very easily yield all basic divisibility results for $\rho(F[G])$. Most of these are known, but the proofs presented here are new. The central theme in Section 2 is the cokernel of the Cartan map $c: K_{0}(F[G]) \rightarrow G_{0}(F[G])$ in the case where char $F=p>0$. We show that the exponent, e, of $G_{0}(F[G]) / c K_{0}(F[G])$ is finite and divides the p-part of [G:N] for any subgroup N of finite index in G without elements of order p. Moreover, if $F[G]$ is prime, then the p-part of $\rho(F[G])$ divides e (Proposition 2.2). As an application, we offer a slightly extended version of Passman's solution of the Goldie rank problem for "elementary abelian p-tops" in characteristic p (Theorem 2.5). In Section 3, we describe the familiar decomposition map and its basic features in a setting suitable for application to
polycyclic group algebras. This tool can be used to shed some light on the effect of varying the coefficient field F on $\rho(F[G])$. It is still unclear, however, that $\rho(F[G])$ is independent of F whenever G has no finite normal subgroups, as it would be implied by the above explicit conjectural formula for $\rho(F[G])$. Finally, in Section 4, we study certain maps $\gamma_{F[G], N}: G_{0}(F[G]) \rightarrow G_{0}(F[G / N])$, where N is normal of finite index in G and without elements of order p in case char $F=p>0 \quad(c f .(b)$ above). This yields a somewhat technical upper bound for $\rho(F[G])$ in terms of the representations of suitable finite images of G which does at least imply the main result of [Ga-Ro]. The major part of this section elaborates on ideas from [Ga-Ro].

We have opted to work over coefficient fields throughout, although some of the results could easily be transferred to more general (commutative) coefficient rings. We hope that this helps to keep the technicalities in the exposition at a tolerable level.

NOTATIONS AND CONVENTIONS

The following notations will be kept fixed throughout this article:

F is a commutative field,
G is a polycyclic-by-finite group,
$\mathcal{F}=\boldsymbol{F}(\mathrm{G})$ denotes the set of all finite subgroups of G,
$f(G) \quad$ is the least common multiple of the orders $|U|, U \in \mathcal{F}(G)$,
$\omega G \quad$ is the augmentation ideal of the group algebra $F[G]$,
ρ_{R} or ρ denotes Goldie's reduced rank for R-modules
(R a given Noetherian ring),
np for a rational prime p, denotes the p-part of $n \in Z$, i.e. the largest p-power dividing n.

All modules will be left modules. In general, we follow the notation of [Pa1] for groups and group algebras, and of [Ba1] for K_{0} and G_{0}. In particular, [V] denotes the element of $G_{0}(F[G])$ (resp. $K_{0}(F[G])$) corresponding to the finitely generated (projective) $F[G]$-module V. Furthermore,
$c: K_{0}\left(F[G] \rightarrow G_{0}(F[G])\right.$ will denote the Cartan map. Following [Sw] we put, for any family \ddagger of subgroups of G

$$
G_{0}(F[G])_{d}=\sum_{U \in \mathbb{U}} \operatorname{Ind}_{U}^{G}\left(G_{0}(F[U])\right)
$$

1. THE NORMALIZED REDUCED RANK

For any finitely generated $F[G]$-module V, define the normalized reduced rank of V by

$$
X(V)=X_{F[G]}(V)=\rho(V) / \rho(F[G])
$$

Here, $\rho=\rho_{F[G]}$ denotes the reduced rank of $F[G]$-modules. Since ρ is additive on short exact sequences, the same is true for X which can therefore be viewed as a function on $G_{0}(F[G])$. The following lemma describes some basic properties of X in the case when $F[G]$ is prime.

LEMMA 1.1. Assume that $F[G]$ is prime, and let $H \leqq G$ be a subgroup of finite index.
i. For any finitely generated $F[G]-m o d u l e$,

$$
X_{F[G]}(V)=[G: H]^{-1} \cdot X_{F[H]}(V)
$$

ii. Let W be a finitely generated $F[H]$-module. Then

$$
X_{F[G]}\left(F[G] \otimes_{F[H]}^{W)}=X_{F[H]}(W)\right.
$$

PROOF. (i) is [Lo1, Lemma 7].
(ii). Choose a normal subgroup N of G having finite index in G and such that $N \leqq H$. Then, by part (i), we have

$$
X_{F[G]}\left(F[G] \otimes_{F[H]} W\right)=[G: N]^{-1} \cdot X_{F[N]}\left(\oplus_{X}{ }^{(x)}\right),
$$

where x runs over a set of right coset representatives for H in G and $W^{(x)}$ is the x-conjugate module of W. As $X_{F[N]}\left(W^{(x)}\right)=X_{F[N]}(W)$ for all x, we obtain

$$
X_{F[G]}\left(F[G] \otimes \otimes_{F[H]} W\right)=[G: N]^{-1} \cdot[G: H] \cdot X_{F[N]}(W)=X_{F[H]}(W) .
$$

Here, the latter equality again follows from part (i). (Note that $F[H]$ is prime.)

The above definiton of X is taken from [Lo1]. Rosset [Ro1] works with a similar "Euler characteristic" which coincides with $X_{F[G]}$ in the case when $F[G]$ is prime, but not in general. Let us quickly derive a number of standard facts about the relations between the Goldie ranks of $F[G]$ and $F[H]$ for subgroups $\mathrm{H} \leqq \mathrm{G} \quad(\mathrm{Cf} .[$ Lo2, Lemma 1.1]).

COROLLARY 1.2. Assume that $F[G]$ is prime.
i) Let $H \leqq G$ be a subgroup of finite index. Then

$$
\rho(F[H])|\rho(F[G])|[G: H] \cdot \rho(F[H]) .
$$

In particular, $\rho(F[G])$ divides [G:H] for any torsion-free subgroup $H \leqq G$ of finite index.
ii) Let $N \leqq G$ be a torsion-free normal subgroup of finite index and let $U \leqq G$ be a finite subgroup. Set $\mathrm{H}=\langle\mathrm{N}, \mathrm{U}\rangle \leqq \mathrm{G}$. Then

$$
\rho(F[H])=|U| \rho(F[G])
$$

In particular, $f(G) \mid \rho(F[G])$.

PROOF. (i). Set $r=\rho(F[G])$ and $s=\rho(F[H])$. If V is a finitely generated $F[G]-m o d u l e ~ t h e n, ~ b y ~ d e f i n i t i o n ~ o f ~ X ~, ~$ s. $X_{F[H]}(V)$ is an integer. Thus Lemma $1.1(i)$ implies that s. [G:H] • $X_{F[G]}(V)$ is an integer. Taking V with $\rho(V)=1$ we see that $\mathrm{r} \mid \mathrm{s}$ • [G:H] . Similarly, if W is a finitely generated $F[H]$-module then, using Lemma 1.1(ii), we get that $r \cdot X_{F[G]}\left(F[G] \otimes_{F[H]} W\right)=r \cdot X_{F[H]}(W)$ is an integer, whence $s \mid r$. The last assertion follows from the Farkas-Snider-Cliff theorem [F-S],[C].
(ii). The group algebra $F[N]$ is an $F[H]$-module via $\alpha \cdot \sum_{u \in U} \alpha_{u} u^{u}=\sum_{u \in U}\left(\alpha \alpha_{u}\right)^{u} \quad\left(\alpha, \alpha_{u} \in F[N]\right)$ By Lemma 1.1(i), $X_{F[H]}(F[N])=|U|^{-1} X_{F[N]}(F[N])=|U|^{-1}$. On the other hand, $X_{F[H]}(F[N])=\rho_{F[H]}(F[N]) / \rho(F[H])$ and $\rho_{F[H]}(F[N])=1$, since F[N] is a domain by the Farkas-Snider-Cliff theorem. Therefore, $\rho(F[H])=|U|$.

We remark that Corollary $1.2 i$ is a special case of much more general "additivity principles" which relate the Goldie ranks of suitable prime factor rings of $F[H]$ and $F[G]$. For example, using the above notation, if Q is a prime ideal of $F[H]$ and P_{1}, \ldots, P_{S} are the minimal covering primes of the induced ideal Q^{G} of $F[G]$ (see [Lo-Pa] for the definition of induced ideals), then there are positive integers z_{1}, \ldots, z_{s} with

$$
\sum_{i=1}^{S} z_{i} \cdot \rho\left(F[G] / P_{i}\right)=[G: H] \cdot \rho(F[H] / Q)
$$

This can be proved using results of Warfield [W]. For details and further results along these lines see $[\mathrm{Br}-\mathrm{H}-\mathrm{Lo}$].

In the next corollary, we give a number of equivalent formulations of the Goldie rank conjecture $\rho(F[G])=f(G)$ for prime $F[G]$. Recall that

$$
G_{0}(F[G])_{F}=\sum_{U \in \mathcal{F}} \operatorname{Ind}_{U}^{G} G_{0}(F[U])
$$

where $\mathcal{F}=\mathcal{F}(G)$ is the set of finite subgroups of G. Since \mathcal{F} falls into finitely many G-conjugacy classes ([Ma] or [S, Theorem 5 on p. 175]) and since each $G_{0}(F[U]), U \in \mathcal{F}$, is a finitely generated free abelian group, it follows that $G_{0}(F[G])_{F}$ is a finitely generated subgroup of $G_{0}(F[G])$. Note also that the factor group $G_{0}(F[G]) / G_{0}(F[G])_{F}+\operatorname{Ker} X$ is certainly a finite cyclic group whose order divides $\rho(F[G])$
(because $\left.[F[G]] \in G_{0}(F[G])_{F}\right)$. Part (i) of the next corollary shows that the Goldie rank conjecture, for $F[G]$ prime, holds precisely if the above factor group is trivial.

COROLLARY 1.3. Assume that $F[G]$ is prime.
i) The following are equivalent:
(a) $\rho(F[G])=f(G)$;
(b) The function $f(G) \cdot X_{F[G]}$ on $G_{0}(F[G])$ is integer-valued;
(c) $\quad G_{0}(F[G])=G_{0}(F[G])_{F}+\operatorname{Ker} X_{F[G]}$.
ii) (Reduction to "p-tops" [Lo2],[Ro2]). Fix a normal subgroup N of G having finite index in G. For each prime p let $G_{p} \leqq G$ denote the inverse image in G of a Sylow p-subgroup of G / N. Then

$$
\rho(F[G])=\rho(F[N]) \cdot \prod_{p} \rho\left(F\left[G_{p}\right]\right) / \rho(F[N]) .
$$

In particular, if $\rho\left(F\left[G_{p}\right]\right)=f\left(G_{p}\right)$ holds for all primes p, then $\rho(F[G])=f(G)$.

PROOF. (i). (c) \Rightarrow (b) : Let $U \in \mathcal{F}$, let M be a finitely generated $F[U]$-module, and set $\cdot V=F[G] \otimes_{F[U]^{M}}$. We show that $X_{F[G]}(V)=|U|^{-1} \cdot \operatorname{dim}_{F}{ }^{M}$ which will clearly prove (b). Choose a torsion-free normal subgroup N of finite index in G and set $H=\langle N, U\rangle$ and $W=F[H] \otimes_{F[U]^{M} .}$.Then, by Lemma 1.1, $X_{F[G]}(V)=X_{F[H]}(W)=|U|^{-1} X_{F[N]}(W) \cdot$ But

$$
\left.W\right|_{F[N]} \cong F[N] \mathrm{dim}_{F}^{M}
$$

and so $X_{F[N]}(W)=\operatorname{dim}_{F}{ }^{M}$, as required.
$(b) \Rightarrow(a): \quad(b)$ says that $\rho(F[G])$ divides $f(G)$, so equality must hold in view of Corollary 1.2ii.
$(a) \Rightarrow(c)$: If f_{p} denotes the p-part of $f=f(G)$, then there exists $U_{p} \in \mathcal{F}(G)$ with $\left|U_{p}\right|=f_{p}$. Choose integers z_{p} with $\sum_{p}^{\sum} z_{p} f / f_{p}=1$ and set $\alpha=\sum_{p} z_{p} \cdot \operatorname{Ind}_{U_{p}}^{G}([F]) \in G_{0}(F[G])_{F}$, where F denotes the trivial one-dimensional $F\left[U_{p}\right]$-module. Then the formula established in the proof of $(c) \Rightarrow(b)$ above shows that $X_{F[G]}(\alpha)=\sum_{p} z_{p} \cdot\left|U_{p}\right|^{-1}=f^{-1}$. Thus (a) implies that $X_{F[G]}\left(G_{0}(F[G])\right)=\left\langle X_{F[G]}(\alpha)\right\rangle=X_{F[G]}\left(G_{0}(F[G])_{F}\right.$
(ii). By Corollary 1.2i, $\rho(F[G]) / \rho(F[N])$ and each $\rho\left(F\left[G_{p}\right]\right) / \rho(F[N])$ are integers, the latter is a p-power, and

$$
\frac{\rho\left(\left[G_{p}\right]\right)}{\rho(F[N])}\left|\frac{\rho(F[G])}{\rho(F[N])}\right| \frac{\rho\left(F\left[G_{p}\right]\right)}{\rho(F[N])} \cdot\left[G: G_{p}\right] \text {. }
$$

We conclude that $\rho\left(F\left[G_{p}\right]\right) / \rho(F[N])$ is the p-part of $\rho(F[G]) / \rho(F[N])$ which proves the formula for $\rho(F[G])$.

An analogous argument, based on [LO2, Lemma 1.2] instead of Corollary $1.2 i$, shows that $f(G)=f(N) \cdot \prod_{p} f\left(G_{p}\right) / f(N)$. The last assertion follows from this.

Part (ii) of the above corollary together with the Farkas-Snider-Cliff theorem can be used to show that, for $F[G]$ prime, $\rho(F[G])$ and $f(G)$ have the same prime divisors. To see this, fix a torsion-free normal subgroup N of finite index in G and, for each prime p, define $G_{p} \leqq G$ as in the corollary. Then, as we have seen, $\rho\left(F\left[G_{p}\right]\right)$ is the p-part of $\rho(F[G])$ (this uses the Farkas-Snider-Cliff theorem for $F[N]$) and $f\left(G_{p}\right)$ is the p-part of $f(G)$. But, by the Farkas-SniderCliff theorem again, $f\left(G_{p}\right)=1$ implies $\rho\left(F\left[G_{p}\right]\right)=1$ and so all primes dividing $\rho(F[G])$ must also divide $f(G)$. The converse is clear, by Corollary 1.2ii.

We now show that a much stronger statement than (c) in Corollary $1.3 i$ above holds for the very special class of finite-by-poly-(infinite cyclic or infinite dihedral) groups, i.e. groups G having a finite subnormal series $<1>\triangleleft G_{0} \unlhd G_{1} \unlhd \cdots \unlhd G_{S}=G$ with G_{0} finite and G_{i} / G_{i-1} infinite cyclic or infinite dihedral ($i \geqq 1$) . By a result of Formanek [Fo], all finite-by-supersolvable groups are of this form. Our proof follows the lines of [Ro2, proof of Theorem (0.3)] and ultimately rests on results of Waldhausen [Wa].

PROPOSITION 1.4. If G is finite-by-poly-(infinite cyclic or infinite dihedral), then $G_{0}(F[G])=G_{0}(F[G])_{F}$. (In particular, the Goldie rank conjecture holds for prime supersolvable group algebras [Lo2],[Ro2].)

PROOF: We argue by induction on the Hirsch number $h(G)$ of G ($=s$ in the above subnormal series), the assertion being trivial for $h(G)=0$, i.e. G finite. If G is infinite then G has a normal subgroup N such that G / N is either infinite cyclic or infinite dihedral. In the former case, it follows from [Wa, Proposition 4.1] or [Q, Exercise on p. 122] that $\operatorname{Ind}_{N}^{G}: G_{0}(F[N]) \rightarrow G_{0}(F[G])$ is surjective. By induction, we know that $G_{0}(F[N])=G_{0}(F[N])_{F(N)}$ and so the corresponding equality follows for $F[G]$.

If G / N is infinite dihedral we can write $G=G_{1} *_{N} G_{2}$ with G_{i} / N cyclic of order $2(i=1,2)$. The group alqebra $F[G]$ is a free product vith amalgamation, $F[G] \cong F\left[G_{1}\right] *_{F[N]} F\left[G_{2}\right]$, and [Wa, Proposition 4.1] again implies that the map Ind : $G_{0}\left(F\left[G_{1}\right]\right) \oplus G_{0}\left(F\left[G_{2}\right]\right) \rightarrow G_{0}(F[G])$ is surjective. The induction hypothesis again yields the result.

For G finitely generated abelian-by-finite, the main result of $[\mathrm{Br}-\mathrm{H}-\mathrm{LO}]$ asserts that $G_{0}(F[G]) / G_{0}(F[G])_{F}$ is periodic, of exponent dividing [G:A]rankA , where A is any abelian normal subgroup of finite index in G.

2. THE ROLE OF PROJECTIVE MODULES IN CHARACTERISTIC p

In this section, we study the structure of the cokernel of the Cartan map $c: K_{0}(F[G]) \rightarrow G_{0}(F[G])$. Of course, this is of interest only when char F divides $f(G)$, because otherwise $F[G]$ has finite global dimension and c is an isomorphism. Thus the ground field F will always have characteristic $p>0$. Furthermore, we will use the following

NOTATION. For any family d of subgroups of the group G define $P(\mu) \subseteq G_{0}(F[G])$ to be the subgroup of $G_{0}(F[G])$ generated by all [V] with V a finitely generated $F[G]$-module such that $V \mid F[U]$ has finite homological dimension for all $U \in \mathfrak{U}$ or, equivalently, by all [V] with $V \mid F[U]$ projective for all $U \in \mathbb{U}$. If \mathfrak{d} consists of a single subgroup U, we also write $P(U)$ instead of $P(l l)$.

REMARKS. (1) Clearly, $P(1 j)$ contains $c K_{0}(F[G])=P(G)$, and if all $U \in \mathbb{U}$ have finite index in G, then $P(\mu)$ is contained in

$$
R(\mu):=\text { kernel of } G_{0}(F[G]) \xrightarrow{\text { Res }} \underset{U \in H}{\oplus} G_{0}(F[U]) / C K_{0}(F[U])
$$

The inclusion $P(\sharp) \subseteq R(H)$ is proper in general. For example, if G is cyclic of order $p^{n}(n>1)$ and $U \leqq G$ is cyclic of order p, then $P(U)=c K_{0}(F[G])=\langle[F[G]]\rangle$, so $G_{0}(F[G]) / P(U) \cong Z / P^{n} Z \quad$, but
$G_{0}(F[G]) / R(U) \cong G_{0}(F[U]) / c K_{0}(F[U]) \cong Z / p Z$. Another, perhaps more interesting example is given by

$$
\left.H=\langle x, y| z:=[x, y] \text { is central, } x^{p}=y^{p}=1\right\rangle
$$

the non-abelian group of order p^{3} and exponent p. One easily checks that $G_{0}(F[H]) / P\left(\langle z>) \cong Z / p^{2} z\right.$, whereas $G_{0}(F[H]) / R(<z>) \cong Z / p Z$. On the other hand, $G_{0}(F[H]) / P(\langle X\rangle) \cong G_{0}(F[H]) / R(\langle x\rangle) \cong Z / p Z$ so that $P(\langle x\rangle)=R(\langle x\rangle)$. Further examples with $P(\mu)=R(\sharp)$ can be obtained from Lemma 2.3 below.
(2) Let V be an $F[G]$-module. Then, by a theorem of Serre ([Se3], cf. also [Pa2, Proposition 1]), V has finite homological dimension if and only if $\left.V\right|_{F[U]}$ is projective for all $U \in \mathcal{F}=F(G)$. Moreover, by Chouinard's theorem [Ch], V is projective over $F[U]$ if and only if $\left.V\right|_{F[A]}$ is projective for all elementary abelian p-subgroups A of $U(p=c h a r F)$. Therefore, if 4 is any family of subgroups of G which is closed under taking subgroups and

$$
\begin{aligned}
\mathfrak{H}_{f i n}= & \{U \in \mathfrak{u} \mid U \text { is finite }\}, \\
\mathfrak{u}_{\underline{p-e l} . a b}= & \left\{U \in \mathfrak{u}_{f i n} \mid \mathrm{U}\right. \text { is an elementary abelian } \\
& p-g r o u p\}, \text { and } \\
\mathfrak{H}^{*}= & \{V \leqq G \mid \text { all finite elementary abelian } \\
& p-s u b g r o u p s \text { of } V \text { belong to } \mathfrak{u}\},
\end{aligned}
$$

then

$$
P(\mu)=P\left(\mu_{f i n}\right)=P\left(\mu_{p-e l} \cdot a b\right)=P\left(\mu^{*}\right) .
$$

In particular,

$$
c K_{0}(F[G])=P(F)=P\left(F_{p-e l \cdot a b}\right)
$$

(3) Let H be a finite group and let u be a family of subgroups of H which is closed under taking subgroups and consists of p-groups (WLOG) . If E / F is an algebraic $p^{\prime}-e x t e n s i o n(i . e . ~ e a c h ~ f i n i t e ~ s u b e x t e n s i o n ~ h a s ~ p '-d e g r e e)$, then identifying $G_{0}(F[H])$ with its image in $G_{0}(E[H])$ under the scalar extension map (cf. [Se1, Sec.14.6]), we have

$$
P_{F}(\mu)=G_{0}(F[H]) \cap P_{E}(\mu)
$$

with the obvious notation $P_{F}($.$) and P_{E}($.$) . Indeed, we may$ clearly assume E / F to be Galois. Then each fin. gen. E[H]module V has the form $V=E \otimes_{I} V_{0}$ for some finite Galois subextension L / F of E / F and some $L[H]$-module V_{0}. Moreover, setting $\hat{U}=\sum_{u \in U} u \in F[U] \quad(U \in M) \quad$ we have

$$
\begin{aligned}
\left.V\right|_{E[U]} \text { is free } & \Longleftrightarrow \operatorname{dim}_{E} \hat{U} \cdot V=|U|^{-1} \operatorname{dim}_{E} V \\
& \Longleftrightarrow \operatorname{dim}_{L} \hat{U} \cdot V_{0}=|U|^{-1} \operatorname{dim}_{L} V_{0} \\
& \left.\Longleftrightarrow V_{0}\right|_{L[U]} \text { is free }
\end{aligned}
$$

This shows that each $\alpha \in P_{E}(11)$ is contained in P_{I} (H) for some finite Galois subextension I / F of E / F, and so we may assume that E / F is finite Galois. Set $\Gamma=G a l(E / F)$ and,
for any fin. gen. $E[H]$-module V set $\overline{\mathrm{V}}={ }^{\oplus} \mathrm{V}^{\sigma}$, where V^{σ} is the σ-conjugate module of V. Then $\overline{\mathrm{V}} \cong E \otimes_{F} \mathrm{~V}^{\prime}$ with V^{\prime} denoting the restriction of V to $F[H]$. If V is free over $E[U](U \in \mathbb{H})$, then each V^{σ} is free over $E[U]$ and hence so is \bar{V}. As we have just seen, this implies that V^{\prime} is free over $F[U]$. Now let $\alpha \in G_{0}(F[H]) \cap P_{E}(\mathbb{H})$ be given and write $\alpha=\left[\mathrm{V}_{1}\right]-\left[\mathrm{V}_{2}\right]$ with fin. gen. E[H]-modules V_{i} which are free over $E[U]$ for all $U \in \mathbb{U}$. Then, under the action of Γ on $G_{0}(E[U])$, we have

$$
|\Gamma| \cdot \alpha=\sum_{\alpha \in \Gamma} \alpha^{\sigma}=\left[\bar{v}_{1}\right]-\left[\bar{v}_{2}\right]=\left[E \otimes_{F} V_{1}^{\prime}\right]-\left[E \otimes_{F} V_{2}^{\prime}\right] \in P_{F}(\mathfrak{u}) .
$$

Thus $|\Gamma|$ annihilates the group $x:=G_{0}(F[H]) \cap P_{E}(\mathbb{H}) / P_{F}(\mathbb{1})$ so that x has p -order. On the other hand, x is a subgroup of the p -group $\mathrm{G}_{0}(\mathrm{~F}[\mathrm{H}]) / \mathrm{P}_{\mathrm{F}}(\mathrm{Al})$ (cf. Lemma 2.1 below), whence X must be trivial, as we have claimed.

The first lemma is a refinement of Brauer's well-known theorem that, for finite groups, the determinant of the Cartan map is a power of $p=$ char F (cf. [Se1, Thérème 35], for example).

LEMMA 2.1. Let char $F=p>0$, let H be a finite group, and let \sharp be a family of subgroups of H which is closed under conjugation and taking subgroups. Then $P(\mathbb{1})$ is an ideal of $G_{0}(F[H])$ and $G_{0}(F[H]) / P(H)$ is a finite p-group. Its exponent satisfies

$$
\max _{U \in l l}|U|_{p}\left|\quad \exp \left(G_{0}(F[H]) / P(11)\right)\right|[H: N]_{p},
$$

where N is any subgroup of H with $p \nmid|N \cap U|$ for all $U \in \Perp$.

PROOF. Clearly, $P(\mathcal{H})$ is an ideal of $G_{0}(F[H])$ with $c K_{0}(F[H]) \subseteq P(\mu)$. The fact that $G_{0}(F[H]) / P(\mu)$ is a finite $p-g r o u p$ now follows from Brauer's theorem. Moreover, if $U \in \mathbb{l}$ is a p-group, then restriction yields a surjection $G_{0}(F[H]) / P(\mu) \longrightarrow G_{0}(F[U]) / C K_{0}(F[U]) \cong \mathbf{Z} /|U| \mathbf{Z}$. Inasmuch as $P(\mathbb{H})=P\left(\mathbb{H}^{*}\right)$, this establishes the lower bound for the exponent of $G_{0}(F[H] / P(\mathfrak{H}))$. It remains to check the upper bound.

Let $x(p)$ denote the set of subgroups $X \leqq H$ which are semidirect products of the form $X=C \rtimes P$ with C a cyclic p'-group and P a p-group. Then, by [Se1, Théorème 28, cf. also the proof of Théorème 39], $\quad G_{0}(F[H]) / G_{0}(F[H]) X(p)$ is a finite p'-group. Since $G_{0}(F[H]) / P(\sharp)$ is a p-group, it follows that $G_{0}(F[H])(p)$ maps onto $G_{0}(F[H]) / P(\mu)$. Now, for any subgroup $N \leqq H$, write

$$
\mathfrak{U \cap N}=\{U \cap N \mid U \in \sharp\}=\{U \in \sharp \mid U \subseteq N\}
$$

Then it is easily seen, using Mackey decomposition, that Ind ${ }_{N}^{H}$ maps $P(\mathfrak{H} \cap N)$ to $P(\mathfrak{H})$. Therefore, $G_{0}(F[H]) / P(\mathfrak{H})$ is an image of $\underset{X \in X(p)}{\oplus} G_{0}(F[X]) / P(H \cap X)$, and so we may assume that
H has the form $H=C \times P$, where C is a p^{\prime}-group and P a p-group. But, in this case, $G_{0}(F[H]) / P(\mu)$ is a module over $G_{0}(F[P]) / P(\mu \cap P)$ via inflation and \otimes_{F}, because inflation from P to H maps $P(\mu \cap P)$ to $P(\mu)$ and. $P(\mu)$ is an ideal of $G_{0}(F[H])$. This shows that the exponent of $G_{0}(F[H]) / P(H)$ divides the exponent of $G_{0}(F[P]) / P(H \cap P)$, thereby reducing the problem to the case where H is a p-group. Finally, if $N \leqq H$ satisfies $N \cap H=\{<1\rangle\}$, then consider $V=\operatorname{Ind}_{N}^{H}(F)$, where F is the trivial $F[N]$-module. We have $[V] \in P(H)$ and $\operatorname{dim}_{F} V=[H: N]$. Therefore, $\left.G_{0}(F[H]) /<[V]\right\rangle \cong \mathbf{Z} /[H: N] Z$ maps onto $G_{0}(F[H]) / P(H)$ which completes the proof of the lemma.

We now apply the above to group algebras of polycyclic-by-finite groups G .

PROPOSITION 2.2. Assume that char $F=p>0$.
i. $G_{0}(F[G]) / c K_{0}(F[G])$ is a torsion group of finite exponent dividing [G:N]p, where N is any subgroup of finite index in G with $p \nmid f(N)$.
ii. If $\mathrm{F}[\mathrm{G}]$ is prime, then the group $G_{0}(F[G]) / \operatorname{CK}_{0}(F[G])+\operatorname{Ker}_{\mathrm{F}[\mathrm{G}]}$ is cyclic of order $\rho(F[G])_{p}$.

PROOF. (i) Let M be any normal subgroup of finite index in G, let $-G \longrightarrow G / M$ denote the canonical map, and let μ be
any family of subgroups of G. Then, viewing $G_{0}(F[G])$ as a module over $G_{0}(F[\bar{G}])$ via inflation and \otimes_{F}, it is straightforward to check that

$$
P(M \cap \mu) \cdot P(\bar{\mu}) \subseteq P(\mu)
$$

Here, $M \cap \mathbb{M}=\{M \cap U \mid U \in \sharp\}$ and $\bar{M}=\{\bar{U} \mid U \in \mathbb{U}\}$. In particular,

$$
\exp \left(G_{0}(F[G]) / P(\mu)\right) \mid \exp \left(G_{0}(F[G]) / P(M \cap \mathfrak{l})\right) \cdot \exp \left(G_{0}(F[\bar{G}]) / P(\bar{\mu})\right)
$$

Now take N as in part (i) above and set $M=\cap_{x \in G} N^{X}$. Then $G_{0}(F[G])=P(M \cap F)$ and $C K_{0}(F[G])=P(F)$, by Serre's theorem, and so it suffices to quote Lemma 2.1 , with $H=\bar{G}$ and $N=\bar{N}$, to finish the proof of (i).
(ii). Let N be a normal torsion-free subgroup of G having finite index in G and, for each prime q, define $\mathrm{G}_{\mathrm{q}} \leqq \mathrm{G}$ to be the preimage of a Sylow q-subgroup of G / N. Then induction yields an epimorphism

$$
\underset{q}{\oplus} G_{0}\left(F\left[G_{q}\right]\right) / \operatorname{Ker} \chi_{F\left[G_{q}\right]} \rightarrow>G_{0}(F[G]) / \operatorname{Ker} X_{F[G]}
$$

To prove surjectivity, choose integers z_{q} with $\sum_{\mathrm{q}} \mathrm{z}_{\mathrm{q}} \cdot\left[\mathrm{G}: \mathrm{G}_{\mathrm{q}}\right]=1$. Then, for each $\alpha \in \mathrm{G}_{0}(\mathrm{~F}[\mathrm{G}])$, Lemma 1.1 implies

$$
X_{F[G]}(\alpha)=X_{F[G]}\left(\sum_{q} z_{q} \cdot \operatorname{Ind}{\underset{G}{G}}_{G}^{\operatorname{Res}} \underset{G_{q}}{G}(\alpha)\right)
$$

which proves surjectivity. Therefore, induction also yields an epimorphism

$$
\underset{q}{\oplus} G_{0}\left(F\left[G_{q}\right]\right) \longrightarrow G_{0}(F[G])
$$

where we have set $G_{0}(F[G])=G_{0}(F[G]) / C K_{0}(F[G])+\operatorname{Ker} X_{F[G]}$ and similarly for G_{q}. By our above remarks, $G_{0}\left(F\left[G_{q}\right]\right)$ is trivial for all primes $q \neq p$ so that $G_{0}\left(F\left[G_{p}\right]\right)$ maps onto $G_{0}(F[G])$. Moreover, since $\chi_{F\left[G_{p}\right]}: G_{0}\left(F\left[G_{p}\right]\right) \rightarrow \frac{1}{\rho\left(F\left[G_{p}\right]\right)} \cdot \mathbf{z}$ $\operatorname{maps}\left[F\left[G_{p}\right]\right] \in C K_{0}\left(F\left[G_{p}\right]\right)$ to 1 , we see that $G_{0}\left(F\left[G_{p}\right]\right)$ is cyclic of order at most $\rho\left(F\left[G_{p}\right]\right)=\rho(F[G])_{p}$. We claim that $\chi_{F\left[G_{p}\right]}(P) \in Z$ holds for every finitely generated projective $F\left[G_{p}\right]$-module P. Indeed, by Lemma 1.1i and [Lo1, Proposition 8], we have

$$
\chi_{F\left[G_{p}\right]}(P)=\left[G_{p}: N\right]^{-1} \cdot \chi_{F[N]}(P)=\left[G_{p}: N\right]^{-1} \cdot \operatorname{dim}_{F} H_{0}(N, P)
$$

Here, $H_{0}(N, P)=P /(\omega N) P$ is projective and hence free over the local ring $F\left[G_{p} / N\right]$. Thus $\operatorname{dim}_{F} H_{0}(N, P)$ is divisible by [$\left.G_{p}: N\right]$, as required. This proves that $G_{0}\left(F\left[G_{p}\right]\right)$ is cyclic of order precisely $\rho(F[G])_{p}$. It remains to check that $G_{0}(F[G])$ is isomorphic to $G_{0}\left(F\left[G_{p}\right]\right)$. For this, we show that the map $G_{0}(F[G]) \rightarrow G_{0}\left(F\left[G_{p}\right]\right)$ given by restriction is surjective. For $\alpha \in G_{0}\left(F\left[G_{p}\right]\right)$ we have, by Lemma 1.1,

$$
X_{F\left[G_{p}\right]}\left(\operatorname{Res}{\underset{G}{G}}_{G}^{\operatorname{Ind}}{\underset{G}{G}}_{G}^{G}(\alpha)\right)=\left[G: G_{p}\right] X_{F\left[G_{p}\right]}(\alpha)
$$

whence

$$
\left[G: G_{p}\right] \alpha-\operatorname{Res} \underset{G_{p}}{G} \operatorname{Ind}_{G_{p}}^{G}(\alpha) \in \operatorname{Ker} X_{F\left[G_{p}\right]}
$$

Letting $\bar{\alpha}$ denote the image of α in $G_{0}\left(F\left[G_{p}\right]\right)$ and using the fact that multiplication by $\left[G: G_{p}\right]$ is bijective on $G_{0}\left(F\left[G_{p}\right]\right)$ and $G_{0}(F[G])$, we get

$$
\bar{\alpha}=\left[G: G_{p}\right]^{-1} \operatorname{Res} \underset{G_{p}}{G} \text { Ind } \underset{p}{G}(\bar{\alpha})=\operatorname{Res} \underset{G_{p}}{G}\left(\left[G: G_{p}\right]^{-1} \cdot \operatorname{Ind}{\underset{G}{G}}_{G}(\bar{\alpha})\right) \text {. }
$$

This proves surjectivity of the map $\operatorname{Res} \underset{G_{p}}{G}: G_{0}(F[G]) \rightarrow G_{0}\left(F\left[G_{p}\right]\right)$ and thus completes the proof of the proposition.

COROLLARY 2.3. (of proof). Let char $F=p>0$ and assume that $F[G]$ is prime. Then $\rho(F[G])_{p}$ divides the exponent of $G_{0}(F[\bar{G}]) / P(\bar{F})$, where $\bar{G}=G / N$ is any finite image of G with $\mathrm{p} \nmid \mathrm{f}(\mathrm{N})$, and $\bar{F}=\{\mathrm{UN} / \mathrm{N} \mid \mathrm{U} \in \mathcal{F}(\mathrm{G})\}$.

PROOF. By part (ii) above, $\rho(F[G]){ }_{p}$ divides the exponent of $G_{0}(F[G]) / C K_{0}(F[G])$ which in turn, by the proof of part (i), divides the exponent of $G_{0}(F[\bar{G}]) / P(\bar{F})$.

Presumably the bound [G:N]p in Proposition $2.2 i$ can be improved to $f(G)_{p}$. In view of part (ii) of the proposition,
this would prove the equality $\rho(F[G])_{p}=f(G)_{p}$ for char $F=p>0$. It would also prove the Goldie rank conjecture for any prime group algebra $F[G]$ with char $F=0$ (Corollary 1.3 ii and Corollary 3.3 ii below). By [Se, Théorème 35], the image of $G_{0}(F[G])_{F}$ in $G_{0}(F[G]) / C K_{0}(F[G])$ does indeed have exponent $f(G)_{p}$.

We now apply the techniques developed so far to derive a slightly polished version of Passman's solution of the Goldie rank problem for "elementary abelian p-tops in characteristic p" [Pa2] . The following lemma is an interpretation in terms of G_{0} of Lemma 4 in [Pa2]. For the reader's convenience, we sketch the argument. For brevity, any subgroup of the group H which has a normal complement in H will be called a splitting subgroup of H .

LEMMA 2.4. Let F be a field with char $F=D>0$ and let H be a finite group. Let $U \leqq H$ be an abelian p-subgroup of H which is a splitting subgroup of H and let \mathfrak{d} denote the set of all splitting subgroups of H which are isomorphic to U. Then $G_{0}(F[H]) \cdot|U| \subseteq P(i j)$.

PROOF. By Remark (3) above, we may assume that F is infinite. Note that $H:=\operatorname{Hom}(H, 1+\omega U)$ has the structure of an affine space over F. Indeed, letting ($\left.H^{a b}\right)_{p}$ denote the Sylow p-subgroup of $H^{a b}=H /[H, H]$ and writing $\left(H^{a b}\right)_{p}=\underset{i=1}{\underset{\oplus}{\oplus}}\left\langle h_{i}\right\rangle$ we get

$$
\begin{aligned}
H & \cong \operatorname{Hom}\left(\left(H^{a b}\right)_{p}, 1+\omega U\right) \cong \prod_{i=1}^{s} \operatorname{Hom}\left(\left\langle h_{i}\right\rangle, 1+\omega U\right) \\
& \cong \prod_{i=1}^{s}(1+\omega U)_{\circ\left(h_{i}\right)} \cong \prod_{i=1}^{s}(\omega U)_{\circ\left(h_{i}\right)} \quad \text { (as sets) }
\end{aligned}
$$

Here, $O\left(h_{i}\right)$ denotes the order of h_{i} and, for each $n \geqq 0$, $(1+\omega U)_{n}=\left\{\alpha \in 1+\omega U \mid \alpha^{n}=1\right\},(\omega U)_{n}=\left\{\alpha \in \omega U \mid \alpha^{n}=0\right\}$. As $\circ\left(h_{i}\right)$ is a p-power, $(\omega U) \circ\left(h_{i}\right)$ is an F-vector space (even an ideal of $F[U]$), and so $H \cong F^{m}$ for some m, by selecting bases for the $(\omega U) \circ\left(h_{i}\right)$. Viewing H as a subset of $\operatorname{Hom}_{F-a l g}(F[H], F[U])$, one checks that for each $\alpha \in F[H]$ the set $V(\alpha)=\{\sigma \in H \mid \sigma(\alpha)=0\}$ is Zariski-closed in H. Moreover, if $X \in \mathfrak{l}$ then there exists a homomorphism $\sigma: H \longrightarrow U$ which is an isomorphism when restricted to X. Therefore, writing $\hat{X}=\sum_{x \in X} x \in F[X]$ as usual, we see that $\sigma(\hat{X})=\hat{U} \neq 0$ so that $\hat{V}(X) \neq H$. Since $F \cdot \hat{X}$ is the unique smallest ideal of $F[X]$, each $\sigma \in H \backslash V(\hat{X})$ yielcis a homomorphism $F[H] \longrightarrow F[U]$ whose restriction to $F[X]$ is an isomorphism, thereby making $F[U]$ an $F[H]$-module which is free over $F[X]$. Moreover, in $G_{0}(F[H])$ we have $[F[U]]=|U| \cdot[F]$, where F is the trivial one-dimension $F[H]$-module. Finally, since F is infinite and there are only finitely many $X \in \mathbb{H}$, we can select $\sigma \in H \backslash U V(\hat{X})$, so that $[F[U]] \in P(\mu)$ via σ. X $\in \mathfrak{l}$
The lemma now follows from the fact that $P(\mu)$ is an ideal and $[F]$ is the identity of the ring $G_{0}(F[H])$.

THEOREM 2.5. (cf. [Pa2]). Let F be a field with char $F=p>0$ and assume that $F[G]$ is prime. Assume further that G has a normal subgroup N of finite index such that $p X f(N)$ and the Sylow p-subgroup of G / N is abelian, of exponent p^{e}. If $m=\max _{U}$ rank U, where U runs over the finite elementary abelian p-subgroups of G, then

$$
\rho(F[G])_{p} \mid p^{e m} \quad .
$$

In particular, if $e=1$, i.e. if the Sylow p-subgroup of \bar{G} is elementary abelian, then $\rho(F[G])_{p}=f(G)_{p}$.

PROOF. Using Corollary 1.3 ii, we immediately reduce to the case where $\bar{G}=G / N$ is a finite abelian p-group of exponent p^{e}.

Embed $\overline{\mathrm{G}}$ into an abelian group of the form $H=\left(Z / p^{e} Z\right)^{r}$ for some $r \geqq m$ and let \mathfrak{d} denote the set of all subgroups of H which are isomorphic to $\left(z / p^{e} z\right)^{m}$. These are all direct summands of H. Moreover, if $\bar{F}=\{U N / N \mid U$ a finite p-subgroup of $G\}$ then, for all $\bar{U} \in \bar{F}$, there exists $U \in \mathbb{U}$ with $\bar{U} \leqq U$. Therefore, $\operatorname{Res} \frac{H}{G}: G_{0}(F[H]) \rightarrow G_{0}(F[\bar{G}])$ maps $P(H)$ to $P(\bar{F})$. By Lemma 2.3, we conclude that $p^{e m} \cdot[F] \in P(\bar{F})$ and so Corollary 2.3 implies that $\rho(F[G]){ }_{p}$ divides $p^{e m}$. Finally, if $e=1$ then clearly $p^{m}=f(G) p$, and this divides $\rho(F[G])_{p}$, by Corollary 1.2 ii.

3. THE DECOMPOSITION MA.P

The decomposition map is a basic tool in representation theory of finite (or algebraic) groups (cf. [C-R, §16]). In this section, we describe some of its basic features in a setting suitable for application to polycyclic group algebras. The following notations will be kept fixed:

```
A is a discrete valuation ring with maximal ideal m=(\pi) ,
k = A/m is the residue field of A , and
K = Fract(A) is the field of fraction of A .
R1 will be a (left) Noetherian A-algebra which is
        torsion-free over A ,
R}=K\mp@subsup{\otimes}{A}{}\mp@subsup{R}{1}{}\mathrm{ , so }\mp@subsup{R}{1}{}\subseteqR, , and
\mp@subsup{\widetilde{R}}{1}{}=k\mp@subsup{\otimes}{A}{}\mp@subsup{R}{1}{}=\mp@subsup{R}{1}{\prime}/m\mp@subsup{R}{1}{}}
```

Consider a finitely generated R-module V. Then V contains a finitely generated R_{1}-submodule V_{1} such that $V=K \cdot V_{1}$ (e.g., if $V=\Sigma R v_{i}$ then one can take $V_{1}=\Sigma R_{1} v_{i}$). Such a V_{1} is called an \underline{R}_{1}-form of V. The proof of the first proposition follows traditional lines, except for minor modifications caused by the extra bit of generality in our assumptions.

PROPOSITION 3.1. Let V be a finitely generated r-module and let V_{1} be an R_{1}-form of V. Then the element $\left[\tilde{V}_{1}\right] \in G_{0}\left(\widetilde{R}_{1}\right)$ corresponding to $\tilde{V}_{1}=V_{1} / m V_{1} \cong k \otimes_{A} V_{1}$ does not depend on the choice of the particular R_{1}-form V_{1} of V. The map

$$
d: G_{0}(R) \rightarrow G_{0}\left(\widetilde{R}_{1}\right), d([V])=\left[\tilde{V}_{1}\right]
$$

is a well-defined homomorphism.

PROOF. Suppose that $V_{2}=\sum_{j=1}^{m} R_{1} W_{j}$ is another R_{1}-form of V. Then, since $V_{2} \leqq V=K \cdot V_{1}$, there are finitely many $V_{\ell} \in V_{1}$ and $\xi_{\ell j} \in K$ with

$$
w_{j}=\sum_{\ell} \xi_{\ell j} v_{\ell} \quad(j=1, \ldots, m)
$$

Choose a common denominator $a \in A$ for all $\xi_{l j}$'s so that $a \cdot \xi_{\ell j} \in A$ for all ℓ and j. Then $a w_{j} \in V_{1}$ for all j and so $a \cdot V_{2} \subseteq V_{1}$. Similarly, one finds $b \in A$ with $b \cdot V_{1} \subseteq V_{2}$. Thus $V_{1} \supseteq a \cdot V_{2} \supseteq a b \cdot V_{1}=m^{n} V_{1}$, where n is chosen so that $a b A=m^{n}$. Now V is certainly torsion-free over A, being a K -vector space, and so V_{2} and $\mathrm{a} \cdot \mathrm{V}_{2}$ are isomorphic R_{1}-modules. Thus, in order to show that $\left[\tilde{\mathrm{V}}_{2}\right]=\left[\tilde{\mathrm{V}}_{1}\right]$ holds in $G_{0}\left(\widetilde{R}_{1}\right)$, we can replace V_{2} by $a \cdot V_{2}$ and thus assume that

$$
\mathrm{V}_{1} \supseteq \mathrm{~V}_{2} \supseteq m^{n} \mathrm{~V}_{1}
$$

We argue by induction on n. First suppose that $n=1$ and set $T=V_{1} / V_{2}$. Then T is a finitely generated \widetilde{R}_{1}-module, and we have an exact sequence of finitely generated \widetilde{R}_{1}-modules

$$
0 \longrightarrow T \stackrel{\cdot \pi}{\longrightarrow} \tilde{\mathrm{~V}}_{2}=\mathrm{V}_{2} / \pi \cdot \mathrm{V}_{2} \rightarrow \tilde{\mathrm{~V}}_{1}=\mathrm{V}_{1} / \pi \cdot \mathrm{V}_{1} \rightarrow \mathrm{~T} \longrightarrow 0 .
$$

In $G_{0}\left(\widetilde{R}_{1}\right)$, this yields $[T]-\left[\tilde{V}_{2}\right]+\left[\tilde{V}_{1}\right]-[T]=0$, whence
$\left[\tilde{v}_{2}\right]=\left[\tilde{v}_{1}\right]$. If $n>1$, then set $V_{3}=m^{n-1} V_{1}+V_{2}$. Then V_{3} is an R_{1}-form of V with $V_{1} \supseteq V_{3} \supseteq m^{n-1} V_{1}$ and $\mathrm{V}_{3} \supseteq \mathrm{~V}_{2} \supseteq \mathrm{~m} \mathrm{~V}_{3}$. By induction, we conclude that $\left[\tilde{\mathrm{V}}_{1}\right]=\left[\tilde{\mathrm{V}}_{3}\right]=\left[\tilde{\mathrm{V}}_{2}\right]$ so that $\left[\tilde{\mathrm{v}}_{1}\right]=\left[\tilde{\mathrm{V}}_{2}\right]$ follows in general. Now let $0 \longrightarrow U \longrightarrow V \xrightarrow{\varphi} W \longrightarrow 0$ be an exact sequence of finitely generated R-modules and choose an R_{1}-form $V_{1} \subseteq V$ of V. Then, clearly, $W_{1}=\varphi\left(V_{1}\right)$ is an R_{1}-form of W. Also, $U_{1}=U \cap V_{1}$ is finitely generated over R_{1}, since R_{1} is Noetherian, and

$$
\mathrm{K} \cdot \mathrm{U}_{1}=\left\{\xi \mathrm{u} \mid \mathrm{u} \in \mathrm{U} \cap \mathrm{~V}_{1}, \xi \in \mathrm{~K}\right\}=\mathrm{U} \cap \mathrm{~K} \cdot \mathrm{~V}_{1}=\mathrm{U}
$$

so U_{1} is an R_{1}-form of U. Finally, since W_{1} is torsionfree and hence flat over A, the exact sequence $0 \rightarrow U_{1} \rightarrow V_{1} \rightarrow W_{1} \rightarrow 0$ remains exact under tensoring with $k \otimes_{A}($.$) . This shows that \left[\tilde{V}_{1}\right]=\left[\tilde{U}_{1}\right]+\left[\tilde{W}_{1}\right]$ holds in $G_{0}\left(\widetilde{R}_{1}\right)$. Therefore, the map $[\mathrm{V}] \longmapsto\left[\widetilde{\mathrm{V}}_{1}\right]$ defines a homomorphism $G_{0}(R) \longrightarrow G_{0}\left(\widetilde{R}_{1}\right)$.

The homomorphism $d: G_{0}(R) \longrightarrow G_{0}\left(\widetilde{R}_{1}\right)$ constructed above is called the decomposition map.

The foregoing applies in particular to group algebras of polycyclic-by-finite groups. It is routine to verify that, for any subgroup H of G, the following diagram commutes:

Since, for all $U \in \mathcal{F}=\mathcal{F}(G)$, the decomposition map $G_{0}(\mathrm{~K}[\mathrm{U}]) \rightarrow \mathrm{G}_{0}(\mathrm{k}[\mathrm{U}])$ is onto if K is complete [Se , Theorèm 33], we conclude in particular that

$$
d\left(G_{0}(K[G])_{F}\right)=G_{0}(k[G])_{F} \quad(K \text { complete }) .
$$

An analogous commutative diagram exists for $\operatorname{Res} \underset{H}{G}, H \leqq G$ a subgroup of finite index.

LEMMA 3.2. Assume that G has no finite normal subgroups \#<1> . Then the following diagram commutes:

In• particular, $\rho(K[G]) \mid \rho(k[G])$.

PROOF. Using the fact that, for $H \leqq G$ of finite index, the decomposition maps commute with $\operatorname{Res} \underset{H}{G}$ in connection with

Lemma 1.1(i), we immediately reduce to the case where G is poly-z . But then the "twisted Grothendieck theorem" [Q, Exercise on p.122] or [Fa-H, Theorem 27] implies that $G_{0}(K[G])$ is generated by [K[G]]. Finally, d([K[G]]) $=[k[G]]$ and $X_{[G]}(k[G])=1=X_{K[G]}(K[G])$. This shows that the diagram commutes. The remaining assertion is obvious from the definition of X.

COROLLARY 3.3. Assume that G has no finite normal subgroups \#<1>.
i. $\rho(F[G]) \mid \rho(E[G])$ for some finite extension E of the prime subfield of F. Consequently, if the Goldie rank conjecture holds for all $E[G]$, where E is a finite extension of the prime subfield of F, then it also holds for $F[G]$.
ii. Let p be a rational prime and assume that char $F=0$. Then $\rho(F[G]) \mid \rho(E[G])$ holds for some finite field E with char $E=p$. In particular, if the Goldie rank conjecture holds for all $E[G]$, where E is a finite field of char p, then it also holds for all $F[G]$ with char $F=0[$ Ro2 $]$.

PROOF. (i). We may assume that F is finitely generated over its prime subfield F_{0}, because $\rho(F[G])=\rho\left(F^{\prime}[G]\right)$ for some finitely generated subextension F^{\prime} / F_{O} of F / F_{O}. (Consider the F-coefficients of the generators in a direct sum of nonzero
right ideals of maximal length in $F[G])$. In order to apply Lemma 3.2, we only have to exhibit a discrete valuation of F whose residue field is a finite extension of F_{0}. For this, let $F_{1} \supseteq F_{0}$ be a purely transcendental subextension of F / F_{0} such that F / F_{1} is finite and let $F_{0}((T))$ be the field of Laurent power series over F_{0}. Then $F_{0}((T))$ has infinite transcendence degree over F_{0} and so the embedding $\mathrm{F}_{0} \subseteq \mathrm{~F}_{0}((\mathrm{~T}))$ extends to an embedding of F_{1} into $\mathrm{F}_{0}((\mathrm{~T}))$. Now $F_{0}((T))$ has a discrete valuation, the "order valuation", with valuation ring $F_{0}[[T]]$ and maximal ideal $\left.T \cdot F_{0}[T]\right]$. By restriction, this yields a discrete valuation of F_{1} with residue field F_{0}. Finally, v extends to a discrete valuation v^{\prime} of F with residue field a finite extension of F_{0}, as required.
(ii). As above, it suffices to show that every finitely generated field extension of Q has a discrete valuation with residue field a finite field of char p. The existence of such a valuation is well-known [MacL] .

It would be interesting to know whether or not the decomposition map $d_{0}: G_{0}(\mathbb{K}[G]) \rightarrow G_{0}(k[G])$ is surjective for (K, A, k) as above, with K complete of characteristic O and char $k=p>0$. Since the image of d contains $G_{0}(k[G])_{F}$, d is of course surjective whenever $G_{0}(k[G])=G_{0}(k[G])_{F}$.

We close this section with a characteristic O version of Theorem 2.5, also due to D.S.Passman.

THEOREM 3.4.(Passman [Pa2]). Let F be a field of characteristic O and assume that $F[G]$ is prime. If G has a normal subgroup N of finite index with $p \nmid f(N)$ and such that the Sylow p-subgroup of G / N is elementary abelian, then $\rho(F[G])_{p}=f(G)_{p}$.

PROOF. This follows from Theorem 2.5 and Corollary 3.3ii.

Throughout this section, N denotes a normal subgroup of G such that

```
char F \ f(N) or, equivalently, gl.dimF[N]<\infty
```

(cf. [Pa1, Theorem 10.3.13]). The canonical map $F[G] \rightarrow F[G / N]$ extending the group homomorphism $G \longrightarrow G / N$ will be denoted by - . We also set

$$
\bar{F}=\{\bar{U} \mid U \in \mathcal{F}=\mathcal{F}(G)\} .
$$

Our main interest will be in the case when N is torsion-free and has finite index in G.

Since $F[N]$ has finite global dimension (equal to the Hirsch number $h(N)$ of N), any $F[G]$-module V satisfies

$$
\operatorname{Tor}_{n}^{F[G]}(\overline{F[G]}, V)=\operatorname{Tor}_{n}^{F[G]}\left(F[G] \otimes_{F[N]} F, V\right) \cong \operatorname{Tor}_{n}^{F[N]}(F, V)=H_{n}(N, V)=0
$$

for all sufficiently large n. This allows us to define a homomorphism

$$
\gamma=\gamma_{F[G], N}: G_{0}(F[G]) \rightarrow G_{0}(F[\bar{G}]),[V] \longmapsto \sum_{i \geqq 0}(-1)^{i}\left[H_{i}(N, V)\right]
$$

(cf. [Ba1, p.454]). For example, if $\left.V\right|_{F[N]}$ is projective,
then $H_{i}(N, V)=0$ for all $i>0$ and so $\gamma([V])=[V /(\omega N) V]$. In particular, if $F[G]$ itself has finite global dimension (i.e. char $F \nmid f(G))$, then $G_{0}(F[G]) \cong K_{0}(F[G])$ and γ reduces to the canonical map $\mathrm{K}_{0}(\mathrm{~F}[\mathrm{G}]) \longrightarrow \mathrm{K}_{0}(\mathrm{~F}[\overline{\mathrm{G}}]) \xrightarrow{\text { Cartan }} \mathrm{G}_{0}(\mathrm{~F}[\overline{\mathrm{G}}])$. In this section, we describe some properties of the map γ. The connection of γ with (normalized) Goldie ranks is explained in the following lemma.

LEMMA 4.1. Assume that $F[G]$ is prime and that N is torsion-free and has finite index in G. Then, for any finitely generated $F[G]-m o d u l e V$,

$$
X_{F[G]}(V)=[G: N]^{-1} \cdot \operatorname{dim}_{F} \circ \gamma_{F[G], N}([V])
$$

PROOF. This is part of [Lo1, Corollary 9].

In the next lemma, we collect some elementary properties of the map γ.

LEMMA 4.2. i. If N is finite, then γ is onto.
ii. Let $H \leqq G$ be a subgroup of G. Then the following diagram commutes:

In particular, $\quad \gamma\left(G_{0}(F[G])_{\mathcal{F}}\right)=G_{0}(F[\bar{G}])_{\bar{F}}$.
iii. Let (K,A,k) be as in Section 2, notations, and let $\mathrm{d}: \mathrm{G}_{0}(\mathrm{~K}[\mathrm{G}]) \rightarrow \mathrm{G}_{0}(k[\mathrm{G}])$ and $\overline{\mathrm{d}}: \mathrm{G}_{0}(\mathrm{~K}[\overline{\mathrm{G}}]) \rightarrow \mathrm{G}_{0}(k[\overline{\mathrm{G}}])$ denote the decomposition maps. Then the following diagram commutes:

iv. Assume that N has finite index in G. Then $\gamma\left(G_{0}(F[\bar{G}])\right)$ is an ideal of $G_{0}(F[\bar{G}])$. Indeed, viewing $G_{0}(F[G$ as a module over $G_{0}(F[\bar{G}])$ via inflation and \otimes_{F}, we have

$$
\gamma(\alpha \cdot \beta)=\gamma(\alpha) \cdot \beta\left(\alpha \in G_{0}(F[G]), \beta \in G_{0}(F[\bar{G}])\right) .
$$

PROOF. (i). Let V be a finitely generated $F[G]$-module and let $N \triangleleft G$ be finite, with char $F \nmid|N|$. Then $\left.V\right|_{F[N]}$ is
projective and so $\gamma([\mathrm{V}])=[\mathrm{V} /(\omega \mathrm{N}) \mathrm{V}]$. Therefore, $\mathrm{Y} \circ \operatorname{Inf} \frac{\mathrm{G}}{\mathrm{G}}$ is the identity on $G_{0}(F[\bar{G}])$.
(ii). Let V be a finitely generated $F[H]$-module. Since F[N $\cap H]$ has finite global dimension, we may assume that $\left.\mathrm{V}\right|_{F[N \cap H]}$ is projective so that $\quad \gamma_{F[H], N \cap H}([V])=[V / \omega(N \cap H) \cdot V]$. Moreover,

$$
\operatorname{Res}_{N}^{G} \operatorname{Ind}_{H}^{G}(V)=\oplus \operatorname{Ind}_{x(N \cap H)}^{N} x^{-1} \operatorname{Res}_{x(N \cap H) x^{-1}}^{x H x^{-1}}(x \otimes V)
$$

(x runs over a set of right coset representatives of NH in G) is projective over $F[N]$. Therefore,

$$
\begin{aligned}
& \Upsilon_{F[G], N^{\circ}} \operatorname{Ind}_{H}^{G}([V])=\left[\operatorname{Ind}{ }_{H}^{G} V / \omega N \cdot \operatorname{Ind}{ }_{H}^{G} V\right] . \\
& =\left[\operatorname{Ind} \bar{H}_{\bar{G}}^{\bar{G}}(V / \omega(N \cap H) \cdot V)\right]=\operatorname{Ind} \bar{H}^{\bar{G}} \circ \gamma_{F}[H], N \cap H([V]) .
\end{aligned}
$$

This proves the commutativity of the diagram. The equality $\gamma\left(G_{0}(F[G])_{F}\right)=G_{0}(F[\bar{G}])_{\bar{F}}$ now follows from the fact that $Y_{F[U], N \cap U}$ is onto for all $U \in \mathcal{F}$, by (i).

The proofs of (iii) and (iv) are similarly straightforward and are omitted.

In the proof of Proposition 4.4 below, we will need a version of the Artin induction theorem for finite groups which we now explain. For this, let H denote a finite group and set

$$
H_{r e g}=\{x \in H \mid \operatorname{char} F \quad \nmid \operatorname{order}(x)\} \quad(=H \text { if char } F=0)
$$

Furthermore, let \mathfrak{d} denote a family of subgroups of H and set

$$
G_{0}(F[H] ; H)=\left\{\alpha \in G_{0}(F[H]) \mid \varphi_{\alpha} \quad \text { vanishes on } \quad H_{r e g} \backslash \underset{U \in \mathbb{U}}{U}\right\} .
$$

Here, φ_{α} denotes the virtual character or, in case char $F=p$ >0, the virtual modular character of $\alpha \in G_{0}(F[H])$ (cf. [Se 1, p. 161]). Recall that $G_{0}(F[H])_{1}$ is the image of $\operatorname{Ind}_{\mathfrak{H}}^{H}: \underset{U \in \mathfrak{H}}{\oplus} G_{0}(F[U]) \rightarrow G_{0}(F[H]) . \quad G_{0}(F[H])_{\mathcal{M}}$ and $G_{0}(F[H] ; \mu)$ are ideals of $G_{0}(F[H])$, with $G_{0}(F[H]){ }_{\mu} \subseteq G_{0}(F[H] ; \mathfrak{H})$.

Fix an integer m which is a multiple of the exponent of H. Then (Z/mZ)* acts as a permutation group on H via $x \mapsto x^{t}(x \in H, t \in \mathbf{z} / m z)$. This action commutes with the conjugation action of H, so $H \times(\mathbf{Z} / \mathrm{mZ})^{*}$ acts, and $H_{r e g}$ is stable under this action. Let F_{1} be the field obtained from F by adjoining to F all m-th roots of unity or, equivalently, all m'-th. roots of unity, where m^{\prime} is the part of m which is prime to char $F(=m$ if char $F=0)$. Then the extension F_{1} / F is Galois, and

$$
\Gamma_{F}:=\operatorname{Gal}\left(F_{1} / F\right) \subseteq\left(\mathbf{Z} / \mathrm{m}^{\prime} \mathbf{Z}\right)^{*} \subsetneq(\mathbf{Z} / \mathrm{mZ})^{*}
$$

Thus $H \times \Gamma_{F}$ acts on H.

LEMMA 4.3. (notation as above) The groups G_{0} ($F[H]$; 1 l) and $G_{0}(F[H])_{\mathfrak{L}}$ both have rank equal to the number of $\left(H \times \Gamma_{F}\right)$ conjugacy classes in $\cap_{h \in H} U_{U \in \mathbb{L}} U_{r e g}^{h}$. In particular, $G_{0}(F[H] ; \mu) / G_{0}(F[H])_{\mu}$ is finite.

PROOF. First assume that char $F=0$. Using [Se 1, Cor. 1 on p. 110], we identify each $G(U):=\underset{\mathbf{Z}}{F \otimes G_{0}}(F[U]), U \in \mu$ or $U=H$, with the algebra of $\left(U \times \Gamma_{F}\right)$-invariant F-valued functions on U. We will show that

$$
\begin{aligned}
X:=\underset{\mathbf{Z}}{\mathrm{F} \otimes G_{0}}(\mathrm{~F}[\mathrm{H}])=\mathrm{Y}: & =\{\varphi \in \mathrm{G}(\mathrm{H}) \mid \varphi \text { vanishes on } \mathrm{H} \backslash \underset{\mathrm{U} \in \mathcal{H}}{U} \mathrm{U}\} \\
& =\left\{\varphi \in \mathrm{G}(\mathrm{H}) \mid \varphi \text { vanishes on } \mathrm{H} \underset{\left.\mathrm{~h} \in \mathrm{H} \underset{\mathrm{U} \in \mathbb{H}}{U} U^{\mathrm{h}}\right\} .}{ } .\right.
\end{aligned}
$$

Since, clearly, $X \subseteq \underset{\mathbf{Z}}{\mathrm{~F} \otimes \mathrm{G}_{0}}(\mathrm{~F}[\mathrm{H}] ; \mathrm{H}) \subseteq \mathrm{Y}$, this will prove that $G_{0}(F[H])_{\mathfrak{l}}$ and $G_{0}(F[H] ; \mu)$ both have rank equal to the number of $\left(H \times \Gamma_{F}\right.$)-conjugacy classes in $\cap_{h \in H} U_{U \in \mathcal{L}}^{U} U^{h}$, as required. The usual scalar product $\langle.,\rangle_{U}$ of central functions on U satisfies Frobenius reciprocity, and the different characters of irreducible representations of U over F form an orthogonal basis of $G(U)$ [Se 1, Théorème 13 on p. 73, Prop. 32 on p. 105, and Cor. 2 on p. 111]. Using this, we obtain

$$
\begin{aligned}
Y \cap X^{\perp} & =\left\{\varphi \in Y\left|<\varphi, \operatorname{Ind}_{U}^{H} \psi\right\rangle_{H}=0 \text { for all } \psi \in G_{0}(F[U]), U \in \mathfrak{H}\right\} \\
& =\left\{\varphi \in Y\left|<\operatorname{Res}_{U}^{H} \varphi, \psi\right\rangle_{U}=0 \text { for all } \psi \in G_{0}(F[U]), U \in \mathbb{H}\right\} \\
& =\left\{\varphi \in Y \mid \operatorname{Res}_{U}^{H} \varphi=0 \text { for all } U \in \mathfrak{H}\right\} \\
& =(0) .
\end{aligned}
$$

Since $Y \supseteq X$, we conclude that $X \cap X^{\perp}=(0)$ and $G(H)=X+X^{\perp}$, whence $Y=X$, as we have claimed.

In the case when char $F=p>0$, let (K, A, F) be a p-modular system (i.e., A is a discrete valuation ring with residue field $F=A / m$ and field of fractions K) such that A is m-adically complete and char $k=0$. Consider the decomposition map $d: G_{0}(K[H]) \rightarrow G_{0}(F[H])$. By [Se1, Remarque and Cor. 2 on p. 161], we have

$$
\begin{aligned}
& G_{0}(F[H] ; H)=d(Z) \quad \text { with } \\
& Z:=\left\{\alpha \in G_{0}(K[H]) \mid \quad \varphi_{\alpha} \text { vanishes on } H_{r e g} \backslash \cup \cup \cup U\right\}
\end{aligned}
$$

and

$$
\text { Ker } d=\left\{\alpha \in G_{0}(K[H]) \mid \varphi_{\alpha} \text { vanishes on } H_{r e g}\right\}
$$

Therefore, $G_{0}(K[H] ; \mu)+$ Ker $d \subseteq Z$. Again identifying $K \otimes G_{0}(K[H])$ with the algebra $G(H)$ of ($H \times \Gamma_{K}$)-invariant K-valued functions on H, we will show that

$$
\begin{aligned}
& \underset{\mathbf{Z}}{\otimes}\left(\mathrm{G}_{0}(\mathrm{~K}[\mathrm{H}])_{\mathrm{A}}+\mathrm{Ker} \mathrm{~d}\right)=\underset{\mathbf{Z}}{\mathrm{K} \otimes \mathrm{Z}} \\
& =I:=\left\{\varphi \in G(H) \mid \varphi \text { vanishes on } H_{r e g} \underset{h \in H \cup \cup \cup U}{\cap} U^{h}\right\} \text {. }
\end{aligned}
$$

First note that, under the above identification of $\underset{Z}{K} \mathrm{~K}_{0}(\mathrm{~K}[\mathrm{H}])$ with $G(H)$, the map

$$
\begin{aligned}
& \underset{\mathbf{Z}}{\mathrm{K} \otimes \mathrm{G}_{0}(\mathrm{~K}[\mathrm{H}])} \underset{\mathrm{id} \mathrm{~K}_{\mathrm{K}} \otimes \mathrm{~d}^{\prime}}{\mathrm{K} \otimes \underset{\mathbf{Z}}{\otimes} \mathrm{G}_{0}(\mathrm{~F}[\mathrm{H}]) \longrightarrow\left\{\begin{array}{l}
\overline{\mathrm{K}} \text {-valued H-invariant } \\
\text { functions on } \mathrm{H}_{\text {reg }}
\end{array}\right\}} \\
& \omega \\
& \psi \\
& \alpha
\end{aligned}
$$

($\overline{\mathrm{K}}=$ algebraic closure of K) becomes restriction of functions from H to $H_{r e g}(c f .[S e 1, p .163])$. Therefore, $\underset{\mathbf{Z}}{K 0 K e r d,}$ the kernel of this map, corresponds to the ideal $J:=$ $\left\{\varphi \in G(H) \mid \varphi\right.$ vanishes on $\left.H_{r e g}\right\}$. Moreover, as we have shown above, ${\underset{Z}{Z}}^{K \otimes} \mathrm{G}_{0}(\mathrm{~K}[\mathrm{H}])_{\mathbb{L}}$ corresponds to the ideal $Y=\{\varphi \in G(H) \mid \varphi$ vanishes outside of $\left.\cap \quad U U^{h}\right\}$. Now, for any $\varphi \in I$, define φ^{\prime} $h \in H \quad U \in \mathbb{L I}$
to be identical with φ outside of $H_{r e g}$ but $\varphi^{\prime}=0$ on $H_{r e g}$. Then $\varphi^{\prime} \in \underset{\mathbf{Z}}{K \otimes K e r d}$ and $\varphi-\varphi^{\prime} \in K \otimes G_{0}(K[H])_{\mathcal{H}}$, because
 hence on $H \backslash \underset{h \in H}{\cap} U \in \mathbb{U} U^{h}$. As the inclusions $\underset{Z}{K \otimes\left(G_{0}(K[H])\right.} \underset{H}{ }+$ Kerd) $\subseteq \underset{\mathbf{Z}}{\mathrm{K} \otimes \mathrm{Z}} \subseteq \mathrm{I}$ are clear, this shows that equality holds throughout. In particular, $d\left(G_{0}(K[H])_{\mu}\right)=G_{0}(F[H])_{\mathcal{L}}$ has finite index in $d(Z)=G_{0}(F[H] ; H)$. Moreover,

$$
\begin{aligned}
& \operatorname{rank} G_{0}(F[H] ; \mu)=\operatorname{dim}_{K}^{I}-\operatorname{dim}_{K} J \\
& =\#\left(H \backslash H_{r e g} \dot{U} \underset{h \in H}{\cap} \cup U_{U \in \sharp}^{h} U_{r e g}\right) / H \times \Gamma_{K}-\#\left(H \backslash H_{r e g}\right) / H \times \Gamma_{K} \\
& =\#\left(\underset{h \in H \cup U \in \mathfrak{U}}{\cup} U_{r e g}^{h}\right) / H \times \Gamma_{K} .
\end{aligned}
$$

It remains to replace Γ_{K} by Γ_{F} in this formula. For this, let m be a multiple of the exponent of H and let m^{\prime} denote the p'-part of m, as in the paragraph preceding the statement of the lemma. Note that the action of $(\mathbf{Z} / \mathrm{mZ})^{*}$ on $H_{r e g}$ factors through $\left(\mathrm{Z} / \mathrm{m}^{\prime} \mathbb{Z}\right)^{*}$. Let K_{1}, resp. K_{1}^{\prime}, denote the field obtained from K by adjoining the m-th , resp. m'-th , roots of unity, and similarly for F (so $\left.F_{1}=F_{1}^{\prime}\right)$. Then $\Gamma_{K}=G a l\left(K_{1} / K\right) \subseteq(\mathbf{Z} / \mathrm{mZ})$ * maps onto $\Gamma_{K}^{\prime}:=\operatorname{Gal}\left(K_{1}^{\prime} / K\right) \subseteq\left(Z / \mathrm{m}^{\prime} \mathrm{Z}\right)^{*}$; and the action of Γ_{K} on
$H_{r e g} f a c t o r s$ through Γ_{K}^{\prime}. Finally, as subgroups of (Z/m'Z)*, Γ_{K}^{\prime} and Γ_{F} coincide (cf. [Se 2, Prop. 16, p. 77]). This finishes the proof of the lemma.

We now apply the foregoing to study the image of the map $r=\gamma_{F[G], N}$ for N normal of finite index in G. The essence of the following proof is extracted from [Ga-Ro].

PROPOSITION 4.4. Let N be normal of finite index in G, with char $F X f(N)$. Then $G_{0}(F[G])_{F}+$ Ker γ has finite index in $G_{0}(F[G])$.

PROOF. We have to show that $\gamma\left(G_{0}(F[G])_{F}\right)=G_{0}(F[\bar{G}]) \bar{F}$ (Lemma 4.2ii) has finite index in $\gamma\left(G_{0}(F[G])\right.$. In view of Proposition 2.2i, this amounts to showing that the image of $\gamma\left(c K_{0}(F[G])\right)$ modulo $G_{0}(F[\bar{G}]) \bar{F}$ is finite. By Lemma 4.3, it suffices to show that for all finitely generated projective $F[G]$-modules P, we have $r([P]) \in G_{0}(F[\bar{G}] ; \bar{F})$. For this, we recall some facts about Hattori-Stallings ranks (cf. [Ba 2]).

Let R be any commutative ring and let P denote a finitely generated projective R[G]-module. Then the HattoriStallings rank r_{p} of P is an R-valued function on G which is central (i.e., constant on G-conjugacy classes) and vanishes on all but finitely many conjugacy classes of G. More precisely, an important result due to Formanek, Farkas and Snider, and Cliff (cf. [Ga-Ro, Theorem 2.2]) asserts that $r_{P}(x)=0$ for all $x \in G$ of infinite order. The rank $r_{\bar{p}}$ of the finitely generated
projective $R[\bar{G}]$-module $\bar{P}=P /(\omega N) \cdot P$ is given by

$$
\begin{gathered}
r_{\bar{p}}(\bar{x})=\sum_{c(y)} r_{p}(y), \\
c(\bar{y})=c(\bar{x})
\end{gathered}
$$

where $c($.$) denotes G-conjugacy classes [Ba 2, 5.4]. Now$ suppose that $x \in G$ satisfies $\bar{x} \notin \bar{U}$ for all $U \in \mathcal{F}=\mathcal{F}(G)$. Then each $y \in G$ with $C(\bar{y})=c(\bar{x})$ has infinite order. Therefore, $r_{P}(y)=0$ and so $r_{\bar{P}}(\bar{x})=0$. The rank $r_{\bar{p}}$ and the character $\chi_{\bar{p}}$ of $\overline{\mathrm{P}}$ (i.e., the traces of the operators given by the action of G on the finitely generated projective R-module \bar{P}, cf. [Bou, p. 78]) are related by the formula

$$
\chi_{\bar{P}}(\overline{\mathrm{x}})=\left|\mathbf{C}_{\overline{\mathrm{G}}}(\overline{\mathrm{x}})\right| \cdot r_{\overline{\mathrm{P}}}\left(\overline{\mathrm{x}}^{-1}\right) \quad(\overline{\mathrm{x}} \in \overline{\mathrm{G}})
$$

[Ba 2, 5.8]. Thus, if $x \in G$ satisfies $\bar{x} \notin \bar{U}$ for all $U \in \mathcal{F}$, then $X_{\bar{P}}(\bar{x})=0$.

In the case when char $F=0$ simply take $R=F$ in the above to conclude that $\gamma([P])=[\bar{P}] \in G_{0}(F[G] ; \bar{F})$ holds for all finitely generated projective $F[G]$-modules P, as required. Thus assume that char $F=p>0$ and let (K, A, F) be a p-modular system, with K complete of characteristic 0 . Let m denote the maximal ideal of A and, for each $n \geq 1$, set $A_{n}=A / m^{n}$. Since the kernel of $A_{n}[G] \rightarrow F[G]$ is nilpotent, there exists a unique (up to isomorphism) finitely generated projective $A_{n}[G]$-module P_{n} whose reduction modulo \mathfrak{m}^{n} is P [Ba 1, p . 90]. By the result of the preceding paragraph of the proof, applied to $R=A_{n}$ and P_{n}, we know that the rank of $\bar{P}_{n}=P_{n} /(\omega N) \cdot P_{n}$ satisfies $r_{\bar{P}_{n}}(\bar{x})=0$ for all $\bar{x} \in \bar{G} \backslash \underset{U \in \mathcal{F}}{U} \bar{U}$. Let Q denote
the unique (up to isomorphism) finitely generated projective $A[\bar{G}]$-module whose reduction modulo \mathfrak{m}^{n} equals \bar{P}_{n} for all $\mathrm{n} \geqq 1$ (cf. [Se, p. 133]). Then the rank $\mathrm{r}_{\overline{\mathrm{P}}_{\mathrm{n}}}$ of $\overline{\mathrm{P}}_{\mathrm{n}}$ is the reduction of r_{Q} modulo m^{n} ([Ba2, 2.9]). From the foregoing we conclude that, for all $\bar{x} \in \bar{G} \backslash \underset{U \in F}{U} \bar{U}, r_{Q}(\bar{x}) \in \cap_{n} \mathfrak{m}^{n}=(0)$. Therefore, the character of Q also vanishes on $\bar{G} \backslash U \bar{U}$. As the restriction of this character to $\bar{G}_{r e g}$ is the Brauer character of \bar{P}, we have again shown that $\gamma([P])=[P] \in G_{0}(F[\bar{G}] ; \bar{F})$. This completes the proof of the proposition.

For finitely generated abelian-by-finite groups G , Proposition 4.4 above is an immediate consequence of the main result of $[\mathrm{Br}-\mathrm{H}-\mathrm{LO}]$ which asserts that $G_{0}(\mathrm{~F}[\mathrm{G}]) / \mathrm{G}_{0}(\mathrm{~F}[\mathrm{G}])_{F}$ is periodic. Indeed, it is not hard to show directly, using the Artin induction theorem, that if G has a finitely generated free abelian normal subgroup A of finite index a , then

$$
a \cdot G_{0}(F[G]) \subseteq G_{0}(F[G])_{F}+\operatorname{Ker} \gamma_{F[G], A} .
$$

Proposition 4.4 can be used to derive an upper bound for the Goldie rank $\rho(F[G])$ entirely in terms of finite images of G. For this, let H denote any finite group and
d a family of subgroups of H. We put

$$
\begin{aligned}
|\mathfrak{u}| & :=\ell \cdot c \cdot m \cdot\{|U| \mid U \in \mathfrak{l}\}, \\
T(\mathfrak{l}) & :=\left\{\alpha \in G_{0}(F[H]) \mid n \alpha \in G_{0}(F[H])_{\mathfrak{l}} \quad \text { for some } n\right\},
\end{aligned}
$$

the isolator of $G_{0}(F[H])_{1}$ in $G_{0}(F[H])$, and

$$
t(\sharp):=\# \operatorname{Dim} T(\sharp) / \operatorname{Dim}_{0}(F[H])_{\sharp},
$$

where $\operatorname{Dim}: G_{0}(F[H]) \longrightarrow Z$ sends $[V]$ to $\operatorname{dim}_{F} V$ for any $F[H]$-module V. Note that $\operatorname{Dim~}_{0}(F[H])_{\mathfrak{H}}=|H| \cdot|u|^{-1} \cdot \mathbf{z}$.

COROLEARY 4.5 (notaticr as above). Tssume that $F[G]$ is prime and that N is torsion-free and has finite index in G. Let \mathfrak{H} be any family of subgroups of $\bar{G}=G / N$ such that for all $U \in \mathcal{F}(G)$ there exists $U_{1} \in \mathbb{l}$ with $\bar{U} \subseteq U_{1}$. Then

$$
\rho(F[G])||\mu| \cdot t(\mu) .
$$

PROOF. Setting $\gamma=\gamma_{F[G], N}$ we have, by Proposition 4.4 and our assumption on $H, \gamma\left(G_{0}(F[G])\right) \subseteq T(\bar{F}) \subseteq T(H)$. Thus, by definition of $t(\mu)$,

$$
t(\mathcal{H}) \cdot \operatorname{Dim} \circ \gamma\left(G_{0}(F[G])\right) \subseteq \operatorname{Dim}_{0}(F[\bar{G}])_{\mathfrak{H}}=|\bar{G}| \cdot|\mathfrak{H}|^{-1} \cdot \mathbf{z}
$$

Finally, Lemma 4.1 implies that, for any $\alpha \in G_{0}(F[G])$, $\operatorname{Dim}(\gamma(\alpha))=|\bar{G}| \cdot X_{F[G]}(\alpha)$. So we get

$$
|\mathfrak{u}| \cdot t(\mu) \cdot \chi_{F[G]}(\alpha) \in Z,
$$

which proves the corollary.

Note that, in the situation of the corollary, we always have $f(G)=|\bar{F}|| | \mathfrak{X} \mid$. The troublesome part of the above formula is the factor $t(\mu)$ whose explicit deternination appears far from trivial in general. Clearly, $t(11)$ divides the exponent of $T(\mu) / G_{0}(F[\bar{G}])_{\mu}$, and our next lemma gives a bound for the latter in the very special case where \sharp consists of a single normal subgroup. So let H be a finite group and let B be a normal subgroup of H. For any simple $F[B]$-module V, let $I_{H}(V)$ denote its inertia group in H and put
$s(V):=\min \left\{\left.\frac{\operatorname{dim} W}{\operatorname{dim} V} \right\rvert\, W\right.$ a simple $F\left[I_{H}(V)\right]$-module with $\left.\left.W\right|_{B} \supseteq V\right\}$
(cf. Remark 4.7 below).

LEMMA 4.6 (notation as above). Assume that F is a splitting field for B with char $F X H$. Then the exponent of $T(B) / G_{0}(F[H])_{B}$ divides l.c.m.\{s(V)|V a simple $\left.F[B]-m o d u l e\right\}$.

PROOF. Fix a complete set $\left\{V_{j} \mid j \in J\right\}$ of pairwise nonisomorphic and not H-conjugate simple $F[B]$-modules and let $\alpha \in G_{0}(F[H])$ be torsion modulo $G_{0}(F[H])_{B}$. Then $G_{0}(F[H])_{B}=\sum_{j \in J} Z \cdot I^{2}{\underset{B}{H}}_{H}\left[V_{j}\right]$ and so $r \alpha=\sum_{j \in J} z_{j} \cdot \operatorname{Ind}_{B}^{H}\left[V_{j}\right]$ for suitable $r, z_{j} \in \mathbf{Z}$. For each j, choose a simple $F\left[I_{H}\left(V_{j}\right)\right]$-module W_{j} with $\operatorname{dim} W_{j}=s\left(V_{j}\right) \cdot \operatorname{dim} V_{j}$ and $\left.W_{j}\right|_{B} \supseteq V_{j}$, and put $S_{j}=$ Ind ${\underset{I}{H}}_{H}^{H}\left(V_{j}\right) W_{j}$. Then Ind ${ }_{B}^{H} V_{j}$ maps onto S_{j}, and

$$
\left.s_{j}\right|_{B} \cong \underset{x \in X_{j}}{\otimes}\left(v_{j}^{s\left(v_{j}\right)}\right)(x)
$$

where X_{j} is a transversal for $I_{H}\left(V_{j}\right)$ in H and (.) (x) denotes conjugate modules. Therefore, writing $\langle.,\rangle_{H}=\operatorname{dim}_{F} \operatorname{Hom}_{F[H]}(.,$.$) as usual, we obtain$

$$
\begin{aligned}
r \cdot\left\langle\alpha, S_{j}\right\rangle_{H} & =\sum_{C \in J} z_{C}\left\langle\text { Ind }_{B}^{H} V_{C}, S_{j}\right\rangle_{H} \\
& =\sum_{C \in J} z_{C}\left\langle V_{C},\left.S_{j}\right|_{B}\right\rangle_{B} \\
& =\sum_{x \in X_{j}} \sum_{C \in J} z_{C} \cdot s\left(V_{j}\right) \cdot\left\langle V_{C}, V_{j}^{(x)}\right\rangle_{B} \\
& =z_{j} \cdot s\left(V_{j}\right)
\end{aligned}
$$

So r divides $z_{j} \cdot s$, where $s=l . c . m .\left\{s\left(V_{j}\right) \mid j \in J\right\}$, and we conclude that g.c.d. $(r, s) \cdot \alpha \in G_{0}(F[H])_{B}$, as it was to be shown.

REMARKS 4.7. We now comment on the numbers $s(V)$. Let H, B, and F be as in Lemma 4.6 and let V be a simple F[B]-module, with corresponding representation $\varphi: B \longrightarrow G L\left(V_{F}\right)$. Put

$$
H(V)=I_{H}(V) / B \quad .
$$

Then V yields a 2-cocycle ω_{V} of $H(V)$ with values in F^{*} whose class in $H^{2}\left(H(V), F^{*}\right)$ is uniquely determined by V. Explicitely, let $X=X(V)=\left\{x_{h} \mid h \in H(V)\right\}$ be a fixed transversal for B in $I_{H}(V)$ and let $M_{x}(x \in X)$ be fixed matrices in $G L\left(V_{F}\right)$ (unique up to scalars $\in F$) such that, for all $b \in B$,

$$
\varphi\left(x b x^{-1}\right)=M_{x} \varphi(b) M_{x}^{-1}
$$

Then ω_{V} is given by the scalar matrices

$$
\omega_{V}\left(h_{1}, h_{2}\right)=\varphi\left(x_{h_{1}} h_{2} x_{h_{2}}^{-1} x_{h_{1}}^{-1}\right) \cdot{ }^{M_{x_{h}}}{ }_{h_{1}}^{M_{x_{h}}} M_{x_{h_{1}} h_{2}}^{-1}
$$

for $h_{1}, h_{2} \in H(V)$. The number $s(V)$ is the smallest dimension of a (nonzero) module for the twisted group algebra $R_{V}=F^{\omega} V_{[H(V)]}(c f .[C-R$, Theorem 11.20]). In particular, the order of the class of ω_{V} in $H^{2}\left(H(V), F^{*}\right)$ divides $s(V)$.

In the special case where $H(V)$ is abelian and F is algebraically closed, $s(V)$ can be determinded as follows. Put

$$
H_{V}=\left\{h \in H(V) \mid \omega_{V}(h, k)=\omega_{V}(k, h) \quad \text { for all } k \in H(V)\right\} .
$$

It is easily checked that H_{V} is a subgroup of $H(V)$ which only depends on the class of ω_{V} in $H^{2}(H(V), F *)$. Moreover, the center Z_{V} of R_{V} is the subalgebra generated by $\mathrm{H}_{\mathrm{V}}, \mathrm{Z}_{\mathrm{V}}$ is isomorphic to the group algebra $\mathrm{F}\left[\mathrm{H}_{\mathrm{V}}\right]$, and R_{V} is free of rank $\left|H(V) / H_{V}\right|$ over Z_{V}. Finally, it is not hard to show that all two-sided ideals of R_{V} are generated by their intersections with Z_{V}. Consequently, the dimension of all simple R_{V}-modules equals $\left|H(V) / H_{V}\right|^{\frac{1}{2}}$, whence

$$
s(V)=\left|H(V) / H_{V}\right|^{\frac{1}{2}}
$$

In particular, if $H(V)$ is cyclic, then $s(V)=1$ ([Sri]). Of course, if B is a direct factor of H, or if H is abelian and F is a splitting field for H, then $s(V)=1$ holds for all simple $F[B]$-modules V. R. Knörr has pointed out to me that if $s(V)=1$ holds for all one-dimensional $F[B]-m o d u l e s ~ V, ~ t h e n ~ a l l ~ s u b g r o u p s ~ D ~$ of H with $B \subseteq D \subseteq H$ satisfy $[D, B]=[D, D] \cap B$.

THEOREM 4.8. Assume that $F[G]$ is prime and that char $F \nmid f(G)$. Let N be a torsion-free normal subgroup of finite index in G. For each prime ℓ, let G_{ℓ} denote the preimage in G of a Sylow l-subgroup of $\bar{G}=G / N$, and let B_{ℓ} be a normal subgroup of $\bar{G}_{\ell}=G_{\ell} / N$ containing the images of all finite subgroups of G_{ℓ}. Then:
i. $\quad \rho(F[G])_{\ell}| | B_{\ell} \mid \cdot \ell . c . m .\{s(V) \mid V$ a simple $E\left[B_{\ell}\right]$-module $\}$, where E is any splitting field for B_{ℓ} with $\mathrm{E} \supseteq \mathrm{F}$.
ii. If \bar{G}_{ℓ} is abelian, or $\overline{\mathrm{G}}_{\ell} / \mathrm{B}_{\ell}$ is cyclic, or B_{ℓ} is a direct factor of \bar{G}_{ℓ}, then $\rho(F[G])_{\ell}| | B_{\ell} \mid$.
iii. (Gabber-Rosset [Ga-Ro]) If $\overline{\mathrm{G}}_{\ell}$ is cyclic, then $\rho(F[G])_{\ell}=f(G)_{\ell}$.

PROOF. Since $\rho(F[G])$ divides $\rho(E[G])$ for any field extension E / F (by [W, Theorem 3], for example), we may assume that F is large enough. Moreover, using … Corollary 1.3 ii , we reduce to the case where $G=G_{\ell}$ for some ℓ and char $F X|\bar{G}|$. Part (i) is now immediate from Corollary 4.5 and Lemma 4.6. In view of our preceding remarks, (ii) is a special case of (i). Finally, if \bar{G}_{ℓ} is cyclic, then its subgroups are linearly ordered by inclusion, and we can take B_{ℓ} to be the largest image of a finite subgroup of G_{ℓ}. Then $\left|B_{\ell}\right|=f\left(G_{\ell}\right)=f(G)_{\ell}$, and so (iii) follows from (ii).

ACKNOWLEDGEMENT. The author's research was supported by the Deutsche Forschungsgemeinschaft/Heisenberg Programm (Lo 261/2-2). The author wishes to thank Mrs. Knuddel for the excellent typing of the manuscript.

REFERENCES

[Ba 1]	H. BASS; Algebraic K-Theory, Benjamin, New Yo
[Ba 2$]$	H. BASS; Euler characteristics and characters of discrete groups, Invent. math. 35, 155-196 (1976).
[Bou]	N. BOURBAKI; Algèbre, chap. II, Hermann, Paris, 1970.
[$\mathrm{Br}-\mathrm{H}-\mathrm{Lo}$]	K.A. BROWN, J. HOWIE and M. LORENZ; Induced resolutions and Grothendieck groups of polycyclic-by-finite groups, preprint (1985).
[C]	G.H. CLIFF; Zero divisors and idempotents in group rings, Canad. J. Math. 32, 596-602 (1980).
[Ch]	L. CHOUINARD; Projectivity and relative projectivity over group rings, J. Pure and App1. Algebra 7, 287-302 (1976).
[C-R]	C.W. CURTIS and I. REINER; Methods of Representation Theory, Vol. 1, Wiley-Interscience, New York, 1981.
[F]	D.R. FARKAS; Group rings: an annotated questionnaire, Comm. in Algebra 8, 585-602 (1980).
[F-S]	D.R. FARKAS and R.L. SNIDER; K_{0} and Noetherian group rings, J. Algebra 42, 192-198 (1976).
[$\mathrm{Fa}-\mathrm{H}$]	F.T. FARRELL and W.C. HSIANG; A formula for $K_{1} R_{\alpha}[\mathrm{T}]$, Proc. Symposia in Pure Math., Vol. 17, pp. 192-218 Amer. Math. Soc., Providence, 1970.
[Fo]	E. FORMANEK; The zero divisor question for supersolvable groups, Bull. Austral. Math. Soc. 9, 67-71 (1973).
[Ga-Ro]	O. GABBER and S. ROSSET; On the Goldie rank conjecture in group rings,
[Lo1]	M. LORENZ; On the cohomology of polycyclic-by-finite groups, J. Pure and Appl. Algebra (to appear).

[Lo2] M. LORENZ; The Goldie rank of prime supersolvable group algebras, Mitt. Math. Seminar Gießen 149, 115-129 (1981).
[Lo-Pa] M. LORENZ and D.S. PASSMAN; Prime ideals in group algebras of polycyclic-by-finite groups, Proc. London Math. Soc.(3) 43, 520-543 (1981).
[Ma] A.I. MALCEV; On certain classes of infinite soluble groups (in Russian), Mat. Sb. 28, 567-588 (1951).
[Mac L] S. MAC LANE; The uniqueness of power series representations of certain fields with valuations, Annals Math. 39, 370-382 (1938).
[Pa1] D.S. PASSMAN; The Algebraic Structure of Group Rings, Wiley-Interscience, New York, 1977.
[Pa2] D.S. PASSMAN; On the Goldie rank of group algebras, preprint (1984).
[Q] D. QUILLEN; Higher algebraic K-theory I, in: Lect. Notes in Math., Vol. 341, pp. 85-147, Springer, Berlin, 1973.
[Qu] F. QUINN; Algebraic K-theory of poly-(finite or cyclic) groups, Bull. Amer. Math. Soc. 12, 221-226 (1985).
[Ro1] S. ROSSET; The Goldie rank of virtually polycyclic groups, in: Lect. Notes in Math., Vol. 844, pp. 35-45, Springer, Berlin, 1981.
[Ro2] S. ROSSET; Miscalleneous results on the Goldie rank conjecture,
[s] D. SEGAL; Polycyclic Groups, Cambridge Univ. Press, Cambridge, 1983.
[Se1] J.P. SERRE; Représentations Linéaires des Groupes Finis, Hermann, Paris, 1971.
[Se2] J.P. SERRE; Local Fields, Springer, New York, 1979.
[Se3] J.P. SERRE; Cohomologie des groupes discrets, in: Prospects in Mathematics, Annals of Math. Studies No. 70, Princeton Univ. Press, Princeton, 1971.
[Sri] B. SRINIVASAN; On the indecomposable representations of a certain class of groups, Proc. London Math. Soc.(3) 10, 497-513 (1960).
[Sw] R.G. SWAN; K-Theory of Finite Groups and Örders, Lect. Notes in Math., Vol. 149, Springer, Berlin, 1970.
[W] R.B. WARFIELD; Prime ideals in ring extensions, J. London Math. Soc.(2) 28, 453-460 (1983).
[Wa] F. WALDHAUSEN; Algebraic K-theory of generalized free products, Part 1, Annals Math. 108, 135-204 (1978).

