
ON SOME DIFFERENTIALS IN THE MOTIVIC COHOMOLOGY
SPECTRAL SEQUENCE

SERGE YAGUNOV

Abstract. The main purpose of this paper is to compute the first non-zero
differential in the motivic cohomology spectral sequence with p-local coeffi-
cients in terms of the motivic Steenrod operations.

The motivic cohomology spectral sequence is an algebraic-geometrical analogue
of the Atiyah–Hirzebruch spectral sequence in topology. For smooth varieties, it
has the second term consisting of motivic cohomology groups and converges to
algebraic K-theory.

The spectral sequence was initially constructed for fields by Bloch and Lichten-
baum in their unpublished preprint [BL]. Further, two constructions for varieties
were given in papers of Friedlander and Suslin [FS] and Grayson [Gr]. The equiva-
lence of their approaches was established in [Su3].

The behavior of differentials in the motivic cohomology spectral sequence is quite
similar to the topological case. Being taken with rational coefficients the sequence
collapses at its E2-term (see Levine [Le]).

The next natural question in the row is to describe possible non-trivial differen-
tials of order p in the spectral sequence with p-local coefficients.

In topology the goal was achieved by Buchstaber [Bu]. In the current paper we
establish the parallel result for the motivic cohomology spectral sequence. Philo-
sophically, presented proof is similar to Buchstaber’s one, but the technique is
certainly rather different.

The strategy of the proof is the following: First, I show, using Adams operations,
that the first non-trivial differential may appear only in Ep-term (Proposition 1.2).
Then, computing the motivic Steenrod algebra in the corresponding degree, it is
possible to show that the differential in question is proportional to the Steenrod
algebra generator (Proposition 2.2). Finally, to check that the proportionality co-
efficient is not 0, I construct an example of a variety with non-trivial differentials
(Theorem 4.1).

The computation of the p-local Steenrod algebra is based on Voevodsky’s result
on the structure of the motivic Steenrod algebra with finite coefficients. Since
the latter result is proven only for fields of characteristic 0, we should restrict
ourself to this case. However, all other arguments work perfectly for arbitrary
fields. Unfortunately, currently I also have no satisfactory proof of Proposition 2.1
that makes the main result a bit hypothetical. In topology, similar result easily
follows from the fact that n-th Eilenberg–Mac Lane space in n-connected.

I warmly thank Andrei Suslin and Ivan Panin for fruitful discussions during
my work. I’m deeply grateful to Alexander Merkurjev, who explained to me how
to construct the example of a variety with non-trivial differentials. A significant
part of this work was done during my visits to the Institut des Hautes Études
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Scientifiques (Bures-sur-Yvette) and Universität Bielefeld. I’d like to thank both
the Institutes for shown hospitality and excellent working conditions. Finally, I’m
gratefully acknowledge INTAS partial financial support during my work.

1. Main Result

Let k be a field. Let us fix some prime p > 2 different from the field characteristic
and denote by Z(p) the localization of the group of integers Z outside the prime
ideal (p).

Consider the Motivic Cohomology spectral sequence (see [FS]) with coefficients
in Z(p):

(1.1) Ei,j
2 = Hi−j(X,Z(p)(−j)) ⇒ K−i−j(X,Z(p)).

(Everywhere in this paper H denotes the Motivic cohomology groups.) It is
shown by Voevodsky [Vo2], that the Motivic cohomology groups coincide with the
corresponding higher Chow groups. Namely,

(1.2) Hi−j(X,Z(p)(−j)) = CH−j(X,−i− j;Z(p)).

Differentials in this spectral sequence act as: dn : Ei,j
n → Ei+n,j−n+1

n .
The purpose of the current paper is to compute the first non-trivial differential in

the spectral sequence above. Namely, we are going to prove the following Theorem:

Theorem 1.1.

(1.3) di =

{
0 for 1 < i < p

a(B ◦ P 1 ◦ red) for i = p.

Here a 6= 0 denotes some constant lying in the group Z/p, the operations red, B,
and P 1 are coefficient reduction, Bockstein homomorphism, and first Z/p-Steenrod
power operation, correspondingly.

In this section we prove the first statement of the theorem. Then, the differential
in question will be described as an element of the corresponding Steenrod algebra,
which will be computed in Sections 2 and 3. Finally, in Section 4 we construct
an example of a variety for which the corresponding differential in the spectral
sequence is non-trivial. This completes the proof of the Theorem.

Proposition 1.2. dn = 0 for p− 1 - n− 1.

Proof. As it was shown by Mark Levine [Le], the Adams operations ψk in K∗(X)
can be extended to operations acting on the whole Motivic Cohomology spec-
tral sequence. Moreover, their action on the E2-term is given by the relation:
ψk(α) = kqα for α ∈ H∗(X,Z(q)). Therefore, all topological arguments proposed
by Buchstaber [Bu] work in this case as well. Since Adams operations commute
with differentials, we have:

diψk = ψkdi : H∗(X,Z(q)) → H∗+2i−1(X,Z(q + i− 1)).

Therefore, one has: kq(ki−1 − 1)di = 0 and the differential di annihilates as multi-
plied by the

(1.4) g.c.d.
k=2...∞

p-k

{kq(ki−1 − 1)} def= M(q, i).
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(These integers are sometimes called Kervaire–Milnor constants1.) Since for p− 1 -
i− 1 we have: p -M(∗, i), the differentials of these degrees vanish. ¤

Corollary 1.3. We have: pdp = 0.

Proof. Since one has: M(∗, p) = p, the corollary follows. ¤

Lemma 1.4. Differential dn is a bistable cohomological operation of degree (2n−
1, n− 1) on the category of Voevodsky’s motivic spaces [Vo4].

Proof. Since every space can be obtained as a colimit of smooth schemes and the
Motivic spectral sequence is functorial, one can extend it term-wise to the whole
category of spaces.

To prove stability, it is sufficient to show that the following diagram commutes:

(1.5) Hi(X,Z(j))

Σ

²²

dn // Hi+2n−1(X,Z(j + n− 1))

Σ

²²
Hi+2(T ∧X,Z(j + 1))

dn // Hi+2n+1(T ∧X,Z(j + n)),

where Σ denotes the T -suspension morphism and T is the Tate object. The space
T ∧X is T -homotopically equivalent to (P1,∞) ∧X. Motivic cohomology groups
of the latter space appear as shifted cohomology groups of X itself and the iso-
morphism may be delivered by multiplication with the Tate element σ. Since the
spectral sequence differentials satisfy the Leibnitz rule, it is suffices to check that
dn(σ) = 0 that follows by the dimension reasons. ¤

2. Computation of Z(p)-Steenrod algebra torsion

Denote the set of bistable cohomological operations of degree {i, j}, sending mo-
tivic cohomology with coefficients in a group S to one with coefficients in some group
T by OPi,j(S, T ). In particular, set Ai,j(S) = OPi,j(S, S). For an Eilenberg–Mac
Lane space K(S, n) one can choose a universal element ε in the group Hn(K(S, n)),
corresponding to the identical morphism of the space K(S, n). Applying the T -
suspension map to the element ε, one obtains the element Σε, i.e. the homotopy
class of morphisms: ΣK(S, n)

fn→ K(S, n + 1). Finally, using this morphism, one
can construct an inverse system of the groups Hi+2n,i+n(K(S, n), T ) as shown in
the diagram below.

(2.1) Hi+2n+2,i+n+1(K(S, n + 1), T )
f∗n //

++WWWWWWWWWWWWWWWWWWWW
Hi+2n+2,i+n+1(ΣK(S, n), T )

Σ'
²²

Hi+2n,i+n(K(S, n), T )

One sets:

(2.2) OPi,j(S, T ) = lim
←
n

Hi+2n,j+n(K(S, n), T ).

For motivic cohomology all the construction above can be made explicit. Fol-
lowing Voevodsky [Vo3, Vo4], for a smooth scheme X over k one considers Ztr(X)

1Probably, after their paper [KM]



DIFFERENTIALS IN MOTIVIC SPECTRAL SEQUENCE 4

the presheaf of abelian groups on the category Sm/k of smooth algebraic vari-
eties of finite type, which takes U to the abelian group generated by all cycles on
X × U , which are finite and equidimensional over U . For an abelian group A set
Atr := A⊗Ztr and one defines K(A,n) as the pointed sheaf of sets associated with
the presheaf

(2.3) Kpre
A,n : U 7→ Atr(An)(U)(U)/Atr(An − {0})(U).

If A is a commutative ring, there exist multiplication morphisms

(2.4) K(A,n) ∧K(A, m) → K(A,n + m),

induced by the morphism sending a pair of cycles to their external product. The
presheaf Atr(Pn,∞)(U) gives another equivalent model of the motivic Eilenberg–
Mac Lane spaces. This fact, together with existence of the canonical morphism
(Pn,∞) → Atr(Pn,∞) enables us to endow the sequence of the spaces K(A, n)
with bonding maps

(2.5) (P1,∞) ∧K(A,n) → K(A,n + 1)

and enrich this sequence with the structure of a (P1,∞)-spectrum.2

Later we will need the following statement:

Proposition 2.1. lim
←
n

1Hi+2n,j+n(K(S, n), T ) = 0.

Proposition 2.2. The p-torsion in the Z(p)-Steenrod algebra is equal to Z/p, i.e.
pA

2p−1,p−1(Z(p)) = Z/p.

Proof. Consider a universal coefficient sequence corresponding to the coefficient
sequence

(2.6) 0 //Z(p)
p //Z(p)

red //Z/p //0 .

Since the higher inverse limits vanish, it looks as

(2.7) 0 → Ai,j(Z(p))/p → OPi,j(Z(p),Z/p) → pA
i+1,j(Z(p)) → 0.

In Section 4 we construct a nontrivial operation dp of degree (2p − 1, p − 1) with
Z(p)-coefficients. Our investigation of Adams operations implies that pdp = 0.
Therefore, the group pA

2p−1,p−1(Z(p)) is non-trivial. Below, in Proposition 3.1 we
show that OP2p−2,p−1(Z(p),Z/p) = Z/p. Hence, there is an epimorphism Z/p →
pA

2p−1,p−1(Z(p)). This completes the proof. ¤

3. Computation of the groups OP∗,p−1(Z(p), Z/p)

Everywhere in the current section P 1 denotes the first Steenrod operation in the
mod-p Steenrod algebra and red denotes the coefficient reduction operation from
Z(p) to Z/p.

The purpose of the current section is to prove the following proposition:

Proposition 3.1.

OPm,p−1(Z(p), Z/p) =





Z/p for m = 2p− 2
Z/p for m = 2p− 1
0 otherwise.

2It’s even become a symmetric motivic spectrum (see [Ja]).
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The following operations can be taken as generators in the non-trivial degrees: P 1 ◦
red for m = 2p− 2 and β ◦P 1 ◦ red for m = 2p− 1, correspondingly. Here β is the
Bockstein homomorphism, corresponding to the short exact sequence

0 //Z/p //Z/p2 //Z/p //0 .

Remark 3.2. Since the second grading of all groups considered in this section is
equal to p− 1, we will omit it for shortness.

Before we prove the Proposition, let us recall the following fact due to Voevod-
sky [Vo, Vo3]:

Proposition 3.3.

Am(Z/p) =





Z/p for m = 2p− 2
Z/p⊕ Z/p for m = 2p− 1
Z/p for m = 2p

0 otherwise.

and the following operations can be taken as generators in the corresponding degrees:
P 1, {β ◦ P 1, P 1 ◦ β}, and β ◦ P 1 ◦ β.

We will also need the following lemma.

Lemma 3.4. The groups OP(Z/p,−) and OP(−,Z/p) are p-torsion groups.

Proof. All elements of these groups are stable cohomological operations from (or
to) cohomology groups with Z/p coefficients. Since all such operations are additive
and the addition in the groups corresponds to the addition of the operations, one
has: pα = 0 for any operation α of the considered type. ¤
Proposition 3.5.

OPm(Z/p,Z(p)) =





Z/p for m = 2p− 1
Z/p for m = 2p

0 otherwise.

The following operations can be taken as generators in the non-trivial degrees: B ◦
P 1 for m = 2p − 1 and B ◦ P 1 ◦ β for m = 2p, respectively. Here β is as above
and B is the Bockstein homomorphism, corresponding to the coefficient short exact
sequence

0 //Z(p)
p //Z(p)

//Z/p //0 .

Remark 3.6. One can easily verify that β = red ◦B.

Proof. Consider a cohomology long exact sequence corresponding to the coefficient
short sequence

(3.1) 0 //Z(p)
p //Z(p)

red //Z/p //0 .

It looks as

(3.2) 0 //OPi(Z/p,Z(p))
red //Ai(Z/p) B //OPi+1(Z/p,Z(p)) //0 .

(This long exact sequence splits into short fragments since the multiplication by
p map is here zero.) Setting i > 2p, one has, due to 3.3: OPi(Z/p,Z(p)) = 0.
Similarly, for i < 2p− 2, one has: OPi(Z/p,Z(p)) = 0. Letting i = 2p, one obtains
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an isomorphism: OP2p(Z/p,Z(p))
red' A2p(Z/p) = Z/p and one can see that the

preimage of the generator β ◦P 1 ◦β in A2p(Z/p) = Z/p is the operation B◦P 1 ◦β.
Finally, taking i = 2p− 1, one gets the short-exact sequence:
(3.3)

0 // OP2p−1(Z/p,Z(p))
red // Z/p⊕ Z/p

B // Z/p // 0

OP2p(Z/p,Z(p))

.

Obviously, the generator B◦P 1 of OP2p−1(Z/p,Z(p)) passes to the generator β ◦P 1

of A2p−1(Z/p) and P 1 ◦ β passes to B ◦ P 1 ◦ β ∈ OP2p(Z/p,Z(p)). ¤

Proposition 3.7. There exists the following natural isomorphism: OPi(Z/p,Z(p)) '
OPi−1(Z(p),Z/p). The groups on the right-hand-side are generated by the operations
P 1 ◦ red and β ◦ P 1 ◦ red in the degrees i = 2p− 2, 2p− 1, correspondingly.

Before we start to prove this proposition, let us make a remark about Eilenberg–
Mac Lane spaces. Using the functoriality of the given above construction, one
can build two morphisms of spaces ×p and red (multiplication by p and coefficient
reduction), corresponding to the maps Z(p)

×p→ Z(p) and Z(p)
red→ Z/p, respectively.

We will need the following statement:

Lemma 3.8. For every n the sequence K(Z(p), n)
×p→ K(Z(p), n) red→ K(Z/p, n)

yields the long exact sequence:

· · · → H∗−1(K(Z(p), n)) → H∗(K(Z/p, n)) red∗→ H∗(K(Z(p), n)) → · · ·
Proof. One should check that the space K(Z/p, n) is homotopically equivalent to
the cone of the morphism ×p. Since the composite red ◦ ×p is trivial, by the
universality of the cone, one has the morphism Cone(×p) → K(Z/p, n). Let us also
note that both the spaces K(Z/p, n) and Cone(×p) represent the same cohomology
group H∗(−,Z/p). The homotopy equivalence follows by the abstract nonsense. ¤

Proof of Proposition 3.7. Applying the previous lemma and taking into account
vanishing of the higher inverse limits, one gets the following commutative diagram:
(3.4)

0

OPi+1(Z/p,Z(p))

OO

((
0 // OPi−1(Z(p),Z/p) // Ai(Z/p)

OO

// OPi(Z(p),Z/p) // 0

OPi(Z/p,Z(p))

OOiiRRRRRRRRRRRRR

0

OO
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Assuming that the bottom diagonal arrow is an isomorphism, one can construct
the dotted arrow and show, using simple diagram hunting that it is an isomorphism
as well. It’s also obvious that the bottom diagonal arrow exists and becomes an
isomorphism for i < 2p− 2. The induction runs. ¤

4. Non-triviality of the differential

The purpose of the current section is to construct a variety that has a non-trivial
differential in its p-local Motivic spectral sequence. Let k be the field as above. Let
D be a central simple algebra over k of prime degree p. Denote by G the norm
variety SL1,D. Since G is a twisted form of SLp, its dimension is p2 − 1.

In the current section we prove the following statement:

Theorem 4.1. Consider the Motivic spectral sequence corresponding to the variety
G. Its second term is

Ei,j
2 = Hi−j(G,Z(p)(−j)) ⇒ K−i−j(G,Z(p)).

Then the differential dp : E1,−2
2 → Ep+1,−p−1

2 in this spectral sequence is non-
trivial.

First of all, consider the Brown-Gersten-Quillen spectral sequence (BGQ), con-
verging to the K-groups of G and having the second term:

E2
st(G) = Hs(G, K−t) ⇒ K−s−t(G),

where Hs(X, K−t) are K-cohomology groups. From now on we will omit mentioning
the coefficient ring in the notation whenever it is possible.

The following statement implies Theorem 4.1.

Theorem 4.2. The differential dp : E1,−2
2 → Ep+1,−p−1

2 in the considered BGQ
spectral sequence is non-trivial.

In order to show that 4.2 implies 4.1, let’s, first, mention that the differentials in
question act from the diagonal s + t = −1 to s + t = 0. Now the desired statement
easily follows from the proposition below.

Proposition 4.3 (Suslin [Su2]). For a norm-variety there exists a canonical mor-
phism between corresponding motivic spectral sequence and BGQ spectral sequence
inducing isomorphisms on the diagonals s + t = −1 and s + t = 0.

Remark 4.4. Let’s mention that both spectral sequences under consideration are
concentrated in the region: s ≥ 0, t ≤ 0, and s + t ≤ 0.

Let’s now look at the BGQ spectral sequence above. Its first term can be rewrit-
ten as a direct sums of K-groups:

(4.1) Est
1 =

∐

x∈X(s)

K−s−tF (x).
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Here X(s) denotes the set of all generic points of codimension s in X and F (x) are
residue field of the corresponding point. In particular, one has:

Es,−s
2 = Hs(G, Ks) = Coker


 ∐

x∈X(s−1)

K1F (x) →
∐

x∈X(s)

K0F (x)


(4.2)

= Coker


 ∐

x∈X(s−1)

F ∗(G) →
∐

x∈X(s)

Z(p)


 = CHs(G,Z(p)).

Therefore, the 0-th diagonal of the E2-term of BGQ spectral sequence consists
of the Chow groups. So that, the spectral sequence looks like this:

CH0(G) 0 · · ·

H0(G,K1) CH1(G) 0 · · ·

H0(G,K2) H1(G, K2)

dp

((PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
CH2(G) 0 ...

...
...

...
. . . 0

H0(G,Kp+1) H1(G, Kp+1) · · · CHp+1(G)

It’s shown, for example, in [Le2] that K0(G) = Z · 1, where 1 lies in codimension
0. Therefore, since the spectral sequence converges to the adjoint filtration on the
K-groups and one has K(i/i+1) = 0 for i > 0, all the positively indexed Chow
groups should be annihilated by some differentials.

On the other hand, one can conclude from the previous section (or show it
applying the Chern character), that di = 0 for i ≤ p− 1. So, one has CHi(G) = 0
for i ≤ p and in order to show the non-triviality of the differential dp : H1(G, K2) →
CHp+1(G) (i.e. prove Theorem 4.2), one just should check the following claim:

Proposition 4.5. For a non-split algebra D, one has: CHp+1(SL1,D) 6= 0.

We try to compute the group CHp+1(SL1,D) in a different way. Denote by
X = SB(D) the Severi-Brauer variety of dimension p − 1 corresponding to the
algebra D. For the projection map G × X → G consider a filtration of the base
by codimension of points and write down the corresponding spectral sequence (see
Rost[Ro]):

(4.3) Est
1 (n) =

∐

g∈G(s)

Ht(XF (g), Kn−s) ⇒ Hs+t(G×X, Kn),

where XF (g) = X×Spec F (g) is a fiber over the generic point g. The E1-term of this
spectral sequence is concentrated in the strip given by the conditions: 0 ≤ t ≤ p−1
and s + t ≤ n. These dimension conditions easily imply the following statement.
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Lemma 4.6. For n > p one has: En−p−1,p−1
2 (n) = 0.

Proof. Observe, first, that due to a result of Suslin [Su], H∗(G×X, K∗) is a module
over H∗(X, K∗) generated by Chern classes cj ∈ Hj(G × X, Kj+1). This implies
that CHi(G×X) = 0 for i > p− 1. So, the spectral sequence converges to zero in
the degree s+t = n. Since there is no differentials affecting the term En−p−1,p−1

2 (n)
of the spectral sequence, one has: En−p−1,p−1

2 = En−p−1,p−1
∞ = 0. ¤

Below we will also need one statement due to Merkurjev and Suslin, which we
reproduce here.

Proposition 4.7 ( [MS, Corollary 8.7.2]). Let k̄ be the algebraic closure of k. For
a Severi–Brauer variety X of dimension p− 1, set X̄ = X × Spec k̄. Then

(4.4) Hi(X, Ki) = CHi(X) = pZ(p) ⊂ Z(p) = CHi(X̄)

and

(4.5) Hi(X, Ki+1) = Nrd D∗ ⊂ k̄∗ = Hi(X̄, Ki+1),

provided that 1 ≤ i ≤ p− 1. (Here Nrd denotes the group of the reduced norms.)

Proposition 4.8. The following equalities hold:

Ep+1−t,t
2 (p + 1) =

{
0, for t 6= 0
CHp+1(G), for t = 0.

Proof. The case t = p − 1 is exactly the conclusion of Lemma 4.6. Applying
Proposition 4.7, one gets the isomorphisms

Ep+1−t−m,t
1 (p + 1) =

∐

g∈G(p+1−t−m)

Ht(XF (g), Kt+m)(4.6)

'
∐

g∈G(p+1−t−m)

Hp−1(XF (g), Kp−1+m) = Ep+1−t−m,p−1
1 (2p− t)

for 1 ≤ t ≤ p − 1 and m = 0, 1. Taking into account the functoriality of BGQ
spectral sequence and Lemma 4.6, one obtains the commutative diagram:

(4.7) Ep+1−t−1,t
1 (p + 1) // Ep+1−t,t

1 (p + 1)

Ep−t,p−1
1 (2p− t) // // Ep+1−t,p−1

1 (2p− t)

that yields the equality: Ep+1−t,t
2 (p + 1) = Ep+1−t,p−1

2 (2p− t) = 0 by Lemma 4.6.
This proves the first case of the proposition. The group Ep+1,0

2 (p + 1) is a cokernel
of the map ∐

g∈G(p)

H0(XF (g),K1) →
∐

g∈G(p+1)

H0(XF (g),K0).

Therefore, it equals to

(4.8) Coker


 ∐

g∈G(p)

F (g)∗ →
∐

g∈G(p+1)

Z


 = CHp+1(G).

¤
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From now on we are going to consider only the case n = p + 1. So, we omit for
good mentioning n in the notation. Consider the term E1,p−1

2 that equals to the
middle-term homology of the complex:
(4.9)∐

g∈G(0)

Hp−1(XF (g), Kp+1) →
∐

g∈G(1)

Hp−1(XF (g), Kp) →
∐

g∈G(2)

Hp−1(XF (g), Kp−1)

and denote it by V . There are no differentials coming to this term and the only
potentially non-trivial differential leaving V is dp : V → Ep+1,0

p = CHp+1(G). To
complete the proof of Proposition 4.5, it suffices to check the following:

Proposition 4.9. The map dp : V → CHp+1(G) is non-zero.

Proof. The spectral sequence yields the following boundary short exact sequence:
Hp(G × X, Kp+1)

ϕ→ V
dp→ CHp+1(G). So that, it is sufficient to establish that

ϕ is not an epimorphism. Consider the base-change commutative diagram corre-
sponding to the morphism Spec k̄ → Spec k, where k̄ is the algebraic closure of
k.

(4.10)

Hp(G×X, Kp+1)
ϕ−−−−→ V

χ

y ψ

y
H l(Ḡ× X̄, Kp+1)

ϕ̄−−−−→ V̄

The desired statement easily follows from the following two claims:

Lemma 4.10. Im χ is divisible by p.

Proof. This follows from the above mentioned (see the proof of Lemma 4.6) decom-
position

(4.11) Hp(G×X, Kp+1) =
∐

i>0

ciCHp−i(X)

and the fact that the map CHi(X) → CHi(X̄) is a multiplication by p due to
Proposition 4.7. ¤

Proposition 4.11. The map ψ : V → V̄ is an epimorphism.

Proof. First, consider the BGQ spectral sequence converging to the K-groups of
the Severi–Brauer variety X. This spectral sequence has no non-trivial differentials
affecting the two highest diagonals. Moreover, if the base field is algebraically
closed, all the differentials in the spectral sequence vanish (see [MS, 8.6.2]).

The infinity term of BGQ consists of consequent factor-filtration groups of K(X).
Taking into account the triviality of differentials mentioned in the previous para-
graph, there exist the boundary maps:

(4.12) Hp−1(X, Kp−1+m) → Km(X)(p−1),

where m = 0, 1, 2. These maps are isomorphisms for m = 0, 1 and for m = 2,
provided that the base field is algebraically closed. Since (p − 1)! is invertible
in the coefficient ring, the topological filtration coincide with the γ-filtration. The
desired filtration is generated by the image of the corresponding γ-operation. Using
Quillen’s computation [Qu] one has isomorphisms Km(X)(p−1) ' Km(D⊗(p−1)).
Denoting D⊗(p−1) by F, we obtain the maps: Hp−1(Xg,Kp−1+m)

ρm→ Km(F (g); F)
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for m = 0, 1, 2, which are isomorphisms for m = 0, 1 and isomorphism for m = 2
provided that the base-field is algebraically closed. As a result, one gets the map
ρ∗ from the complex (4.9) to the complex:

(4.13) K2(F (G); F) →
∐

g∈G(1)

K1(F (g); F) →
∐

g∈G(2)

K0(F (g); F),

inducing the epimorphism map ρ̃ on the middle-term homology groups. The latter
map becomes an isomorphism after passing back to the algebraic closure and yields
the following commutative diagram:

(4.14) V
ψ //

ρ̃

²²

V̄

H1(G, K2;F) ω // H1(Ḡ, K2; F̄).

Let us, finally, show that the bottom arrow is an epimorphism. First, observe that
Ḡ = SLn(k̄) and H1(Ḡ,K2; F̄) = H1(SLn, K2) = Z(p) with a natural choice of
a generator, given by the first Chern class (see [Su, Theorem 2.7]). Consider the
base-change diagram:

(4.15) K1(G; F)
c1 //

f

²²

H1(G, K2;F)

ω

²²
K1(SLn)

c̄1 // H1(SLn, K2)

Consider the universal element α ∈ K1(G;F) defined as in [Su, Section 4]. It is
constructed in such a way that its image f(α) in K1(SLn) is the universal matrix
element. Then, due to [Su, Theorem 2.7], c̄1f(α) = 1. Hence, the map ω is an
epimorphism and so is ψ. ¤

Proof of Proposition 4.9 Assume, that the map ϕ is an epimorphism. From the
proof of the previous Lemma we already know that V̄ = Z(p). Since ψ is also an
epimorphism, we can chose an element x ∈ Hp(G×X, Kp+1) such that ψϕ(x) = 1.
Then, by Lemma 4.10, one has that 1 = ϕ̄i(x) is p-divisible. Contradiction. ¤
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