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1. Introduction.

Two real representations V and W of a finite group G are called Smith equivalent if
there is a closed smooth manifold £ which is homotopy equivalent to a sphere and G acts
smoothly and effectively on £ with exactly two fixed points, £ = {p, ¢}, such that the
tangent spaces T,¥ and T,¥ at p and ¢ are isomorphic to V and W as representations
of G. If we require in addition that the fixed point sets X are homotopy spheres for
every subgroup K C G, then V and W are called s-Smith equivalent.

Several authors have studied the question of which groups do and which groups do
not have non-isomorphic Smith or s-Smith equivalent representations. We shall recall
their results below.

In this paper we want to contribute two other classes of groups which have non-
isomorphic Smith equivalent representations. The first one is as follows. Let H be a
cyclic group of odd order, and G = H X Zyx, k > 0. Below we shall give a list of
conditions (see Condition 2.2) for a pair (A, B) of representations of H. There are
cyclic groups H of odd order and non-isomorphic representations A and B of H such
that these conditions are satisfied. In Theorem 2.3 and Theorem 2.4 we quote two
results from [DP2] and [DW] which provide examples. Theorem B of [DP2] shows
that such groups H have non-isomorphic Smith equivalent representations. In Section
4 we will prove our first principal result, which extends the just quoted theorem.

THEOREM A. Suppose H is a cyclic group of odd order which has non-isomorphic
representations satifying the conditions in 2.2. Assume that the order of H is divisible by
at least three distinct primes. Then G = H x Z,+ has non-isomorphic Smith equivalent
representations.

In particular, if A and B are two representations of H which satisfy Condition 2.2,
then there exists an action of G on a homotopy sphere ¥ with exactly two fixed points
z and y, and T, — T, X = (A ~ B) for some [ # 0. Here A and B are considered as
representations of G with trivial action of 1. If A # B then T, # T, %.

In our second result we consider abelian groups G with at least three non-cyclic Sylow
subgroups. Let A and B be real representation of G such that
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CONDITION 1.1,

(1) A¥ = BX = 0 whenever G/K is of prime power order.
(2) Resp A = Resp B whenever P C G is of prime power order.
(3) dim AX = dim B¥ for all K C G.

We shall show in Lemma 5.1 how to construct non-isomorphic representations A and
B for any such group G. Our second principal result generalizes one of T. Petrie [P1]
which we recall below.

THEOREM B. Suppose G, A and B as in Condition 1.1. There exists an action of G on
a homotopy sphere ¥ with exactly two fixed points ¢ and y such that T, X —TyZ is a
non-zero multiple of A — B. In particular, if A # B then T, X # T, %.

This is not only an improvement of Petrie and Randall’s result, but we also give a
proof which shows that ¥ may be chosen to be equivariantly cobordant to a product
of surfaces as they are constructed in Section 3 of [DP2]. (See also Section 3 of this
paper.) This will be used in [DK]. In the proof of Theorem B we will use information
about a surgery obstruction group for which we thank A. Bak.

The study of Smith equivalent representations is motivated by a question of P. A.
Smith [Sm] who asked whether Smith equivalent representations are linearly isomorphic.
Atiyah-Bott [AB] and Milnor [M] established an affirmative answer to the question for
semi-free actions and for actions of cyclic groups of odd prime power order. By definition,
a semi-free action has the whole group and the trivial group as its only isotropy groups.
Sanchez [Sz] showed that the answer is also affimative for cyclic groups of order pg,
where p and ¢ are odd primes. Additional elementary considerations show that the
answer is affirmative for any group whose order is a product of two primes. Bredon
[B] showed for 2-groups that Smith equivalent representations are isomorphic if their
dimension is large in comparison to the order of the group. In addition, Sanchez’s result
also implies that s-Smith equivalent representations of any cyclic group of odd order are
isomorphic.

Petrie announced the first negative answer to Smith’s question [P1], see [PR1] for
the details of the proof,

THEOREM. Suppose G is an odd order abelian group with at least four non-cyclic Sylow
subgroups. There are non-isomorphic Smith equivalent representations of G. '

In this reference Petrie also posed the problem of finding all groups which have non-
isomorphic Smith equivalent representations. Qur Theorem A is a contribution to the
solution of this problem. Since Petrie’s announcement several authors provided classes
of groups which have non-isomorphic s-Smith equivalent representations. One such class
are cyclic groups of order 4m, where m > 1. See the work of Cappell-Shaneson [CS1],
Petrie {P2], Siegel [Si], and Dovermann [D]. Non-isomorphic s-Smith equivalent repre-
sentations were also constructed by Suh [Sul] for some non-cyclic abelian groups and by
Cho [C1] and [C2] for certain quaternion and dihedral groups. Non-isomorphic Smith
equivalent representations of odd order cyclic groups were constructed by Dovermann-
Petrie [DP2]. The groups were of rather large orders. Dovermann-Washington [DW]|
showed that such non-isomorphic Smith equivalent representations also exist for cyclic
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groups of small orders. The topic of Smith equivalent representations was surveyed in
[DPS], [MP], [CS2], and Petrie-Randall [PR2] wrote a book about it.

This review of the history shows that, basically, Petrie’s question has been answered
for cyclic groups, except for those groups whose order is of the form 2m where m is
odd, and this is the class of groups we are treating in this paper. In Theorem A this is
the case when k = 1. In case k > 1 the result is interesting for the discussion in [DK],
because we get some additional conclusion based on the specific construction. There
we conclude that the actions described in Theorem A and B can be chosen to be real
algebraic.

In the construction of s-Smith equivalent representations for groups Z4,,, with m > 1,
the papers mentioned above use in an essential way that the subgroup Z3,, ocurs as
isotropy group. This implies that the s-Smith equivalent representations restrict to the
same representation of Zy,,. This is not the case in [Sul], [C1], and this paper. Here
one supposes non-isomorphi¢ Smith equivalent representations of the group H, and then
one uses them to construct such representations for the group G in which H is an index
2 subgroup. In fact, if V and W are Smith equivalent representations of a cyclic group
G, and H is an index 2 subgroup which is an isotropy group of either V or W, then
V and W are isomorphic (see [Su2]). Thus the non-isomorphic representations of G in
Theorem A must also be non-isomorphic as H representations.

Based on the different constructive approaches it happened that the technique of
proof implied if one constructed non-isomorphic (s-) Smith equivalent representations
for the group H, then one could also construct such examples for the group G in which
H is a subgroup. These groups G had to be again of the same form as those groups one
started out with. In [PR1] one would assume that H and G are abelian of odd order
with at least four non-cyclic Sylow subgroups. In [DP2] and ([DW] one would assume
that H and G are cyclic of odd order and that H has non-isomorphic representations
which satisfy 2.2. More generally we like to conjecture:

CONJIECTURE. Let H be a subgroup of G. If H has non-isomorphic Smith equivalent
representations, then so does G.

2. Preliminary Material.

We shall formulate Condition 2.2 which is the essential assumption in our Theorem
A, and we shall describe how to satisfy it. Let us fix some notation. For any group G we
denote by P(G) the set of all subgroups of G of prime power order. Also, let P denote
the set of all groups of prime power order. We use the following standard notation for
the complex 1-dimensional representations of a cyclic group Z,, of order n. Consider
Z, as being identified with the n-th roots of unity, so Z,, C C. The underlying vector
space of the representation ¢* is C, and under the action (g,v) is mapped to ¢*v. For
any cyclic group G of order n the complex representation ring R(G) is isomorphic to
Z[t]/(t® — 1). Thus any complex representation can be written as a linear combination
of the elements in {t*|k =0,...,n —1}.

Let G be cyclic of order n, and let V = 3" axt* be a complex representation of G. For
g € G such that the fixed point set V9 = {0} Atiyah and Bott [AB] defined a complex

number
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Note that v carries sums to products; so we can define

v(V = W)(g) = v(V)(g)/v(W)(g)

for any two representations ¥V and W of G for which v is defined. Suppose V and W
are Smith equivalent representations of Z,, supported by an even-dimensional homotopy
sphere T, i.e.,, ¢ = {p,q} and T,X = V, T, = W. The Atiyah-Singer G Signature
Theorem, the Lefschetz Fixed Point Theorem, and Smith Theory imply

CONDITION 2.1.

(1) Sign(G,ZF) =0 for P € P(G). In particular, v(VF — WF)(g) = 41 if V{P9) =
W<{P.9) = 0. Here (P, g) denotes the group generated by P and g € G.

(2) The Euler characteristic x(£¥) = 2 for all subgroups K C G.

(3) Resp = Resp W for each P € P(G).

An easy computation shows that v(V)(g) = £v(V')(¢g) whenever V and V' are iso-
morphic as real representations. Let U and U’ be real representations of G such that
U? =U'"" =0. We write

UUY(g) = £(U")(g) or w(U - U")(g) = £1

if U and U’ are realifications of complex representations V and V' such that »(V)(g) =
+v(V')(g). This explains our notation in 2.1(1).

In order to find non-isomorphic Smith equivalent representations we have to start out
with two non-isomorphic representations which satisfy 2.1(1) and 2.1(3). Actually we
will make some additional assumptions in 2.2 which will allow us to carry out the con-
struction of the homotopy sphere which supports the Smith equivalent representations.

From now on, unless specifically stated otherwise, G denotes a cyclic group of order
2n where n is odd and H is the index two subgroup of G. Sometimes H just denotes
an odd order cyclic group. ‘

Consider pairs (A, B) of real representations of H satisfying

CONDITION 2.2.

(1) A® = B* =0 for each h € H which generates a subgroup of prime power index
in H.

(2) dim A¥ = dim B¥ when ever |H/K| is divisible by at most 3 distinct primes.

(3) Resp A = Resp B whenever P € P(G).

(4) v(AP? — BP)(h) = £1 when ever P € P and h € H generate a subgroup of prime
power index in H.

Observe that 2.2 (3) and some of the conditions in 2.2 (4) are necessary if we have
Smith equivalent representations V' and W of G which restrict to the representations
A and B of H. For this compare the reference to [Su2] in the introduction. There are
two references which guarantee the existence of groups H which have non-isomorphic
representations satisfying all conditions in 2.2.
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THEOREM 2.3. ([DP2, Corollary C]) There are odd order cyclic groups which have
non-isomorphic real representations satisfying Condition 2.2. If Z,, has non-isomorphic
representations which satisfy Condition 2.2 and m divides an odd integer m’, then Z,,/
has also non-isomorphic representations which satisfy Condition 2.2.

The groups in this theorem are rather large, and the representations cannot be given
explicitly. The next reference improves on this result. In [DW] the reader can also find
examples of non-isomorphic representations which satisfy Conditions in 2.2 for groups
as in the next theorem.

THEOREM 2.4. ([DW, Theorem A]) Let m = p;,...,px be a square-free odd integer
such that p; is congruent to 5 modulo 8, the Legendre symbols [ﬁ-] arel for j > 2, and
k > 4. Then the group Z,, has non-isomorphic representations which satisfy 2.2

3. One Fixed Point Actions on Manifolds.

Our starting point is the construction of cyclic actions on surfaces. We shall use the
following conventions. A real representation U of L is L oriented if UX is an oriented
vectorspace for all K C L. A smooth L manifold X is L oriented if for all K C L
each component of XK is oriented. Since a complex vectorspace understood as a real
vectorspace has a canonical orientation, the realification of a complex representation of
L is canonically L oriented. If X is an L oriented manifold, then T, X is an L, oriented
representation. Here L; = {g € L | gz = z} is the isotropy group at z. Let U be a
representation. A product bundle X x U over X is denoted by U when the base space
X is understood from context.

Let L = Z,, be a cyclic group of order m, and t* the complex representatiorr of Z,,
from the previous section, (k,m) = 1. Let A4 and A_ be finite Z,, sets of the same
cardinality, | A+ |=| A |.

PRrOPOSITION 3.1. (See [DP2, 3.15].) There exists an oriented closed surface S with
smooth orientation preserving action of Z,, such that

(1) S¥ = AKX U AK for all proper subgroups K of L.
(2) The tangent bundle T'S is stably isomorphic to the product bundle S x t*.

(3) T:S = Resg t** if z € AX and K C L. (Observe that T,.5 and Rest** are ori-
ented representations, and the isomorphism is assumed to preserve orientations.)

The problem in the application of Proposition 3.1 is the choice of the sets A, and
A_. To indicate our choice we need some more notation. Let t* =+ be an irreducible
representation of G = Z,,. We suppose that 2n/(k,2n) is divisible by at least two odd
primes. We assign to it the group L(v) which acts effectively on 1. It is obtained
as follows. Let ker(y) be the kernel of the homomorphism 1 : G — U(1) associated
with . This kernel is also the isotropy group of any non-zero vector in ¥%. Then
L(v) = G/ ker(¥). Let m(3) be the order of L(3). Then m(y) = 2n/(k,2n). Observe
that (m(1),k) = 1. Now Ay and A_ are chosen as L(1) = Z,,(y) sets. The choice will
depend on m(%) only.

CHOICE 3.2.

(1) If m(¥) is odd we decompose m(1) as a product m(y) = r(¢)s(y) such that
(r(),s(¥)) = 1. If m(%) is divisible by four primes we suppose that r(1) and

5



s(¢) are divisible by at least two primes. Choose a(y) and b(¢) as natural
numbers such that a(y)r(¥) + b(¥)s(¥) + 1 = 0 (mod m()).

(2) Ifm(y) is even, we set m'(y) = m(z))/2. We decompose m'(1)) as r(3p)s(z) such
that (r(v), 3(v)) = 1. Then we choose natural numbers a(v) and b(1p) such that
a{ip)r(¥) + b()s($) + 1 =0 (mod m(3)).

In case (1) we set

AL(¥) = 5() - [Zmuy)/Lr(wy) U a(®)  [Zon(wy / Zaqwy) U [Zen() /L]
In case (2) we set

A () = (%) - [Zim(yy/L2r(wy] U a(¥) - [ /Las(wy] U [Lim(w)/ Lm(w)]

In either case |A4(¥)| = 0 (mod m(z)) such that we can choose A_(v) as free 7 ,,(y,
set with the same cardinality as A, (+).

In the second step we assign to each irreducible complex representation 1 = t¥, for
which m(1) is divisible by at least two primes, a surface X (v) with G action. First we
use Lemma 3.1 to define an L(v) action on a surface which we call X'(¥/). Reduction
modulo m() defines a homomorphism G — L(%) and this induces a G action on X'(3).
The surface with this induced G action is denoted by X (3).

We describe the properties of these surfaces X (%), which are almost identical with
those listed in {DP2, Corollary 3.5]. As before we suppose that m(1) is divisible by at
least two odd primes.

LEMMA 3.3. Let X(3) be as above, and G(3) = ker(3)).

(1) Resg(yy X(3) (with its trivial G(3) action) is a G(v) oriented boundary.
(2) There is a representation A of G such that TX(¥)) @ A=¢ @ A

For all subgroups K of G such that |G/K| =1, 2, an odd prime, or twice an odd prime

(3) X()X is a finite set.

(4) |X(®)¢] = 1, and | X (¥)¥| = 1 whenever |G/G(¥)| = |L(¥)| is divisible by at
least four distinct odd primes.

(5) 1X(#)K) = |X(9")| whenever G(#') = G(y").

(6) fG(y) =1 or G(3) D Zy then every isotropy group of X (1) is 1, or it contains
Z;. Thus G acts freely on X(¢) — X ()22,

PROOF: Only (6) does not occur in {DP2]. It is an immediate consequence of our
choice of Ay and A_. M

Let U be a complex representation of a cyclic group G such that US =0 and U¥ =
0 whenever |G/K| = 1, an odd prime, or twice an odd prime. Then U is a direct
sum of non-trivial irreducible representations, U = 3 ay(U)¥. For each irreducible
representation 1 for which ay(U) # 0 the assumption on m(y) is satisfied and X(¢) is
defined. We now define a G oriented manifold

(3.4) XUy = [[X()*®

The exponent ay indicates an ay-fold cartesian product of X(v) with itself. Next
we study the properties of this manifold. They are derived from Lemma 3.3. These
properties are exactly those in [DP2, 3.6-3.11], and the proof is unchanged as well.
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COROLLARY 3.5. Let U be a complex representation of G satisfying UX = 0 if and
only if |G/K| =1, 2, an odd prime, or twice an odd prime. Let X (U) be the G oriented
manifold in 3.4. Then

(1) There is a representation C of G such that TX(U)®C and U@ C are isomorphic
G vector bundles.

(2) dim X(U)¥ = 0 if and only if |G/K| = 1, 2, an odd prime, or twice an odd
prime.

(3) If |G/K] # 1, 2, not an odd prime, and not twice an odd prime Resg X(U)
bounds as oriented K manifold.

(4) x(X(U)?) =1 and x(X(U)¥) is even whenever |G/K| is not 1, 2, an odd prime,
and not twice an odd prime.

(5) Suppose |G/K| = 1, 2, an odd prime, or twice an odd prime. Then X(U)¥
is a finite set and if y € X(U)¥, then T,X(U) = Resx U as K oriented real
representation. The cardinality of X(U)¥ depends only on {(K,dimU¥) | K C
G and |G/ K| is divisible by at most three distinct odd primes}.

To obtain Theorem A we will start with a collection & of complex representations
of G = H x Z; where H is an odd order cyclic group. If U is a representation of G
we denote its Z; fixed point set UZ? by U, which we also consider as representation of
H. The complement is denoted by Uy, so U = U, @ Uy. The representations in § are
assumed to satisfy

CONDITION 3.6.
(1) U € S and K C G, then UK =0 if and only if |G/K| = 1, 2, and odd prime,
or twice an odd prime.
(2) K €Iso(U) then K =1 or K 2 Z,.
Each pair (D, E) of representations in § satisfies
(3) dim DX = dim EX if |G/K| is divisible by at most three distinct odd primes.
Furthermore dim D = dim E and dim D, = dim E,.
(4) v(DY — EF)(g) = 1 whenever P € P(H) and g € H generates a subgroup of
prime power index in H .
(5) Dy = Ey as representations of G.

NoTE oN CONDITION 3.6 (2): This condition expresses that if ¢ is an irreducible
summand of U then ¥ is a summand of U; or G acts freely on 3 — {0}. Hence G acts
freely on U — Uj.

We list the essential properties of the manifolds X (U) obtained from a collection of

representations S as in 3.6 when U € S. It should be compared with [DP2, Theorem D
on page 289]. We denote X(U)%? by X;(U) and consider it as an oriented H manifold.

THEOREM 3.7. Let G = Z3, (n odd) and § a collection of representations of G which
satisfy 3.6 (1)-(4). There is a collection of closed G oriented manifolds {X(U)|U € 8}
such that :

(1) X(U)¢ = 2 consists of exactly one point and T, X(U) = U as G oriented real
representation.



(2) There is a representation C of G such that TX(U)®C and U@ C are isomorphic
G vector bundles.

(3) G acts freely on X(U) — X,(U).

(4) x(X(D)¥) = x(X(E)¥) (mod 2) for all K C G and D,E € S.

(5) Sign(H,X,(DP?)) = Sign(H, X2(EF)) for all P € P(H) and for all D,E € S.

(6) Sign(G,X (D)) = Sign(G,X(E)) for all D,E € §.

PROOF: The first two properties (1) and (2) are repetitions of 3.5 (1) and (2). Property
(3) follows from 3.3 (6) and 3.6 (2). See also above note on 3.6 (2). To see (4) observe
that X(U) = X(U;) x X(Uy). It follows from [DP2, Theorem D (ii) page 289] that

X(X(D2)¥) = x(X(E2))  (mod 2)
for all K ¢ H C G. Furthermore
X(X(Dp)*) = x(X(Ep)F)  (mod 2)

because of 3.6 (2) and (5) and 3.5 (4)—(5). These two congruences imply our claim (4).
To see (5), let Sp denote the singular set of X (Dy). It consists of the non-free orbits
in X(Dy), which is a finite set. Thus

Xo(D) = Sp x X(D,) and X2(E) = Sg x X(E;)

It has been verified in [DP2, Theorem D (iii)] that X(D;) and X(E;) have the property
stated in (5). By construction Sp = Sg. From this it follows trivially that (5) holds.
To see (6) one proceeds in exactly the same way as in the proof of [DP2, Theorem
D (iii)]. m ~
3.1 Addendum.
There is another property which we may impose for the surface S in Lemma 3.3. This

has an implication for the conclusion in Corollary 3.5 which is elementary, and which
we leave to the reader. We state them.

ADDITIONAL PROPERTIES.

3.3 (6) We may choose the surface X (i), the zero cobordism W, and the stable G
trivialization of the tangent bundle T X () such that it extends (after restriction
to a G(v) trivialization) to a stable G(%) trivialization of TW.

3.5 (6) If we assume a choice as in 3.3 (6), then there is a stable K trivialization of the
tangent bundle of the zero cobordism of Resy X(U) which extends the stable
trivialization of TX(U) in 3.5 (1), restricted to a K action.

ProoF OF 3.3 (6): Consider the surface X'(3) with smooth L(3) action which give
rise to the surfaces X (). Abbreviate X'(¥) by X' and L(¢)) by L. Let L, be the
2-Sylow subgroup of L. Let W' be an oriented manifold which bounds X'. We may
suppose that TW' is trivial. Define

- X"=X'"ULxg, X' and W' =W UL xy, W
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Then W" bounds X". The stable L trivialization of TX' induces one on TX", and
we show that this one extends to a non-equivariant stable trivialization of the tangent
bundle of some manifold which bounds X".

There may be an obstruction for extending the stable trivialization of TX' to one of
TW' (after forgetting the action), and such obstructions lie in 7;(S0) for 0 < 5 < 2.
Among these m(SO) = Z,, and the other groups vanish. After some zero-dimensional
surgeries we may assume that W' is connected, and in this case a possible initial
obstruction for the extension of the bundle trivialization has been multiplied by 1 +
|L/Lz| = 0 (mod 2). Thus for this modified W' and our original X" with its stable
trivialization of its tangent bundle the obstruction vanishes. So the trivialization of
TX" (without group action) extends to one of TW".

Again we use the projection G — L to induce a G action on X" and the trivial G(3)
action on W". With these induced actions the manifolds are denoted by X () and W.
They have all of the properties listed in 3.3 (1)-(6). W

4. Proof of Theorem A.
Throughout the section we will use k = 1, which means that G = H x Z3. The case
k > 1 causes only some additional notational effort, but otherwise it is identical.

SKETCH OF PROOF OF THEOREM A: We start out with a sufficiently large collection
S of representations of G = H x Z, which satisfies Condition 4.3. Using Theorem 3.7
we associate to each pair (V, W) of representations in § a smooth G manifold X (V, W)
with exactly two fixed points and tangent representations V and W. The choices will be
such that X°* = X%, where X* denotes the set of non-free orbits of X. It follows from
[DP2] that for a certain subset 7 of § and V, W € 7 that X(V, W) is equivariantly
cobordant relative to the fixed point set to a G manifold Y(V, W) such that ¥* = Y2
is a homotopy sphere. The cardinality of 7 is at least a fraction of the one of §. The
surgery obstruction which tells whether Y'(V, W) is G cobordant to a homotopy sphere
lies in LE(Z[G],1). In fact, it lies in a finite subgroup Z due to the signature computation
in 3.7 (6). We choose |S| such that |7| > |Z|. Based on the additivity of the surgery
obstruction and the pigeon hole principal we find V' and W such that the obstruction
vanishes for Y (V, W), which is then G cobordant to a homotopy sphere.
Before we can prove Theorem A we need two technical definitions.

DEFINITION 4.1. A G manifold X is defined to be stable if for each z € X and K = G,
the multipicity m,(T;X) of each non-trivial irreducible representation x in Ty X =V
is either zero or dymy(V) > dimp VX. Here dy = dimg D, and D, is the algebra of
real K endomorphisms of x.

DEFINITION 4.2. A representation V of G satisfles the gap hypothesis if for any two
representations L C K C G either VK = VL or 2dim VK 41 < dim VL. A smooth G
manifold X satisfies the gap hypothesis if T, X satisfies the gap hypothesis with respect
to the induced G, action for every z € X.

To prove Theorem A we proceed as in Section 7 of [DP2]. We consider a collection
S of complex representations of G = H x Z, and a representation U. Together they are
assumed to satisfy



CONDITION 4.3.

(1) U is stable, satisfies the gap hypothesis, and the isotropy groups of U are all the
subgroups of G which contain Z, and the trivial group. If dimU¥ # 0, then
dim U¥ > 6. Furthermore dimU* =0 (mod 4) for all K C G.

(2) D € S is stable, satisfles the gap hypothesis, and K is an isotropy group of D
ifandonlyif K =G, K =1,0orl, C K and G/K ¢ P. If dim DX # 0 then
dim DX > 6. Furthermore dimU¥ =0 (mod 4) for all K C G.

(3) With the induced H action we have Resp U%2 = Resp D*? for all D € S and for
all P € P(H).

(4) Fach pair (D, E) € § satisfies Condition 3.6 (3)—(5).

LEMMA 4.4. Given a pair of non-isomorphic representations (A, B) of real representa-
tions of H which satisfies 2.2 and any number N, there exists a collection & of non-
isomorphic representations of G which satisfies Condition 4.3, and the cardinality of §
is greater than or equal N.

ProoOF: Consider the representations Rj = (N — j)A @ jB of H. Any pair of them

satiesfies Condition 2.2, and so do their complexifications Rj. Via the projection G — H
they are considered as representations of G. It is explained in [DP2] how to find a
representation Uy and a representation U of G such that § = {ﬁjGBUg |0 <j<N}and
U satisfy Condition 4.3. More precisely, first we do this for the G (or H) representations
{jA%> @ (N — j)B?%*} according to [DP2], and then we add the representation t! of G
sufficiently often to each of them. This produces the desired set S and the representation
u. n

Our next result uses the notion of a special Smith framed manifold. Both are technical
concepts which we do not want to review. A Smith framing provides bundle data used
in the process of equivariant surgery. It was introduced in [PR1}, and it was also
summarized in [DP2, Section 5]. The word special refers to some properties listed in
[DP2, Definition 5.14]. Both will be only of minor relevance to our argument.

LEMMA 4.5. Let U be a representation of G and § a collection of representations as
in 4.3. For any pair (V,W) of elements in § there is a U Smith framed G manifold
X = X(V,W) with exactly two fixed points z and y, and as G oriented representations
T,X =V and T, X = —W. In addition X?2 is a special H manifold, and (X2*)F is a
simply connected mod p homology sphere for each non-trivial P € P(H) of p power
order.

ADAPTATION OF PROOF: This is basically Lemma 7.3 in [DP2]. An initial approxima-
tion of X(V, W) is given as X(V)U - X (W)U Z, where X(V) and X (W) are as in 3.4
and Z is a zero cobordant G manifold constructed from U used to ajust Euler charac-
teristics (see [DP2, page 303]). Equivariant surgery provides a cobordism between this
initial manifold and the desired X (V,W). These surgeries are performed in our setting
as surgeries on the Z; fixed point set of a G manifold on which the odd order group H
acts. In [DP2] one utilizes the properties of the one fixed point manifolds summarized
in Theorem D of the reference. In our setting the required properties of the one fixed
point manifolds are listed in Theorem 3.7. W
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To the manifolds X(V, W) of the lemma one may assign an obstruction o(V,W). It
has the following

PROPERTIES 4.6. (Compare [DP2, Lemma 5.24))

(1) o(V,W) lies in a finite group whose order depends only on H.

(2) If o(V,W) = 0 then X(V,W) is U Smith framed G cobordant to a manifold
Y (V,W) such that Y(V,W)Z: has all of the properties listed in 4.5, but in addi-
tion Y(V,W)Z2 is a homotopy sphere.

(3) o(V,W) is additive under connected sum at a fixed point, that is o(V,W) +
o(W,W') = o(V,W') for all V, W, W' € S.

(4) o(V\W)=—-o(W, V) forV,W e S

NOTE TO 4.6 (3): The possibility to give a U Smith framing to a fixed point connected
sum X (V, W)#X (W, W') at the fixed point with tangent representation W depends on
a compatible choice of U Smith framing for X (V, W) and X (W, W') provided in [DP2,
7.3’}

Our next result is a refinement of [DP2, Theorem 7.4].

THEOREM 4.7. Given a representation U of G and a collection § of representations
of G as in 4.3 with cardinality N. There exists a natural number Ny and a collection
{X(W;,W;)} for 1 <1,5 < N/No — 1 such that

(1) X(W;, W;) is a smooth G manifold with exactly two fixed points at which the G

oriented tangent representations are W; and —Wj for W;, W; € S.

(2) X(W;,W;)*2 is a homotopy sphere and G acts freely on X — X722,

(3) X(W;,W;) is U Smith framed.

(4) Wi £ W; ifi # .

(5) X (W;, W;) is stable and satisfies the gap hypothesis.

(6) Sign(G,X(W,', WJ)) =0.

PROOF: Suppose Nj is larger than the order of the obstruction group in 4.6 (1). Choose
V € § and consider the set {X(V,W;) | W; # V and W; € §}. For at least N/Np of
them o(V,W;) = o(V,W;) for i # j. We now use X(W;, V)#X(V,W;) as X(W;, W;).
According to 4.6 (3) and (4) o(W;,W;) = 0. It follows from 4.6 (2) that X(W;, W;)
is U Smith framed G cobordant to a manifold having properties (1)-(5) of our claims.
By construction X(V, W) is equivariantly cobordant to X(V)U —X (W), and it follows
from 3.7 (6) that Sign(G,X(V,W)) =0 for all V,W € S. This implies the last part of
our claim. B

Our next result is the key for altering manifolds as in 4.7 once more such that
X (W;, W;) is a homotopy sphere.

THEOREM 4.8. Let G = H x I, and X a smooth G manifold such that

(1) X is Smith framed of dimension congruent to 0 modulo 4.
(2) X is stable and satisfies the gap hypothesis.

(3) X722 is a homotopy sphere.

(4) X has a fixed point and G acts freely on X — X723,

(5) Sign(G,X) =0.

11



There exists an obstruction o(X) in a finite group, and if 0(X) = 0 then X is Smith
framed G cobordant to a homotopy sphere relative to the Z5 fixed point set.

PROOF: Surgery obstructions are usually assigned to normal maps. Let = be a fixed
point of X with tangent representation 2. There is a standard map f : X —- Y =
S(2 @ R) of degree 1 which collapses the complement of {) embedded a neighbourhood
of z to a point. The Smith framing on X provides bundle data b which allow us to
apply equivariant surgery. The data (X, f, ) denote the resulting normal map. For the
definition of a normal map as it applies to our present situation see [DP2, Definition
5.15] or [PR1].

After some equivariant surgeries on X in the free part and below the middle dimension
we may suppose that f is 2k-connected, here the dimension of X is assumed to be 4k.
We shall show later in the proof that

Koi(X) = ker(f. : Hox(X) — Hoi(Y))

is a stably free Z[G] module. Together with the intersection form A and the self-
intersection form u (see [DR]) these data define a class o(f,b) = [Kx(X), A, pu] €
LA(Z[G),w). Here w : G — {£1} is a homomorphism and w(g) = 1 if and only if g acts
orientation preservingly on X.

It is discussed in [DR] that o(f, ) is the surgery obstruction of (X, f, b). In particular,
if o(f,b) =0 then (X, f,b) is U Smith framed G normally cobordant to a normal map
f': £ = Y such that f' is a homotopy equivalence. This cobordism is relative to all
non-free orbits. Due to assumption (5) of the theorem o(f,b) lies in a finite subgroup
of LA(Z[G],w), the kernel of the signature homomorphisms to the representation ring,
Sign : LE(Z]|G),w) — R(G). From its definition it is clear that o(f,b) depends only
on X (and possibly its Smith framing) but not on f. So we denote it by o(X). This
completes the proof of the theorem, except that we need to verify that K;i(X) is a
stably free Z[G] module.

Let M denote the mapping cylinder. Let X* = {z € X | G, # 1} be the singular set,
and f* the restriction of f to the singular sets. There is a short exact sequence of Z[G]
chain complexes:

0— C,(Mf-,X'B) — C*(Mf,X) — C,(Mf,X UMfa) -0
The homology of C«(My.,X?*) vanishes because of assumption (3) and (4). Thus
Kp(X) = Hypr (Ca( My, X U My )

as Z[G] module. The homological assumptions on C,(My, X') implied by the fact that f
is 2k-connected also hold for C.(My, X UMy, ). The latter complex is a free Z{G] chain
complex. Thus it follows from [W, Lemma 2.3 (c)] that K5,(X) is stably Z[G] free. In
this reference one omits the discussion of the preferred stable basis. This completes our
proof. B

ProoF oF THEOREM A: Choose N > Ny(N; +3) where N; is the order of the obstruc-
tion group referred to in Theorem 4.8, and Nj is as in 4.7. Choose a representation U of
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G and a collection S (see 4.4) of cardinality at least N. Theorem 4.7 provides a subset
T C 8§ of cardinality at least N; + 2 for which there exist manifolds X (W;, W;) as in
the conclusion of 4.7 whenever W;,W; € 7. According to Theorem 4.8 we assign to
X (W;, W;) the obstruction o(W;, W;) = o(X(W;,W;)). Pick any V € T and consider
{X(V,W,) | W; € T and V # W;}. The cardinality of this set is larger than Ny, the
order of the obstruction group in 4.8. Thus there exist representations W;, W; € T such
that W; # W; # V # W, but o(V,W;) = o(V,W;). This obstruction ¢ also has the
properties 4.6 (3) and (4), and it follows that

J(X(V1 Wz)# - X(V7 WJ)) = 0.

The connected sum is taken at the fixed point with tangent representation V. According
to Theorem 4.8 X(V,W;)# — X(V,W;) is Smith framed G cobordant to a homotopy
sphere T relative to the non-free orbits. By construction % has exactly two fixed points
x and y with tangent representations W; and W;, and these are not isomorphic. If the
elements of S are chosen as it is proposed in the proof of Theorem 4.4 then the difference
of W; and W; is a non-zero multiple of the difference of A and B. W

5. Some Elementary Constructions with Representations.

The purpose of this section is to construct representations as they will be needed in
the proof of Theorem B. The main result is Theorem 5.3 which we will use later, and
the remaining part of this section is devoted to its proof.

First we discuss how to find representations which satisfy Condition 1.1. The condi-
tion is restated in the Lemma.

LEMMA 5.1. Suppose G is an abelian group with at least three non-cyclic Sylow sub-
groups. There exist non-isomorphic representations A and B of G such that

(1) AX = BX = 0 whenever G/K is of prime power order.
(2) Resp A = Resp B whenever P C G is of prime power order.
(3) dim AX = dim B¥ for all K C G.

PRrOOF: Let C be a cyclic factor of G whose order is p®q®, where a, 5> 1 and p and ¢
are odd primes. Find o and 8, 1 < &, 8 < pg — 1 such that

a=1(modp®) B =2 (mod p?)

a =2 (mod ¢*) B=1 (mod ¢%)
Such a and 8 exist. Set

A'=t*@t? and B' = ¢! @t*
These are representations of C. Obviously A’ # B’, but
Resz . A' = Resz_, B' and Resqu A~ Resz , B

Set G = C x L and let L act trivially on A’ and B’. With this action of G we call A’

and B’ now A and B, and these representations obviously satisfy (1)-(3) in our claim.
|

As input in our proof of Theorem B we will need a complex representation U of G
and a collection & of complex representations of G such that

13



CONDITION 5.2.

(1) U is stable, satisfies the gap hypothesis, and the set of isotropy groups of U
consists of all subgroups of G. Also, dimU¥X =0 or > 6 for all K C G. (The
word stable and gap hypothesis were defined in Definition 4.1 and 4.2)

(2) V € S is stable, satisfies the gap hypothesis, and the set of isotropy groups of
V consists of G and all subgroups K C G such that G/K is not of prime power
order. Furthermore, VS = 0 and dim V¥ > 6 for the other isotropy groups of
V.

(3) RespV = Resp U for all P C G of prime power order and V € §.

(4) dmVE =dim WX forall K C G and all V, W € S.

THEOREM 5.3. Given representations A and B of G as in Condition 1.1 (or Lemma
5.1) and any integer N. There exist a complex representation U and a collection § of
complex representations of G such that U and § satisfy Condition 5.2 and such that
V — W is a non-zero multiple of A — B whenever V, W € §.

The remaining part of this section is concerned with the proof of this theorem. To
prove it we need a bit more technical preparation.

LEMMA 5.4. Suppose G is abelian with at least three non-cyclic Sylow subgroups and
I C G is a subgroup such that G/K is of prime power order. There exist representations

A2(K) and Ua(K) of G such that

(1) A2(K)’ = 0 whenever G/J is of prime power order.

(2) Resp A2(K) = Resp Uy(I() whenever P is of prime power order.

(3) The isotropy groups of Uy(K) are G, K, and subgroups of K (possibly not all of
them).

PROOF: Suppose K C G such that |G/K| = p?, where d > 1 and p is a prime.

STEP 1: Consider first the case when G/K is cyclic of order p?, @ > 1. Construct a
cyclic group L such that we have a commutative diagram

1
I
1 K ' G G/K=1,, ——1
[ I
1 H y G L=7,p,e —— 1
I
C=1,,
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So H is a subgroup of K and C is cyclic of order ¢®r¢. Here q and r are distinct primes
different from p, and b, ¢ > 1. Let é be an integer between 1 and p* which is prime to
p. There are integers o, 8, and v, 1 < @, f,7 < p*¢br® — 1, such that

a = 8¢°r¢ (mod p*) g =1 (mod p*) v =1 (mod p*)
a=1 (mod ¢*) B = 6g°r® (mod ¢°) v =1 (mod ¢%)
a =1 (mod r°) B =1 (mod r°) v = 6¢°r® (mod ¢%)

We define the L representations
A=t*@tP @t  and U' =5 @ t! @ ¢!

As o, f, and v are each prime to two of the primes p, ¢, and r, no isotropy group of
A’ -0 has prime power index in L. The isotropy groups of U’ —0 are the cyclic subgroup
of L of order ¢®r® and the trivial group. Consider the action of G on A’ and U’ induced
by the map G — L. We denote the representations of G by A;(K) and Uz(X). Then

(4) Az(K) satisfies (1), A2(K) and Up(K) satisfy (2), and K is an isotropy group of
U2(X). The other isotropy groups of Uy(K) are G and H.

Next consider K C G such that |G/K| = p?, but G/K need not be cyclic, and d > 1.

Write G/K as a product of cyclic groups Cy X -+ x Cpp, and let K ; be the kernel of

the composite map G — G/K — C;. The respective groups H in the diagram of Step
1 are then called H;. Observe that

K=(\Kjfor1<j<m
i

In Step 1 we constructed for each K; representations A;(K;) and Uy(K;) of G. We set

Ay(K) = EB Ay(K;) and Uy(K) = @ Ua(K;)

Thus for any I{ C G with |G/K]| of prime power order we constructed representations
A2(I() and Uz(K'). By construction, the set of isotropy groups of Us(K;) is {G, K, H;}.
Remember that H; C I{; C I{. The isotropy groups of U2(K) are the intersections of
the isotropy groups of the various U;(K;)’s. In particular, K is an isotropy group of
Uz(K). Tt follows easily from (4) that A2(K) and U,(K) have the properties which we

claimed in the lemma. W

COROLLARY 5.5. Let G be a group and A and B real representations of G as in 5.1
(that is, they satisfy Condition 1.1). Let N be an integer. There exists a complex
representation Uy and a collection 8y of complex representations of G and of cardinality
at least N such that ' s

(1) The set of isotropy groups of U is the set of all subgroups of G, and dimU¥ =0
or 2 6 forall K C G.
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(2) For V € &, the set of isotropy groups of V' consists of G and all subgroups
K C G such that G/K is not of prime power order. Furthermore, V¢ = 0 and
dim VX > 6 for the other isotropy groups of V.

(3) RespV = Resp U for all P C G of prime power order and V € 8.

(4) dim VX = dim WX forall K CG and all V, W € &,.

(8) fV, W € Sy, then V — W is a non-zero multiple of A — B.

The following representation will be useful

(5.6) 2 =R[G]- Y ¢

where R[G] is the real regular representation of G and the sum ranges over all irreducible
representations 1 of G such that the kernel G(v) of ¥ is of prime power index in G. It
is trivial to observe

PROPOSITION 5.7. The representation € is stable and satisfies the gap hypothesis (by
a certain margin), and the set of isotropy groups consists of G (with Q% = 0) and all
subgroups of G not of prime power index.

The remark that stability and gap hypothesis hold by a certain margin means that
the inequalities in the definitions of the properties are not sharp, but the slack in about
the dimension of )4 from 5.6, and some times larger. The properties of 2 are easily
obtained from those of the regular representation R[G].

PROOF OF COROLLARY 5.5: We set
Vi=jAe(N-j)BaoPA(K)eQ
K

Uy=NAo P UAK) o0
K

The sum ranges over all subgroups K of G which are of prime power index in G. We
complexify these representations, and possibly take multiples to assure that all dimU¥
are 0 or > 6, for all K C G. The resulting representations are called V; and Up, and
So = {V; |0 <5 <N} It is easy to verify that they have the desired properties. H

The properties in the conclusion of Corollary 5.5 and those required in 5.2 differ
in so far as we require in 5.2 in addition that U and V; € § are stable and satisfy
the gap hypothesis. This we will achieve by constructing a representation U; and a
representation D such that

U=Uy@dU;and S={V®D |V € So}

have all properties required in 5.2. Here U, and Sy are as in the conclusion of 5.5.

We will have to deal with two situations. The first one will be easy to handle, but we
need to prepare the second one. Let J C G and z € Uy such that G; = J. Let ¥' be
an irreducible representation of J, and let 1) be a representation of G which restricts to
¥', so Resy¢ = ¢'. Such a ¢ always exists.
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LEMMA 5.8. Suppose G/J is of prime power order, and ' is such that for ¢ as above

the kernel G(v) is of prime power index in G. There exist representations E and F of
G such that

(1) Resp E = Resp(F @ v) for all subgroups P of G of prime power order.
(2) The isotropy groups of E — 0 and of F' — 0 are not of prime power index in G.

PROOF: Let i) be an irreducible representation of G which restricts to ¥'. Denote the
kernel G(v) of ¢ by K. We may suppose that G/K is cyclic of prime power order.
Then we get an exact sequence

150K -G G/K=17, —1

where G/ K is cyclic and of prime power order. We may then write 3 as a representation
t% of Z,«, with an induced action of G through the map G — G/K. The notation ¢°
was introduced for a cyclic group in Section 2, and by assumption é is prime to p. We
complete above sequence to a diagram as in Step 1 of the proof of Lemma 5.4, using
the same notation. The argument of that proof provides us with

A=ttt @t " and F' =t' ¢+

for a cyclic group L whose order is divisible by at least three primes. The representations
A'and U' = ¢ @ F" are as in the construction in that proof. (A small modification of the
"argument in 5.4 is required if ¢ is the trivial representation.) With the induced action
of G we call the representations A’ and F' then E and F. The properties satisfied in
the conclusion of 5.4 imply those required in 5.8. W

To prove Theorem 5.3 we use the following ideas. Let 7(G) denote the set of sub-
groups of G, partially ordered by the relation ' < H if and only if K D H. A subset
To C T(Q) is called closed if H < K and K € Ty implies that H € 7.

PrOOF OF THEOREM 5.3: In Corollary 5.5 we constructed a complex representation
Up and a collection of complex representations § of G such that most of the properties
in Theorem 5.3 are satisfied. In addition, only the stability assumption and the gap
hypothesis need to be satisfied. This is done inductively with the help of Lemma 5.8
and the representation €.

Consider a closed subset Ty of 7(G) such that the stability assumption holds for all
z € Uy for which G; € Ty. Let K be minimal in 7(G) — 7o, and let ¥’ be an irreducible
representation of K which does not occur often enough in Resg Up. Suppose 1 is an
irreducible representation of G which restricts to ¢'. If G(¢) is of prime power index
in GG, then we add sufficiently many copies of E to each of the elements in Sy and an
equal number of copies of F @1 to Uy (see Lemma 5.8). If G(¢) is not of prime power
index in G, we add sufficiently many copies of Q to the elements in Sy and to Up. This
will assure that 1’ will occur often enough in Resg Uy and in this process the inductive
assumption continues to hold. (To avoid eccessive notation we use the same notation
before and after these additions.) In this process we can assume that Uy becomes stable.

To assure that each V € & becomes stable we only need to add copies of 2 to all
V € &y and to Up. In most cases stability implies the gap hypothesis, but the same
procedure as above can also be used to achieve this.
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The inductive application of this procedure adds a representation £ to all V € S (€

is the sum of all those E and Q required above.) and F to Up (F is the sum of all the
F @y and Q required above.). It is clear that

has all of the desired properties. B

6. Proof of Theorem B.

SKETCH OF PROOF OF THEOREM B: The starting point is a representation U and
a sufficiently large collection & of representations of G which satisfy Condition 5.2.
Non-isomorphic representations A and B of G which satisfy Condition 1.1 (see the
introduction) can be constructed, and from such A and B we can construct U and S.
We showed this in the last section.

In Theorem 6.3 we use § and U to produce manifolds X(V,W) for V and W in §
which have exactly two fixed points at which the tangent representations are V and - W
(the — sign indicates a reversed orientation). These manifolds satisfy a few technical
assumptions which are derived from those of the representations in .

There is a sequence of obstructions op for finding an equivariant cobordism (relative
to the fixed point set) between X (V, W) and a homotopy sphere. These will lie in finite
obstruction groups, and with respect to connected sum these obstructions are additive.
A reversal of orientation changes the sign of o p. Starting out with a set § of sufficiently
large cardinality, these thoughts together with a pigeon hole principle will provide man-
ifolds X(V,W) for which all op vanish. We may then use X(V,W) as a homotopy
sphere with exactly two fixed points and Smith equivalent tangent representations V
and W.

Our first step is to introduce the surfaces from Section 3 into our context. As before,
let G be a finite abelian group and ¥ an irreducible representation of G. We defined the
kernel G(3) of ¥ and L(3) = G/G(¥), which is always a cyclic group (see [S, Chapter
3 Exercise 3.2 (c)]). We suppose that |L(¥)| = m() is not of prime power order. We
choose a decomposition m(y) = r(v¥)s(3p) where r(3)) and s(1p) depend only on m(3)
and not on 1. We also choose a(y) and b(1)) such that a(¢)r(¥) + b(¥)s(x) +1 =0
(mod m(%)), and we set

AL($) = b)) - [Zmp)/Trwy] Wa(®) « (L) /L] U L)/ Lm(wy)

Our choice is slightly less delicate than the one in 3.2.

As in Section 3 (see the paragraph before Lemma 3.3) we get a surface X'(3) with
smooth L(3) action. The projection G — L(%) induces a G action on this surface, and
then we denote it by X (%) as in Lemma 3.3.

Let V be a representation of G such that VK = 0 whenever G/K is of prime power
index in G. Each irreducible summand 3 of V' is such that |L()] is divisible by at least
two primes, and X (1) is defined. As in 3.4 we set for V =3 ay(V )

(6.1) X(V) =[xy

The properties of X (V') are described in our next lemma (compare Corollary 3.5 and
Theorem 3.7)
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LEMMA 6.2. Let G be an abelian group and § a collection of representations of G as
in 5.2. There is a collection of closed G oriented manifolds {X (V) |V € S} such that

(1) X(V)¥ = z consists of exactly one point and T, X (V) =V as oriented G repre-
sentation.

(2) There is a representation C of G such that TX(U)@®C and U@ C are isomorphic
G vector bundles.

(3) x(X(D)¥) = x(X(E)X) forall K CG and D, E€ S.

(4) For all K C G not of prime power index Resix X(V') is a K equivariant bound-
ary. There is a stable K equivariant trivilization of the tangent bundle of this
zero cobordism which extends the stable trivialization of TX(V) in (2), after
restricting this action to a K action.

(5) Sign(G,X(V)F)=0 forall V € § and P of prime power order.

PROOF: Properties (1), (2), and (4) have been discussed in Section 3 and its Adden-
dum. We discuss (3). Let 1 be irreducible. According to Proposition 3.1 the Euler
characteristic x(X(3)%) depends only on L() and the choice of A4(3), hence only
on L(%). Thus x(X(1)¥) depends only on {(dim V¥ K) | K C G}. By assumption
dim VK = dim W¥ for all K C G, and (3) follows.

To see (5) we observe that G acts on X (V)| and any cyclic subgroup C of G gen-
erates together with P a subgroup K which is not of prime power index in G. But
Resk(X(V)P) bounds K equivariantly according to (4). As a bordism invariant the
signature vanishes. I

For the idea of a Smith framed manifold we refer the reader once more to [PR1] or
[DP2]. This concept enters in the technical steps of equivariant surgery which do not
concern us here. Property (2) in our next theorem is obtained from the assumption that
RespU = Resp V for all P C G of prime power order. It is important that these are
complex representations and that this isomorphism is one of complex representations.

In our next proof we will make reference to the Burnside ring Q(G) of G. Its elements
are represented by finite G CW complexes. Two finite G CW complexes X and Y are
equivalent in-Q(G) if and only if x(X¥) = x(Y®) for all K C G. The class of X in Q(G)
is denoted by [X]. Addition is given by disjoint union of representative complexes, and
multiplication by their cartesian product. A single point with trivial action represents
1 in this ring,.

THEOREM 6.3. Let U and § be as in 5.2. There are smooth G oriented manifolds
X =X(V,W) for V and W € § such that

(1) X is stable and satisfies the gap hypothesis.

(2) X is U Smith framed.

(3) X€ = {z,y} consists of exactly two points and T, X =V and T, X = -W.

(4) x(X¥)=2 and dim V¥ =0 (mod 4) for all K C G.

(5) Resyg X is U Smith framed cobordant to zero whenever G/K is not of prime
power order and Sign(G, X¥) = 0 whenever P is a subgroup of G of prime power
order.

PROOF: By assumption x(X(V)¥) = x(X(W)¥) for all K C G, and in the Burnside
ring [X (V)] = [X(W)]. Thus X(V)U —X (W) represents a class in the Burnside ring
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which is divisible by 2. We recall from [DP2, page 303] how to construct an equivariantly
stably parallizable boundary Z from the representation U such that X(V, W) = X(V)U
—X (W)U Z satisfies (4). Let Y be a closed oriented surface with trivial G action and
x(Y) = —2. Write U = U’ ® R%. Set

Zt'=S(U®R)and Z~ =Y x S(U' ®R)
We equip the manifolds with a U Smith framing. In the Burnside ring
[G xy 2% =2[G/H] and [G xg Z7| = —4[G/H]

It is now obvious that [X(V)] + [X(W)] —2 is a linear combination of the G x g Z¥ for
H#G.

The other properties follow easily from this definition and those properties listed in
6.2. 1 '

PROOF OF THEOREM B (SPECIAL CASE): If we assume in Theorem B that G is of
odd order, then we can complete the proof quickly. We only need a set S of cardinality
2 and a representation U as in 5.2, and they exist by Theorem 5.3. The manifolds
X = X(V,W) satisfy the assumption in the induction theorem for equivariant surgery
(see [DP3, Theorem 2.8] or [PR1]). The assumption that |§| > 2 assures that we have
X(V,W) with V # W. In the references one deals with normal maps which may be
obtained mapping X(V, W) to the sphere S(V @ R) via the Thom-Pontrjagin collapse.
That is, we collapse the complement of a neighbourhood of the fixed point = at which
the tangent representation is V. The induction theorem implies that X is equivariantly
cobordant to a homotopy sphere relative to the fixed point set. This shows that V and
W are Smith equivalent.

The special case is only a partial technical improvement of [PR1] based on the addi-
tional information about the manifolds X(V, W) in Theorem 6.3. We proceed with the
preparation of the general proof.

Let A be Z inverted at a finite number of primes. Consider the kernel of the equivariant
signature map

(6.4) I(A[H]) = ker(LE(A[H], 1) — R(H))

which takes values in the representation ring of H. In our situation H is a finite abelian
group. We thank A. Bak for providing us with the details for the following result. They
are spelled out in the next section.

THEOREM 6.5. I(A[H]) is finite.

Let A =Z[1/q1,...,1/qx] be the ring obtained by inverting the primes qi, ..., qx, and
let p be a prime different from g;. Let

J(A, p, H) = ker(Ko(A[H)) — Ko(Zpy[H)))

PROPOSITION 6.6. There exist primes gi41,...,qk+r different from p such that for
N =1[1q,...,1/qitr]

J(A,p, H) = ker(Ko(A[H]) — Ko(A'[H]))
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So we only need to invert finitely many additional primes (different from p) such that

each element in J(A, p, H) becomes stably free. This follows easily as Ko (A[H]) is finite.
(For a proof see also Lemma 7.1.)

The proof of Theorem B will be inductive, and we describe the situation which we
will encouter in all but the last step.

Consider f : X — Y, where X and Y are smooth G oriented manifolds, G is a finite
abelian group, and f is equivariant. Suppose these manifolds are stable and satisfy
the gap hypothesis, X is Smith framed, and every subgroup P C G of prime power
order occurs as isotropy group of X. We suppose that X* and Y? are connected and
dimXP = dimY P = 0 (mod 4) and > 6. We assume that ¥'F is simply connected, and
in our application Y will actually be the unit sphere in a representation. Furthermore,
suppose that f¥ is of degree 1. We suppose that Sign(G, X) = Sign(Y, G) = 0.

The data (X, f,b) describe a normal map. Here f : X — Y is as above and b is a
Smith framing. These data need to satisfy a few conditions to be called a normal map,
and all of them follow from the assumptions listed in the last paragraph and Condition
6.7 (1). Associated to these normal maps there is a natural concept of a Smith framed
normal cobordism between Smith framed normal maps. The cobordism is supposed to
have the same type of data as the normal maps. In particular, it induces an equivariant
cobordism between the domains of the normal maps. As before we hope the reader
knows these concepts or will read them in the literature on equivariant surgery. The
most appropriate references in our setting are [DP2] and [PR2] because there normal
maps with Smith bundle data are treated. But, the reader only needs to know that
normal maps are objects equivariant surgery can be applied to, and as we are only
going to quote the necessary results from equivariant surgery without prof no more
detailed knowledge is required to follow the proof.

Given a closed subset Ty of the set 7(G) of all subgroups of G. The definition is
given after Lemma 5.7. Let (X, f,b) be as described in the last two paragraphs. We
will encounter the following

INDUCTIVE ASSUMPTION 6.7.

(1) x(X¥)=x(Y¥) forall K C G.

(2) Let P € Ty be a subgroup of G of p power order, p a prime. We are given a
finite collection of primes qy,...,q; different from p and f¥ induces a homology
isomorphism with coefficients in A = Z[1/qy,...,1/qx]. In particular, fF is a
homology isomorphism with 7, coefficients. This collection of primes depends
on the groups P' < P of p power order.

Let P be a minimal element in 7(G) ~ 7y of p power order. We shall discuss the
obstruction for finding a Smith framed normal cobordism between (X, f, b) and another
Smith framed normal map which satisfies the Inductive Assumption 6.7 for Ty U { P}.

THEOREM 6.8. Suppose Ty and (X, f,b) as in 6.7 and P # 1 is a minimal element in
T(G) — Ty of p power order, p a prime. There exist primes ry,...,r, different from
p and an obstruction op(f,b) € I(A[G/P]) with A = Z[1/r1,...,1/r,] which has the
following property. If op(f,b) = 0 then (X, f,b) is Smith framed normally cobordant to
another Smith framed normal map (X', f', ") such that the inductive assumption holds
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for To U {P}. The cobordism is relative to all K fixed point sets such that K is not a
subgroup of P.

Before we begin with the proof we fix a bit more notation. We let M denote the
mapping cylinder. In the fixed point set X7 we consider the singular set XP* = {z €
XFP |G, # P}. Similarly, f* is the induced map from X P* to Y. We also set

K (XP,A) = Hopy(Mpr, XP; A)
= ker(Hu41(XP,A) » Ho (YF, A))

The second equality follows from the assumption that f¥ has degree 1. We note
(6.9) Ho(Mr, XP%A) =0

whenever P is not a Sylow subgroup, the inductive assumption holds for 7g, and P
is minimal in 7(G) — Ty. Here A is Z[1/§y,...,1/qx] such that the set {¢i,...,qx}
contains all those primes ¢; which occur in 6.7 (2) for P' € T, such that P’ < P. This
follows from the universal coefficient theorem and a Mayer-Vietoris argument. Note in
particular that the p Sylow subgroup G, contains all groups P’ of p power order which
contain P.

Let P be the chosen element in 7(G) — Ty and let P be of p power order. The set
w(P) = {ry,...,r,} will be the union of two sets, w(P) = w; Uw,. We define wy. If P
is the p Sylow subgroup we let w; be the set of prime divisors of |G/H|. If P is not the
p Sylow subgroup we consider the sets w(P') = {qi,...,qx} which have been defined
before for P’ < P of p power order (see 6.7 (2)). Then we set w; = p, pw(P’).

The set wy consists of those primes gg4.1,...,¢k+r in Proposition 6.6 which need to
be inverted such that the elements in J(A,p, H) become stably free if these primes are
inverted as well. Now we set w(P) = wy Uw,. We set Ag = Z[1/ry,...,1/r] with
T1y...,7k € wy and A = Z[1/ry,...,1/r,} with r1,...,7, € w. Because w(P') is finite,
w(P) is finite as well.

PROOF OF THEOREM 6.8, PART 1: In the first part of the proof we show that after
sugery below the middle dimension (2m) we may suppose that K, (XF,A) is A[G/P]
stably free.

Let W = (X, f : X — Y,b) be the normal map and P the chosen minimal element
in 7(G) — Ty. Suppose that X ¥ is 4m-dimensional (see 6.3 (4)). There is a normal
map W) = (X3, f1 : X1 — Y1, b)) which is G normally cobordant to W (relative to all
H fixed point set such that H is not a subgroup of P) such that f{ is connected up
to the middle dimension. So ff is 2m-connected. Such a cobordism and W, can be
constructed by equivariant surgery as in [DP1], and for Smith bundle data one uses in
addition the reference to [PR1]. In particular, {5,,(XF,Z) is the only non vanishing
kernel in homology and this module is torsion free. We distinguish two cases.

CASE 1: Let P be the p Sylow subgroup. We defined Ag above. As we inverted all
divisors of |G/P)| it follows that Kom(X{,Ag) is a semi simple A¢[G/P] module, and
thus it is projective over Ao[G/P).

22



CASE 2: Suppose P is not the p Sylow subgroup. By the inductive assumption and the
definition of Ay the chain complex C,‘,(Mff)',Xl}J ) ® Ag is acyclic for all P' < P of p

power order. Thus c.(Mflp,.,xf’”) ® Ag is acyclic and

Koo1(X{, Mo) = Ho(Mpr, X175 Ao)
= H(Mgp, Mgro UXT; Ao)
> H(Cu(Myr,Mra U X ® Aq))

which is the homology of a Z[G/P] free chain complex. This chain complex has only
one non vanishing homology group (in dimension 2m + 1) and is then projective over
Ao[G/P).

We return to the general case. It follows from Oliver’s work [O] that the Euler char-
acteristic assumption made in 6.7 (1) implies that Kom(X{,Z(,)) is stably Z(,)[G/P]
free. It follows from the definition of A and from Proposition 6.6 that Ky, (X, A) is
stably A[G/P] free. This is what we wanted to show in the first part of this proof.

PART 2: Let A and g be the intersection and self intersection form defined as by
Wall [W]. These forms are tensored with A as indicated from context. By definition
(Kom(XF,A), A, ) is 2 A[G/H] hermitian form which represents a class op(f;,b;) €
LE(A[G/H],1). By assumption Sign(G, X) — Sign(G,Y) = Sign(G, (Iom(XF),A)) = 0.
Thus op(f1,51) is an element in I(A[G/P]) (see 6.4). Actually, op(f1,b;) depends only
on (f,b) which is expressed by the notation op(f,b).

PART 3: Suppose op(f,b) = 0. It follows from standard procedures in equivariant
surgery theory that the middle dimensional surgery kernel Ko, (X, A) can be killed.
The function ff of the resulting normal map W, = (X3, f; : X2 — Y2,b2) (which is
equivariantly cobordant to W;) induces a homology isomorphism. In the adjustment
which we made to the normal map we disturbed x(XF") for P” > P. They can be
adjusted by 0 and 1 dimensional surgeries on the P” fixed point set. This is easy based
on the well known effects of surgery on Euler characteristics.

These three parts complete the proof of Theorem 6.8. W

In our proof of Theorem B we need an integer N. Set N = [[p(N(P) + 1) where P
is of prime power order or P = 1. Here N(P) is the order of I(A[G/P]) in 6.4 and A is
as in 6.7 (2). For P =1 we set

(6.10) I(Z(G)) = ker(LPP(2(G), 1) 222 R(G))

The group By(G) occurs in the work of Oliver and Petrie [O] and [OP]. For its use in
this context see the proof of Theorem B in [DP2] or Section 6 of [DP1]. It is a finite
subgroup of Ky(Z[G]), so I(Z[G]) is finite. Then N(1) is the order of I(Z[G]).

We are now ready to give the
ProoFr OoF THEOREM B: We start out with a representation U and a collection S of
representations of G as in 5.3 of cardinality at least N (as above). From these we
construct the manifolds X = X(V, W) as in Theorem 6.3. To each such manifold we
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assign the Smith framed normal map (X, f : X — Y,b). Here Y = S(V @ R), f is the
Thom-Pontrjagin collapse from X to Y, and b is the Smith framing of X.

We now do an induction over the set P(G) of subgroups of G of prime power order,
including 1. Let 7y be a closed subset of T7(G) as in 6.7, and say that X(V,W) is Ty
adjusted if X (V, W) satisfies the assumptions in 6.7 for this set 7y. For each 7 adjusted
manifold X(V, W) and minimal P € T(G) — Ty we have the obstruction op(f,bd) in
I{A(G/P)) (see 6.8). We denote it by op(X(V,W)). The obstruction has the same
properties as those listed for ¢ in 4.6.

Furthermore, let a set §' C § of cardinality M be given such that X(V,W) is T,
adjusted. We can find a representation V and representations W;, 1 < 3 < My =
M/N(P) — 1 such that op(X(V,W;)) = op(X(V,W;)) for 1 < 7,7 £ M,. As in the
proof of Theorem A in Section 4 we conclude (based on 4.6) that o(X(W;, W;)) = 0. By
6.8 we may assume that X(W;, W;) is To U {P} adjusted. In this way we may proceed
until we find representations Wj, 1 < j < N(1)+ 1 such that X(W;, W;) is T(G) — {1}
adjusted.

Again we get a pair of non isomorphic representations W, and W, such that

0 = o(X(W1,W2)) € L™ 9(2(G), 1)

It is explained in [DP2, Theorem E (ii), page 301] how to apply equivariant surgery and
find an equivariant cobordism between X (W, W;) and a homotopy sphere T, relative
to the fixed point set. Then W; # W, and these representations are Smith equivalent.

Because W, and W, are in § we may suppose the W; — W, is a multiple of A — B,
as in the formulation of the theorem. W

7. Some Algebraic Computations (by A. Bak).
We thank A. Bak for the computations in this section. To prove Theorem 6.5, a
lemma. is required. Let Ko(Z[H]) = Ko(Z[H))/[Z[H]].

LEMMA 7.1. Ko(Z[H)) is finite.

PROOF: By a theorem of Swan [Sw], if P is a finitely generated, projective Z[H]-module
then P ®z;m) Q[H] is a free Q[H]-module. If rank(P) denotes the rank of this Q[H]-

module then it is an easy exercise to check that the sequence
Eo(2[H)) — Ko(Z[H]) — Ko(Q[H])

is exact. The first homomorphism maps [P] to [P] — rank(P) - [Z[H]].
Let O denote the unique maximal Z-order on Q[H]. If

K1(Q[H]) — Ko(Z[H], Q[H]) — Ko(Z[H]) — Ko(Q[H])

and
K(Q[H]) — Ko(O, QIH]) — Ko(O) — Ko(Q[H])

denote respectively the exact K-theory localization sequences associated to the homo-
morphisms Z[H] — Q[H] and O — Q[H] then by [BS, (3.1) and (3.2)]

Ko(Z[H], Q[H]) 2 | J eoker(F:(Z,[H]) — K1(Q,[H]))

p
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and

Ko(0,Q[H]) = L[coker(Kl(ép) — K](QP[H]))

p

where Z and QP denote respectively the completions of Z and Q at the prime p and
0 =0Qz Z Since

Ko(Z(H)) = coker(K;(Q[H]) — Ko(Z[H), Q[H]))

and since coker(K,(Q[H]) — Ko(O,Q[H])) splits as a (finite) product [, CI(F;) of
(finite) ideal class groups CI(F;) (where Q[A] = []; F;, F; cyclotomic number fields), it
suffices to show that ], coker(Ky(Zy[H]) — K1(D,)) is finite.
Let n denote the order of H. If p { n then Z,[H] = O, (cf. [Bs, XI (1.2)]), and
s0 coker(Kl(Zp[H]) — I\I(OP)) = 0. If p|n then for some natural number r, p O C
Z,[H]. Let K](Op,p 9) ») denote the relative K;-group [Bs, V §2, IX §1] defined by the
ideal p'"O The canonical homomorphism

coker(Ka(By,p"0,) L K1(B,)) — coker(Ky (Z,[H]) > Ki(5,))

is surjective. But by the exact sequence [Bs, IX (1.2)]
o~ ~ f —~ o~ -~
K1(0p,p"0p) — K1(0,) — K1(Op/p"O)

and the fact [Bs, V (9.2)] that the determinante map I\I(O,,/p 0,,) — umts( p/p 5,,)

is an isomorphism, one obtains that coker(f) »+ umts(op/p OP) Since Op/p’"op =
O/p"O is a finite ring, coker(f) is finite. Thus, coker(g) is finite and the proof is
complete. l

PROOF OF THEOREM 6.5: By a theorem of Bak [Bal, Theorem 2| and the remark
following [Bal, Theorem 2], there is an exact sequence

H(Ko(1[H))) — L} (Z[H], 1) Ny 1

Since the diagram
L§(Z[H],1) —— Ly(A[H),1)

! !

y AL SN 7
commutes and H? (I?o (Z[H]))) is finite by the lemma above, it suffices to show that the
coker(LE(Z[H],1) — LE(A[H], 1)) is finite.

If A is a ring with involution and X € center(A) such that AX = 1, let Q*(A)cven—free

denote the category of nonsingular quadratic forms (with minimum form parameter) on
finitely generated free modules of even dimension, whose associated sesquilinear form is
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A-Hermitian. We may assume that the modules under consideration have dimension be-

cause by definition their equivariant signature vanishes. Let H(A) denote the hyperbolic
plane, cf. [Ba2, §1B]. Define

I{Qa\(A)even—frcc = KO(QI\(A)evcn—free)
If Z[H] and A[H] have involutions inverting each element of H then by definition
L{,‘(Z[H], 1) = KQtl)(z[H])even—frec/[H(Z[H])]

and
Lo(AlH],1) = KQo(A[H])even— sree/ H(A[H])]
Clearly,
coker(Lg(Z[H],1) — Ly(A[H], 1)) .
= coker(K Qo(Z[H))even—free = KQo(A[H])even—sree)
Let A be as above and let X C K,(A) be an involution invariant subgroup of I{;(4)

such that [£A] € X. Let Q)‘(A)e,,m_ free—x denote the category whose objects are

nonsingular quadratic forms on finitely generated free A-modules of even rank such
that the associated sesquilinear form is A-Hermitian and has discriminante in X, and

whose morphisms are invertible linear maps whose determinante lies in X, cf. [B1, §1B].
Define

KQ[))‘(A)even—frec—X = I{O (g'\(A)even—free—X)
Clearly,
A A
Q-D (A)even—frec = gﬁ (A)even—frec—Kl(A)
and thus
I{QS(A)even—frce = KQOA(A)cven—frce—Kl(A)

Suppose m is a natural number, S the multiplicative set {1,m,m?,...,} and A =
S~1Z. Consider the localization-approximation fibre square of rings with involution

1[H] _— A[H]

! !

Mpim ZplH] ~—— Tlppm Q1]
of. [Ba2, (7.17), (7.18), (7.21), (7.22)].
Let X = Ki(Z[H]), Y = Ki(A[H]), X = image(K\(Z[H)) — Ki([], . Z,[H])) and
Y= image(K: (A[H]) — Ki([],jm QP[H])). By [Ba2, (7.30)c)] (which holds for even-

- based-X forms as well as based-X forms), [Ba2, (7.26)b)], and [Ba2, (6.26)] there is
an exact Mayer-Vietoris sequence

KQ(I)(Z[H])even—baacd—X - I{Q{l)(A[H])cucn—bascd-—Y 63 I(Q(IJ(H iP[H])
plm

— I\’Qa( H QP["H-])euen—ba.st‘lt.'i"—?

plm

even—ba.ued-—:\>
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from which one deduces an exact sequence

KQCI)(Z[H])even—baaed—X — I{Qé(A[H])cvcn—baaed—Y
- COkEI‘(I\’Qé(H ip [}Jl)cmen—baacd—j(.~ - I{Qé(]:[ QP [H])evcn—baacd—?)

plm plm

It suffices to show that the preceding cokernel is finite. Since the quotient of (by
definition)

WQ%(H Qp [H])cuen—baaed—? = I(Q(l](H c“ip[H-])etreﬂ--ba.aed—?/[H(I—[ QP[H])]

plm plm plm

it suffices to show that WQY(I],m Q,[H))
sequence [Ba2, (8.4)]

« is finite. Consider the exact
even—based-Y

B 2/22, Ko (] QuUEAEN/Y) = WQUT] QolHD, .0 _paseas

plm plm
RN L — s AE SN VGl
plm i plm

By a result of Bass [Bs, V (9.2)], deteminante

Ky (T @,1H]) = units([] @, 1H)

rim plm

Thus
Ky (] Qp[H))/Y = units(]] @, [H])/ units(A[H])

plm plm

We leave it as an exercise for the reader to show that H‘(Z/?.Z,units(]_[p'm QP[H]))

and H'(Z/2Z,units(A[H])) are finite, for ¢ > 1. Thus, from the long exact cohomology
sequence associated to the exact sequence

1 — units(A[H]) — units( [ @,[H]) — units([] @,[H])/ units(A[H]) — 1
plm plm

it follows that . R
H¥(2/22, units(] [ Q,[H])/ units(A[H]))

plm

is finite, for ¢ = 1, 2. Thus, WQ(TT,jm QlH]), yen_sasea_s 15 finite if and only if

WQ(IJ(H QP[H])even—baaed—Kl(lem ap[H]) = I/VQ%)(H QP[H])even—frcc

plm plm
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is finite. The proof is complete by showing that the latter group is finite.

The ring [] |, Q,[H] factors as a finite product [[; F; of rings with involution such
that F; is either a product F; = F x F of fields F' with involution exchanging the
cordinates, or Fj is a p-adic cyclotomic field QP(() where p | m and ¢ = ¢~!. Since

WQ%)(H QP[H])euen—frec r— H WQ%)(Fi)cven—free

plm i

it suffices to show that each group WQJ(F:)even—free is finite. If F; = F x F then
the group above is trivial, since every form is a product of hyperbolic planes. In the
remaining cases, the group is either the standard Witt group of the p-adic field Q,, which

i’s\ well known to be finite, or the Witt group of Hermitian forms on the cyclotomic field
Q,[{] # Qp, which is also well known to be finite. W
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