Topogonov's Theorem for Metric Spaces Π

by

Conrad Plaut

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-5300 Bonn 3

Federal Republic of Germany

Toponogov's Theorem for Metric Spaces II by Conrad Plaut

In this note we correct some errors in "Toponogov's Theorem for metric spaces" (henceforth referred to as [P3]), prove a "rigidity" theorem, and generalize Toponogov's Maximal Diameter Theorem.

We use the same notation and references as in [P3], and refer to results in [P3] by number only (e.g., "Lemma 2" refers to Lemma 2, [P3]). The most important error in [P3] is the omission of geodesic completeness from the hypothesis of the main theorem, which should should have been stated:

Theorem A. If X is geodesically complete of curvature $\geq k$, then every proper triangle in X is Al and every proper wedge in X is A2.

Definition. We say that a wedge $(\gamma_{ab}, \beta_{ac})$ is A2 with equality if there is a representative wedge $(\overline{\gamma}_{AB}, \overline{\beta}_{AC})$ in S_k (i.e., whose sides are minimal with $L(\overline{\gamma}_{AB}) - L(\gamma_{ab})$, $L(\overline{\beta}_{AC}) - L(\beta_{ac})$, $\alpha(\overline{\gamma}_{AB}, \overline{\beta}_{AC}) - \alpha(\gamma_{ab}, \beta_{ac})$ and d(B, C) - d(b, c).

Using results of [P2] one can formulate rigidity theorems analogous to the rigidity part of Toponogov's theorem in the

Riemannian case, but the statements are long, and at present we have no applications for a theorem stronger than what we give below.

Theorem R. Suppose X is geodesically complete of curvature $\geq k \text{ and } (\gamma_1, \ \gamma_2) \text{ is proper and A2 with equality, with } \\ \text{representative } (\overline{\gamma}_1, \ \overline{\gamma}_2) \text{ in } S_k. \text{ Let } L_1 = L(\gamma_1), \ i = 1, 2. \text{ Then } \\ \text{for all } 0 \leq t \leq L_2, \ d(\gamma_1(L_1), \ \gamma_2(t)) = d(\overline{\gamma}_1(L_1), \ \overline{\gamma}_2(t)). \text{ In } \\ \text{addition, if } \gamma_2 \text{ is minimal, } d(\gamma_1(s), \ \gamma_2(t)) = d(\overline{\gamma}_1(s), \ \overline{\gamma}_2(t)) \text{ for all } 0 \leq s \leq L_1. \\ \end{cases}$

Theorem D. If k>0, X is geodesically complete of curvature $\geq k$ and dia (X) = π/\sqrt{k} , then X is isometric to S_k^n for some n.

Before proving Theorems R and D, we give corrections to [P3]. In the statement of Lemma 5, "there exists a $\chi > 0$ " should be replaced by "for all sufficiently small $\chi > 0$." Rather than giving a list of corrections for the proof of Theorem A we will simply give below a simplified and corrected proof in its entirety. What follows should replace the arguments in [P3] beginning with the last paragraph on page 6 to the beginning of the proof of Theorem C on page 11. We assume throughout this proof that X is geodesically complete (although this is only directly used in Step 2).

For $0 < D < \pi/\sqrt{k}$, fix a closed ball $B = \overline{B}(p, D) \subset X$ and a cover U of $\overline{B}(p, 2D)$ by regions of curvature $\geq k$, and let $\chi(U) < D$ be as in Lemma 5 and also less than 1/12 of a Lebesque number of U. Let $\tau(U)$ small enough that if $\overline{c\alpha}$, $\overline{\gamma}$ are unit geodesics in S_k with $\alpha(\overline{\alpha}, \overline{\gamma}) \leq \tau(U)$, then for all $0 \leq t \leq D$, $d(\overline{\alpha}(t), \overline{\gamma}(t)) \leq \chi(U)$. If α , β : $[0, 1] \rightarrow B$ are minimal curves starting at p, we call a proper triangle (α, γ, β) p-based. A p-based triangle (α, γ, β) is U-thin if $\alpha(\alpha, \beta) \leq \tau(U)$ and γ is minimal. At present we do not require that γ lie in B in either definition, but $\chi(U) < D$ implies γ lies in B(p, 2D). Consider the following statements:

S1(n,m). If (α, γ, β) is U-thin such that $(n-1)\cdot\chi(U) \le L(\alpha) \le n\cdot\chi(U)$ and $(m-1)\cdot\chi(U) \le L(\beta) \le m\cdot\chi(U)$, then (α, γ, β) is A1.

S2(n,m). If (α, γ, β) is U-thin such that $(n-1)\cdot\chi(\mathbb{U}) \leq L(\alpha) \leq n\cdot\chi(\mathbb{U})$ and $(m-1)\cdot\chi(\mathbb{U}) \leq L(\beta) \leq m\cdot\chi(\mathbb{U})$, then (α, β) is A2.

S3(n). If (α, γ, β) is p-based and lies in $\overline{B}(p, n \cdot \chi(U), then <math>(\alpha, \gamma, \beta)$ is A1.

Note that by monotonicity S1(n,m) and S3(n) state equivalently that (α, γ) and (β, γ) are A2. S1(6,6), S2(6,6), and S3(6) are true by the way $\chi(U)$ was chosen. We will prove

by induction that S3(n) holds for $n \le (D-3\chi) / \chi$.

Step 1. S1(n,n) and S2(n,n) imply S2(n, n+1).

Proof. Fix a U-thin triangle (α, γ, β) such that $n \cdot \chi(U) \le L(\alpha) \le (n+1) \cdot \chi(U)$ and $(n-1) \cdot \chi(U) \le L(\beta) \le n \cdot \chi(U)$. Let q lie on α such that $d(p, q) = L(\beta)$, let $x = \alpha(1)$, $y = \beta(1)$ and η be minimal from y to q. If ν is the segment of α from p to q, we obtain from S2(n,n) that (β, ν) is A2 and from S1(n,n) that (ν, η) is A2. S2(n,n) implies dia $(x, y, q) \le 3\chi(U)$; if ζ is the segment of α from q to x we have that both (η, ζ) and (ζ, γ) are A2, and that (α, β) is A2 follows from Lemma 1.

Step 2. S3(n) implies that if ω is minimal from p to a point $a \in B(p, (n-1) \cdot \chi(U))$ and ξ is minimal starting at a with $L(\xi) \leq 4\chi(U)$, then (ω, ξ) is A2.

Proof. Let R' = L(ω), assume both ω and ξ are unit, and let $x = \xi(L(\xi))$. Choose a representative $(\overline{\omega}, \overline{\xi})$ in S_k , denoting the corresponding points with capitals. Let $\overline{\mu}$ be unit minimal from P to X, R = min $\{R', L(\overline{\mu})\}$, and $\overline{\kappa}$ be minimal from A to $\overline{\mu}(R)$. Since $n \leq (D-3\chi) / \chi$, $L(\overline{\omega}) + L(\overline{\xi}) \leq D$, and by Lemma 5, for all s, $d(P, \overline{\kappa}(s)) < R + \chi(U) \leq n \cdot \chi(U)$. For any sufficiently small $\delta > 0$, by Lemma 2 and geodesic completeness there exists a geodesic κ : $[0, 1] \rightarrow X$ starting at a of length $L = L(\overline{\kappa})$ with $|\alpha(\kappa, \omega) - \alpha(\overline{\kappa}, \overline{\omega})| < \delta$ and $|\alpha(\kappa, \xi) - \alpha(\overline{\kappa}, \overline{\xi})| < \delta$. For small

enough δ , S3(n) implies that d(p, $\kappa(s)$) < $n \cdot \chi(U)$ for all s and (κ, ω) is A2. On the other hand, by the triangle inequality $L(\overline{\kappa}) \leq 8\chi(U)$ and dia $\{\kappa(1), a, x\} < 12\chi(U)$; thus (κ, ξ) is A2. Lemma 4 now implies (ω, ξ) is A2.

Step 3. S1(m,m), S2(m,m), for all $m \le n$, and S3(n) imply S1(n,n+1).

Proof. Let (α, γ, β) be as above. The proof that (α, γ) is A2 is similar to the argument in Step 1. Let a be the point on β such that $d(a, y) = \chi(U)$, R = d(p, a), ω denote the segment of β from p to a and ξ be minimal from a to x. By the triangle inequality (and the fact that $\alpha(\alpha, \beta) \leq \tau(U)$) $L(\xi) \leq 4\chi(U)$ and Step 2 implies (ω, ξ) is A2. By a proof similar to that of Step 1, S1(n,n) and S2(n,n) imply (α, ω) is A2. If λ denotes the segment of β from a to y, (ξ, λ, γ) is also A1, and the proof is complete by Lemma 1.

Step 4. S1(n,n+1) and S2(n,n+1) imply S1(n+1,n+1) and S2(n+1,n+1).

Proof. This is a straightforward application of Lemma 1. □

Step 5. S1(m,m), S2(m,m), for all $m \le n+1$, and S3(n) imply S3(n+1,n+1) (and the induction is complete).

Proof. Let (α, γ, β) be p-based, with

 γ : [0, 1] \rightarrow $\overline{B}(p, (n+1)\cdot\chi(U))$. We first claim the following: If ζ is minimal from p to q - $\gamma(t)$, for some t, t -> t and η_i is minimal from p to $\gamma(t_i)$, then for all sufficiently large i, $(\zeta_{i}, \gamma_{i}, \eta_{i})$ is Al, where γ_{i} is γ restricted to the interval between t, and t. By using two subsequences, if necessary, we can assume $\lim_{i\to\infty} \alpha(\eta_i, \zeta)$ is either 0 or $2\epsilon>0$. In the first case the proof is complete by S1(m,m) for $m \le n+1$. In the second case $\alpha(\eta_{,}, \zeta) > \epsilon$ for all large i. Choosing a subsequence if necessary we can find a minimal η from p to q such that $\alpha(\eta_{_{i}}, \eta) \rightarrow 0$; in particular, $(\eta_{_{i}}, \gamma_{_{i}})$ is A2 for all sufficiently large i by Sl(m,m) for $m \le n+1$. On the other hand, let a be the point on ζ such that $d(a, q) = 2 \cdot \chi(U)$, ω denote the segment of ζ from p to a, ν that from a to q, and $\mu_{_{_{\hspace{-0.05cm}4}}}$ be minimal from a to $\gamma(t_i)$. Since $L(\omega) + L(\mu_i) \rightarrow L(\eta_i)$, if $(\overline{\zeta}, \overline{\eta_i})$ represents (ζ, η_i) in S_k then $\alpha(\overline{\zeta}, \overline{\eta_i}) \rightarrow 0$. Now $\alpha(\eta_i, \zeta) > \epsilon$ implies (ζ , η_{i}) is A2 for large i. By Step 2, (ω , μ_{i}) is A2. Since γ_{i} is minimal for large enough i and $(\mu_{i}^{}, \nu)$, $(\nu, \gamma_{i}^{})$ are A2, the proof of the claim is complete by Lemma 1.

For s > 0, let γ_s denote $\gamma|_{\{0,s\}}$, and denote by Al(s) the statement: for every minimal β_s from p to $\gamma(s)$, $(\alpha, \gamma_s, \beta_s)$ is Al. The above claim implies that Al(δ) is true for sufficiently small δ > 0, and the claim and Lemma 1 prove that if Al(T) is true for some T, then Al(T+ δ) is true. Likewise, if Al(s) is true for all s < T then Al(T) is true; it follows that Al(T)

holds for all T.

Proof of Theorem A. Step 5 implies that every p-based triangle in $\overline{B}(p, D-3\chi(U))$ is Al. Letting $\chi(U) \to 0$ we conclude that every proper triangle (α, γ, β) in X such that $d(\alpha(0), \gamma) < \pi/\sqrt{k}$ is Al. The proof is now complete for $k \le 0$, and is easily completed for k > 0 using a limit argument and Lemma 1.

Before proving Theorem R we reconcile the conclusion of Theorem A with our original definition of curvature bounded below (in the sense of Rinow, cf. [P2], [R]).

Proposition 1. If X is geodesically complete of curvature \geq k then all of X is a region of curvature \geq k.

Proof. By definition, we need to show that if $(\gamma_1, \gamma_2, \gamma_3)$ is a triangle of minimal curves in X represented by $(\overline{\gamma}_1, \overline{\gamma}_2, \overline{\gamma}_3)$ in S_k , then $d(\gamma_1(s), \gamma_3(t)) \geq d(\overline{\gamma}_1(s), \overline{\gamma}_3(t))$ for all s and t. We assume all curves are unit parameterized and s, t>0. By monotonicity we may show equivalently that if γ is minimal from $\gamma_1(s)$ to $\gamma_3(t)$, $\alpha=\gamma_1|_{[0,s]}$, $\beta=\gamma_3|_{[0,t]}$, $(\overline{\alpha}, \overline{\gamma}, \overline{\beta})$ represents (α, β, γ) in S_k , and $\overline{\mu}$ and $\overline{\nu}$ are extensions of $\overline{\alpha}$ and $\overline{\beta}$ of length $a=L(\gamma_1)$ and $b=L(\gamma_3)$, respectively, then $d(\gamma_1(a), \gamma_3(b)) \leq d(\overline{\mu}(a), \overline{\nu}(b))$. Suppose first that t=b and let $\zeta=\gamma_1|_{[s,a]}$ and $\overline{\zeta}=\overline{\mu}|_{[s,a]}$. By A1, $\alpha(\overline{\alpha}, \overline{\gamma}) \leq \alpha(\alpha, \gamma)$, so $\alpha(\overline{\gamma}, \overline{\zeta}) \geq \alpha(\gamma, \zeta)$ and by A2 $d(\gamma_1(a), \gamma_3(b)) \leq d(\overline{\mu}(a), \overline{\nu}(b))$. Now suppose t< b. Let η

be minimal from $\gamma_3(b)$ to $\alpha(s)$ and let $(\overline{\alpha}, \overline{\eta}, \overline{\gamma}_3)$ be a representative in S_k . Then if $\overline{\kappa}$ is the extension of $\overline{\alpha}$ of length a, by the above argument and monotonicity, $d(\overline{\kappa}(a), \overline{\eta}(b)) \geq d(\gamma_1(a), \gamma_3(b))$ and $d(\overline{\alpha}(s), \overline{\gamma}_3(t)) \leq d(\alpha(s), \gamma_3(t))$. The proposition now follows from monotonicity.

Proof of Theorem R. The proof when $\alpha(\gamma_1, \gamma_2) = 0$ or 1 is trivial; we assume otherwise below. The second statement of Theorem R follows immediately from Proposition 1 and A2. If γ_2 is not minimal, partition the domain of γ_2 into finitely many intervals $[t_i, t_{i+1}]$ such that the restriction α_i of γ_2 to $[t_i, t_{i+1}]$ is minimal. Let β_i be minimal from $\gamma_1(L_1)$ to $\alpha_i(t_i)$ (e.g. $\beta_1 = \gamma_1$). Then by an argument similar to the proof of Lemma 1 we see that (β_i, α_i) is A2 with equality for all i, and that if $\overline{\beta}_i$ is minimal in S_k from $\overline{\gamma}_1(L_1)$ to $\overline{\gamma}_2(t_i)$, then $L(\overline{\beta}_i) = L(\beta_i)$. The proof is now finished by the special case proved above.

Proof of Theorem D. By Corollary B, we can find points p, $q \in X$ such that $d(p, q) = \pi/\sqrt{k}$. Choosing a minimal curve from p to q we can apply A2 (via Theorem A) to conclude that every geodesic of length π/\sqrt{k} starting at p is minimal from p to q, and geodesics starting at q behave likewise. Therefore the exponential map (cf. [P2]) is a homeomorphism on $B(0, \pi/\sqrt{k}) \subset T_p = R^n$ (and X is homeomorphic to a sphere). We identify T_p with the tangent space at a point on the sphere, and lift the metric

of the sphere to $B(0, \pi/\sqrt{k})$. It now suffices to prove that the exponential map is an isometry, i.e., by Theorem R, if α , β are minimal from p to q then $(\alpha|_{[0,t]}, \beta|_{[0,t]})$ is A2 with equality for all large enough $t < \pi/\sqrt{k}$. Using geodesic completeness we extend α to a geodesic γ passing through q and returning to p. Then γ is minimal on any interval [a, b], where $a = c - \epsilon$, $b = c + \epsilon$, $c = \pi/\sqrt{k}$, and small enough $\epsilon > 0$. If $\eta = \gamma|_{[0,a]}$ and $\nu = -\gamma|_{[b,2c]}$ (i.e. with parameterization reversed), then by A1, $\alpha(\eta, \nu) = \pi$ (i.e., γ is a closed geodesic). Thus (η, ν) is A2 with equality. Since $\alpha(\alpha, \beta) + \alpha(\beta, -\nu) = \pi$, from the triangle inequality and A2 we obtain the desired conclusion.

We do not know of a counterexample to Theorem A with geodesic completeness removed from the hypothesis; however, the diameter theorem obviously does not hold in this case--e. g. a hemisphere. For a more interesting example, one can "suspend" RP^n (with the metric of constant curvature 1) by attaching two "endpoints" to the warped product, using the sine function, of RP^n and $[0, \pi]$. A simple argument due to K. Grove shows that the resulting space X satisfies the conclusion of Theorem A with k=1. On the other hand, dia $X=\pi$, but X is not a manifold, let alone a sphere. Of course, X is not geodesically complete at the "endpoints." In fact, from Theorem A, [P1] (since the endpoints are codimension 2 they cannot form a boundary), and Theorem D we obtain the following theorem, where S_{sine} X denotes the suspension

described above:

Theorem S. If X is a complete Riemannian manifold of sectional curvature ≥ 1 then the following are equivalent:

- a) $S_{\text{sine}}^{X} X$ has curvature $\leq K$ for some K,
- b) $S_{\text{sine}}^{X}X$ is geodesically complete, and
- c) X is isometric to a standard sphere.