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Toponogov’s Theorem for Metric Spaces II

by Conrad Plaut

In this note we correct some errors in "Toponogov's Theorem
for metric spaces" (henceforth referred to as [P3]), prove a
"rigidity" theorem, and generalize Toponogov’s Maximal Diameter
Theorem.

We use the same notation and references as in [P3], and
refer to results in [P3] by number only (e.g., "Lemma 2" refers
to Lemma 2, [P3]). The most important error in [P3] 1is the
omission of geodesic completeness from the hypothesis of the main

theorem, which should should have been stated:

Theorem A. If X is geodesically complete of curvature = k,

then every proper triangle in X is Al and every proper wedge in X

is AZ.

Definition. We say that a wedge (-yab, ﬂ“) is A2 with
equality 1if there 1is a representative wedpge (;AB, EAC) in Sk
(i.e., whose sides are minimal with L('YAB) - L('yah), L(,BAC) -

LB, ). alv,,. B,) =aly . B )) and d(B, C) = d(b, c).

Using results of [P2] one can formulate rigidity theorems

analogous to the rigidity part of Toponogov’s theorem in the



Riemannian case, but the statements are long, and at present we
have no applications for a theorem stronger than what we give

below.

Theorem R. Suppose X is geodesically complete of curvature
= k and (71, 12) is proper and A2 with equality, with
representative (;1, ;2) in Sk. Let L1 - L(7i), i =1, 2. Then
for all 0 s t = Lz, d(71(1‘1)' 72(::)) - d(71(L1), 12(t)). In
addition, if y, is minimal, d(vy (s), 7,(t)) = d(}l(s), ;z(c)) for
all 0 £ s = L1'

Theorem D. If k > 0, X is geodesically complete of
curvature = k and dia (X) = ﬂ/JE, then X is isometric to S: for

some n.

Before proving Theorems R and D, we give corrections to
[P3]. In the statement of Lemma 5, "there exlsts a xy > 0" should
be replaced by "for all sufficlently small x > 0." Rather than
glving a list of corrections for the proof of Theorem A we will
simply give below a simplified and corrected proof 1in 1its
entirety. What follows should replace the arguments in [P3]
beginning with the last paragraph on page 6 to the beginning of
the proof of Theorem C on page 1l. We assume throughout this
proof that X is geodesically complete (although this is only

directly used in Step 2).



For 0 < D < n//k, fix a closed ball B = B(p, D) c X and a
cover U of E(p, 2D) by reglons of curvature = k, and let x(U) <D
be as in Lemma 5 and also less than 1/12 of a Lebesque number of
U. Let r(U) small enough that if cE, ; are unit geodesics in Sk
with a(a, y) < r(U), then for all 0 s t = D, d(a(t), ¥(t)) =
x(U). If a, 8 : [0, 1] => B are minimal curves starting at p, we
call a proper triangle (a, v, B) p-based. A p-based triangle
(a, v, B) is U-thin if a(a, B) = r(U) and v is minimal. At
present we do not requlre that v lie in B in either definition,
but x(U) < D implies v lies in B(p, 2D). Consider the following

statements:

Sl(n,m). If (a, v, B) is U-thin such that (n-1)-x(U) =

L{(a) s n-x(U) and (m-1)-x(U) s L(B) s m-x(U), then (a, vy, B) is

Al.

S2(n,m). If (a, v, B) 1is U-thin such that (n-1)-x(U) s

L(a) s n-x(U) and (m-1)-x(U) < L(B) < m-x(U), then (a, B) is AZ.

S3(n). If (a, v, B) 1s p-based and lies in E(p, n-x(U),

then (a, v, B) 1s Al.

Note that by monotonicity Sl(n,m) and S3(n) state
equivalently that (a, ) and (B8, 7y) are A2, S1(6,6), S§2(6,6),

and S53(6) are true by the way x(U) was chosen. We will prove



by induction that S$3(n) holds for n s (D-3x) / x.
Step 1. SI(n,n) and S2(n,n) imply S2(n, n+1).

Proof. Fix a U-thin triangle (a, 7, B) such that n-x(U) =
L(a) < (n+l)-x(U) and (n-1)-x(U) s L(B) < n-x(U). Let q lie on a
such that d(p, q) = L(8), let x = a{l), y = 8(1) and n be minimal
from y to q. If v 1s the segment of a from p to q, we obtain
from S2(n,n) that (8, v) 1is A2 and from S1l(n,n) that (v, ) 1s
A2, 52(n,n) implies dia (x, y, q} s 3x(U); 1if ¢ is the segment
of a from q to x we have that both (n, ¢) and (¢, v) are A2, and

that (a, f8) 1s A2 follows from Lemma 1. 0

Step 2. S3(n) implies that if w 1s minimal from p to a
point a € B(p, (n-1)-x(U)) and & is minimal starting at a with

L(§) < 4x(U), then (w, &) is A2.

Proof. Let R = L(w), assume both w and & are unit, and let

x = £(L(£)). Choose a representative (;, E) in Sk, denoting the
corresponding points with capitals. Let u be unit minimal from P
to X, R = min (R’, L(;)}, and x be minimal from A to E(R).
Since n < (D-3x) / x, L(w) + L(£) < D, and by Lemma 5, for all s,
d(p, ;(s)) < R+ x(U) < n-x(U). For any sufficlently small § >
0, by Lemma 2 and geodesic completeness there exlsts a geodesic «
[0, 1] — X starting at a of length L = L(x) with

la(x, w) - a(k, w)| < 6§ and |a(x, £) - a(x, €)| < §. For small



enough 6§, S3(n) implies that d(p, x(s)) < n-x(U) for all s and
(k, w) 1s A2, On the other hand, by the triangle inequality
L(k) < 8x(U) and dia {x(1l), a, x)} < 12x(U); thus (x, €) is A2.

Lemma 4 now Implies (w, £) 1s A2. O

Step 3. SI(m,m), S2(m,m), for all m <= n, and S3(n) imply

Sl(n,n+1).

Proof. Let {(a, v, B) be as above. The proof that (a, 7) 1s
A2 is similar to the argument in Step 1. Let a be the point on 8
such that d(a, y) = x(U), R = d{p, a), w denote the segment of 8
from p to a and § be minimal from a to x. By the triangle
inequality (and the fact that a(a, B) < 7(U)) L(§) < 4x(U) and
Step 2 implies (w, €) is A2. By a proof similar to that of Step
1, Sl(n,n) and S2(n,n) 1imply (a, w) 1is A2, If X denotes the
segment of B from a to y, (£, X, v) is also Al, and the proof is

complete by Lemma 1. O
Step 4. S§l(n,n+l) and S$2(n,n+l1) 4imply S1(n+l,n+l) and
8§2(n+l1,n+1).
Proof. This Is a straightforward application of Lemma 1. O

Step 5. SI(m,m), S2(m,m), for all m < n+l1, and S3(n) imply

§3(n+l1,n+1) (and the induction is complete).

Proof. Let {a, v, B be p-based, with



v : [0, 1] = B(p, (n+l) -x(U)). We first claim the following:
If ¢ is minimal from p to q = y(t), for some t, t1 —> t and ", is
minimal from p to 1(ti), then for all sufficilently large 1,
(gi, 1, ni) is Al, where 7, is ¥ restricted to the interval
between t, and t. By using two subsequences, if necessary, we
can assume }ggm a(ni, {) 1s elther 0 or 2¢ > 0, In the first
case the proof 1s complete by Sl(m,m) for m < n+l. 1In the second
case a(qi, ¢{) > ¢ for all large i. Choosing a subsequence 1f
necessary we can find a minimal % from p to q such that
a(nl, n) —> 0; 1in particular, ("1’ 71) is A2 for all sufficilently
large 1 by S1(m,m) for m < n+l. On the other hand, let a be the
peint on §{ such that d(a, q) = 2:x(U), w denote the segment of ¢
from p to a, v that from a to g, and B, be minimal from a to
v(ti). Since L{w) + L(pi) - L(ni), if (¢, ;i) represents
(¢, n) in S _ then a(t, 51) > 0. FNow a(n, ¢) > « 1mp11és
(, ni) 1s A2 for large 1. By Step 2, (w, pi) is A2. Since T,
is minimal for large enough 1 and (#1’ v), (v, 71) are A2, the
proof of the claim is complete by Lemma 1.

For s > 0, let T, denote 7|w e and denote by Al(s) the

]
statement: for every minimal ﬂ. from p to v(s), (a, 7, ﬁs) is
Al, The above clalm implies that Al(§) 1is true for sufficiently
small § > 0, and the claim and Lemma 1 prove that if Al(T) is
true for some T, then Al(T+§) is true. Likewilse, 1if Al(s) is

true for all s <« T then AL(T) 1s true; it follows that Al(T)



holds for all T. |

Proof of Theorem A. Step 5 implies that every p-based
triangle in E(p, D-3x(U)) is Al. TLetting x(U) —> 0 we conclude
that every proper triangle (a, v, 8) in X such that d(a(0), 7¥) <
n/Jk is Al. The proof is now complete for k < 0, and is easily

completed for k > 0 using a limit argument and Lemma 1. (]

Before proving Theorem R we reconcile the conclusion of
Theorem A with our original definition of curvature bounded

below (in the sense of Rinow, cf. [P2], [R]).

Proposition 1. If X is geodesically complete of curvature 2

k then all of X is a region of curvature = k.

Proof. By definition, we need to show that if (11, Y, 7))
is a triangle of minimal curves in X represented by (;1, v, ; )
in 5, then d(v,(s), 7,(t)) = d(?l(s), ?3(t)) for all s and t.
We assume all curves are unit parameterized and s, t > 0. By

monotonicity we may show equivalently that if v is minimal from

B - .| (;, v, B) represents

71(5) to 73(t), a - 7| slio.e

1'(0,8)’

(a, B8, v) in Sk, and p and v are extensions of a and E of length
a = L(-yl)‘ and b = L(13), respectively, then d('yl(a), ‘13(b)) =<

d(;(a), ;(b)). Suppose filrst that t = b and let { = 11h ] and
5,8

¢ = p By Al, a(a, 7) < ala, 7), so a(y, ¢) = a(y, ¢) and

(s,a]”

by A2 d(y (a), 7,(b)) = d(u(a), v(b)). Now suppose t < b. Let g



be minimal from 73(b) to a(s) and let (;, ;, ;3) be a
representative in Sk. Then if x is the extension of a of length
a, by the above argument and monotonicity, d(x(a), n()) =
d(y(a), 7,(0)) and d(a(s), 7,(£)) s d(a(s), 7v,(€)).  The

proposition now follows from monotonicity. a

Proof of Theorem R. The proof when 0(11, 12) = 0 or 1 is
trivial; we assume otherwise below. The second statement of
Theorem R follows 1immediately from Proposition 1 and A2, If v,
is not minimal, partition the domain of 7, into finitely many
intervals [ti, t ] such that the restriction a« of v to

i+1 i 2

[ti, thi] is minimal. Let ﬁi be minimal from -H(Ll) to ai(ti)

(e.g. ﬂ1 - 71). Then by an argument similar to the proof of
Lemma 1 we see that (ﬁi, ai) is A2 with equality for all i, and
that if ,61 is minimal in Sk from 11(L1) to -72(ti), then L(ﬂi) -
L(ﬂi). The proof is now finlished by the speclal case proved

above. O

Proof of Theorem D. By Corollary B, we can find points p,
q € X such that d(p, q) = n//k. Choosing a minimal curve from p
to q we can apply A2 (via Theorem A) to conclude that every
geodesic of length n/Jk starting at p is minimal from p to q, and
geodesics starting at q behave 1likewise. Therefore the
exponential map (cf. [P2]) is a homeomorphism on B(O, ﬂ/JE) C Tp
= R (and X is homeomorphic to a sphere). We identify Tp with

the tangent space at a point on the sphere, and lift the metric



of the sphere to B(O, n/Jk). It now suffices to prove that the
exponential map 1s an isometry, i.e., by Theorem R, if a, g are

minimal from p to q then («f Bl } 1s A2 with equality

to,e}’ (0,t]

for all large enough t < n/Jk. Using geodesic completeness we

extend a to a geodesic vy passing through q and returning to p.

Then ¥ is minimal on any interval [a, b], where a = ¢ - ¢, b =

¢+ ¢, c =n//k, and small enough ¢ > 0. If n = T (g 4 204 ¥ -
N

-7|[b2°] (i.e. with parameterization reversed), then by Al,

a(n, v) = x (1.e., v 1s a closed geodesic). Thus (n, v) is A2
with equality. Since a(a, B) + a(8, -v) = =n, from the triangle

inequality and A2 we obtain the desired conclusion. O

We do mnot know of a counterexample to Theorem A with
geodesic completeness removed from the hypothesis; however, the
diameter theorem obviously does not hold in this case--e. g. a
hemisphere. For a more Interesting example, one can "suspend"
RP" (with the metric of constant curvature 1) by attaching two
"endpoints" to‘the warped product, using the sine function, of
RP" and [0, w]. A simple argument due to K. Grove shows that the
resulting space X satlsfies the conclusion of Theorem A with k =
1. On the other hand, dia X = x, but X is not a manifold, let
alone a sphere. Of course, X 1s not geodesically complete at the
"endpoints." In fact, from Theorem A, [Pl] (since the endpoints
are codimension 2 they cannot form a boundary), and Theorem D we

obtain the following theorem, where § N X denotes the suspension
aine



described above:

Theorem 8. If X is a complete Riemannian manifold of
sectional curvature = 1 then the following are equivalent:

a) 8§ . X has curvature s K for some K,
sine

b) § X is geodesically complete, and

sine

c) X is isometric to a standard sphere.
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