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BETTI NUMBERS OF HYPERSURFACES AND

DEFECTS OF LINEAR SYSTEMS

by

Alexandru Dimca

Let :!!: = (wO' ... ,wn) be a set of integer positive weights and denote by S the

polynomial ring ([xO' ... ,xn] graded by the conditions deg(xi) = wi for

i = 0, ... ,n . For any graded object M, let Mk denote the homogeneous component of

degree k. Let f €. SN be a weighted homogeneous polynomial of degree N with

respect to l!.

Let V be the hypersurface defined by f = 0 in the weighted projective space

IP(][) = Proj S = (n+l\{O}/(*

* n+l Wo wn *
where the ( -action on ( is defined by t · x = (t xo' ... ,t xn) for t €. ( ,

X €. (n+l . Assume that the singular locus E(f) of f is l-dimensional, namely

n+l *E(f) = {x €. ( ; df(x) = O} = {O} U U (a.
. 1 11= ,s

for same points Ri €. (n+l , one in each irreducible component of E(f) .

*Let Gi be the isotropy group of ai with respect to the ( -action and let Hi be

*a small G.-invariant transversal to the orbit (a. at the point a.. The isolated
1 1 1
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1hypersurface singularity (V. ,a.) = (H. nr (0) ,a. ) is ealled the transvers a1 singularit y
111 1

---.-
of f along the branch (: ai of the singular loeus E(f). Note that (Yi'ai) is in fact a

G.--invariant singularity.
1

The hypersurface V is a V-manifold (Le. has only quotient singularities [8]) at

all points, except at the points a. where V has a hyoerguotient singularity (Y./G.,a.)
1 1 1 1

in the sense of M. Reid [15].

In tbis paper we diseuss an effective procedure to compute the Betti numbers

bj(V) = dim Hj(V) (G: coefficients are uBed tbroughout) for Buch a weighted projective

hypersurface V . It is known that only bn_ 1(V) and bn(V) are difficult to compute

and that the Euler eharaeteristie X(V) can be computed (conjecturally in all, but surely

in most of the interesting cases!) by a fonnula involving only the weights I, the degree

N and some Iocal invariants of the Gr-singularities (Yi'ai), see [6], Prop. 3.19. Henee

it is enough to determinee bn(V).

On the other hand, it was known sinee the striking example of Zariski involving

sextie eurves in 1P2 having six eusp8 situated (ar not) on a eonie [25], that bn(V) ia a

very subtle invariant depending not only on the data listed above for X(V) but also on

the position of the singularities of V in IP(w) .

In the nen three special cases the determination of bn(V) has Ied to beautiful and

mysterious (see H. Clemens remark in the middle of p. 141 in [2]) relations with the

dimension of eertain linear systems rt/ of homogeneous polynomials vanishing at the

singular set E = {al' ... ,as} of V :

(i) Some cyclie coverings of .,2 ramified over a curve . B : b = 0

(H. Esnault [12]). In fact the object of study in [12] are the Betti

numbers of the associated Milnor fiber F: b - 1 = 0 in (3, but it is

easy to see thai they are compietely determined by the Betti numbers of
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F , the dosure oI F in 1P3 . And the dosure F is a cyclic covering oI

1P2 of degree deg B ramified over B. Beside several implicit results,

one finds in [12] an explicit treatment of the Zariski example mentianed

above.

(ii) Double coverings 01 1P3 ramified over a surface B: b = 0 having only

~ as singu1arities (H. Clemens [2]). Hy a ~ we mean an

A1--ßingularity of arbitrary dimension. Note that such a eovering ia

defined by the equation b - t2 = 0 in the weighted projective space

1'(1, ... ,1,e) with 2e = deg B [7].

(iii) Odd dimensional hypersurfaces X ( 1P2m having omy nades as

singularities (T. Sehoen [17], J. Werner [24]).

In our paper we show that such relations exist without any restrietion on the

transversal singularities (Yi'~)' The general answer is however M1 an obvious

extension of the above special cases, Le. the linear systems which oceur are not defined

by some (higher order) vanishing conditions on E, but by some subtle eonditions

depending on fine invariants of the singularities, Le. the MHS (mixed Hodge structure)

on the Ioeal eahomology groups H~. (Yi ) [20]. Unlike the authors mentioned above, we
1

do not use here the resolution of singularities (whieh is quite difficu1t to control in

dimension ~ 3) , but we essentially work on th~ eomplement U = lP(w)\V , which is an

affine V-variety and compute everything in terms of differential forms on U in the

spirit of [13].

In this way we get in fact more than bn(V) , namely we abtain a procedure to

compute all the mixed Bodge numbers hp,q(Bn(V)). See also Remark (2.7).
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Let F: f -1 = 0 be the Milnor fiber of f in (n+1. Then F is a smooth affine
N

khypersurface and H (F) = 0 except for k = n -1 t n.

Moreover, one has again a "simple" formula computing the Euler characteristic

X(F) in terms of ~, N and the singularities (Yj'ai), [6], Prop. 3.19. Hence it is

enough to compute bn- 1(F) . And the results described in tbis paper combined with

some results in [6] allow one to compute not only bn- 1(F) , but also all the Hodge

numbers hP,Q(Hn- 1(F)), as explained in Corollary (3.6) below in. the special case when

all the transversal singularities are of type Al' For related computationB of Betti

numbers of Milnor fibers of non isolated singularities see Siersma [18] and van Straten

[22].

It will turn out that in order to get very explicit resuIts the assumption that the

transversal singularities (Yj'ai) are weighted homogeneous is quite helpful. In

particular, we establish several explicit formulas as in the special cases (i)-(iii) above in

the last section of our paper.

During tbis paper we recall and use some of our results in [6]. But all the results

in ibis area should perhaps be regarded as attempts to understand and to generalize

GriffithB fundamental work in [13].
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§ 1. A global and a local spectral seguence

Since U = lP(w)\V is an affine V-variety, it foilows by (a slightly more general

version oI) Grothendieck Theorem [14], [21] that the cohoIDology of U can be

computed using the deRham complex A· = HO(U,n· U) ,where n·U denotes the

sheaves complex of algebraic differential forms on U .

The complex A· has a polar filtration defined as foUows

(1.1) FSAj = {w E. Aj; w has a pole along V of order at most j - s1

for j - s ~ 0 and FSAj = 0 for j - s < 0 .

Hy the general theory of spectral sequences, the filtration FS gives rise to an

E1--ßpectral sequence (Er(U),dr) converging to H· (U) . For IDore details see [6] and

also B. Terao [23].

Let FSH· (U) = im{H· (FsA .) --+ H· (A) = H· (U)l be the filtration induced

on H· (U) by the polar filtration on A· . Note that on the cohomology algebra H· (U)

one has also the canonical (mixed) Bodge filtration F~ constructed by Deligne [3]. It

is not difficult to prove the next result, see [6], Theorem (2.2).

(1.2) Proposition

For an example where the above inclusion is strict we refer to [6], (2.6).

Since we shall be concerned especially with Hn(U) , we recall the explicit

description of An, given by Griffiths in the hOIDogeneous case [13] and by Dolgachev
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in the weighted homogeneous case [8]. Let nk denote the S-module of algebraic

differential k-forms on (n+1 , graded by the condition deg(x.) = deg(dx.) = w. for
1 1 1

i = 0, ... ,n . Consider the differential n-form n e. On with w = wO+ ... +w given
w n

by

(1.3)
/\.

n = l (-l)iwixidxo A... Adxi A... Adxn .

i=O,n

Then any element w e. An may be written in the form

(1.4) hO
w = -t- for same h e. StN-w

f

and, if h is not divisible by f, then t is precisely the order of the pole of w along V.

Next we consider a similar spectral sequence, but associated this time to a (Ioeal)

hypersurface singularity. Let g: ((n,O) ----t ((,0) be an analytic funetion germ and let

(Y,O) = (g-1(0),0) be the associated hypersurfaee singularity. Let {}. denote theg

localization of the stalk at the origin of the analytic de Rham complex for (n with

respect to the multiplicative system {gS,s ~ O} .

Choose c > 0 smaIl enough such that Y has a conic structure in the closed ball

Be: = {y e. (n j Iy I ~ e} [1]. Since Be\ Y is aStein manifold, Theorem 2 in [14]

implies the next result

(1.5) Proposition

One may define a polar filtration FS on Og exact1y as in (1.1) and get an E1-spectral
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sequence (Er(Y),dr) converging to H· (BE \ Y) . Assume from now on that (Y,O) is an

isolated singularity. Even then the speciral sequence (Er(Y),dr) is quite complicated,

e.g. one haB the next result [6], Cor. (3.10').

(1.6) Proposition

The spectral sequence (Er(Y)Jdr) degenerates at E2 if and only if the singularity

(Y,O) is weighted homogeneous (Le. there exist suitable coordinates y!' ... 'Yn on (n

around the origin and suitable weights vi = wt(Yi) such that (Y,O) can be defined by

a weighted homogeneous polynomial g, of degree M say, with respect to the weights

!:= (v!' ... ,vn)).

If tbis is the case, then the limit term Em = E2 can be described quite explicitly

as follows [6], Example (3.6). In fact we restrict our attention only to the term"s En-t,t
m

for i 2: 0 , since tbis is all we need in the sequal.

Let M(g) = (J / J be the Milnor algebra of g, where J = [k, ... ,k]
n g g trXl ~

is the Jacobian ideal of g [5]. Note that in our CaBe M(g) has a grading induced by

the weights y. Then one has a (--linear identification

(1.7) En-t,t(y) = M(g)
m tM-v

with v = vI + ... + vn ' by a8sociating to the class of a monomial ya in M(g)tM-v

the class of the differential form yo.. g-t • wn ,where wn = dy1 A... AdYn .Since

v\{O} is a smooth divisor in BE\ {O} , the Poincare residue map
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in the a.Bsociated Gysin sequence [21] is an i80morpbisrn (assume n ~ 3 from now on).

Moreover, the exact sequence of the pair (Y,Y\{O}) gives an isomorphism

where HÖ(Y) denote the Ioeal cohomology groups of Y at the origin. Note that tbis

cohomology HÖ(Y) carries a natural MHS according to Steenbrink [20] and Durfee

[10] . Finally we get an i80morphism

(1.8)

and in tbis way the filtration FS on l1g induces a filtration FS on H~(Y). 1t is easy

to check, using (1.7) and Steenbrink description of the MHS on H~(Y) when (Y,O)

is weighted homogeneous [19], that in tbis case FS coincide with the Hodge filtration

F~ for all s and that H~(Y) has a. pure Hadge structure of weight n.

Consider nen a seIni weighted homogeneous singularity Y1 : gl =g + g' ,where g is

as above and all the monomials in g' have degrees > M with respect to the weights

.I [5] . Inspite of the fact that the corresponding spectral sequence (Er(Y1),dr) ia much

more complicated, we can obtain directly (by BOrne obvious p-ronstant arguments) the

-t
next simple description of the cohomology group Hn(B

E
\ Y1)' Let {ya g Qwn ;

-t
Q E A} be a basis for Hn(B \ Y) obtained aB above. Then the forms {ya gl aw j

E n

er EA} give a basis for Hn(B
E
\Y1). Here of course t a = (deg(yQ)+v).M-1 .

Moreover, using the fact that in a Jl--eonstant deformation the dimensions of the Badge

filtration subspaces remain constant, it follows that on H~(Y1) the polar filtration

coincides with the Hodge filtration, exactly as in the weighted homogeneous case.
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In general, one may compute the MHS on Hg(y) if one knows the MHS on the

cohomology Hn- 1(y) of the Milnor fiber Y of the singularity (Y,O) , sincem m
Hn- 1(y\{O}) is juBt the fixed part in Hn- 1(ym) under the monodromy action and 6

is an i80morphism of MHS.

We say that the singularity (Y,O) is nondegenerate if Hg(y) = 0 . The name

comes from the fa.ct that this condition is equivalent to the Milnor lattice of (Y,O)

being nondegenerate [4]. Otherwise the singularity (Y,O) is called degenerate. We

make next a list of the simplest nondegenerate and degenerate singularities, using

terminology which ia standard in Singularity Theory [5], [9].

(1.9) Examples (nondegenerate aingularities)

(i) If n = dim Y + 1 ia odd, then the singularities Ak , Dk , E6 , E7 and

ES are nondegenerate

(ii) If n = dim Y + 1 is even, then the singuIarities A2k , Ea and ES are

nondegenerate.

For more exampIes we refer to Ebeling [11].

(1.10) Examples (degenerate singularities)

(i) Assume that n = 2t is even and that we consider an A2k- 1 singularity,

Le.

2k 2 2
g =Y1 + Y2 + ... +yn' v1 =1 , vj =k for j > 1



-10-

v = 1 + (2t -l)k I M = 2k . The graded pieces M(g)j of the Milnor

algebra are nontrivial only for j E. {Oll, ... ,2k - 2} . Hence the equality

s M - v = j has a unique solution in ibis range, namely s = t ,

j=k-1.

1t follows by (1.7) that dim Hn(Be\ Y) = 1 and that a generator of

Hn(Be\ Y) is provided in tbis case by the form ß= yk-1g-t"'n .

Note mOrE~over that the class of a form "1 = h • g-t"'n (with

h E. On) in Hn(Be\ Y) is precisely

["tJ = (k: i : (0)' [ßl
Y1

It follows from [19] that ß is a dass of type (t,t) with respect to the

MHS on H~t(y) .

(ii) Assurne that n = 2t + 1 is odd and let g = 0 be the nsua! weighted

homogenoous equation for a unimodal singularity of type Ea , E7 cr

ES . Then it ia °known that the weights y and the degree M cf g satisfy

the next equality

deg(hess(g)) = nM - 2v = M = deg(g)

2
whe e hess(g) = Je [ 5 /!Yj j i t h sian cf g and also

M(g)j = 0 for j > M , see [5], [16]. Hence the equality s M - v = j
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haB just two solutions with j 5 M , namely j = 0, s = t and j = M ,

s = t + 1 . The differential fonns

fonn a basis of Hn(Be\ Y) in tbis case and it follows from [19J that ß1

has type (t + l,t) and ~ has type (t,t + 1) with respect to the MHS

on H~(Y) .

Note that the daBS of a differential fonn "f = h • g-tw withn

h tOn is just

In what follows we are particularly interested by the Ioeal eohomology groups R~. (V)
1

corresponding to the hyperquotient singularities of V .

The obvioUB isomorphisms

(1.11)
G.

Rn (V) = Rn (Y.jG.) = Rn (y.) 1
a. a. 1 1 a· 1

1 1 1

shows that R~.(V) can be computed (together with its MRS) aB the fixed part of the
1

natural action of G. on Rn (Y) . This description is quite effective aB 800n a8 we have
1 a.

1

explicit fonns giving a basis for Rn (Y) . Note also that it may happen that H~.(V) = 0
ai 1

even if Bn
a (V.) f 0 .

• 1
1
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(1.12) Example

Let (Y,O) be the A2k- 1 singularity considered in (1.10.i) and let G = {:!: I} act on

(Y,O) by the rule (-1) · Y= (Yl' - Y2'Y3' ... 'Yn) . Then

(-1)· [ß] =- [ß]

and hence H~(Y)G = 0 .

§ 2. A basic MHS exact sequence

* *Let IP = lP(w)\E, V = V\E and consider the exact cohomology sequence of

* * *the pair (lP ,Ir \ V ) :

(2.1)

* *
k * * * j k * i k * * 6 k+l * * *

---+ H (IP ,IP \ V )~ H (IP ) --+ H (IP \ V ) -+ H (IP ,IP \ V ) ---+ .

Note that there is a Thom isomorphism

obtained as follows. Let X = (n+l\E(f) and D = rl(O)\~(f) . Then D is a smooth

divisor in X and hence there is an usual Thom isomorphism

T : Hk- 1(D) --+ Hk+ 1(X,X\D) . Since the normal bundle of D in X may be chosen

* *(: -invariant, it follows that T is compatible with the ( -actions which exist on both
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sides. Hence Tinduces an isomorphism between the fixed parts

In the same way, the Poincare residue

induces a map

such that T • R = 5 .

*It is easy to show that in the middle dimensions j = 0 and that if we define the

* * *primitive cohomo}ogy of V by HO(V) =ker(j ~ T) , then this has the expected

properties. For instance one may define in the same way the primitive cohomology of

*V , denoted HÖ(V) and the inclusion ,,: V ----t V induces a morphism

* *1> : HÖ(V) ---+ HÖ(V) and carries isomorphically the nonprimitive part in H· (V)

*onto the nonprimitive part in H· (V ) (except of course the top dimension).

* *As a result of this definition and since P \ V = U , we get the next

(2.2) Lemma

The Poincare residue R: Hk(U) ---+ H~-I(V*) is a type (-1,-1) i80morphism of

MHS.
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Conaider now the long exact sequence of MHS [20]:

and note that excision gives us the next isomorphism cf MHS .

k k k Gi
HE(V) = ED H (V) = EI H (y.) .

i=l,s &i i=l,s &i 1

Rence R~(V) is a computable object aB soon aB we know enough aoout the transversal

singularities (Yi'ai).

The final part of the aoove long exact sequence, Lemma (2.2) and our remark on

*'u give U8 the next exact sequence cf MHS

(2.3)

with (J = 6 R a morphism of type (-1,-1). (There is no danger to confuse the

primitive cohomology HÖ(V) with same local cohomology of V J since 0 ~ lP(w)). Let

t be the maximal positive integer such that F~ H~ (V) = H~ (V) . Then using the

strict compatibility of MHS morphisms with the Hodge filtrationa FH [3] we get a

finer version of (2.3), namely

Using now Proposition (1.2) it follows that the composition



-15-

has exactly the same image as (J.

Let T t be the linear map given by the obvioUB eomposition

N t n t n( ) n( )S(n-t)N-w ---+ F A ----t F H U ---+ HE V .

We may summarize our result as follows

(2.4) Theorem

The image of the linear map T t is a MH substrueture in H~(V) and H~(V) with its

canonieal MHS is isomorphie to the quotient H~(V)/im (Tt ) .

Note that the proof in [20], Theorem (1.13) adapts to our more general situation

and shows that H~(V) has a pure Hodge structure of weight n. Consider now a Bubset

E'e E defined as folIows:

E I = {~ E. E ; H~. (V) f O} .
1

We may call E' the set of essential singularities of V . It ia cleal that we may replace

H~(V) with H~ I (V) everywhere. More important, note that Tt(h) = 0 means that

h satisfies certain (linear) conditions ~ &t thc points a. E. E'. Indeed, it is easy to
1

check that (J corresponds to the composition of the morphism
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induced by the restrietion of n-forms (with Di being an open neighbourhood of ai in

1P(:w:) of the form D. =B./G. ,for B. a small ball in H. centered at a. and
1 1 1 1 1 1

Gi-invariant) with the i80morphism induced essentially by Iocal Poinca.re residue

isomorphisms

~ Hn(Di \ V) ~. ~ Hn- 1(V nDi \ {~}) --;;-+ ~ H~. (V) = H~ I (V) .
1 1 1 1

Let dI= ker Tt
be the linear system in S(n-t)N-w defined by the conditions ~. We

define the~ of the linear system rI/ by the formula

def( rI/) =dim H~ I (V) - codim dI

Le. the difference between the number of linear conditions in ~ and the codimension of

r!/ in S(n-t)N-w' lt is elear that def( 0') depends not only on r!/ but also on the set

of conditions ~ used to define it and that def( dI) =0 says that the conditions in 'R

are independent. With this definition, we may state the next.

(2.5) Corollary

dim H~(V) = def( r!/) .

The next section contains several exampies where it is possible to work out explicitely

the conditions '6 and hence to state several special C3Ses of Corollary (2.5) in more

down-t~rth terms. When on H~(V) the polar filtration FS coincides with the

Bodge filtra.tion F~ (this is the case for instance when all the singularities (Yi,ai) are

weighted homogeneous), one may increa.se the number t (and hence decrease the degree
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of the elements in S(n-t)N-w) by the following simple observation. We present only

the case n = 2m + 1 is odd since we shall apply tbis in the next section and leave the

analogue statement in the case n even to the reader. As remarked above, Hg(V) has a

pure Hodge structure of weight n and it ia clear that

dim Hg(V) = 2 l hi,n--i(Hg(V)).

i>m

N

Let T m+ 1 be the composition

S ~ Fm+ 1 A --t Fm+ 1 Hn(U) --t Fm+ 1 Hn(V)
(n-m-l)N-w E

N N

and let c!/ be the linear system ker T m+ 1

If we set as above

N N

def( rJI ) = dim pm+1 H~ (V) - codim dI

then we get the next result.

(2.6) Corollary

N

dim H~m+l(V) = 2 def (dl ) .

(2.7) Remark
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Unlike Hg(V) which has a pure Hodge structure of weight n J the middle cohomology

group Hn-1(V) has in general a nonpure Hodge structure, whose aBsociated MHS

numbers can be computed aB follows (at least in the homogeneous case).

In the MHS sequence

used above, one has

(i) H~V) has weights ~ n ,i.e. Wn-lH~V) = 0 by Durfee [10].

(ü) Hg-1(V) has weig~ts ~ n-1 J i.e. Wn-lHg-1(V) = Hg-1(V) since V is

proper [3].

P q n-l * >It follows that one can determine h J (HO (V)) for p + q =m _ n !rom short

exact sequences

(using of course computations with linear systems to determine the kerne! of j). Using

duality results for the MHS on H6(V) and on H·(U) explained in [6] and Lemma

(2.2) we get

for any p,q and s.

Hence the above short exact sequences give al1 the numbers hP''l(H~-l(V)) for

p+q< n-l .



-19-

Ta determine the remaining MHS numbers, it is enough to recall that the coefficient af

(n-p) in the spectrum Sp(f) of f is precisely

1: hP,s(Hn(U)) -1: hp,t(Hn- 1(U))

s t

This fonnula contains exactly one unknown number, namely

On the other hand, the spectrum Sp(f) is computed (at least in the case of a

homogeneous polynomial f) expliciUy in terms of the spectra of the tranSversal

singularities (Ypai) by J. Steenbrink in his recent (unpublished) manuscript: IlThe

spectrum of hypersurface singularities" .

*As a result, in this way one is able to determine all the MBS numbers for V, V and

U , provided one knows enough about the transversal singularities (Ypaj ).

In particular, one gets the next obvious consequences of this discussion.

(2.8) Corollary

(i) Hn- 1(V) has a pure Bodge structure of weight (n-l) if and only if the

morphism j above is an isomorphism. This can be rephrased by saying that

codim( #) = 0 , Le. the conditions ~ in (2.5) are automatically satisfied

by all the polynomials in S(n-t)N-w'

(ii) The subspace Wn-3Hn-1(V) depends on the transversal singularities

(Ypai) , but not on their position.
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Hy general properties of Bodge structures it follows that the subspace Wn_2Bn-1(V) ia

precisely the kernel of the cup-product pairing

Moreover, when dim(V) is even, one can use in the usual way the numbers

hP,q(H'(V)) to compute the signature (jJ+,jJo,JJ.J of the cup-product pairing aver R

[19] .

(2.9) Corollary

V is a (-hamology manifold (Le. there are no essential singularities for V) if and only

if the cohomology algebra H·(V) is a Poincare algebra (Le. for any k the cup-product

pairing

is non degenerate).

If H'(V) ia a Poincare algebra, it follows thai Hg(V) = 0 . Then using (2.8 i) and the

above description of the kernel of the cup-product on Hn- 1(V) it follows that

H~V) = 0 J i.e. there are no essential singulariiies for V .

The other implication is standard.

Similar consideration lead to the computation of the MHS numbers of Hn(F) , but

we leave the details for the reader (UBe the same method as in the proof of (3.6) below).
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§ 3. Some examples

Let us diSCU8S first the case when dim V is even. Then the simplest singularities
N N N

which are degenerate in this case are Ea, E7 and ES'

(3.1) Proposition

Let V (IPC~) be a hypersurface with deg V = N and dim V = 2m . Assume
I

that the set ~ of essential singularities {or V consists only of singularities ai whose

aB80ciated transversal singularities are of type Ea , E7 or ES. Then the enly

(possibly) nenzere Hodge numbers ef H~m+l{V) are given by the next fermula

where the linear system # is defined by

N I

ct/ = {h €. SmN-w ; h I~ = O} .

Proof Use (LID. ii) and (2.6).

(3.2) CeroUary (including Zariski example [25], [12])

Let B C IP 2m be a hypersurface of degree N having only isolated singularities
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and let V ----+ IP 2m be a cyclic covering of order 6 ramified over B. Assume that all

the points ~ E. E' correspond to points ai E. B such that B has an A2 singularity

at ai . Let E denote the set of all these points ~ .

Then the only (possibly) nonzero Badge numbers of H~m+1(V) are given by the

next formula hm,m+1(H~m+1(V)) = hm+1,m(H~m+1(V)) = def( #) where the

linear system eil ia defined by ,; = {h E. BO(IP 2m,t7(mN - 2m -1 - N/6)) j

hl E=O}.

Let b = 0 be an equation for B. Then V ia a hypersurface defined by the equation

b - t6 = 0 in the weighted projective space 1P(1, ... ,1,N/6) and all the singularities

ai E. E' have associated transversal singularities (Yi'ai) of type ES' Bence we can

apply (3.1) and note that an element h E. SmN-w with w = 2m + 1 + N/6 can be

written as a sum h = E hjt j where hj is a homogeneous polynomial in xO,xl'''' '~m

of degree deg(hj ) = mN - w -jN/6 .

Moreover the condition h IE' =°ia clearly equivalent to hOIE = 0 .

Assume from now on that dim V = 2m -1 is odd. Then the simplest degenerate

singularities are A2k- 1 for k ~ 1 .

(3.3) Proposition

Let V be a hyperaurface in lP(w) with dim V = 2m -1, deg V = N and Buch that

any essential singularity ai E. E' corresponds to a transversal singuIarity of type Al'

Then the only (possibly) nonzero Bodge number of H~m(V) ia given by the formula
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dI= {h ~ SmN-w ' h IE' = O} .

Proof Use (1.10 i) with k = 1 a.a.nd (2.5) with t = m .

Note that (3.3) extends the comput~tions of Betti numbers in Clemens [2],

Schoen [17] and Wemer [24].

A more complicated example involving several types of A2k_ 1-singularities ia the

next.

(3.4) Proposition

Let V C lP(wO' ... ,w2m) be a hypersurface of degree N auch that the set E' of

essential singularities satisfiea the next two conditiona:

(i) E' is contained in the hyperplane Xo= 0

(ii) any transversal singularity (Ypai) corresponding to a point ai ~ E' is

of type A2k+1 for some k and (Yi nHO,ai) is an Al -6ingularity in

(HO,ai) ,where HO denotes the affine. hyperplane Xo= 0 . Let

Ek = {ai ~ E' j (Ypai) ia of type A2k+1} and for any k with

Ek 'f rP consider the linear system

Then the only posaible nonzero Hadge number of H~m(V) ia given by the fonnula
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hm,m(H~m(V))= l def( # k) .

k,Ek=l=4J

Here S denotes the polynomial ring ([xl' ... '~m] graded by the conditions

deg(x.) = w· for i ~ 1 .
1 1

According to Theorem (2.4) we have to analyse the kerne! of Tm on SmN-w.

Write an element h E. S N aB a sum h = E h.xO
j

with h. E. SN· .If
m -w J J m -w-JwO

ai E. Ek ' then the component of Tm(h) corresponding to H~.(V) is zero if and only if
1

hk(ai) = 0 I Le. if hk E. W'k' use (1.10 i) and the second part of the condition (ii) above.

It follows from (3.4) that the singularities situated in one Ek do not interact at all

with the singularities situated in a different Ei. (with t *k) and this fact is not at all

obvious !rom purely topological considerations.

A special case of (3.4) is the next

(3.5) Corollary

Let B ( 1P2m- 1 be a hypersurfaee of degree N having only isolated singularities. Let e

be a divisor of N and let V --+ 1P2m- 1 be a eyelie covering of order e ramified over

B . Assume that all the essential singularities of V a. E. E' correspond to points ä.
1 1

which are Bodes on B. Let E denote the set of all these nodes ä..
1
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Then either

(i) e is odd, E' = cP and H~m(V) = 0 ,or

(ii) e is even, N is even and the only possibly nonzero Hodge number of

H~m(V) is gjven by hm,m(H~m(V))= def( cb') where

#= {h E HO(1P2m- 1,t?(mN - 2m - N/2) , h IE = O} .

Proof Apply (3.4) with E' = Ek for 2k + 2 =e, Wo = Nie, w1 = ... = w2m = 1 .

Note that the answer in case (ii) does not depend on the degree e of the covering

V -----. 1P2m- 1 !

(3.6) Corollary

Let F: f -1 = 0 be the Milnor fiber of the weighted homogeneous polynomial f.

Assume that all the transversal singularities of f are nodes. Then:

(i) bn- 1(F) = 0 if n and N are both oddj

(ii) If n = 2m is even, then the only possibly nonzero Hodge number of

Hn- 1(F) is given by hm,m(Hn- 1(F)) = def( #) where

dI= {h ES' h IE' = o}mN-w '

with E' the set of essentialsingularities for V: f = °.Moreover in this
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case Hn- 1(F) = Hn- 1(F)0 ' i.e. all the elements in Hn- 1(F) are fixed

*under the monodromy operator h .

(iü) If n = 2m - 1 is odd and N is even, then the only possibly nonzero

Hadge number of Hn- 1(F) is given by

hm-1,m-l(Hn-1(F)) = def( #) , where #' = {h E. SmN-w-N/2 ;
N N N

h IE = O} with E the set of essential singularities for V: f - tN = 0 in

1P(:w:,1) . Moreover in this case Hn- 1(F) = Hn- 1(F)to ' Le. there ia no

*nonzero element fixed under the monadromy operator h .

*For a E 71/N71 , let H'(F)a denote the eigenapace of h corresponding to the

eigenvalue t a . H we set H·(F),J.o = Ei H'(F)a' then one clearly has the
T" atO

decomposition H'(F) = H'(F)O Ei H'(F)=iO . It follows !rom [6], (1.19) and (2.5) that
N

one has isomorphiama Hn- 1(F)O = H~(V) and Hn
-

1(F)=iO = H~+1(V) which are (in

same precise way) compatible with the MHS. See the remarks after (2.5) in [6].

Assume first that n = 2m is even. Then all the singularities of V are
N

nondegenerate and hence H~+1(V) = 0 . The result follows using (3.3). Assume nen

that n = 2m -1 is odd. Then all the singularities of V are nondegenerate and hence
N

H~(V) = 0 . If N is also odd, the same ia true for V and we get the case (i) above. If

N is even, then the aingularities in E are of type AN- 1 and we can apply (3.4). Note

that sinee E ia contained in the hyperplane t = 0 , we regard E as a subset in lP(JI).
*. .

Recall that the monodromy operator h : H (F) --t H (F) ia induced by the mapping

Wo w
h : F ---:-t F , h(x) = (t xO, ... ,t n xn) for t = exp(2'ri/N) .
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