BETTI NUMBERS OF HYPERSURFACES AND DEFECTS OF LINEAR SYSTEMS

by

Alexandru Dimca

Max—Planck—Institut für Mathematik Gottfried—Claren—Str. 26 5300 Bonn 3 Federal Republic of Germany

MPI/89 --6

· · · -, . . . ·

BETTI NUMBERS OF HYPERSURFACES AND DEFECTS OF LINEAR SYSTEMS

by

Alexandru Dimca

Let $\underline{w} = (w_0, \dots, w_n)$ be a set of integer positive weights and denote by S the polynomial ring $\mathbb{C}[x_0, \dots, x_n]$ graded by the conditions $\deg(x_i) = w_i$ for $i = 0, \dots, n$. For any graded object M, let M_k denote the homogeneous component of degree k. Let $f \in S_N$ be a weighted homogeneous polynomial of degree N with respect to \underline{w} .

Let V be the hypersurface defined by f = 0 in the weighted projective space

$$\mathbb{P}(\underline{\mathbf{w}}) = \operatorname{Proj} S = \mathbb{C}^{n+1} \setminus \{0\} / \mathbb{C}^{+}$$

where the \mathfrak{C}^* -action on \mathfrak{C}^{n+1} is defined by $\mathbf{t} \cdot \mathbf{x} = (\mathbf{t}^{\mathbf{w}_0} \mathbf{x}_0, \dots, \mathbf{t}^{\mathbf{w}_n} \mathbf{x}_n)$ for $\mathbf{t} \in \mathfrak{C}^*$, $\mathbf{x} \in \mathfrak{C}^{n+1}$. Assume that the singular locus $\Sigma(\mathbf{f})$ of \mathbf{f} is 1-dimensional, namely

$$\Sigma(f) = \{x \in \mathbb{C}^{n+1} ; df(x) = 0\} = \{0\} \cup \bigcup_{i=1,s} \mathbb{C}^* a_i$$

for some points $a_i \in \mathbb{C}^{n+1}$, one in each irreducible component of $\Sigma(f)$.

Let G_i be the isotropy group of a_i with respect to the C^* -action and let H_i be a small G_i -invariant transversal to the orbit C^*a_i at the point a_i . The isolated hypersurface singularity $(Y_i, a_i) = (H_i \cap f^{-1}(0), a_i)$ is called the <u>transversal singularity</u> of f along the branch $\overline{\mathfrak{C} a_i}$ of the singular locus $\Sigma(f)$. Note that (Y_i, a_i) is in fact a G_i -invariant singularity.

The hypersurface V is a V-manifold (i.e. has only quotient singularities [8]) at all points, except at the points a_i where V has a <u>hyperquotient singularity</u> $(Y_i/G_i,a_i)$ in the sense of M. Reid [15].

In this paper we discuss an effective procedure to compute the Betti numbers $b_j(V) = \dim H^j(V)$ (C coefficients are used throughout) for such a weighted projective hypersurface V. It is known that only $b_{n-1}(V)$ and $b_n(V)$ are difficult to compute and that the Euler characteristic $\chi(V)$ can be computed (conjecturally in all, but surely in most of the interesting cases!) by a formula involving only the weights \underline{w} , the degree N and some local invariants of the G_i -singularities (Y_i, a_i) , see [6], Prop. 3.19. Hence it is enough to determine $b_n(V)$.

On the other hand, it was known since the striking example of Zariski involving sextic curves in \mathbb{P}^2 having six cusps situated (or not) on a conic [25], that $b_n(V)$ is a very subtle invariant depending not only on the data listed above for $\chi(V)$ but also on the position of the singularities of V in $\mathbb{P}(\underline{w})$.

In the next three special cases the determination of $b_n(V)$ has led to beautiful and <u>mysterious</u> (see H. Clemens remark in the middle of p. 141 in [2]) relations with the dimension of certain linear systems \mathscr{A} of homogeneous polynomials vanishing at the singular set $\Sigma = \{a_1, \dots, a_s\}$ of V:

(i) Some cyclic coverings of \mathbb{P}^2 ramified over a curve B: b = 0(H. Esnault [12]). In fact the object of study in [12] are the Betti numbers of the associated Milnor fiber F: b - 1 = 0 in \mathbb{C}^3 , but it is easy to see that they are completely determined by the Betti numbers of F, the closure of F in \mathbb{P}^3 . And the closure \overline{F} is a cyclic covering of \mathbb{P}^2 of degree deg B ramified over B. Beside several implicit results, one finds in [12] an explicit treatment of the Zariski example mentioned above.

- (ii) <u>Double coverings of</u> \mathbb{P}^3 <u>ramified over a surface B: b = 0 having only</u> <u>nodes</u> as singularities (H. Clemens [2]). By a <u>node</u> we mean an A_1 -singularity of arbitrary dimension. Note that such a covering is defined by the equation $b - t^2 = 0$ in the weighted projective space $\mathbb{P}(1, ..., 1, e)$ with $2e = \deg B$ [7].
- (iii) <u>Odd dimensional hypersurfaces</u> X C P^{2m} <u>having only nodes</u> as singularities (T. Schoen [17], J. Werner [24]).

In our paper we show that such relations exist without any restriction on the transversal singularities (Y_i, a_i) . The general answer is however <u>not</u> an obvious extension of the above special cases, i.e. the linear systems which occur are not defined by some (higher order) vanishing conditions on Σ , but by some subtle conditions depending on fine invariants of the singularities, i.e. the MHS (mixed Hodge structure) on the local cohomology groups $H^n_{a_i}(Y_i)$ [20]. Unlike the authors mentioned above, we do not use here the <u>resolution of singularities</u> (which is quite difficult to control in dimension ≥ 3), but we essentially work on the complement $U = \mathbb{P}(\underline{w}) \setminus V$, which is an affine V-variety and compute everything in terms of differential forms on U in the spirit of [13].

In this way we get in fact more than $b_n(V)$, namely we obtain a procedure to compute all the mixed Hodge numbers $h^{p,q}(H^n(V))$. See also Remark (2.7).

Let F: f-1=0 be the <u>Milnor fiber</u> of f in \mathbb{C}^{n+1} . Then F is a smooth affine hypersurface and $\tilde{H}{}^k(F)=0$ except for k=n-1, n.

Moreover, one has again a "simple" formula computing the Euler characteristic $\chi(F)$ in terms of \underline{w} , N and the singularities (Y_i,a_i) , [6], Prop. 3.19. Hence it is enough to compute $b_{n-1}(F)$. And the results described in this paper combined with some results in [6] allow one to compute not only $b_{n-1}(F)$, but also all the Hodge numbers $h^{p,q}(H^{n-1}(F))$, as explained in Corollary (3.6) below in the special case when all the transversal singularities are of type A_1 . For related computations of Betti numbers of Milnor fibers of non isolated singularities see Siersma [18] and van Straten [22].

It will turn out that in order to get very explicit results the assumption that the transversal singularities (Y_i,a_i) are weighted homogeneous is quite helpful. In particular, we establish several explicit formulas as in the special cases (i)-(iii) above in the last section of our paper.

During this paper we recall and use some of our results in [6]. But all the results in this area should perhaps be regarded as attempts to understand and to generalize Griffiths fundamental work in [13].

Acknowledgement

I would like to thank E. Brieskorn, H. Esnault and J. Steenbrink for encouragement during a cloudy period and to express my gratitude to Professor F. Hirzebruch and to the Max-Planck-Institut für Mathematik in Bonn for material support and warm hospitality.

§ 1. <u>A global and a local spectral sequence</u>

Since $U = \mathbb{P}(\underline{w}) \setminus V$ is an affine V-variety, it follows by (a slightly more general version of) Grothendieck Theorem [14], [21] that the cohomology of U can be computed using the deRham complex $A^{\cdot} = H^{\circ}(U, \Omega^{\cdot}U)$, where $\Omega^{\cdot}U$ denotes the sheaves complex of algebraic differential forms on U.

The complex A has a polar filtration defined as follows

(1.1)
$$F^{s}A^{j} = \{ \omega \in A^{j} ; \omega \text{ has a pole along } V \text{ of order at most } j-s \}$$

 $\mbox{for } j-s\geq 0 \mbox{ and } F^sA^j=0 \mbox{ for } j-s<0 \;.$

By the general theory of spectral sequences, the filtration F^{s} gives rise to an E_1 -spectral sequence $(E_r(U),d_r)$ converging to $H^{\cdot}(U)$. For more details see [6] and also H. Terao [23].

Let $F^{S}H^{\cdot}(U) = im\{H^{\cdot}(F^{S}A^{\cdot}) \longrightarrow H^{\cdot}(A) = H^{\cdot}(U)\}$ be the filtration induced on $H^{\cdot}(U)$ by the polar filtration on A^{\cdot} . Note that on the cohomology algebra $H^{\cdot}(U)$ one has also the canonical (mixed) Hodge filtration F_{H}^{S} constructed by Deligne [3]. It is not difficult to prove the next result, see [6], Theorem (2.2).

(1.2) Proposition

One has $F^{s}H^{\bullet}(U) \supset F_{H}^{s+1}H^{\bullet}(U)$ for any s and $F^{\circ}H^{\bullet}(U) = F_{H}^{1}H^{\bullet}(U) = H^{\bullet}(U)$.

For an example where the above inclusion is strict we refer to [6], (2.6).

Since we shall be concerned especially with $H^n(U)$, we recall the explicit description of A^n , given by Griffiths in the homogeneous case [13] and by Dolgachev

in the weighted homogeneous case [8]. Let Ω^k denote the S-module of algebraic differential k-forms on \mathbb{C}^{n+1} , graded by the condition $\deg(x_i) = \deg(dx_i) = w_i$ for i = 0, ..., n. Consider the differential n-form $\Omega \in \Omega_w^n$ with $w = w_0 + ... + w_n$ given by

(1.3)
$$\Omega = \sum_{i=0,n} (-1)^{i} w_{i} x_{i} dx_{0} \wedge \dots \wedge dx_{i} \wedge \dots \wedge dx_{n}.$$

Then any element $\omega \in A^n$ may be written in the form

(1.4)
$$\omega = \frac{h \Omega}{f^t} \text{ for some } h \in S_{tN-w}$$

and, if h is not divisible by f, then t is precisely the order of the pole of ω along V.

Next we consider a similar spectral sequence, but associated this time to a (local) hypersurface singularity. Let $g: (\mathbb{C}^n, 0) \longrightarrow (\mathbb{C}, 0)$ be an analytic function germ and let $(Y, 0) = (g^{-1}(0), 0)$ be the associated hypersurface singularity. Let Ω_g^{\cdot} denote the localization of the stalk at the origin of the <u>analytic</u> de Rham complex for \mathbb{C}^n with respect to the multiplicative system $\{g^8, s \ge 0\}$.

Choose $\varepsilon > 0$ small enough such that Y has a conic structure in the closed ball $B_{\varepsilon} = \{y \in \mathbb{C}^{n}; |y| \le \varepsilon\}$ [1]. Since $B_{\varepsilon} \setminus Y$ is a Stein manifold, Theorem 2 in [14] implies the next result

(1.5) Proposition

$$\mathrm{H}^{\bullet}(\mathrm{B}_{\varepsilon} \setminus \mathrm{Y}) = \mathrm{H}^{\bullet}(\Omega_{\mathfrak{g}}).$$

One may define a <u>polar filtration</u> F^8 on Ω_g^{\cdot} exactly as in (1.1) and get an E_1 -spectral

sequence $(E_r(Y),d_r)$ converging to $H^{-}(B_{\varepsilon} \setminus Y)$. Assume from now on that (Y,0) is an isolated singularity. Even then the spectral sequence $(E_r(Y),d_r)$ is quite complicated, e.g. one has the next result [6], Cor. (3.10').

(1.6) Proposition

The spectral sequence $(E_r(Y),d_r)$ degenerates at E_2 if and only if the singularity (Y,0) is weighted homogeneous (i.e. there exist suitable coordinates y_1, \ldots, y_n on \mathbb{C}^n around the origin and suitable weights $v_i = wt(y_i)$ such that (Y,0) can be defined by a weighted homogeneous polynomial g, of degree M say, with respect to the weights $\underline{\mathbf{y}} = (\mathbf{v}_1, \ldots, \mathbf{v}_n)$.

If this is the case, then the limit term $E_{\omega} = E_2$ can be described quite <u>explicitly</u> as follows [6], Example (3.6). In fact we restrict our attention only to the terms $E_{\omega}^{n-t,t}$ for $t \ge 0$, since this is all we need in the sequal.

Let $M(g) = \mathcal{O}_n/J_g$ be the <u>Milnor algebra</u> of g, where $J_g = \begin{bmatrix} \frac{\partial}{\partial} g}{\partial x_1}, \dots, \frac{\partial}{\partial} g}{\partial x_n} \end{bmatrix}$ is the Jacobian ideal of g [5]. Note that in our case M(g) has a grading induced by the weights \underline{y} . Then one has a \mathbb{C} -linear identification

(1.7)
$$E_{\omega}^{n-t,t}(Y) = M(g)_{tM-v}$$

with $\mathbf{v} = \mathbf{v}_1 + \ldots + \mathbf{v}_n$, by associating to the class of a monomial \mathbf{y}^{α} in $\mathbf{M}(\mathbf{g})_{t\mathbf{M}-\mathbf{v}}$ the class of the differential form $\mathbf{y}^{\alpha} \cdot \mathbf{g}^{-\mathbf{t}} \cdot \boldsymbol{\omega}_n$, where $\boldsymbol{\omega}_n = d\mathbf{y}_1 \wedge \ldots \wedge d\mathbf{y}_n$. Since $\mathbf{Y} \setminus \{0\}$ is a smooth divisor in $\mathbf{B}_{\varepsilon} \setminus \{0\}$, the Poincaré residue map

$$\mathrm{H}^{\mathrm{n}}(\mathrm{B}_{\varepsilon} \setminus \mathrm{Y}) \xrightarrow{\mathrm{R}} \mathrm{H}^{\mathrm{n}-1}(\mathrm{Y} \setminus \{0\})$$

in the associated Gysin sequence [21] is an isomorphism (assume $n \ge 3$ from now on). Moreover, the exact sequence of the pair $(Y,Y\setminus\{0\})$ gives an isomorphism

$$\mathrm{H}^{\mathrm{n}-1}(\mathrm{Y}\backslash\{0\}) \xrightarrow{\delta} \mathrm{H}^{\mathrm{n}}(\mathrm{Y},\mathrm{Y}\backslash\{0\}) = \mathrm{H}^{\mathrm{n}}_{0}(\mathrm{Y})$$

where $H_0^{\cdot}(Y)$ denote the <u>local cohomology groups</u> of Y at the origin. Note that this cohomology $H_0^{\cdot}(Y)$ carries a natural MHS according to Steenbrink [20] and Durfee [10]. Finally we get an isomorphism

(1.8)
$$\mathrm{H}^{\mathrm{n}}(\mathrm{B}_{\varepsilon} \backslash \mathrm{Y}) = \mathrm{H}^{\mathrm{n}}_{0}(\mathrm{Y})$$

and in this way the filtration F^{S} on Ω_{g}^{*} induces a filtration F^{S} on $H_{0}^{n}(Y)$. It is easy to check, using (1.7) and Steenbrink description of the MHS on $H_{0}^{n}(Y)$ when (Y,0) is weighted homogeneous [19], that in this case F^{S} coincide with the Hodge filtration F_{H}^{S} for all s and that $H_{0}^{n}(Y)$ has a pure Hodge structure of weight n.

Consider next a <u>semi weighted homogeneous</u> singularity $Y_1 : g_1 = g + g'$, where g is as above and all the monomials in g' have degrees > M with respect to the weights y[5]. Inspite of the fact that the corresponding spectral sequence $(E_r(Y_1), d_r)$ is much more complicated, we can obtain directly (by some obvious μ -constant arguments) the next simple description of the cohomology group $H^n(B_{\varepsilon} \setminus Y_1)$. Let $\{y^{\alpha}g^{-t}\alpha \omega_n; \alpha \in A\}$ be a basis for $H^n(B_{\varepsilon} \setminus Y)$ obtained as above. Then the forms $\{y^{\alpha}g_1^{-t}\alpha \omega_n; \alpha \in A\}$ give a basis for $H^n(B_{\varepsilon} \setminus Y_1)$. Here of course $t_{\alpha} = (\deg(y^{\alpha}) + v) \cdot M^{-1}$. Moreover, using the fact that in a μ -constant deformation the dimensions of the Hodge filtration subspaces remain constant, it follows that on $H_0^n(Y_1)$ the polar filtration coincides with the Hodge filtration, exactly as in the weighted homogeneous case. In general, one may compute the MHS on $H_0^n(Y)$ if one knows the MHS on the cohomology $H^{n-1}(Y_{\varpi})$ of the Milnor fiber Y_{ϖ} of the singularity (Y,0), since $H^{n-1}(Y\setminus\{0\})$ is just the fixed part in $H^{n-1}(Y_{\varpi})$ under the monodromy action and δ is an isomorphism of MHS.

We say that the singularity (Y,0) is <u>nondegenerate</u> if $H_0^n(Y) = 0$. The name comes from the fact that this condition is equivalent to the Milnor lattice of (Y,0)being nondegenerate [4]. Otherwise the singularity (Y,0) is called <u>degenerate</u>. We make next a list of the simplest nondegenerate and degenerate singularities, using terminology which is standard in Singularity Theory [5], [9].

(1.9) <u>Examples</u> (nondegenerate singularities)

- (i) If $n = \dim Y + 1$ is odd, then the singularities A_k , D_k , E_6 , E_7 and E_8 are nondegenerate
- (ii) If $n = \dim Y + 1$ is even, then the singularities A_{2k} , E_6 and E_8 are nondegenerate.

For more examples we refer to Ebeling [11].

(1.10) <u>Examples</u> (degenerate singularities)

(i) Assume that n = 2t is even and that we consider an A_{2k-1} singularity, i.e.

$$g = y_1^{2k} + y_2^2 + ... + y_n^2$$
, $v_1 = 1$, $v_j = k$ for $j > 1$

v = 1 + (2t - 1)k, M = 2k. The graded pieces $M(g)_j$ of the Milnor algebra are nontrivial only for $j \in \{0, 1, ..., 2k - 2\}$. Hence the equality s M - v = j has a unique solution in this range, namely s = t, j = k - 1.

It follows by (1.7) that dim $H^{n}(B_{\varepsilon} \setminus Y) = 1$ and that a generator of $H^{n}(B_{\varepsilon} \setminus Y)$ is provided in this case by the form $\beta = y^{k-1}g^{-t}\omega_{n}$.

Note moreover that the class of a form $\gamma = h \cdot g^{-t} \omega_n$ (with $h \in \mathcal{O}_n$) in $H^n(B_{\varepsilon} \setminus Y)$ is precisely

$$[\gamma] = \frac{1}{(\mathbf{k}-1)!} \frac{\partial^{\mathbf{k}-1}\mathbf{h}}{\partial \mathbf{y}_{1}^{\mathbf{k}-1}} (0) \cdot [\beta]$$

It follows from [19] that β is a class of type (t,t) with respect to the MHS on $H_0^{2t}(Y)$.

(ii) Assume that n = 2t + 1 is odd and let g = 0 be the usual weighted homogeneous equation for a unimodal singularity of type $\stackrel{\sim}{E}_6$, $\stackrel{\sim}{E}_7$ or $\stackrel{\sim}{E}_8$. Then it is known that the weights \underline{v} and the degree M of g satisfy the next equality

$$deg(hess(g)) = nM - 2v = M = deg(g)$$

where $hess(g) = det \left[\frac{\partial^2 g}{\partial y_i \partial y_j} \right]$ is the <u>hessian</u> of g and also $M(g)_j = 0$ for j > M, see [5], [16]. Hence the equality s M - v = j

has just two solutions with $\ j \leq M$, namely $\ j=0$, $\ s=t \ and \ \ j=M$, s=t+1 . The differential forms

$$\beta_1 = \mathbf{g}^{-\mathbf{t}} \boldsymbol{\omega}_n \text{ and } \beta_2 = \operatorname{hess}(\mathbf{g}) \cdot \mathbf{g}^{-\mathbf{t}-1} \boldsymbol{\omega}_n$$

form a basis of $H^{n}(B_{\varepsilon} \setminus Y)$ in this case and it follows from [19] that β_{1} has type (t + 1, t) and β_{2} has type (t, t + 1) with respect to the MHS on $H_{0}^{n}(Y)$.

Note that the class of a differential form $\gamma = h \cdot g^{-t} \omega_n$ with $h \in \mathcal{O}_n$ is just

$$[\gamma] = \mathbf{h}(0)[\beta_1] .$$

In what follows we are particularly interested by the local cohomology groups $H^n_{a_i}(V)$ corresponding to the hyperquotient singularities of V.

The obvious isomorphisms

(1.11)
$$H_{a_i}^n(V) = H_{a_i}^n(Y_i/G_i) = H_{a_i}^n(Y_i)^{G_i}$$

shows that $H_{a_i}^n(V)$ can be computed (together with its MHS) as the fixed part of the natural action of G_i on $H_{a_i}^n(Y)$. This description is quite effective as soon as we have explicit forms giving a basis for $H_{a_i}^n(Y)$. Note also that it may happen that $H_{a_i}^n(V) = 0$ even if $H_{a_i}^n(Y_i) \neq 0$.

(1.12) Example

Let (Y,0) be the A_{2k-1} singularity considered in (1.10.i) and let $G = \{\pm 1\}$ act on (Y,0) by the rule $(-1) \cdot y = (y_1, -y_2, y_3, \dots, y_n)$. Then

$$(-1) \cdot [\beta] = - [\beta]$$

and hence $H_0^n(Y)^G = 0$.

§ 2. A basic MHS exact sequence

Let $\mathbb{P}^* = \mathbb{P}(\underline{w}) \setminus \Sigma$, $V^* = V \setminus \Sigma$ and consider the exact cohomology sequence of the pair $(\mathbb{P}^*, \mathbb{P}^* \setminus V^*)$:

(2.1)

$$\longrightarrow \mathrm{H}^{k}(\mathbb{P}^{*},\mathbb{P}^{*}\setminus \mathrm{V}^{*}) \xrightarrow{j^{*}} \mathrm{H}^{k}(\mathbb{P}^{*}) \xrightarrow{i^{*}} \mathrm{H}^{k}(\mathbb{P}^{*}\setminus \mathrm{V}^{*}) \xrightarrow{\delta} \mathrm{H}^{k+1}(\mathbb{P}^{*},\mathbb{P}^{*}\setminus \mathrm{V}^{*}) \longrightarrow$$

Note that there is a Thom isomorphism

$$\mathrm{T}:\mathrm{H}^{k-1}(\mathrm{V}^*)\longrightarrow\mathrm{H}^{k+1}(\mathrm{P}^*\!,\!\mathrm{P}^*\!\setminus\!\mathrm{V}^*)$$

obtained as follows. Let $X = \mathbb{C}^{n+1} \setminus \Sigma(f)$ and $D = f^{-1}(0) \setminus \Sigma(f)$. Then D is a smooth divisor in X and hence there is an usual Thom isomorphism $T: H^{k-1}(D) \longrightarrow H^{k+1}(X,X \setminus D)$. Since the normal bundle of D in X may be chosen \mathbb{C}^* -invariant, it follows that T is compatible with the \mathbb{C}^* -actions which exist on both sides. Hence T induces an isomorphism between the fixed parts

$$\mathbf{H}^{k-1}(\mathbf{D})^{\mathbb{C}^{*}} = \mathbf{H}^{k-1}(\mathbf{V}^{*}) \xrightarrow{\mathbf{T}} \mathbf{H}^{k+1}(\mathbb{P}^{*},\mathbb{P}^{*} \setminus \mathbf{V}^{*}) = \mathbf{H}^{k+1}(\mathbf{X},\mathbf{X} \setminus \mathbf{D})^{\mathbb{C}^{*}}$$

In the same way, the Poincaré residue

$$R: H^{k}(X \setminus D) \longrightarrow H^{k-1}(D)$$

induces a map

$$\mathrm{R}:\mathrm{H}^{k}(\mathrm{P}^{*}\backslash \mathrm{V}^{*}) \longrightarrow \mathrm{H}^{k-1}(\mathrm{V}^{*})$$

such that $\mathbf{T} \cdot \mathbf{R} = \delta$.

It is easy to show that in the middle dimensions $j^* = 0$ and that if we define the <u>primitive cohomology</u> of V^* by $H_0(V^*) = \ker(j^* \circ T)$, then this has the expected properties. For instance one may define in the same way the primitive cohomology of V, denoted $H_0(V)$ and the inclusion $\iota: V^* \longrightarrow V$ induces a morphism $\iota_0^*: H_0(V) \longrightarrow H_0(V^*)$ and carries isomorphically the nonprimitive part in $H^*(V)$ onto the nonprimitive part in $H^*(V)^*$ (except of course the top dimension).

As a result of this definition and since $\mathbb{P}^* \setminus V^* = U$, we get the next

(2.2) <u>Lemma</u>

The Poincaré residue $R: H^{k}(U) \longrightarrow H_{0}^{k-1}(V^{*})$ is a type (-1, -1) isomorphism of MHS.

Consider now the long exact sequence of MHS [20]:

$$\longrightarrow \operatorname{H}^{k}_{\Sigma}(V) \longrightarrow \operatorname{H}^{k}(V) \longrightarrow \operatorname{H}^{k}(V^{*}) \xrightarrow{\delta} \operatorname{H}^{k+1}_{\Sigma}(V) \longrightarrow$$

and note that excision gives us the next isomorphism of MHS.

$$\mathrm{H}_{\Sigma}^{\mathbf{k}}(\mathrm{V}) = \bigoplus_{i=1,s}^{\boldsymbol{\oplus}} \mathrm{H}_{a_{i}}^{\mathbf{k}}(\mathrm{V}) = \bigoplus_{i=1,s}^{\boldsymbol{\oplus}} \mathrm{H}_{a_{i}}^{\mathbf{k}}(\mathrm{Y}_{i})^{\mathbf{G}_{i}}.$$

Hence $H_{\Sigma}^{k}(V)$ is a computable object as soon as we know enough about the transversal singularities (Y_{i},a_{i}) .

The final part of the above long exact sequence, Lemma (2.2) and our remark on ι_0^* give us the next exact sequence of MHS

(2.3)
$$\operatorname{H}^{\mathbf{n}}(\mathbf{U}) \xrightarrow{\theta} \operatorname{H}^{\mathbf{n}}_{\Sigma}(\mathbf{V}) \longrightarrow \operatorname{H}^{\mathbf{n}}_{0}(\mathbf{V}) \longrightarrow 0$$

with $\theta = \delta R$ a morphism of type (-1,-1). (There is no danger to confuse the primitive cohomology $H_0^{\cdot}(V)$ with some local cohomology of V, since $0 \notin \mathbb{P}(\underline{w})$). Let t be the maximal positive integer such that $F_H^t H_{\Sigma}^n(V) = H_{\Sigma}^n(V)$. Then using the strict compatibility of MHS morphisms with the Hodge filtrations F_H [3] we get a finer version of (2.3), namely

$$\mathbf{F}_{\mathbf{H}}^{t+1} \mathbf{H}^{\mathbf{n}}(\mathbf{U}) \xrightarrow{\theta} \mathbf{H}_{\Sigma}^{\mathbf{n}}(\mathbf{V}) \longrightarrow \mathbf{H}_{0}^{\mathbf{n}}(\mathbf{V}) \longrightarrow 0 .$$

Using now Proposition (1.2) it follows that the composition

$$F^{t}H^{n}(U) \longleftrightarrow H^{n}(U) \xrightarrow{\theta} H^{n}_{\Sigma}(V)$$

has exactly the same image as θ .

Let T^t be the linear map given by the obvious composition

$$\mathbf{S}_{(n-t)\mathbf{N}-\mathbf{w}} \xrightarrow{\sim} \mathbf{F}^{t}\mathbf{A}^{n} \longrightarrow \mathbf{F}^{t}\mathbf{H}^{n}(\mathbf{U}) \longrightarrow \mathbf{H}_{\Sigma}^{n}(\mathbf{V}) \ .$$

We may summarize our result as follows

(2.4) Theorem

The image of the linear map T^t is a MH substructure in $H^n_{\Sigma}(V)$ and $H^n_0(V)$ with its canonical MHS is isomorphic to the quotient $H^n_{\Sigma}(V)/im(T^t)$.

Note that the proof in [20], Theorem (1.13) adapts to our more general situation and shows that $H_0^n(V)$ has a pure Hodge structure of weight n. Consider now a subset $\Sigma' \subset \Sigma$ defined as follows:

$$\Sigma' = \{a_i \in \Sigma ; H^n_{a_i}(V) \neq 0\}.$$

We may call Σ' the set of <u>essential singularities</u> of V. It is clear that we may replace $H_{\Sigma}^{n}(V)$ with $H_{\Sigma'}^{n}(V)$ everywhere. More important, note that $T^{t}(h) = 0$ means that h satisfies certain (linear) <u>conditions</u> \mathscr{C} at the points $a_{i} \in \Sigma'$. Indeed, it is easy to check that θ corresponds to the composition of the morphism

$$\mathbf{H}^{\mathbf{n}}(\mathbf{U}) \xrightarrow{\boldsymbol{\rho}} \mathbf{\mathfrak{G}}_{\mathbf{a}_{i} \in \Sigma'} \mathbf{H}^{\mathbf{n}}(\mathbf{D}_{i} \setminus \mathbf{V})$$

induced by the restriction of n-forms (with D_i being an open neighbourhood of a_i in $\mathbb{P}(\underline{w})$ of the form $D_i = B_i/G_i$, for B_i a small ball in H_i centered at a_i and G_i -invariant) with the isomorphism induced essentially by local Poincaré residue isomorphisms

$$\underset{i}{\oplus} \operatorname{H}^{n}(\operatorname{D}_{i} \setminus \operatorname{V}) \xrightarrow{\mathbb{R}}_{\sim} \underset{i}{\oplus} \operatorname{H}^{n-1}(\operatorname{V} \cap \operatorname{D}_{i} \setminus \{a_{i}\}) \xrightarrow{\sim}_{i} \underset{i}{\oplus} \operatorname{H}^{n}_{a_{i}}(\operatorname{V}) = \operatorname{H}^{n}_{\Sigma'}(\operatorname{V}) .$$

Let $\mathscr{A} = \ker T^t$ be the linear system in $S_{(n-t)N-w}$ defined by the conditions \mathscr{C} . We define the <u>defect</u> of the linear system \mathscr{A} by the formula

$$def(\mathscr{I}) = \dim \operatorname{H}_{\Sigma'}^{n}(V) - \operatorname{codim} \mathscr{I}$$

i.e. the difference between the number of linear conditions in \mathscr{C} and the codimension of \mathscr{O} in $S_{(n-t)N-w}$. It is clear that def(\mathscr{O}) depends not only on \mathscr{O} but also on the set of conditions \mathscr{C} used to define it and that def(\mathscr{O}) = 0 says that the conditions in \mathscr{C} are independent. With this definition, we may state the next.

(2.5) Corollary

$$\dim H_0^n(V) = def(\mathscr{O}).$$

The next section contains several examples where it is possible to work out explicitly the conditions \mathscr{C} and hence to state several special cases of Corollary (2.5) in more down-to-earth terms. When on $H_{\Sigma}^{n}(V)$ the polar filtration F^{s} coincides with the Hodge filtration F_{H}^{s} (this is the case for instance when all the singularities (Y_{i},a_{i}) are weighted homogeneous), one may increase the number t (and hence decrease the degree of the elements in $S_{(n-t)N-w}$) by the following simple observation. We present only the case n = 2m + 1 is odd since we shall apply this in the next section and leave the analogue statement in the case n even to the reader. As remarked above, $H_0^n(V)$ has a pure Hodge structure of weight n and it is clear that

dim
$$\operatorname{H}_{0}^{n}(V) = 2 \sum_{i>m} h^{i,n-i}(\operatorname{H}_{0}^{n}(V))$$

Let \tilde{T}^{m+1} be the composition

$$S_{(n-m-1)N-w} \xrightarrow{\sim} F^{m+1} A \longrightarrow F^{m+1} H^{n}(U) \longrightarrow F^{m+1} H^{n}_{\Sigma}(V)$$

and let $\overset{\sim}{\mathscr{S}}$ be the linear system ker \tilde{T}^{m+1} .

If we set as above

$$def(\mathscr{O}) = \dim F^{m+1} H_{\Sigma}^{n}(V) - \operatorname{codim} \mathscr{O}$$

then we get the next result.

(2.6) Corollary

$$\dim \operatorname{H}_{0}^{2m+1}(V) = 2 \operatorname{def} (\mathscr{O}).$$

(2.7) <u>Remark</u>

Unlike $H_0^n(V)$ which has a pure Hodge structure of weight n, the middle cohomology group $H^{n-1}(V)$ has in general a nonpure Hodge structure, whose associated MHS numbers can be computed as follows (at least in the homogeneous case). In the MHS sequence

$$\mathrm{H}_{0}^{\mathbf{n}-1}(\mathrm{V}) \longrightarrow \mathrm{H}_{0}^{\mathbf{n}-1}(\mathrm{V}^{*}) \longrightarrow \mathrm{H}_{\Sigma}^{\mathbf{n}}(\mathrm{V}) \xrightarrow{\mathbf{j}} \mathrm{H}_{0}^{\mathbf{n}}(\mathrm{V}) \longrightarrow 0$$

used above, one has

- (i) $H_{\Sigma}^{n}(V)$ has weights $\geq n$, i.e. $W_{n-1}H_{\Sigma}^{n}(V) = 0$ by Durfee [10].
- (ii) $H_0^{n-1}(V)$ has weights $\leq n-1$, i.e. $W_{n-1}H_0^{n-1}(V) = H_0^{n-1}(V)$ since V is proper [3].

It follows that one can determine $h^{p,q}(H_0^{n-1}(V^*))$ for $p+q=m \ge n$ from short exact sequences

$$0 \longrightarrow \operatorname{Gr}_{m}^{W} \operatorname{H}_{0}^{n-1}(V^{*}) \longrightarrow \operatorname{Gr}_{m}^{W} \operatorname{H}_{\Sigma}^{n}(V) \xrightarrow{j} \operatorname{Gr}_{m}^{W} \operatorname{H}_{0}^{n}(V) \longrightarrow 0$$

(using of course computations with linear systems to determine the kernel of j). Using duality results for the MHS on $H_0^{\cdot}(V)$ and on $H^{\cdot}(U)$ explained in [6] and Lemma (2.2) we get

$$h^{p,q}(H_0^{2n-s-1}(V)) = h^{n-p,n-q}(H^s(U)) = h^{n-p-1,n-q-1}(H_0^{s-1}(V^*))$$

for any p,q and s. Hence the above short exact sequences give all the numbers $h^{p,q}(H_0^{n-1}(V))$ for p+q < n-1.

To determine the remaining MHS numbers, it is enough to recall that the coefficient of (n-p) in the <u>spectrum</u> Sp(f) of f is precisely

$$\sum_{\mathbf{s}} \mathbf{h}^{\mathbf{p},\mathbf{s}}(\mathbf{H}^{\mathbf{n}}(\mathbf{U})) - \sum_{\mathbf{t}} \mathbf{h}^{\mathbf{p},\mathbf{t}}(\mathbf{H}^{\mathbf{n}-1}(\mathbf{U}))$$

This formula contains exactly one unknown number, namely

$$h^{p,n+1-p}(H^n(U)) = h^{n-p,p-1}(H_0^{n-1}(V))$$

On the other hand, the spectrum Sp(f) is computed (at least in the case of a homogeneous polynomial f) explicitly in terms of the <u>spectra of the transversal</u> <u>singularities</u> (Y_i,a_i) by J. Steenbrink in his recent (unpublished) manuscript: "The spectrum of hypersurface singularities".

As a result, in this way one is able to determine all the MHS numbers for V, V^* and U, provided one knows enough about the transversal singularities (Y_i, a_i) . In particular, one gets the next obvious consequences of this discussion.

(2.8) Corollary

- (i) $H^{n-1}(V)$ has a pure Hodge structure of weight (n-1) if and only if the morphism j above is an isomorphism. This can be rephrased by saying that $codim(\mathscr{A}) = 0$, i.e. the conditions \mathscr{C} in (2.5) are automatically satisfied by all the polynomials in $S_{(n-1)N-w}$.
- (ii) The subspace $W_{n-3}H^{n-1}(V)$ depends on the transversal singularities (Y_i,a_i) , but not on their position.

By general properties of Hodge structures it follows that the subspace $W_{n-2}H^{n-1}(V)$ is precisely the kernel of the cup-product pairing

$$\mathrm{H}^{\mathrm{n}-1}(\mathrm{V}) \times \mathrm{H}^{\mathrm{n}-1}(\mathrm{V}) \longrightarrow \mathrm{H}^{2\mathrm{n}-2}(\mathrm{V}) = \mathbb{C}$$

Moreover, when dim(V) is even, one can use in the usual way the numbers $h^{p,q}(H'(V))$ to compute the signature (μ_+,μ_0,μ_-) of the cup-product pairing over \mathbb{R} [19].

(2.9) Corollary

V is a C-homology manifold (i.e. there are no essential singularities for V) if and only if the cohomology algebra H'(V) is a Poincaré algebra (i.e. for any k the cup-product pairing

$$\operatorname{H}^{k}(V) \times \operatorname{H}^{2n-2-k}(V) \longrightarrow \operatorname{H}^{2n-2}(V) = \mathbb{C}$$

is non degenerate).

<u>Proof</u>

A THE STORE STORE STORE

If $H^{\cdot}(V)$ is a Poincaré algebra, it follows that $H_0^n(V) = 0$. Then using (2.8 i) and the above description of the kernel of the cup-product on $H^{n-1}(V)$ it follows that $H_{\Sigma}^n(V) = 0$, i.e. there are no essential singularities for V.

The other implication is standard.

Similar consideration lead to the computation of the MHS numbers of $H^{n}(F)$, but we leave the details for the reader (use the same method as in the proof of (3.6) below).

§ 3. Some examples

Let us discuss first the case when dim V is even. Then the simplest singularities which are degenerate in this case are \tilde{E}_6 , \tilde{E}_7 and \tilde{E}_8 .

(3.1) <u>Proposition</u>

Let $V \subset \mathbb{P}(\underline{w})$ be a hypersurface with deg V = N and dim V = 2m. Assume that the set Σ' of essential singularities for V consists only of singularities a_i whose associated transversal singularities are of type \tilde{E}_6 , \tilde{E}_7 or \tilde{E}_8 . Then the only (possibly) nonzero Hodge numbers of $H_0^{2m+1}(V)$ are given by the next formula

$$h^{m,m+1}(H_0^{2m+1}(V)) = h^{m+1,m}(H_0^{2m+1}(V)) = def(\mathscr{O})$$

where the linear system \mathscr{I} is defined by

$$\mathscr{H} = \{ \mathbf{h} \in \mathbf{S}_{\mathbf{m}\mathbf{N}-\mathbf{w}} ; \mathbf{h} \,|\, \boldsymbol{\Sigma}' = 0 \} .$$

<u>**Proof**</u> Use (1.10. ii) and (2.6).

A contraction of the second se

(3.2) Corollary (including Zariski example [25], [12])

Let $B \subset P^{2m}$ be a hypersurface of degree N having only isolated singularities

and let $V \longrightarrow \mathbb{P}^{2m}$ be a cyclic covering of order 6 ramified over B. Assume that all the points $a_i \in \Sigma'$ correspond to points $\overline{a_i} \in B$ such that B has an A_2 singularity at $\overline{a_i}$. Let Σ denote the set of all these points $\overline{a_i}$.

Then the only (possibly) nonzero Hodge numbers of $H_0^{2m+1}(V)$ are given by the next formula $h^{m,m+1}(H_0^{2m+1}(V)) = h^{m+1,m}(H_0^{2m+1}(V)) = def(\mathscr{I})$ where the linear system \mathscr{I} is defined by $\mathscr{I} = \{h \in H^0(\mathbb{P}^{2m}, \mathcal{O}(mN - 2m - 1 - N/6));$ $h \mid \Sigma = 0\}$.

<u>Proof</u>

Let b = 0 be an equation for B. Then V is a hypersurface defined by the equation $b - t^6 = 0$ in the weighted projective space $\mathbb{P}(1, \ldots, 1, N/6)$ and all the singularities $a_i \in \Sigma'$ have associated transversal singularities (Y_i, a_i) of type \tilde{E}_8 . Hence we can apply (3.1) and note that an element $h \in S_{mN-w}$ with w = 2m + 1 + N/6 can be written as a sum $h = \Sigma h_j t^j$ where h_j is a homogeneous polynomial in x_0, x_1, \ldots, x_{2m} of degree $deg(h_j) = mN - w - jN/6$.

Moreover the condition $h | \Sigma' = 0$ is clearly equivalent to $h_0 | \overline{\Sigma} = 0$.

Assume from now on that dim V = 2m - 1 is odd. Then the simplest degenerate singularities are A_{2k-1} for $k \ge 1$.

(3.3) Proposition

Let V be a hypersurface in $\mathbb{P}(\underline{w})$ with dim V = 2m - 1, deg V = N and such that any essential singularity $\mathbf{a}_i \in \Sigma'$ corresponds to a transversal singularity of type A_1 . Then the only (possibly) nonzero Hodge number of $H_0^{2m}(V)$ is given by the formula $\mathtt{h}^{m,m}(\mathrm{H}^{2m}_0(\mathrm{V}))=\mathrm{def}(\mathscr{A}) \ \text{where} \label{eq:ham}$

$$\mathscr{A} = \{ \mathbf{h} \in \mathbf{S}_{\mathbf{m}\mathbf{N}-\mathbf{w}}, \mathbf{h} \mid \boldsymbol{\Sigma}' = 0 \} .$$

<u>Proof</u> Use (1.10 i) with k = 1 and (2.5) with t = m.

Note that (3.3) extends the computations of Betti numbers in Clemens [2], Schoen [17] and Werner [24].

A more complicated example involving several types of A_{2k-1} -singularities is the next.

(3.4) <u>Proposition</u>

Let $V \subset \mathbb{P}(w_0, \dots, w_{2m})$ be a hypersurface of degree N such that the set Σ' of essential singularities satisfies the next two conditions:

(i) Σ' is contained in the hyperplane $x_0 = 0$

(ii) any transversal singularity (Y_i, a_i) corresponding to a point $a_i \in \Sigma'$ is of type A_{2k+1} for some k and $(Y_i \cap H_0, a_i)$ is an A_1 -singularity in (H_0, a_i) , where H_0 denotes the affine hyperplane $x_0 = 0$. Let $\Sigma_k = \{a_i \in \Sigma'; (Y_i, a_i) \text{ is of type } A_{2k+1}\}$ and for any k with $\Sigma_k \neq \phi$ consider the linear system

$$\mathscr{U}_{\mathbf{k}} = \{\mathbf{h} \in \mathbf{S}_{\mathbf{m}\mathbf{N}-\mathbf{w}-\mathbf{k}\mathbf{w}_{0}}; \mathbf{h} \mid \boldsymbol{\Sigma}_{\mathbf{k}} = 0\}.$$

Then the only possible nonzero Hodge number of $H_0^{2m}(V)$ is given by the formula

$$h^{m,m}(H_0^{2m}(V)) = \sum_{\mathbf{k}, \Sigma_{\mathbf{k}} \neq \phi} \operatorname{def}(\mathscr{A}_{\mathbf{k}}) .$$

Here \overline{S} denotes the polynomial ring $\mathbb{C}[x_1, \dots, x_{2m}]$ graded by the conditions $\deg(x_i) = w_i$ for $i \ge 1$.

Proof

According to Theorem (2.4) we have to analyse the kernel of T^m on S_{mN-w} .

Write an element $h \in S_{mN-w}$ as a sum $h = \Sigma h_j x_0^j$ with $h_j \in \overline{S}_{mN-w-jw_0}$. If $a_i \in \Sigma_k$, then the component of $T^m(h)$ corresponding to $H^n_{a_i}(V)$ is zero if and only if $h_k(a_i) = 0$, i.e. if $h_k \in \mathscr{A}_k$, use (1.10 i) and the second part of the condition (ii) above.

It follows from (3.4) that the singularities situated in one Σ_k do not interact at all with the singularities situated in a different Σ_{ℓ} (with $\ell \neq k$) and this fact is <u>not at all</u> obvious from purely topological considerations.

A special case of (3.4) is the next

(3.5) <u>Corollary</u>

Let $B \in \mathbb{P}^{2m-1}$ be a hypersurface of degree N having only isolated singularities. Let e be a divisor of N and let $V \longrightarrow \mathbb{P}^{2m-1}$ be a cyclic covering of order e ramified over B. Assume that all the essential singularities of V $a_i \in \Sigma'$ correspond to points $\overline{a_i}$ which are nodes on B. Let Σ denote the set of all these nodes $\overline{a_i}$. Then either

(i) e is odd,
$$\Sigma' = \phi$$
 and $H_0^{2m}(V) = 0$, or

(ii) e is even, N is even and the only possibly nonzero Hodge number of
$$H_0^{2m}(V)$$
 is given by $h^{m,m}(H_0^{2m}(V)) = def(\mathscr{O})$ where

$$\mathscr{I} = \{ h \in H^{0}(\mathbb{P}^{2m-1}, \mathcal{O}(mN-2m-N/2), h | \overline{\Sigma} = 0 \} .$$

<u>Proof</u> Apply (3.4) with $\Sigma' = \Sigma_k$ for 2k + 2 = e, $w_0 = N | e$, $w_1 = ... = w_{2m} = 1$. Note that the answer in case (ii) does not depend on the degree e of the covering $V \longrightarrow \mathbb{P}^{2m-1}$!

(3.6) <u>Corollary</u>

Let F: f-1 = 0 be the Milnor fiber of the weighted homogeneous polynomial f. Assume that all the transversal singularities of f are nodes. Then:

- (i) $b_{n-1}(F) = 0$ if n and N are both odd;
- (ii) If n = 2m is even, then the only possibly nonzero Hodge number of $H^{n-1}(F)$ is given by $h^{m,m}(H^{n-1}(F)) = def(\mathscr{A})$ where

$$\mathscr{A} = \{ \mathbf{h} \in \mathbf{S}_{\mathbf{mN}-\mathbf{w}} ; \mathbf{h} \, | \, \Sigma' = 0 \}$$

with Σ' the set of essential singularities for V: f = 0. Moreover in this

case $H^{n-1}(F) = H^{n-1}(F)_0$, i.e. all the elements in $H^{n-1}(F)$ are fixed under the monodromy operator h^* .

(iii) If
$$n = 2m - 1$$
 is odd and N is even, then the only possibly nonzero
Hodge number of $H^{n-1}(F)$ is given by
 $h^{m-1,m-1}(H^{n-1}(F)) = def(\mathscr{A})$, where $\mathscr{A}' = \{h \in S_{mN-w-N/2}; h | \Sigma = 0\}$ with Σ the set of essential singularities for $V: f - t^N = 0$ in
 $P(\underline{w}, 1)$. Moreover in this case $H^{n-1}(F) = H^{n-1}(F)_{\neq 0}$, i.e. there is no
nonzero element fixed under the monodromy operator h^* .

Proof

For $a \in \mathbb{Z}/N\mathbb{Z}$, let $H'(F)_a$ denote the eigenspace of h^* corresponding to the eigenvalue t^a . If we set $H'(F)_{\neq 0} = \bigoplus_{a\neq 0}^{\oplus} H'(F)_a$, then one clearly has the decomposition $H'(F) = H'(F)_0 \oplus H'(F)_{\neq 0}$. It follows from [6], (1.19) and (2.5) that one has isomorphisms $H^{n-1}(F)_0 = H_0^n(V)$ and $H^{n-1}(F)_{\neq 0} = H_0^{n+1}(V)$ which are (in some precise way) compatible with the MHS. See the remarks after (2.5) in [6].

Assume first that n = 2m is even. Then all the singularities of V are nondegenerate and hence $H_0^{n+1}(\stackrel{\sim}{V}) = 0$. The result follows using (3.3). Assume next that n = 2m - 1 is odd. Then all the singularities of V are nondegenerate and hence $H_0^n(V) = 0$. If N is also odd, the same is true for $\stackrel{\sim}{V}$ and we get the case (i) above. If N is even, then the singularities in $\stackrel{\sim}{\Sigma}$ are of type A_{N-1} and we can apply (3.4). Note that since $\stackrel{\sim}{\Sigma}$ is contained in the hyperplane t = 0, we regard $\stackrel{\sim}{\Sigma}$ as a subset in $\mathbb{P}(\underline{w})$. Recall that the monodromy operator $h^*: H^{\bullet}(F) \longrightarrow H^{\bullet}(F)$ is induced by the mapping

$$h: F \longrightarrow F$$
, $h(x) = (t^{w_0} x_0, \dots, t^{w_n} x_n)$ for $t = \exp(2\pi i/N)$

REFERENCES

- 1. Burghelea, D., Verona, A.: Local homological properties of analytic sets, Manuscritpa Math. 7, 55-66, (1972).
- 2. Clemens, C.H.: Double Solids, Adv. in Math. 47, 107-230 (1983).
- 3. Deligne, P.: Theorie de Hodge II, III, Publ. Math. IHES 40, 5-58 (1971) and 44, 5-77 (1974).
- 4. Dimca, A.: On the homology and cohomology of complete intersections with isolated singularities, Compositio Math. 58, 321-339 (1986).
- 5. Dimca, A.: Topics on Real and Complex Singularities, Braunschweig-Wiesbaden, Vieweg 1987.
- 6. Dimca, A.: On the Milnor fibrations of weighted homogeneous polynomials, Compositio Math. (to appear).
- Dimca, A., Dimiev, S.: On analytic coverings of weighted projective spaces, Bull. London Math. Soc. 17, 234-238 (1985).
- Dolgachev, I.: Weighted projective varieties. In: Carrell, J.B. (ed): Group Actions and Vector Fields, Proceedings 1981, Lecture Notes in Math. vol 956, pp. 34-71, Springer 1982.
- 9. Durfee, A.H.: Fifteen characterizations of rational double points and simple critical points, L'Enseignement Math. 25, 131–163 (1979).
- Durfee, A.H.: Mixed Hodge structures on punctured neighborhoods, Duke Math. J. 50, 1017-1040 (1983).

- Ebeling, W.: Quadratische Formen und Monodromiegruppen von Singularitäten, Math. Ann. 255, 463-498 (1981).
- 12. Esnault, H.: Fibre de Milnor d'un cone sur une courbe plane singulière, Invent. Math. 68, 477-496 (1982).
- Griffiths, P.: On the periods of certain rational integrals I, II, Ann. Math. 90, 460-541 (1969).
- Grothendieck, A.: On the de Rham cohomology of algebraic varieties, Publ. Math. IHES 29, 351-358 (1966).
- 15. Reid, M.: Young person's guide to canonical singularities, Proc. AMS Summer Institute Bowdoin 1985, Proc. Symp. Pure Math. 46, Part 1, pp. 345-414 (1987).
- 16. Saito, K.: Einfach-elliptische Singularitäten, Invent. Math. 23, 289-325 (1974).
- 17. Schoen, Ch.: Algebraic cycles on certain desingularized nodal hypersurfaces, Math. Ann. 270, 17-27 (1985).
- 18. Siersma, D.: Quasihomogeneous singularities with transversal type A₁, preprint Utrecht Univ. (1987).
- Steenbrink, J.H.M.: Intersection form for quasihomogeneous singuarities, Compositio Math. 34, 211-223 (1977).
- 20. Steenbrink, J.H.M.: Mixed Hodge structures associated with isolated singularities, Proc. Symp. Pure Math. 40, Part 2, pp. 513-536 (1983).
- 21. Steenbrink, J.H.M.: Mixed Hodge Structures and Singularities (book to appear).
- van Straten, D.: On the Betti numbers of the Milnor fiber of a certain class of hypersurface singularities. In: Greuel, G.-M., Trautmann, G. (eds): Singularities, Representations of Algebras and Vector Bundles, Proc. Lambrecht 1985, Lecture Notes in Math. vol. 1273, pp. 203-220, Springer 1987.

- 23. Terao, H.: Forms with logarithmic pole and the filtration by the order of the pole, Int. Symp. Alg. Geom. Kyoto 1977, p. 673-685, (1977).
- 24. Werner, J.: Kleine Auflösungen spezieller dreidimensionaler Varietäten, Bonner Math. Schriften Nr. 186, Bonn 1987.
- 25. Zariski, O.: On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math. 51, 305-328 (1929).