BETTI NUMBERS OF HYPERSURFACES AND DEFECTS OF LINEAR SYSTEMS

by

Alexandru Dimca

Max-Planck-Institut für Mathematik

BETTI NUMBERS OF HYPERSURFACES AND
 DEFECTS OF LINEAR SYSTEMS

by

Alexandru Dimca

Let $\underline{\underline{W}}=\left(w_{0}, \ldots, w_{n}\right)$ be a set of integer positive weights and denote by S the polynomial ring $\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ graded by the conditions $\operatorname{deg}\left(x_{i}\right)=w_{i}$ for $i=0, \ldots, n$. For any graded object M, let M_{k} denote the homogeneous component of degree k. Let $f \in S_{N}$ be a weighted homogeneous polynomial of degree N with respect to \mathbf{W}.

Let V be the hypersurface defined by $f=0$ in the weighted projective space

$$
\mathbb{P}(\mathbb{I})=\operatorname{Proj} S=\mathbb{C}^{\mathbf{n}+1} \backslash\{0\} / \mathbb{C}^{*}
$$

where the \mathbb{C}^{*}-action on \mathbb{C}^{n+1} is defined by $t \cdot x=\left(t^{W_{0}} x_{0}, \ldots, t^{W}{ }^{W} x_{n}\right)$ for $t \in \mathbb{C}^{*}$, $\mathbf{x} \in \mathbb{C}^{\mathbf{n + 1}}$. Assume that the singular locus $\Sigma(\mathrm{f})$ of f is 1 -dimensional, namely

$$
\Sigma(f)=\left\{x \in \mathbb{C}^{n+1} ; \mathrm{df}(\mathrm{x})=0\right\}=\{0\} \cup \underset{\mathrm{i}=1, \mathrm{~s}}{ } \mathbb{C}^{*} \mathrm{a}_{\mathrm{i}}
$$

for some points $a_{i} \in \mathbb{C}^{n+1}$, one in each irreducible component of $\Sigma(f)$.
Let G_{i} be the isotropy group of a_{i} with respect to the \mathbf{C}^{*}-action and let H_{i} be a small G_{i}-invariant transversal to the orbit $\mathbb{C}^{*}{ }^{a_{i}}$ at the point a_{i}. The isolated
hypersurface singularity $\left(Y_{i}, a_{i}\right)=\left(H_{i} \cap F^{-1}(0), a_{i}\right)$ is called the transversal singularity of f along the branch $\overline{\mathbb{C}^{*}} \mathrm{a}_{\mathrm{i}}$ of the singular locus $\Sigma(f)$. Note that $\left(Y_{i}, a_{i}\right)$ is in fact a G_{i}-invariant singularity.

The hypersurface V is a V -manifold (i.e. has only quotient singularities [8]) at all points, except at the points a_{i} where V has a hyperguotient singularity ($\left.Y_{i} / G_{i}, a_{i}\right)$ in the sense of M. Reid [15].

In this paper we discuss an effective procedure to compute the Betti numbers $\mathrm{b}_{\mathrm{j}}(\mathrm{V})=\operatorname{dim} H^{j}(V)$ (C coefficients are used throughout) for such a weighted projective hypersurface V. It is known that only $b_{n-1}(V)$ and $b_{n}(V)$ are difficult to compute and that the Euler characteristic $\chi(\mathrm{V})$ can be computed (conjecturally in all, but surely in most of the interesting cases!) by a formula involving only the weights Ψ, the degree N and some local invariants of the G_{i}-singularities $\left(\mathrm{Y}_{\mathrm{i}}, \mathrm{a}_{\mathrm{i}}\right)$, see [6], Prop. 3.19. Hence it is enough to determinee $b_{n}(V)$.

On the other hand, it was known since the striking example of Zariski involving sextic curves in \mathbb{P}^{2} having six cusps situated (or not) on a conic [25], that $b_{n}(V)$ is a very subtle invariant depending not only on the data listed above for $\chi(\mathrm{V})$ but also on the position of the singularities of V in $\mathbb{P}(\underline{w})$.

In the next three special cases the determination of $b_{n}(V)$ has led to beautiful and mysterious (see H. Clemens remark in the middle of p. 141 in [2]) relations with the dimension of certain linear systems \mathscr{f} of homogeneous polynomials vanishing at the singular set $\Sigma=\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{s}}\right\}$ of V :
(i) Some cyclic coverings of \mathbf{p}^{2} ramified over a curve $\quad \mathrm{B}: \mathrm{b}=0$ (H. Esnault [12]). In fact the object of study in [12] are the Betti numbers of the associated Milnor fiber $F: b-1=0$ in \mathbb{C}^{3}, but it is easy to see that they are completely determined by the Betti numbers of

F , the closure of F in \mathbb{P}^{3}. And the closure $\overline{\mathrm{F}}$ is a cyclic covering of \mathbb{P}^{2} of degree deg B ramified over B . Beside several implicit results, one finds in [12] an explicit treatment of the Zariski example mentioned above.
(ii) Double coverings of \mathbb{P}^{3} ramified over a surface $B: b=0$ having only nodes as singularities (H. Clemens [2]). By a node we mean an A_{1}-singularity of arbitrary dimension. Note that such a covering is defined by the equation $b-t^{2}=0$ in the weighted projective space $\mathbf{P}(1, \ldots, 1, \mathrm{e})$ with $2 \mathrm{e}=\operatorname{deg} \mathrm{B}$ [7].
(iii) Odd dimensional hypersurfaces $\mathrm{XCP} \mathbb{P}^{2 \mathrm{~m}}$ having only nodes as singularities (T. Schoen [17], J. Werner [24]).

In our paper we show that such relations exist without any restriction on the transversal singularities $\left(Y_{i}, a_{i}\right)$. The general answer is however not an obvious extension of the above special cases, i.e. the linear systems which occur are not defined by some (higher order) vanishing conditions on $\boldsymbol{\Sigma}$, but by some subtle conditions depending on fine invariants of the singularities, i.e. the MHS (mixed Hodge structure) on the local cohomology groups $H_{a_{i}}^{n}\left(Y_{i}\right)$ [20]. Unlike the authors mentioned above, we do not use here the resolution of singularities (which is quite difficult to control in dimension ≥ 3), but we essentially work on the complement $U=\mathbb{P}(\underline{w}) \backslash V$, which is an affine V-variety and compute everything in terms of differential forms on U in the spirit of [13].

In this way we get in fact more than $b_{n}(V)$, namely we obtain a procedure to compute all the mixed Hodge numbers $h^{\mathrm{p}, \mathrm{q}}\left(\mathrm{H}^{\mathrm{n}}(\mathrm{V})\right)$. See also Remark (2.7).

Let $F: f-1=0$ be the Milnor fiber of f in $\mathbb{C}^{\mathfrak{n}+1}$. Then F is a smooth affine hypersurface and $\tilde{H}^{\mathbf{k}}(F)=0$ except for $k=n-1, n$.

Moreover, one has again a "simple" formula computing the Euler characteristic $\chi(\mathrm{F})$ in terms of $\underset{W}{ }, \mathrm{~N}$ and the singularities $\left(\mathrm{Y}_{\mathrm{i}}, \mathrm{a}_{\mathrm{i}}\right),[6]$, Prop. 3.19. Hence it is enough to compute $b_{n-1}(F)$. And the results described in this paper combined with some results in [6] allow one to compute not only $b_{n-1}(F)$, but also all the Hodge numbers $h^{p, q}\left(H^{n-1}(F)\right)$, as explained in Corollary (3.6) below in the special case when all the transversal singularities are of type A_{1}. For related computations of Betti numbers of Milnor fibers of non isolated singularities see Siersma [18] and van Straten [22].

It will turn out that in order to get very explicit results the assumption that the transversal singularities ($\mathrm{Y}_{\mathrm{i}}, \mathrm{a}_{\mathrm{i}}$) are weighted homogeneous is quite helpful. In particular, we establish several explicit formulas as in the special cases (i)-(iii) above in the last section of our paper.

During this paper we recall and use some of our results in [6]. But all the results in this area should perhaps be regarded as attempts to understand and to generalize Griffiths fundamental work in [13].

Acknowledgement

I would like to thank E. Brieskorn, H. Esnault and J. Steenbrink for encouragement during a cloudy period and to express my gratitude to Professor F. Hirzebruch and to the Max-Planck-Institut für Mathematik in Bonn for material support and warm hospitality.

§ 1. A global and a local spectral sequence

Since $U=\mathbb{P}(\underline{w}) \backslash V$ is an affine V-variety, it follows by (a slightly more general version of) Grothendieck Theorem [14], [21] that the cohomology of U can be computed using the deRham complex $A^{*}=H^{\circ}\left(U, \Omega^{\cdot}{ }_{U}\right)$, where $\Omega^{\circ}{ }_{U}$ denotes the sheaves complex of algebraic differential forms on U.

The complex A^{*} has a polar filtration defined as follows

$$
\begin{equation*}
F^{s} A^{j}=\left\{\omega \in A^{j} ; \omega \text { has a pole along } V \text { of order at most } j-s\right\} \tag{1.1}
\end{equation*}
$$

for $\mathrm{j}-\mathrm{s} \geq 0$ and $\mathrm{F}^{\mathrm{s}} \mathrm{A}^{\mathrm{j}}=0$ for $\mathrm{j}-\mathrm{s}<0$.
By the general theory of spectral sequences, the filtration \mathbf{F}^{s} gives rise to an E_{1}-fpectral sequence ($E_{r}(U), d_{r}$) converging to $H^{-}(U)$. For more details see [6] and also H. Terao [23].

Let $F^{s} H^{\cdot}(U)=\operatorname{im}\left\{H^{\cdot}\left(F^{s} A^{\cdot}\right) \longrightarrow H^{\cdot}(A)=H^{\cdot}(U)\right\}$ be the filtration induced on $H^{\cdot}(\mathrm{U})$ by the polar filtration on A^{\cdot}. Note that on the cohomology algebra $H^{\cdot}(\mathrm{U})$ one has also the canonical (mixed) Hodge filtration $\mathrm{F}_{\mathrm{H}}^{\mathrm{s}}$ constructed by Deligne [3]. It is not difficult to prove the next result, see [6], Theorem (2.2).

(1.2) Proposition

One has $F^{s} H^{\cdot}(U) \supset F_{H}^{s+1} H^{\bullet}(U)$ for any s and $F^{\circ} H^{\cdot}(U)=F_{H}^{1} H^{\cdot}(U)=H^{\cdot}(U)$.

For an example where the above inclusion is strict we refer to [6], (2.6).
Since we shall be concerned especially with $H^{n}(U)$, we recall the explicit description of A^{n}, given by Griffiths in the homogeneous case [13] and by Dolgachev
in the weighted homogeneous case [8]. Let $\Omega^{\mathbf{k}}$ denote the S -module of algebraic differential \mathbf{k}-forms on $\mathbb{C}^{\mathbf{n}+1}$, graded by the condition $\operatorname{deg}\left(\mathbf{x}_{\mathbf{i}}\right)=\operatorname{deg}\left(d \mathbf{x}_{\mathbf{i}}\right)=\mathbf{w}_{\mathbf{i}}$ for $\mathrm{i}=0, \ldots, \mathrm{n}$. Consider the differential n -form $\Omega \in \Omega_{\mathbf{w}}^{n}$ with $w=w_{0}+\ldots+w_{n}$ given by

$$
\begin{equation*}
\Omega=\sum_{i=0, n}(-1)^{i} w_{i} x_{i} d x_{0} \wedge \ldots \wedge d x_{i} \wedge \ldots \wedge d x_{n} \tag{1.3}
\end{equation*}
$$

Then any element $\omega \in A^{n}$ may be written in the form

$$
\begin{equation*}
\omega=\frac{\mathrm{h} \Omega}{\mathrm{f}^{\mathrm{t}}} \text { for some } \mathrm{h} \in \mathrm{~S}_{\mathrm{tN}-\mathrm{w}} \tag{1.4}
\end{equation*}
$$

and, if h is not divisible by f, then t is precisely the order of the pole of ω along V .
Next we consider a similar spectral sequence, but associated this time to a (local) hypersurface singularity. Let $\mathbf{g}:\left(\mathbb{C}^{\mathbf{n}}, 0\right) \longrightarrow(\mathbb{C}, 0)$ be an analytic function germ and let $(\mathrm{Y}, 0)=\left(\mathrm{g}^{-1}(0), 0\right)$ be the associated hypersurface singularity. Let $\Omega_{\mathrm{g}}^{\cdot}$ denote the localization of the stalk at the origin of the analytic de Rham complex for $\mathbb{C}^{\mathbf{n}}$ with respect to the multiplicative system $\left\{\mathrm{g}^{\mathrm{s}}, \mathrm{s} \geq 0\right\}$.

Choose $\varepsilon>0$ small enough such that Y has a conic structure in the closed ball $\mathrm{B}_{\varepsilon}=\left\{\mathrm{y} \in \mathbb{C}^{\mathrm{n}} ;|\mathrm{y}| \leq \varepsilon\right\} \quad$ [1]. Since $\mathrm{B}_{\varepsilon} \mid \mathrm{Y}$ is a Stein manifold, Theorem 2 in [14] implies the next result
(1.5) Proposition

$$
\mathrm{H}^{\cdot}\left(\mathrm{B}_{\varepsilon} \backslash \mathrm{Y}\right)=\mathrm{H}^{\cdot}\left(\Omega_{\mathrm{g}}^{\cdot}\right) .
$$

One may define a polar filtration F^{8} on $\Omega_{\mathrm{g}}^{\cdot}$ exactly as in (1.1) and get an E_{1}-spectral
sequence ($E_{r}(Y), d_{r}$) converging to $H^{\cdot}\left(B_{\varepsilon} \backslash Y\right)$. Assume from now on that ($Y, 0$) is an isolated singularity. Even then the spectral sequence ($\mathrm{E}_{\mathrm{r}}(\mathrm{Y}), \mathrm{d}_{\mathrm{r}}$) is quite complicated, e.g. one has the next result [6] , Cor. (3.10').
(1.6) Proposition

The spectral sequence $\left(\mathrm{E}_{\mathrm{r}}(\mathrm{Y}), \mathrm{d}_{\mathrm{r}}\right)$ degenerates at E_{2} if and only if the singularity $(Y, 0)$ is weighted homogeneous (i.e. there exist suitable coordinates y_{1}, \ldots, y_{n} on \mathbb{C}^{n} around the origin and suitable weights $\mathrm{v}_{\mathrm{i}}=\mathrm{wt}\left(\mathrm{y}_{\mathrm{i}}\right)$ such that (Y,0) can be defined by a weighted homogeneous polynomial g, of degree M say, with respect to the weights $\left.\underline{\mathbf{q}}=\left(\mathrm{v}_{1}, \ldots, \mathbf{v}_{\mathbf{n}}\right)\right)$.

If this is the case, then the limit term $\mathrm{E}_{\infty}=\mathrm{E}_{2}$ can be described quite explicitly as follows [6] , Example (3.6). In fact we restrict our attention only to the terms $\mathrm{E}_{\mathrm{m}}^{\mathrm{n}-\mathrm{t}, \mathrm{t}}$ for $t \geq 0$, since this is all we need in the sequal.

Let $\mathrm{M}(\mathrm{g})={\sigma_{\mathrm{n}}} / \mathrm{J}_{\mathrm{g}}$ be the Milnor algebra of g , where $\mathrm{J}_{\mathrm{g}}=\left[\frac{\partial \mathrm{g}}{\partial \mathrm{x}_{1}}, \ldots, \frac{\partial \mathrm{~g}}{\partial \mathrm{x}_{\mathrm{n}}}\right]$ is the Jacobian ideal of g [5]. Note that in our case $M(g)$ has a grading induced by the weights \mathbf{Y}. Then one has a \mathbb{C}-linear identification

$$
\begin{equation*}
\mathrm{E}_{\infty}^{\mathrm{n}-\mathrm{t}, \mathrm{t}}(\mathrm{Y})=\mathrm{M}(\mathrm{~g})_{\mathrm{tM}-\mathrm{v}} \tag{1.7}
\end{equation*}
$$

with $\mathrm{v}=\mathrm{v}_{1}+\ldots+\mathrm{v}_{\mathrm{n}}$, by associating to the class of a monomial $\mathrm{y}^{\boldsymbol{\alpha}}$ in $\mathrm{M}(\mathrm{g})_{\mathrm{tM}-\mathrm{v}}$ the class of the differential form $y^{\alpha} \cdot g^{-t} \cdot \omega_{n}$, where $\omega_{n}=d y_{1} \wedge \ldots \wedge d y_{n}$. Since $\mathrm{Y} \backslash\{0\}$ is a smooth divisor in $\mathrm{B}_{\varepsilon} \backslash\{0\}$, the Poincaré residue map

$$
\mathrm{H}^{\mathrm{n}}\left(\mathrm{~B}_{\varepsilon} \backslash \mathrm{Y}\right) \xrightarrow{\mathrm{R}} \mathrm{H}^{\mathrm{n}-1}(\mathrm{Y} \backslash\{0\})
$$

in the associated Gysin sequence [21] is an isomorphism (assume $n \geq 3$ from now on). Moreover, the exact sequence of the pair ($\mathrm{Y}, \mathrm{Y} \backslash\{0\}$) gives an isomorphism

$$
\mathrm{H}^{\mathrm{n}-1}(\mathrm{Y} \backslash\{0\}) \xrightarrow{\delta} \mathrm{H}^{\mathrm{n}}(\mathrm{Y}, \mathrm{Y} \backslash\{0\})=\mathrm{H}_{0}^{\mathrm{n}}(\mathrm{Y})
$$

where $H_{0}(\mathrm{Y})$ denote the local cohomology groups of Y at the origin. Note that this cohomology $\mathrm{H}_{0}(\mathrm{Y})$ carries a natural MHS according to Steenbrink [20] and Durfee [10]. Finally we get an isomorphism

$$
\begin{equation*}
H^{n}\left(B_{\varepsilon} \backslash Y\right)=H_{0}^{n}(Y) \tag{1.8}
\end{equation*}
$$

and in this way the filtration F^{8} on $\Omega_{\mathrm{g}}^{\cdot}$ induces a filtration F^{8} on $\mathrm{H}_{0}^{\mathrm{n}}(\mathrm{Y})$. It is easy to check, using (1.7) and Steenbrink description of the MHS on $H_{0}^{n}(Y)$ when (Y,0) is weighted homogeneous [19], that in this case F^{5} coincide with the Hodge filtration $\mathrm{F}_{\mathrm{H}}^{\mathrm{s}}$ for all s and that $\mathrm{H}_{0}^{\mathrm{n}}(\mathrm{Y})$ has a pure Hodge structure of weight n . Consider next a semi weighted homogeneous singularity $\mathrm{Y}_{1}: \mathrm{g}_{1}=\mathrm{g}+\mathrm{g}^{\prime}$, where g is as above and all the monomials in g^{\prime} have degrees $>\mathrm{M}$ with respect to the weights $\mathrm{y}[5]$. Inspite of the fact that the corresponding spectral sequence $\left(\mathrm{E}_{\mathrm{r}}\left(\mathrm{Y}_{1}\right), \mathrm{d}_{\mathrm{r}}\right)$ is much more complicated, we can obtain directly (by some obvious μ-constant arguments) the next simple description of the cohomology group $H^{n}\left(B_{\varepsilon} \backslash Y_{1}\right)$. Let $\left\{y^{\alpha} g^{-t} \alpha_{\omega_{n}}\right.$; $\alpha \in A\}$ be a basis for $H^{n}\left(B_{\varepsilon} \backslash Y\right)$ obtained as above. Then the forms $\left\{y^{\alpha} g_{1}^{-t} \alpha_{n} \omega_{n}\right.$; $\alpha \in A\}$ give a basis for $H^{n}\left(B_{\varepsilon} \backslash Y_{1}\right)$. Here of course $t_{\alpha}=\left(\operatorname{deg}\left(y^{\alpha}\right)+v\right) \cdot M^{-1}$. Moreover, using the fact that in a μ-constant deformation the dimensions of the Hodge filtration subspaces remain constant, it follows that on $H_{0}^{n}\left(Y_{1}\right)$ the polar filtration coincides with the Hodge filtration, exactly as in the weighted homogeneous case.

In general, one may compute the MHS on $H_{0}^{\mathrm{n}}(\mathrm{Y})$ if one knows the MHS on the cohomology $H^{n-1}\left(Y_{\infty}\right)$ of the Milnor fiber Y_{∞} of the singularity ($Y, 0$), since $\mathrm{H}^{\mathrm{n}-1}(\mathrm{Y} \backslash\{0\})$ is just the fixed part in $\mathrm{H}^{\mathrm{n}-1}\left(\mathrm{Y}_{\omega}\right)$ under the monodromy action and δ is an isomorphism of MHS .

We say that the singularity ($Y, 0$) is nondegenerate if $H_{0}^{n}(Y)=0$. The name comes from the fact that this condition is equivalent to the Milnor lattice of $(\mathrm{Y}, 0)$ being nondegenerate [4]. Otherwise the singularity ($Y, 0$) is called degenerate. We make next a list of the simplest nondegenerate and degenerate singularities, using terminology which is standard in Singularity Theory [5], [9].
(1.9) Examples (nondegenerate singularities)
(i) If $n=\operatorname{dim} Y+1$ is odd, then the singularities $A_{k}, D_{k}, E_{6}, E_{7}$ and E_{8} are nondegenerate
(ii) If $n=\operatorname{dim} Y+1$ is even, then the singularities $A_{2 k}, E_{6}$ and E_{8} are nondegenerate.

For more examples we refer to Ebeling [11].

Examples (degenerate singularities)
(i) Assume that $n=2 t$ is even and that we consider an $A_{2 k-1}$ singularity, i.e.

$$
g=y_{1}^{2 k}+y_{2}^{2}+\ldots+y_{n}^{2}, v_{1}=1, v_{j}=k \text { for } j>1
$$

$\mathbf{v}=1+(2 t-1) \mathbf{k}, \quad \mathrm{M}=2 \mathbf{k}$. The graded pieces $\mathrm{M}(\mathrm{g})_{\mathrm{j}}$ of the Milnor algebra are nontrivial only for $\mathrm{j} \in\{0,1, \ldots, 2 \mathrm{k}-2\}$. Hence the equality $\mathbf{s} \mathrm{M}-\mathrm{v}=\mathrm{j}$ has a unique solution in this range, namely $\mathrm{s}=\mathrm{t}$, $\mathbf{j}=\mathbf{k}-1$.

It follows by (1.7) that $\operatorname{dim} H^{n}\left(B_{\varepsilon} \backslash Y\right)=1$ and that a generator of $H^{n}\left(B_{\varepsilon} \mid Y\right)$ is provided in this case by the form $\beta=y^{k-1} g^{-t} \omega_{n}$.

Note moreover that the class of a form $\gamma=\mathrm{h} \cdot \mathrm{g}^{-\mathrm{t}} \omega_{\mathrm{n}}$ (with $\left.h \in O_{n}\right)$ in $H^{n}\left(B_{\varepsilon} \backslash Y\right)$ is precisely

$$
[\gamma]=\frac{1}{(k-1)!} \frac{\partial^{k-1} \mathrm{~h}}{\partial \mathrm{y}_{1}^{\mathrm{k}-1}}(0) \cdot[\beta]
$$

It follows from [19] that β is a class of type (t, t) with respect to the MHS on $H_{0}^{2 t}(Y)$.
(ii) Assume that $\mathrm{n}=2 \mathrm{t}+1$ is odd and let $\mathrm{g}=0$ be the usual weighted homogeneous equation for a unimodal singularity of type $\tilde{E}_{6}, \tilde{\mathrm{E}}_{7}$ or \tilde{E}_{8}. Then it is known that the weights \underline{v} and the degree M of g satisfy the next equality

$$
\operatorname{deg}(\operatorname{hess}(g))=n M-2 v=M=\operatorname{deg}(g)
$$

where $\operatorname{hess}(\mathrm{g})=\operatorname{det}\left[\frac{\partial^{2} \mathrm{~g}}{\partial \mathrm{y}_{\mathrm{i}} \partial \mathrm{y}_{\mathrm{j}}}\right]$ is the hessian of g and also $\mathrm{M}(\mathrm{g})_{\mathrm{j}}=0$ for $\mathrm{j}>\mathrm{M}$, see [5], [16]. Hence the equality $\mathrm{s} \mathrm{M}-\mathrm{v}=\mathrm{j}$
has just two solutions with $\mathrm{j} \leq \mathrm{M}$, namely $\mathrm{j}=0, \mathrm{~s}=\mathrm{t}$ and $\mathrm{j}=\mathrm{M}$, $s=t+1$. The differential forms

$$
\beta_{1}=\mathrm{g}^{-\mathrm{t}} \omega_{\mathrm{n}} \text { and } \beta_{2}=\operatorname{hess}(\mathrm{g}) \cdot \mathrm{g}^{-\mathrm{t}-1} \omega_{\mathrm{n}}
$$

form a basis of $\mathrm{H}^{\mathrm{n}}\left(\mathrm{B}_{\varepsilon} \mid \mathrm{Y}\right)$ in this case and it follows from [19] that β_{1} has type $(t+1, t)$ and β_{2} has type $(t, t+1)$ with respect to the MHS on $H_{0}^{n}(Y)$.

Note that the class of a differential form $\gamma=\mathrm{h} \cdot \mathrm{g}^{-\mathrm{t}} \omega_{\mathrm{n}}$ with $h \in O_{n}$ is just

$$
[\gamma]=\mathrm{h}(0)\left[\beta_{1}\right]
$$

In what follows we are particularly interested by the local cohomology groups $H_{a_{i}}^{n}(V)$ corresponding to the hyperquotient singularities of V .

The obvious isomorphisms

$$
\begin{equation*}
H_{a_{i}}^{n}(V)=H_{a_{i}}^{n}\left(Y_{i} / G_{i}\right)=H_{a_{i}}^{n}\left(Y_{i}\right)^{G_{i}} \tag{1.11}
\end{equation*}
$$

shows that $H_{a_{i}}^{n}(V)$ can be computed (together with its MHS) as the fixed part of the natural action of G_{i} on $H_{a_{i}}^{n}(Y)$. This description is quite effective as soon as we have explicit forms giving a basis for $H_{a_{i}}^{n}(Y)$. Note also that it may happen that $H_{a_{i}}^{n}(V)=0$ even if $H_{a_{i}}^{n}\left(Y_{i}\right) \neq 0$.

(1.12) Example

Let $(Y, 0)$ be the $A_{2 k-1}$ singularity considered in (1.10.i) and let $G=\{ \pm 1\}$ act on $(\mathrm{Y}, 0)$ by the rule $(-1) \cdot \mathrm{y}=\left(\mathrm{y}_{1},-\mathrm{y}_{2}, \mathrm{y}_{3}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$. Then

$$
(-1) \cdot[\beta]=-[\beta]
$$

and hence $\mathrm{H}_{0}^{\mathrm{n}}(\mathrm{Y})^{\mathrm{G}}=0$.

§ 2. A basic MHS exact sequence

Let $\mathbb{P}^{*}=\mathbb{P}(\underline{w}) \backslash \Sigma, \quad \mathrm{V}^{*}=\mathrm{V} \backslash \Sigma$ and consider the exact cohomology sequence of the pair $\left(\mathbb{P}^{*}, \mathbb{P}^{*} \backslash \mathrm{~V}^{*}\right)$:

Note that there is a Thom isomorphism

$$
T: H^{k-1}\left(V^{*}\right) \longrightarrow H^{k+1}\left(\mathbb{P}^{*}, \mathbb{P}^{*} \backslash V^{*}\right)
$$

obtained as follows. Let $X=\mathbb{C}^{\mathbf{n}+1} \backslash \Sigma(f)$ and $D=\boldsymbol{f}^{-1}(0) \backslash \Sigma(f)$. Then D is a smooth divisor in X and hence there is an usual Thom isomorphism
$T: H^{k-1}(D) \longrightarrow H^{k+1}(X, X \backslash D)$. Since the normal bundle of D in X may be chosen \mathbb{C}^{*}-invariant, it follows that T is compatible with the \mathbb{C}^{*}-actions which exist on both
sides. Hence T induces an isomorphism between the fixed parts

$$
H^{k-1}(D)^{\mathbb{C}^{*}}=H^{k-1}\left(V^{*}\right) \xrightarrow{T} H^{k+1}\left(\mathbb{P}^{*}, \mathbb{P}^{*} \backslash V^{*}\right)=H^{k+1}(X, X \backslash D)^{\mathbb{C}^{*}} .
$$

In the same way, the Poincaré residue

$$
R: H^{k}(X \backslash D) \longrightarrow H^{k-1}(D)
$$

induces a map

$$
R: H^{\mathbf{k}}\left(\mathbb{P}^{*} \mid \mathrm{V}^{*}\right) \longrightarrow \mathrm{H}^{\mathbf{k}-1}\left(\mathrm{~V}^{*}\right)
$$

such that $\mathbf{T} \cdot \mathbf{R}=\boldsymbol{\delta}$.
It is easy to show that in the middle dimensions $j^{*}=0$ and that if we define the primitive cohomology of V^{*} by $\mathrm{H}_{0}\left(\mathrm{~V}^{*}\right)=\operatorname{ker}\left(\mathrm{j}^{*} \circ \mathrm{~T}\right)$, then this has the expected properties. For instance one may define in the same way the primitive cohomology of V , denoted $\mathrm{H}_{0}(\mathrm{~V})$ and the inclusion $\iota: \mathrm{V}^{*} \longrightarrow \mathrm{~V}$ induces a morphism ${ }_{0}^{*}: \mathrm{H}_{0}(\mathrm{~V}) \longrightarrow \mathrm{H}_{0}\left(\mathrm{~V}^{*}\right)$ and carries isomorphically the nonprimitive part in $H^{\cdot}(\mathrm{V})$ onto the nonprimitive part in $\mathrm{H}^{\cdot}\left(\mathrm{V}^{*}\right)$ (except of course the top dimension).

As a result of this definition and since $\mathbb{P}^{*} \backslash V^{*}=U$, we get the next

(2.2) Lemma

The Poincaré residue $R: H^{k}(U) \longrightarrow H_{0}^{k-1}\left(V^{*}\right)$ is a type $(-1,-1)$ isomorphism of MHS .

Consider now the long exact sequence of MHS [20]:

$$
\longrightarrow H_{\Sigma}^{k}(V) \longrightarrow H^{k}(V) \longrightarrow H^{k}\left(V^{*}\right) \xrightarrow{\delta} H_{\Sigma}^{k+1}(V) \longrightarrow
$$

and note that excision gives us the next isomorphism of MHS .

$$
H_{\Sigma}^{k}(V)=\underset{i=1,8}{\oplus} H_{a_{i}}^{k}(V)=\underset{i=1,8}{\oplus} H_{a_{i}}^{k}\left(Y_{i}\right) \quad G_{i}
$$

Hence $\mathrm{H}_{\Sigma}^{\mathrm{k}}(\mathrm{V})$ is a computable object as soon as we know enough about the transversal singularities ($\mathrm{Y}_{\mathrm{j}}, \mathrm{a}_{\mathrm{i}}$).

The final part of the above long exact sequence, Lemma (2.2) and our remark on ι_{0}^{*} give us the next exact sequence of MHS

$$
\begin{equation*}
\mathrm{H}^{\mathrm{n}}(\mathrm{U}) \xrightarrow{\theta} \mathrm{H}_{\Sigma}^{\mathrm{n}}(\mathrm{~V}) \longrightarrow \mathrm{H}_{0}^{\mathrm{n}}(\mathrm{~V}) \longrightarrow 0 \tag{2.3}
\end{equation*}
$$

with $\theta=\delta \mathrm{R}$ a morphism of type $(-1,-1)$. (There is no danger to confuse the primitive cohomology $H_{0}(\mathrm{~V})$ with some local cohomology of V , since $\left.0 \notin \mathbb{P}(\underline{\mathbf{w}})\right)$. Let t be the maximal positive integer such that $F_{H}^{t} H_{\Sigma}^{n}(V)=H_{\Sigma}^{n}(V)$. Then using the strict compatibility of MHS morphisms with the Hodge filtrations F_{H} [3] we get a finer version of (2.3), namely

$$
\mathrm{F}_{\mathrm{H}}^{\mathrm{t}+1} \mathrm{H}^{\mathrm{n}}(\mathrm{U}) \xrightarrow{\theta} \mathrm{H}_{\Sigma}^{\mathrm{n}}(\mathrm{~V}) \longrightarrow \mathrm{H}_{0}^{\mathrm{n}}(\mathrm{~V}) \longrightarrow 0 .
$$

Using now Proposition (1.2) it follows that the composition

$$
\mathrm{F}^{\mathrm{t}} \mathrm{H}^{\mathrm{n}}(\mathrm{U}) \longrightarrow \mathrm{H}^{\mathrm{n}}(\mathrm{U}) \xrightarrow{\theta} \mathrm{H}_{\Sigma}^{\mathrm{n}}(\mathrm{~V})
$$

has exactly the same image as θ.
Let T^{t} be the linear map given by the obvious composition

$$
S_{(n-t) N-w} \xrightarrow{\sim} F^{t} A^{n} \longrightarrow F^{t} H^{n}(U) \longrightarrow H_{\Sigma}^{n}(V) .
$$

We may summarize our result as follows
(2.4) Theorem

The image of the linear map T^{t} is a MH substructure in $H_{\Sigma}^{n}(V)$ and $H_{0}^{n}(V)$ with its canonical MHS is isomorphic to the quotient $H_{\Sigma}^{\mathrm{n}}(\mathrm{V}) / \mathrm{im}\left(\mathrm{T}^{\mathrm{t}}\right)$.

Note that the proof in [20], Theorem (1.13) adapts to our more general situation and shows that $H_{0}^{n}(V)$ has a pure Hodge structure of weight n. Consider now a subset $\Sigma^{\prime} \subset \Sigma$ defined as follows:

$$
\Sigma^{\prime}=\left\{a_{i} \in \Sigma ; H_{a_{i}}^{n}(V) \neq 0\right\}
$$

We may call Σ^{\prime} the set of essential singularities of V. It is clear that we may replace $\mathrm{H}_{\Sigma}^{\mathrm{n}}(\mathrm{V})$ with $\mathrm{H}_{\Sigma^{\prime}}^{\mathrm{n}}(\mathrm{V})$ everywhere. More important, note that $\mathrm{T}^{\mathrm{t}}(\mathrm{h})=0$ means that h satisfies certain (linear) conditions 8 at the points $a_{i} \in \Sigma^{\prime}$. Indeed, it is easy to check that θ corresponds to the composition of the morphism

$$
H^{\mathrm{n}}(\mathrm{U}) \xrightarrow[\mathrm{a}_{\mathrm{i}} \in \Sigma^{\prime}]{\rho} \mathrm{H}^{\mathrm{n}}\left(\mathrm{D}_{\mathrm{i}} \mid \mathrm{V}\right)
$$

induced by the restriction of n-forms (with D_{i} being an open neighbourhood of a_{i} in $\mathbb{P}(\underline{\text { WI }})$ of the form $D_{i}=B_{i} / G_{i}$, for B_{i} a small ball in H_{i} centered at a_{i} and G_{j}-invariant) with the isomorphism induced essentially by local Poincaré residue isomorphisms

$$
\underset{i}{\oplus} H^{n}\left(D_{i} \backslash V\right) \underset{\sim}{R} \underset{i}{\oplus} H^{n-1}\left(V \cap D_{i} \backslash\left\{a_{i}\right\}\right) \underset{\sim}{\sim} \underset{i}{\oplus} H_{a_{i}}^{n}(V)=H_{\Sigma^{\prime}}^{n}(V)
$$

Let $\mathscr{f}=$ ker T^{t} be the linear system in $\mathrm{S}_{(\mathrm{n}-\mathrm{t}) \mathrm{N}-\mathrm{w}}$ defined by the conditions \mathscr{B}. We define the defect of the linear system of by the formula

$$
\operatorname{def}(\mathscr{O})=\operatorname{dim} \mathrm{H}_{\Sigma^{\prime}}^{\mathrm{n}}(\mathrm{~V})-\operatorname{codim} \mathscr{\not}
$$

i.e. the difference between the number of linear conditions in 8 and the codimension of \mathscr{H} in $\mathrm{S}_{(\mathrm{n}-\mathrm{t}) \mathrm{N}-\mathrm{w}}$. It is clear that $\operatorname{def}(\mathscr{\mathscr { O }})$ depends not only on $\mathscr{\mathscr { L }}$ but also on the set of conditions \mathscr{E} used to define it and that $\operatorname{def}(\mathscr{A})=0$ says that the conditions in \mathscr{E} are independent. With this definition, we may state the next.
(2.5) Corollary

$$
\operatorname{dim} H_{0}^{\mathrm{n}}(\mathrm{~V})=\operatorname{def}(\mathscr{O}) .
$$

The next section contains several examples where it is possible to work out explicitely the conditions $\mathscr{8}$ and hence to state several special cases of Corollary (2.5) in more down-to-earth terms. When on $H_{\Sigma}^{n}(V)$ the polar filtration F^{8} coincides with the Hodge filtration F_{H}^{8} (this is the case for instance when all the singularities ($\mathrm{Y}_{\mathrm{i}}, \mathrm{a}_{\mathrm{i}}$) are weighted homogeneous), one may increase the number \mathfrak{t} (and hence decrease the degree
of the elements in $S_{(n-t) N-W}$) by the following simple observation. We present only the case $n=2 m+1$ is odd since we shall apply this in the next section and leave the analogue statement in the case n even to the reader. As remarked above, $H_{0}^{n}(V)$ has a pure Hodge structure of weight n and it is clear that

$$
\operatorname{dim} H_{0}^{n}(V)=2 \sum_{i>m} h^{i, n-i}\left(H_{0}^{n}(V)\right)
$$

Let $\tilde{\mathrm{N}}^{\mathrm{m}+1}$ be the composition

$$
\mathrm{S}_{(\mathrm{n}-\mathrm{m}-1) \mathrm{N}-\mathrm{W}} \xrightarrow{\sim} \mathrm{~F}^{\mathrm{m}+1} \mathrm{~A} \longrightarrow \mathrm{~F}^{\mathrm{m}+1} \mathrm{H}^{\mathrm{n}}(\mathrm{U}) \longrightarrow \mathrm{F}^{\mathrm{m}+1} \mathrm{H}_{\Sigma}^{\mathrm{n}}(\mathrm{~V})
$$

and let $\underset{\mathscr{f}}{\sim}$ be the linear system ker $\underset{\mathrm{T}}{\tilde{\mathrm{N}}+1}$.

If we set as above

$$
\operatorname{def}\left(\mathscr{\mathscr { H }}^{\tilde{\prime}}\right)=\operatorname{dim} \mathrm{F}^{\mathrm{m}+1} \mathrm{H}_{\Sigma}^{\mathrm{n}}(\mathrm{~V})-\operatorname{codim} \mathscr{\mathscr { f }}^{\tilde{\prime}}
$$

then we get the next result.
(2.6) Corollary

$$
\operatorname{dim} H_{0}^{2 m+1}(V)=2 \operatorname{def}\left(\tilde{\mathscr{f}}^{\tilde{\prime}}\right)
$$

(2.7) Remark

Unlike $H_{0}^{n}(V)$ which has a pure Hodge structure of weight n, the middle cohomology group $H^{\mathrm{n}-1}(\mathrm{~V})$ has in general a nonpure Hodge structure, whose associated MHS numbers can be computed as follows (at least in the homogeneous case).

In the MHS sequence

$$
\mathrm{H}_{0}^{\mathrm{n}-1}(\mathrm{~V}) \longrightarrow \mathrm{H}_{0}^{\mathrm{n}-1}\left(\mathrm{~V}^{*}\right) \longrightarrow \mathrm{H}_{2}^{n}(V) \xrightarrow{j} \mathrm{H}_{0}^{\mathrm{n}}(\mathrm{~V}) \longrightarrow 0
$$

used above, one has
(i) $\quad H_{\Sigma}^{n}(V)$ has weights $\geq n$, i.e. $W_{n-1} H_{\Sigma}^{n}(V)=0$ by Durfee [10].
(ii) $H_{0}^{n-1}(V)$ has weights $\leq n-1$, i.e. $W_{n-1} H_{0}^{n-1}(V)=H_{0}^{n-1}(V)$ since V is proper [3].

It follows that one can determine $h^{p, q}\left(H_{0}^{n-1}\left(V^{*}\right)\right)$ for $p+q=m \geq n$ from short exact sequences

$$
0 \longrightarrow \mathrm{Gr}_{\mathrm{m}}^{\mathrm{W}} \mathrm{H}_{0}^{\mathrm{n}-1}\left(\mathrm{~V}^{*}\right) \longrightarrow \mathrm{Gr}_{\mathrm{m}}^{\mathrm{W}} \mathrm{H}_{\Sigma}^{\mathrm{n}}(\mathrm{~V}) \xrightarrow{\mathrm{j}_{4}} \mathrm{Gr}_{\mathrm{m}}^{\mathrm{W}} \mathrm{H}_{0}^{\mathrm{n}}(\mathrm{~V}) \longrightarrow 0
$$

(using of course computations with linear systems to determine the kernel of j). Using duality results for the MHS on $H_{0}(V)$ and on $H^{*}(U)$ explained in [6] and Lemma (2.2) we get

$$
h^{p, q}\left(H_{0}^{2 n-s-1}(V)\right)=h^{n-p, n-q}\left(H^{8}(U)\right)=h^{n-p-1, n-q-1}\left(H_{0}^{s-1}\left(V^{*}\right)\right)
$$

for any p, q and s.
Hence the above short exact sequences give all the numbers ${ }^{p}{ }^{p, q}\left(H_{0}^{n-1}(V)\right)$ for $\mathrm{p}+\mathrm{q}<\mathrm{n}-1$.

To determine the remaining MHS numbers, it is enough to recall that the coefficient of ($\mathrm{n}-\mathrm{p}$) in the spectrum $S p(f)$ of f is precisely

$$
\sum_{\mathbf{s}} \mathbf{h}^{p, s}\left(H^{n}(U)\right)-\sum_{t} h^{p, t}\left(H^{n-1}(U)\right)
$$

This formula contains exactly one unknown number, namely

$$
h^{p, n+1-p}\left(H^{n}(U)\right)=h^{n-p, p-1}\left(H_{0}^{n-1}(V)\right) .
$$

On the other hand, the spectrum $\mathrm{Sp}(\mathrm{f})$ is computed (at least in the case of a homogeneous polynomial f) explicitly in terms of the spectra of the transversal singularities $\left(Y_{i}, a_{i}\right)$ by J. Steenbrink in his recent (unpublished) manuscript: "The spectrum of hypersurface singularities".
As a result, in this way one is able to determine all the MHS numbers for V, V^{*} and U, provided one knows enough about the transversal singularities ($\left.Y_{i}, a_{i}\right)$.
In particular, one gets the next obvious consequences of this discussion.
(2.8) Corollary
(i) $\quad H^{n-1}(V)$ has a pure Hodge structure of weight ($n-1$) if and only if the morphism j above is an isomorphism. This can be rephrased by saying that $\operatorname{codim}\left(\mathscr{A}^{\prime}\right)=0$, i.e. the conditions \mathscr{B} in (2.5) are automatically satisfied by all the polynomials in $S_{(n-t) N-w}$.
(ii) The subspace $W_{n-3} H^{n-1}(V)$ depends on the transversal singularities (Y_{i}, a_{i}), but not on their position.

By general properties of Hodge structures it follows that the subspace $W_{n-2} H^{n-1}(V)$ is precisely the kernel of the cup-product pairing

$$
H^{n-1}(V) \times H^{n-1}(V) \longrightarrow H^{2 n-2}(V)=\mathbb{C}
$$

Moreover, when $\operatorname{dim}(V)$ is even, one can use in the usual way the numbers $\mathrm{h}^{\mathrm{p}, \mathrm{q}_{(}}(\mathrm{H} \cdot(\mathrm{V}))$ to compute the signature $\left(\mu_{+}, \mu_{0}, \mu_{\perp}\right)$ of the cup-product pairing over \mathbb{R} [19].
(2.9) Corollary

V is a C-homology manifold (i.e. there are no essential singularities for V) if and only if the cohomology algebra $H^{\cdot}(V)$ is a Poincaré algebra (i.e. for any \mathbf{k} the cup-product pairing

$$
H^{k}(V) \times H^{2 n-2-k}(V) \longrightarrow H^{2 n-2}(V)=\mathbb{C}
$$

is non degenerate).

Proof

If $H^{\circ}(V)$ is a Poincaré algebra, it follows that $H_{0}^{n}(V)=0$. Then using (2.8i) and the above description of the kernel of the cup-product on $H^{n-1}(V)$ it follows that $\mathrm{H}_{\Sigma^{\mathrm{n}}}(\mathrm{V})=0$, i.e. there are no essential singularities for V .
The other implication is standard.
Similar consideration lead to the computation of the MHS numbers of $H^{n}(F)$, but we leave the details for the reader (use the same method as in the proof of (3.6) below).

§ 3. Some examples

Let us discuss first the case when $\operatorname{dim} \mathrm{V}$ is even. Then the simplest singularities which are degenerate in this case are $\tilde{\mathrm{E}}_{6}, \tilde{\mathrm{E}}_{7}$ and $\tilde{\mathrm{E}}_{8}$.
(3.1) Proposition

Let $V C \mathbb{P}(\underline{\underline{W}})$ be a hypersurface with $\operatorname{deg} \mathrm{V}=\mathrm{N}$ and $\operatorname{dim} \mathrm{V}=2 \mathrm{~m}$. Assume that the set Σ^{\prime} of essential singularities for V consists only of singularities a_{i} whose associated transversal singularities are of type $\tilde{E}_{6}, \tilde{\mathrm{E}}_{7}$ or \mathbf{E}_{8}. Then the only (possibly) nonzero Hodge numbers of $\mathrm{H}_{0}^{2 \mathrm{~m}+1}(\mathrm{~V})$ are given by the next formula

$$
\mathrm{h}^{\mathrm{m}, \mathrm{~m}+1}\left(\mathrm{H}_{0}^{2 \mathrm{~m}+1}(\mathrm{~V})\right)=\mathrm{h}^{\mathrm{m}+1, \mathrm{~m}}\left(\mathrm{H}_{0}^{2 \mathrm{~m}+1}(\mathrm{~V})\right)=\operatorname{def}(\tilde{\mathscr{\circ}})
$$

where the linear system \mathscr{H}^{\sim} is defined by

$$
\tilde{\mathscr{H}}=\left\{h \in S_{\mathrm{mN}-\mathrm{w}} ; \mathrm{h} \mid \Sigma^{\prime}=0\right\} .
$$

Proof Use (1.10. ii) and (2.6).
(3.2) Corollary (including Zariski example [25], [12])

Let $B C \mathbb{P}^{2 m}$ be a hypersurface of degree N having only isolated singularities
and let $\mathrm{V} \longrightarrow \mathbb{P}^{2 \mathrm{~m}}$ be a cyclic covering of order 6 ramified over B. Assume that all the points $a_{i} \in \Sigma^{\prime}$ correspond to points $\bar{a}_{i} \in B$ such that B has an A_{2} singularity at $\overline{\mathrm{a}}_{\mathrm{i}}$. Let $\bar{\Sigma}$ denote the set of all these points $\overline{\mathrm{a}}_{\mathrm{i}}$.

Then the only (possibly) nonzero Hodge numbers of $H_{0}^{2 m+1}(V)$ are given by the next formula $\quad h^{\mathrm{m}, \mathrm{m}+1}\left(\mathrm{H}_{0}^{2 \mathrm{~m}+1}(\mathrm{~V})\right)=\mathrm{h}^{\mathrm{m}+1, \mathrm{~m}}\left(\mathrm{H}_{0}^{2 \mathrm{~m}+1}(\mathrm{~V})\right)=\operatorname{def}\left(\mathscr{\mathscr { F }}^{-}\right) \quad$ where the linear system $\quad \overline{\mathscr{G}} \quad$ is defined by $\quad \overline{\mathscr{f}}=\left\{\mathrm{h} \in \mathrm{H}^{0}\left(\mathbb{P}^{2 \mathrm{~m}}, O(\mathrm{mN}-2 \mathrm{~m}-1-\mathrm{N} / 6)\right)\right.$; $h \mid \bar{\Sigma}=0\}$.

Proof

Let $b=0$ be an equation for B. Then V is a hypersurface defined by the equation $b-t^{6}=0$ in the weighted projective space $\mathbb{P}(1, \ldots, 1, N / 6)$ and all the singularities $\mathrm{a}_{\mathrm{i}} \in \Sigma^{\prime}$ have associated transversal singularities $\left(\mathrm{Y}_{\mathrm{i}}, \mathrm{a}_{\mathrm{i}}\right)$ of type E_{8}. Hence we can apply (3.1) and note that an element $h \in S_{m N-w}$ with $w=2 m+1+N / 6$ can be written as a sum $h=\Sigma h_{j} t^{j}$ where h_{j} is a homogeneous polynomial in $x_{0}, x_{1}, \ldots, x_{2 m}$ of degree $\operatorname{deg}\left(h_{j}\right)=m N-w-j N / 6$.

Moreover the condition $h \mid \Sigma^{\prime}=0$ is clearly equivalent to $h_{0} \mid \overline{\mathbf{\Sigma}}=0$.
Assume from now on that $\operatorname{dim} \mathrm{V}=2 \mathrm{~m}-1$ is odd. Then the simplest degenerate singularities are $A_{2 k-1}$ for $k \geq 1$.

Proposition

Let V be a hypersurface in $\mathbb{P}(\underline{\underline{W}})$ with $\operatorname{dim} V=2 m-1, \operatorname{deg} V=N$ and such that any essential singularity $\mathrm{a}_{\mathrm{i}} \in \Sigma^{\prime}$ corresponds to a transversal singularity of type A_{1}. Then the only (possibly) nonzero Hodge number of $H_{0}^{2 m}(V)$ is given by the formula
$h^{m, m}\left(H_{0}^{2 m}(V)\right)=\operatorname{def}(\mathscr{\not C})$ where

$$
\mathscr{A}=\left\{h \in S_{m N-w}, h \mid \Sigma^{\prime}=0\right\}
$$

Proof Use (1.10i) with $k=1$ aand (2.5) with $t=m$.
Note that (3.3) extends the computations of Betti numbers in Clemens [2], Schoen [17] and Werner [24].

A more complicated example involving several types of $\mathrm{A}_{2 \mathrm{k}-1}$-singularities is the next.

Proposition

Let $V \subset \mathbb{P}\left(w_{0}, \ldots, w_{2 m}\right)$ be a hypersurface of degree N such that the set Σ^{\prime} of essential singularities satisfies the next two conditions:
(i) $\quad \Sigma^{\prime}$ is contained in the hyperplane $x_{0}=0$
(ii) any transversal singularity ($\mathrm{Y}_{\mathrm{i}}, \mathrm{a}_{\mathrm{i}}$) corresponding to a point $\mathrm{a}_{\mathrm{i}} \in \Sigma^{\prime}$ is of type $A_{2 k+1}$ for some k and $\left(Y_{i} \cap H_{0}, a_{i}\right)$ is an A_{1}-singularity in $\left(H_{0}, a_{i}\right)$, where H_{0} denotes the affine hyperplane $x_{0}=0$. Let $\Sigma_{k}=\left\{a_{i} \in \Sigma^{\prime} ;\left(Y_{i}, a_{i}\right)\right.$ is of type $\left.A_{2 k+1}\right\}$ and for any k with $\Sigma_{\mathbf{k}} \neq \phi$ consider the linear system

$$
\mathscr{H}_{k}=\left\{\mathrm{h} \in \overline{\mathrm{~S}}_{\mathrm{mN}-\mathrm{w}-\mathrm{kW}_{0}} ; \mathrm{h} \mid \mathbf{\Sigma}_{\mathrm{k}}=0\right\}
$$

Then the only possible nonzero Hodge number of $\mathrm{H}_{0}^{2 \mathrm{~m}}(\mathrm{~V})$ is given by the formula

$$
\mathbf{h}^{\mathrm{m}, \mathrm{~m}}\left(\mathrm{H}_{0}^{2 \mathrm{~m}}(\mathrm{~V})\right)=\sum_{\mathbf{k}, \Sigma_{\mathbf{k}} \neq \phi} \operatorname{def}\left(\mathscr{C}_{\mathbf{k}}\right)
$$

Here $\overline{\mathrm{S}}$ denotes the polynomial ring $\mathbb{C}\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{2 \mathrm{~m}}\right]$ graded by the conditions $\operatorname{deg}\left(x_{i}\right)=w_{i}$ for $i \geq 1$.

Proof

According to Theorem (2.4) we have to analyse the kernel of T^{m} on $S_{m N-w}$.
Write an element $h \in S_{m N-w}$ as a sum $h=\Sigma h_{j} x_{0}^{j}$ with $h_{j} \in \bar{S}_{m N-w-j w_{0}}$. If $a_{i} \in \Sigma_{k}$, then the component of $T^{m}(h)$ corresponding to $H_{a_{i}}^{n}(V)$ is zero if and only if $h_{\mathbf{k}}\left(\mathrm{a}_{\mathbf{i}}\right)=0$, i.e. if $\mathrm{h}_{\mathbf{k}} \in \mathscr{O}_{\mathbf{k}}$, use (1.10i) and the second part of the condition (ii) above.

It follows from (3.4) that the singularities situated in one Σ_{k} do not interact at all with the singularities situated in a different Σ_{ℓ} (with $\ell \neq \mathbf{k}$) and this fact is not at all obvious from purely topological considerations.

A special case of (3.4) is the next
(3.5) Corollary

Let $B \subset \mathbb{P}^{2 m-1}$ be a hypersurface of degree N having only isolated singularities. Let e be a divisor of N and let $V \longrightarrow \mathbb{P}^{2 m-1}$ be a cyclic covering of order e ramified over B. Assume that all the essential singularities of $V \quad a_{i} \in \Sigma^{\prime}$ correspond to points \bar{a}_{i} which are nodes on B. Let $\bar{\Sigma}$ denote the set of all these nodes $\overline{\mathrm{a}}_{\mathrm{i}}$.

Then either
(i) $\quad e$ is odd, $\Sigma^{\prime}=\phi$ and $H_{0}^{2 m}(V)=0$, or
(ii) $\quad \mathrm{e}$ is even, N is even and the only possibly nonzero Hodge number of $H_{0}^{2 m}(V)$ is given by $h^{m, m}\left(H_{0}^{2 m}(V)\right)=\operatorname{def}(\mathscr{f})$ where

$$
\mathscr{f}=\left\{\mathrm{h} \in \mathrm{H}^{0}\left(\mathrm{p}^{2 \mathrm{~m}-1}, O(\mathrm{mN}-2 \mathrm{~m}-\mathrm{N} / 2), \mathrm{h} \mid \bar{\Sigma}=0\right\}\right.
$$

Proof Apply (3.4) with $\Sigma^{\prime}=\Sigma_{k}$ for $2 k+2=e, w_{0}=N \mid e, w_{1}=\ldots=w_{2 m}=1$.
Note that the answer in case (ii) does not depend on the degree e of the covering $\mathrm{V} \longrightarrow \mathbb{P}^{2 \mathrm{~m}-1}!$
(3.6) Corollary

Let $\mathrm{F}: \mathrm{f}-1=0$ be the Milnor fiber of the weighted homogeneous polynomial f . Assume that all the transversal singularities of f are nodes. Then:

$$
\begin{equation*}
\mathrm{b}_{\mathrm{n}-1}(\mathrm{~F})=0 \text { if } \mathrm{n} \text { and } \mathrm{N} \text { are both odd; } \tag{i}
\end{equation*}
$$

(ii) If $n=2 m$ is even, then the only possibly nonzero Hodge number of $\mathrm{H}^{\mathrm{n}-1}(\mathrm{~F})$ is given by $\mathrm{h}^{\mathrm{m}, \mathrm{m}}\left(\mathrm{H}^{\mathrm{n}-1}(\mathrm{~F})\right)=\operatorname{def}(\mathscr{f})$ where

$$
\mathscr{H}=\left\{\mathrm{h} \in \mathrm{~S}_{\mathrm{mN}-\mathrm{w}} ; \mathrm{h} \mid \Sigma^{\prime}=0\right\}
$$

with Σ^{\prime} the set of essential singularities for $V: f=0$. Moreover in this
case $H^{n-1}(F)=H^{n-1}(F)_{0}$, i.e. all the elements in $H^{n-1}(F)$ are fixed under the monodromy operator \mathbf{h}^{*}.
(iii) If $\mathrm{n}=2 \mathrm{~m}-1$ is odd and N is even, then the only possibly nonzero Hodge number of $\mathrm{H}^{\mathrm{n}-1}(\mathrm{~F})$ is given by $\mathrm{h}^{\mathrm{m}-1, \mathrm{~m}-1}\left(\mathrm{H}^{\mathrm{n}-1}(\mathrm{~F})\right)=\operatorname{def}(\mathscr{\mathscr { C }})$, where $\quad \mathscr{O}^{\prime}=\left\{\mathrm{h} \in \mathrm{S}_{\mathrm{mN}-\mathrm{w}-\mathrm{N} / 2} ;\right.$ $\mathrm{h} \mid \tilde{\Sigma}=0\}$ with $\tilde{\Sigma}$ the set of essential singularities for $\tilde{\mathrm{V}}: \mathrm{f}-\mathrm{t}^{\mathbf{N}}=0$ in $\mathbb{P}(\underline{\underline{W}}, 1)$. Moreover in this case $H^{n-1}(F)=H^{n-1}(F)_{\neq 0}$, i.e. there is no nonzero element fixed under the monodromy operator h^{*}.

Proof
For $a \in \mathbb{I} / N I I$, let $H^{\cdot}(F)_{a}$ denote the eigenspace of h^{*} corresponding to the eigenvalue t^{a}. If we set $H \cdot(F)_{\neq 0}=\underset{a \neq 0}{\oplus} H \cdot(F)_{a}$, then one clearly has the decomposition $H^{\cdot}(F)=H^{\cdot}(F)_{0} \oplus H^{\cdot}(F)_{\neq 0}$. It follows from [6], (1.19) and (2.5) that one has isomorphisms $H^{n-1}(F)_{0}=H_{0}^{n}(V)$ and $H^{n-1}(F)_{\neq 0}=H_{0}^{n+1}(V)$ which are (in some precise way) compatible with the MHS. See the remarks after (2.5) in [6].

Assume first that $n=2 m$ is even. Then all the singularities of \tilde{V} are nondegenerate and hence $\mathrm{H}_{0}^{\mathrm{n}+1}(\stackrel{\sim}{\mathrm{~V}})=0$. The result follows using (3.3). Assume next that $n=2 m-1$ is odd. Then all the singularities of V are nondegenerate and hence $\mathrm{H}_{0}^{\mathrm{n}}(\mathrm{V})=0$. If N is also odd, the same is true for $\tilde{\mathrm{V}}$ and we get the case (i) above. If N is even, then the singularities in $\tilde{\mathrm{\Sigma}}$ are of type $\mathrm{A}_{\mathrm{N}-1}$ and we can apply (3.4). Note that since $\tilde{\boldsymbol{\Sigma}}$ is contained in the hyperplane $t=0$, we regard $\tilde{\boldsymbol{\Sigma}}$ as a subset in $\mathbb{P}(\underline{w})$. Recall that the monodromy operator $\mathrm{h}^{*}: \mathrm{H}^{*}(\mathrm{~F}) \longrightarrow \mathrm{H}^{*}(\mathrm{~F})$ is induced by the mapping

$$
h: F \longrightarrow F, h(x)=\left(t^{w_{0}} x_{0}, \ldots, t^{w_{n}} x_{n}\right) \text { for } t=\exp (2 \pi i / N)
$$

REFERENCES

1. Burghelea, D., Verona, A.: Local homological properties of analytic sets, Manuscritpa Math. 7, 55-66, (1972).
2. Clemens, C.H.: Double Solids, Adv. in Math. 47, 107-230 (1983).
3. Deligne, P.: Theorie de Hodge II, III, Publ. Math. IHES 40, 5-58 (1971) and 44, 5-77 (1974).
4. Dimca, A.: On the homology and cohomology of complete intersections with isolated singularities, Compositio Math. 58, 321-339 (1986).
5. Dimca, A.: Topics on Real and Complex Singularities, Braunschweig-Wiesbaden, Vieweg 1987.
6. Dimca, A.: On the Milnor fibrations of weighted homogeneous polynomials, Compositio Math. (to appear).
7. Dimca, A., Dimiev, S.: On analytic coverings of weighted projective spaces, Bull. London Math. Soc. 17, 234-238 (1985).
8. Dolgachev, I.: Weighted projective varieties. In: Carrell, J.B. (ed): Group Actions and Vector Fields, Proceedings 1981, Lecture Notes in Math. vol 956, pp. 34-71, Springer 1982.
9. Durfee, A.H.: Fifteen characterizations of rational double points and simple critical points, L'Enseignement Math. 25, 131-163 (1979).
10. Durfee, A.H.: Mixed Hodge structures on punctured neighborhoods, Duke Math. J. 50, 1017-1040 (1983).
11. Ebeling, W.: Quadratische Formen und Monodromiegruppen von Singularitäten, Math. Ann. 255, 463-498 (1981).
12. Esnault, H.: Fibre de Milnor d'un cone sur une courbe plane singulière, Invent. Math. 68, 477-496 (1982).
13. Griffiths, P.: On the periods of certain rational integrals I, II, Ann. Math. 90, 460-541 (1969).
14. Grothendieck, A.: On the de Rham cohomology of algebraic varieties, Publ. Math. IHES 29, 351-358 (1966).
15. Reid, M.: Young person's guide to canonical singularities, Proc. AMS Summer Institute Bowdoin 1985, Proc. Symp. Pure Math. 46, Part 1, pp. 345-414 (1987).
16. Saito, K.: Einfach-elliptische Singularitäten, Invent. Math. 23, 289-325 (1974).
17. Schoen, Ch.: Algebraic cycles on certain desingularized nodal hypersurfaces, Math. Ann. 270, 17-27 (1985).
18. Siersma, D.: Quasihomogeneous singularities with transversal type A_{1}, preprint Utrecht Univ. (1987).
19. Steenbrink, J.H.M.: Intersection form for quasihomogeneous singuarities, Compositio Math. 34, 211-223 (1977).
20. Steenbrink, J.H.M.: Mixed Hodge structures associated with isolated singularities, Proc. Symp. Pure Math. 40, Part 2, pp. 513-536 (1983).
21. Steenbrink, J.H.M.: Mixed Hodge Structures and Singularities (book to appear).
22. van Straten, D.: On the Betti numbers of the Milnor fiber of a certain class of hypersurface singularities. In: Greuel, G.-M., Trautmann, G. (eds): Singularities, Representations of Algebras and Vector Bundles, Proc. Lambrecht 1985, Lecture Notes in Math. vol. 1273, pp. 203-220, Springer 1987.
23. Terao, H.: Forms with logarithmic pole and the filtration by the order of the pole, Int. Symp. Alg. Geom. Kyoto 1977, p. 673-685, (1977).
24. Werner, J.: Kleine Auflösungen spezieller dreidimensionaler Varietäten, Bonner Math. Schriften Nr. 186, Bonn 1987.
25. Zariski, O.: On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math. 51, 305-328 (1929).
