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A LIFT INTO SIEGEL MODULAR FORMS OVER THE

THETA GROUP IN DEGREE TWO AND THE CHIRAL

SUPERSTRING MEASURE

CRIS POOR AND DAVID S. YUEN

Abstract. We prove in degree two, that the Siegel modular form
of D’Hoker and Phong that gives the chiral superstring measure is
a lift. This gives a fast algorithm for computing its Fourier coef-
ficients. We prove a general lifting from Jacobi cusp forms of half
integral index t/2 over the theta group Γ1(1, 2) to Siegel modu-
lar cusp forms over certain subgroups Γpara(t; 1, 2) of paramodular
groups. The theta group lift given here is a modification of the
Gritsenko lift.

1. Introduction

We construct a lifting L from Jacobi cusp forms of index t/2 for the
theta group Γ1(1, 2) to Siegel modular forms on subgroups Γpara(t; 1, 2)
of the paramodular groups Γpara(t):

L : Jcusp
k,t/2(Γ1(1, 2)J) → Mk (Γpara(t; 1, 2)) .

Our construction imitates the construction of the lift due to Gritsenko,
Grit : Jk,m(SL2(Z)J ) → Mk (Γpara(m)), which sends Jacobi forms of
index m on SL2(Z) to Siegel modular forms on the paramodular group
Γpara(m), see [8]. Although we proceed in greater generality, our main
interest is the case where t is odd. In order to properly call L a lift, we
should really discuss the L-series of the lifted Siegel modular form but
here we content ourselves with giving the Fourier coefficients.

Theorem 1. Let t ∈ N and k ∈ Z. There is a monomorphism

L : Jcusp
k,t/2(Γ1(1, 2)J) → Mk (Γpara(t; 1, 2))

such that if φ ∈ Jcusp
k,t/2(Γ1(1, 2)J) has the Fourier expansion

φ(τ, z) =
∑

n,r∈Z: tn−r2>0, n>0

c(n, r)e(1
2
nτ + rz),

Date: August 10, 2010.
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2 C. POOR AND D. YUEN

for τ ∈ H1 and z ∈ C, then L(φ) ∈ Mk (Γpara(t; 1, 2)) has the Fourier

expansion

L(φ)(Ω) =
∑

T=(n r
r m ): t|m,

mn−r2>0, n>0, m>0.

a(T )e(1
2
tr(TΩ)),

for Ω ∈ H2, where

a(

(

n r
r m

)

) = (−1)(m/t+1)(n+1)
∑

a|(n,r, m/t)
a odd

ak−1 c(
mn

ta2
,
r

a
).

If t 6≡ 0 mod 4 then L(φ) is a cusp form.

Although the lifting L is adequately described as an imitation of
the Gritsenko lift, the choice of Hecke operators used to construct L
was not obvious to us. The special case t = 1 is a lifting from Jacobi
cusp forms of index 1/2 for the Jacobi theta group Γ1(1, 2)J to Siegel
modular cusp forms for the theta group Γ2(1, 2),

L : Jcusp
k,1/2(Γ1(1, 2)J) → Sk (Γ2(1, 2)) .

The groups that arise in this construction have natural geometric in-
terpretations. The moduli space Γpara(t)\H2 is the equivalence classes
of polarized abelian surfaces whose polarization has type Et =

(

0 T
−T 0

)

with T = ( 1 0
0 t ). This implies that there exists a divisor on the abelian

surface with Chern class Et. To each equivalence class of type Et

polarized abelian surface in Γpara(t; 1, 2)\H2, one may associate a dis-
tinguished rank t vector space of sections of a divisor of Chern class Et,
compare the transformation of theta functions under the paramodular
group in [12], page 175. For many purposes, the theta group Γg(1, 2)
is just as natural, or even more natural, than the full modular group
Γg. For example, the theta series of an integral unimodular lattice of
even rank is always automorphic with respect to the theta group for
a character, whereas the theta series is only automorphic with respect
to the full modular group when the lattice happens to be even. We
can also connect the lift L with elliptic modular forms on the theta
group Γ1(1, 2) if we make use of multiplication by the theta function
θ[0] ∈ J1/2,1/2(Γ1(1, 2)J , vθ). Here, vθ is the multiplier of the theta
function and takes values in the eighth roots of unity.

Corollary 2. For k ∈ N, with 4|k, there are monomorphisms

Sk− 1

2

(

Γ1(1, 2), v2k−1
θ

) ·θ[0](z,τ)−→ Jcusp
k,1/2(Γ1(1, 2)J)

L−→ Sk (Γ2(1, 2)) .
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The point is that L, which is defined with respect to the theta group,
is just as fundamental as any member of the Saito-Kurokawa family of
lifts, to which L belongs. For a general context and for an extended
family of lifts, see the thesis of F. Clery [3].

An Application.

D’Hoker and Phong [5] have computed the chiral superstring mea-
sure dν(g)[e] = Ξg[e] dµ(g) in g=2 and it is determined by Ξ2[0] ∈
S8 (Γ2(1, 2)), which can be defined, for example, as a polynomial of
degree 16 in the thetanullwerte, see [10]:

Ξ2[0] =
1

1024

(

2 θ( 0 0
0 0 )16 − θ( 0 0

0 0 )8
10
∑

ζ even

θ[ζ ]8 + 2 θ( 0 0
0 0 )4F

)

,(1)

with F =

θ( 0 0
0 1 )4θ( 0 0

1 0 )4θ( 0 0
1 1 )4 + θ( 0 0

0 1 )4θ( 1 0
0 0 )4θ( 1 0

0 1 )4 + θ( 0 0
1 0 )4θ( 0 1

0 0 )4θ( 0 1
1 0 )4

+θ( 0 0
1 1 )4θ( 1 1

0 0 )4θ( 1 1
1 1 )4 + θ( 0 1

0 0 )4θ( 1 0
0 0 )4θ( 1 1

0 0 )4 + θ( 0 1
1 0 )4θ( 1 0

0 1 )4θ( 1 1
1 1 )4.

The solution Ξ2[0] may be variously viewed as a Siegel modular form,
a Teichmuller modular form or as a binary invariant depending upon
whether it is viewed as a section over the moduli space of abelian
varieties, curves or hyperelliptic curves. In the first setting, the Ansatz
of D’Hoker and Phong [5][2][10][11] asks for a family of Siegel modular
forms satisfying: 1) Ξg1+g2

[0](
(

Ω1 0
0 Ω2

)

) = Ξg1
[0](Ω1)Ξg2

[0](Ω2) for Ω1,
Ω2 in the Jacobian loci. 2) tr (Ξg[0]) vanishes on the Jacobian locus.
3) The family {Ξg[0]} is uniquely determined on the Jacobian loci by
the genus one solution Ξ1[0] = θ4

00η
12. This Ansatz can be satisfied

through g ≤ 5 but is thought unlikely to extend further [14]. Over the
hyperelliptic locus, however, the corresponding conditions are solved
for all g by a family of binary invariants, see [15]. As of this writing it
remains an open question whether the corresponding conditions can be
satisfied by a Teichmuller modular form beyond g = 5. See [13] for an
entry to the physics literature. We write T = ( n r

r m ) = [n, r, m] and in
Table 1 give some Fourier coefficients for a (T ; Ξ2[0]) using the above
polynomial in the thetanullwerte (1).

Table 1. Fourier coefficients for Ξ2[0].
Trace: 2
[1, 0, 1] 1

Trace: 3
[1, 0, 2] 6

Trace: 4
[1, 0, 3] 0, [2, 0, 2] 64, [2, 1, 2] 0
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Trace: 5
[1, 0, 4] −64, [2, 0, 3] 252, [2, 1, 3] −84

Trace: 6
[1, 0, 5] −84, [2, 0, 4] 384, [2, 1, 4] −512, [3, 0, 3] 1080, [3, 1, 3] −384

Trace: 7
[1, 0, 6] 252, [2, 0, 5] 28, [2, 1, 5] −1107, [3, 0, 4] 0, [3, 1, 4] 0

Trace: 8
[1, 0, 7] 512, [2, 0, 6] 0, [2, 1, 6] 0, [3, 0, 5] −4608, [3, 1, 5] 792,
[4, 0, 4] −4096, [4, 1, 4] 4608, [4, 2, 4] 0.

A rapid method exists for computing these Fourier coefficients be-
cause Ξ2[0] is a lift. Consider Φ = θ11F2 −16 θ7F 2

2 ∈ S15/2 (Γ0(4)∗, ṽ15
θ ),

where ṽθ : Γ0(4)∗ → C∗ is conjugate to vθ; note Γ1(1, 2) is conjugate to

Γ0(4)∗ via Γ1(1, 2) = ( 1 0
0 2 )−1Γ0(4)∗( 1 0

0 2 ). We also note that Φ is not in
the Kohnen plus space and that its Fourier expansion begins:

Φ(τ) =q + 6q2 − 64q4 − 84q5 + 252q6 + 512q7 − 384q8 − 1107q9

+28q10 + 3724q13 + 792q14 − 4608q15 + 4096q16 − 168q17

−15390q18 + 5376q20 + 1944q21 + 27676q22 + 10752q23 − 16128q24

−11635q25 − 20748q26 − 32768q28 − 31836q29 + 79704q30

+21504q31 + 24576q32 + 60984q33 − 107464q34 + 70848q36

−41492q37 − 20748q38 − 124416q39 − 1792q40 + 63504q41

−68616q42 + 215460q45 + 175640q46 + 64512q47 − 315783q49

+O(q50).

Use Corollary 2 to define a Jacobi form φ(τ, z) = θ00(z, τ) Φ(τ/2)
∈ Jcusp

8,1/2(Γ1(1, 2)J). The lift L(φ) is then in the one dimensional space

S8 (Γ2(1, 2)). By checking agreement on one Fourier coefficient we con-
clude Ξ2[0] = L(φ) and obtain the formula

a

((

n r
r m

)

; Ξ2[0]

)

= (−1)(m+1)(n+1)
∑

a|(n, r, m)
a odd

a7c(
mn − r2

a2
; Φ).

Thus, the entries in Table 1 can be easily verified from the q-expansion
of the elliptic modular form Φ.

We thank M. Oura and R. Salvati Manni for introducing us to
the subject of superstring measures. We thank V. Gritsenko and T.
Ibukiyama for their comments on this work. We thank the Max Planck
Institute for Mathematics in Bonn for its hospitality during March,
2010 when parts of this article were written.
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2. Groups

The justifications for working out a variant of the Saito-Kurokawa
lift are the precise specification of the group of automorphy and the
cuspidality of the lift. For index 1/2, the lift L(φ) is automorphic
with respect to the theta group Γ2(1, 2). For index t/2, this role is
played by Γpara(t; 1, 2), a subgroup of the paramodular group Γpara(t).
In order to determine the group of automorphy for the lift we will need
to know generators of Γpara(t; 1, 2). The thesis of Delzeith [4] shows
that Γpara(t) is generated by its translations and by J(t) =

(

0 T−1

−T 0

)

for
T = ( 1 0

0 t ). In order to show the cuspidality of the lift for t 6≡ 0 mod 4,
we require coset decompositions of Sp2(Q) with respect to Γpara(t) and
Γpara(t; 1, 2). Let J =

(

0 I
−I 0

)

∈ GL2g(Z).

Definition 3. For F = R, Q or Z, define groups of matrices:

Spg(F) = {γ ∈ M2g×2g(F) : γJγ′ = J},
GSp+

g (F) = {γ ∈ M2g×2g(F) : ∃µ(γ) ∈ F+ : γJγ′ = µ(γ)J}.
The theta group of genus g is

Γg(1, 2) = {( A B
C D ) ∈ Spg(Z) : A′C, B′D have even diagonal entries}.

The real symplectic group Spg(R) has a natural action on the Siegel
upper half space Hg. For a domain D ⊆ C, let Vg(D) be the g-by-g
symmetric matrices with coefficients in D. For D ⊆ R, let Pg(D)semi ⊆
Vg(D) be the semidefinite elements and let Pg(D) be the definite ele-
ments. Let Hg be the Siegel upper half space of degree g, the subset
of Vg(C) with positive definite imaginary part. The symplectic group
Spg(R) acts on Ω ∈ Hg via

(

A B
C D

)

◦ Ω := (AΩ + B)(CΩ + D)−1.

Here we think of elements of Spg(R) as consisting of four g × g blocks.

The group of symplectic similitudes GSp+
g (Q) is useful in the construc-

tion of Hecke algerbas. The theta function θ[0]8 is automorphic with
respect to theta group Γg(1, 2). Because Γg(1, 2) is closed under trans-
position, we may also use the conditions that AB′ and CD′ are even
matrices.

Definition 4. The parabolic subgroup of the symplectic group is

Γ∞(F) = {









∗ 0 ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗
0 0 0 ∗









∈ Sp2(F)}.
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Also define

GΓ∞(F) = {









∗ 0 ∗ ∗
∗ ∗ ∗ ∗
∗ 0 ∗ ∗
0 0 0 ∗









∈ GSp+
2 (F)}.

Denote Γ2(1, 2)∞ = Γ2(1, 2) ∩ Γ∞(Z).

For an element γ ∈ GSp+
2 (F) to be in GΓ∞(F), it suffices that the

second column be of the correct form. Introduce the notation (γ)2 to
mean the second column of γ written as a row 4-tuple for typesetting
convenience.

Lemma 5. GΓ∞(F) = {γ ∈ GSp+
2 (F) : (γ)2 = (0, ∗, 0, 0) for ∗ ∈ F}.

Proof. Writing γ = ( A B
C D ), we assume that A12 = C12 = C22 = 0 and

need to show that C21 = D21 = 0. The defining conditions for GSp+
2 (F)

are AB′, CD′ symmetric and AD′ − BC ′ = µI and we deduce:

C21D11 = C11D21, A11D11 − B11C11 = µ, A11D21 = B11C21.

The conclusion then follows since µ > 0 and

µC21 = A11D11C21 − B11C11C21

= A11C11D21 − B11C11C21 = C11 (A11D21 − B11C21) = 0;

µD21 = A11D11D21 − B11C11D21

= D11B11C21 − B11C11D21 = B11 (D11C21 − C11D21) = 0.

�

The parabolic group Γ∞(R) is used in the construction of Fourier
Jacobi expansions. The intersection of this parabolic subgroup with the
theta group may be constructed in terms of more elementary groups as
follows: Consider the Heisenberg group H(F) = F3 = {(λ, v, k) ∈ F3}
with the multiplication (λ1, v1, k1)(λ2, v2, k2) = (λ1 + λ2, v1 + v2, k1 +

k2 +

∣

∣

∣

∣

λ1 v1

λ2 v2

∣

∣

∣

∣

). The theta group Γ1(1, 2) produces two orbits in H(Z)

under the action that sends (λ, v, k) to (λ, v, k)(σ⊕ 1) for σ ∈ Γ1(1, 2):

He(Z) = {(λ, v, k) ∈ Z3 : λv + k is even },
Ho(Z) = {(λ, v, k) ∈ Z3 : λv + k is odd }.

We denote by Γ1(1, 2)J the semidirect product Γ1(1, 2) n He(Z). By
choosing the orbit which is a subgroup, this notation is consistent with
that for the level one Jacobi group SL2(Z)J = SL2(Z) n H(Z).
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Lemma 6. The following multiplicative homomorphisms are injective:

i : GL2(R) → GΓ∞(R), given by

i(

(

a b
c d

)

) =









a 0 b 0
0 ad − bc 0 0
c 0 d 0
0 0 0 1









and w : H(R) → Γ∞(R) given by

w(λ, v, k) =









1 0 0 v
λ 1 v k
0 0 1 −λ
0 0 0 1









.

We have a group isomorphism Γ1(1, 2) n He(Z) → Γ2(1, 2)∞/{± I},
sending (g, h) 7→ ± i(g)w(h). Let ε = diag(1,−1, 1,−1). We have an

exact sequence

{I} → 〈w (He(Z)) , ε〉 → Γ2(1, 2)∞ → Γ1(1, 2) → {I}
given by sending γ ∈ Γ2(1, 2)∞ to ( γ11 γ13

γ31 γ33
) ∈ Γ1(1, 2).

Proof. Left to reader. �

Definition 7. For t ∈ N, define the paramodular group to be

Γpara(t) =























∗ t∗ ∗ ∗
∗ ∗ ∗ ∗/t
∗ t∗ ∗ ∗
t∗ t∗ t∗ ∗









: ∗ ∈ Z















∩ Sp2(Q).

Define the paramodular theta group, Γpara(t; 1, 2) =

{( A B
C D ) ∈ Γpara(t) : A′C = ( a ∗

∗ bt ), B
′D =

( c ∗
∗ d/t

)

, a, b, c, d ∈ 2Z}.

The moduli space interpretation of these groups was mentioned in
the Introduction. The groups Γpara(t) and Γpara(t; 1, 2) have a common
normalizer µt ∈ Sp2(R) with the property that µ2

t = −I; we have

µt =









0
√

t 0 0
−1√

t
0 0 0

0 0 0 1√
t

0 0 −
√

t 0









.

We now determine the parabolic part of the paramodular groups.
For t ∈ N, define γt as below and set Γ2(1, 2)∞[t] = 〈Γ2(1, 2)∞, γt〉, the
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group generated by Γ2(1, 2)∞ and γt inside Sp2(Q), where

γt =









1 0 0 0
0 1 0 2/t
0 0 1 0
0 0 0 1









.

Lemma 8. We have Γ∞(Q) ∩ Γpara(t; 1, 2) = Γ2(1, 2)∞[t].

Proof. The “⊇” inclusions is easy. Take δ ∈ Γ∞(Q)∩Γpara(t; 1, 2), and
write

δ =

(

A B
C D

)

=









a 0 b c
d ε1 e f/t
g 0 h i
0 0 0 ε2









for some a, b, c, d, e, f, g, h, i ∈ Z and ε1, ε2 ∈ {−1, +1}. The diagonal
of A′C and the upper left entry of B′D are even integers because δ ∈
Γpara(t; 1, 2); the lower right entry of B′D is an even multiple of 1/t.
So ci + ε2f/t = 2z/t for some z ∈ Z. In particular, tci + ε2f is even.
We proceed by cases.

If t is odd, then let β = γ
ε2f(t−1)/2
t δ and we see that its (2, 4) entry

is ε2
2f = f and so β ∈ Γpara(t; 1, 2) ∩ Γ∞(Z). We now show that the

lower right entry of its “B′D” is even; it is ci + ε2f ≡ tci + ε2f ≡ 0

mod 2 because t is odd. Thus β ∈ Γ2(1, 2)∞. Then δ = γ
−ε2f(t−1)/2
t β ∈

Γ2(1, 2)∞[t].
If t is even, then the condition that tci+ ε2f is an even integer forces

f to be even. Then let β = γ
−ε2f/2−cit/2
t δ to see that its (2, 4) entry is

−ε2ci and so β ∈ Γpara(t; 1, 2) ∩ Γ∞(Z). We now show that the lower
right entry of its “B′D” is an even integer; it is ci − ε2

2ci = 0. Thus

β ∈ Γ2(1, 2)∞ and δ = γ
ε2f/2+cit/2
t β ∈ Γ2(1, 2)∞[t]. �

Proofs about generators are best done inside an integral version of the
group. To this end, denote T = ( 1 0

0 t ) and It = ( I 0
0 T ), and Et =

(

0 T
−T 0

)

.

For any group G, denote GI = I−1
t GIt. Then

(2) Γpara(t; 1, 2)I = {g =
(

α β
γ δ

)

∈ GL4(Z) : g′Etg = Et

and
(

T−1α′Tγ
)

0
≡ 0 mod 2,

(

T−1β ′Tδ
)

0
≡ 0 mod 2}.

The presentation (2) makes it clear that the integral version of the
paramodular theta group Γpara(t; 1, 2)I is a natural generalization of
the theta group to nonprincipal polarizations and that when t = 1, we
have the equalities Γpara(t; 1, 2) = Γpara(t; 1, 2)I = Γ2(1, 2).
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Definition 9. For t ∈ N, define the group

Gt = 〈Γ2(1, 2)∞[t], µtΓ2(1, 2)∞[t]µt〉.
We will in due course show Gt = Γpara(t; 1, 2). Compare this with

the generators given by Gritsenko for Γpara(t), see [9].

Lemma 10. The following matrices are elements of GI
t : J =

(

0 I
−I 0

)

,

E1 =









1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0









, g(λ, v, k, `) =









1 0 0 tv
λ 1 v kt + 2`
0 0 1 −λt
0 0 0 1









,

Jg(λ, v, k, `)J−1 =









1 −λt 0 0
0 1 0 0
0 −vt 1 0
−v −kt − 2` λ 1









,

whenever k + λv ∈ 2Z and k, λ, v, ` ∈ Z.

Also, i(A) and j(A) for A ∈ Γ1(1, 2), where

j(( a b
c d )) =









1 0 0 0
0 a 0 b
0 0 1 0
0 c 0 d









.

Proof. We have J = I−1
t µti((

0 1
−1 0 ))µ−1

t i(( 0 1
−1 0 ))It ∈ GI

t and E1 =
I−1
t µti((

0 1
−1 0 ))µ−1

t It ∈ GI
t . The element g(k, λ, v, `) is in the Heisen-

berg part w(He(Z))I ⊆ Γ2(1, 2)∞
I and the conjugate Jg(k, λ, v, `)J−1

is therefore in GI
t . Since ( 1 0

2 1 ) and ( 0 1
−1 0 ) generate Γ1(1, 2), we have

∀A ∈ Γ1(1, 2), j(A) ∈ GI
t . We already know ∀A ∈ Γ1(1, 2), i(A) ∈

GI
t . �

Proposition 11. For t ∈ N, Γpara(t; 1, 2) = Gt.

Proof. Since Gt ⊆ Γpara(t; 1, 2) is easily checked, we only prove the
inclusion Γpara(t; 1, 2)I ⊆ GI

t . Take any γ ∈ Γpara(t; 1, 2)I . Recall the
notation (γ)2 = (u1, u2, u3, u4) to mean the second column of γ written
as a row 4-tuple. Since γ is integral of determinant one, we know that
gcd(u1, u2, u3, u4) = 1.

STEP 1: ∃β0 ∈ GI
t : (β0γ)2 = (x1, x2, x3, x4) and x4 6= 0.

Note at least one of the ui must be nonzero. If u4 6= 0, then β0 = I
works. If u4 = 0 and u3 6= 0, then β0 = Jg(1, 0, 0, 0)J−1 works. If
u4 = 0 and u1 6= 0, then β0 = Jg(1, 0, 0, 0)J−1 i(( 0 1

−1 0 )) works. Finally,
if u4 = 0 and u2 6= 0, then β0 = j(( 0 1

−1 0 )) works. Note that we always
have gcd(x1, x2, x3, x4) = 1.



10 C. POOR AND D. YUEN

STEP 2: ∃β1 ∈ GI
t : (β1β0γ)2 = (y1, y2, y3, y4) and gcd(y2, y4) = 1.

Set w = gcd(x2, x4) and w2 = gcd(x1, x3) and w3 = gcd(x4/w, w|x4|).
We make the following comments: w 6= 0 because x4 6= 0. There are
a, b ∈ Z such that w2 = ax1 + bx3. Finally, gcd(x4/(ww3), w) = 1 and
for any prime p, p|w3 implies p|w.

Let β1 = g(λ, v, k, `) with λ = ax4/(ww3), v = bx4/(ww3), k = −λv
and ` = 0 so that

β1 = g(λ, v, k, `) =









1 0 0 bx4t
ww3

ax4

ww3
1 bx4

ww3
kt

0 0 1 −ax4t
ww3

0 0 0 1









.

Then (β1β0γ)2 = (y1, y2, y3, y4) where

y4 = x4 and y2 = x2 + gcd(x1, x3)
x4

ww3
+ ktx4.

It is already the case that gcd(y2, y4) = 1. Consider any prime p|y4.
Case p|w: If p|w then p|x2, and p 6 | gcd(x1, x3) since gcd(x1, x2, x3, x4) =
1. But also p 6 | x4

ww3

since gcd(x4/(ww3), w) = 1 and so p 6 |y2.

Case p 6 |w: If p 6 |w, then p 6 |x2 and p|x4

w
since p|x4 and p 6 |w. Fur-

thermore p 6 |w3 (else p|w) so that p| x4

ww3

. Then p 6 |y2. In either case

p 6 | gcd(y2, y4) and thus gcd(y2, y4) = 1.

STEP 3: ∃β2 ∈ GI
t such that (β2β1β0γ)2 = (z1, 1, z3, 0).

Note that if one of y2, y4 is even (and hence the other is odd) then we
can find A ∈ Γ1(1, 2) such that (j(A)β1β0γ)2 = (z1, 1, z3, 0). In this
case we may take β2 = j(A). If both y2, y4 are odd, then (y1, y2, y3, y4)
being the second column of a Γpara(t; 1, 2)I matrix forces t|y1, t|y3 and
y1y3/t + y2y4 ≡ 0 mod 2 which forces y1, y3 to be odd as well. Then
g(1, 0, 0, 0)β1β0γ satisfies (g(1, 0, 0, 0)β1β0γ)2 = (y1, y1+y2, y3−ty4, y4).
Then y1 + y2 is even and y4 is still odd, so that β2 = j(A)g(1, 0, 0, 0)
suffices by the first argument.

STEP 4: ∃β3 ∈ GI
t such that (β3β2β1β0γ)2 = (0, 1, z3, z1z3/t).

From β2β1β0γ ∈ Γpara(t; 1, 2)I we see that z1z3/t ≡ 0 mod 2, and
that t|z1 and t|z3. Then β3 = g(z1/t, 0, 0, 0) gives us (β3β2β1β0γ)2 =
(0, 1, z3, z1z3/t).

STEP 5: ∃β4 ∈ GI
t such that (β4β3β2β1β0γ)2 = (z3, 1, 0, 0).

Note that z1z3/t is even and β4 = i(( 0 1
−1 0 ))j(

(

1 0
−z1z3/t 1

)

) ∈ GI
t works.

STEP 6: ∃β5 ∈ GI
t such that (β5β4β3β2β1β0γ)2 = (0, 1, 0, 0).

Use β5 = g(z3/t, 0, 0, 0) ∈ GI
t .

By Lemma 5, we have β5β4β3β2β1β0γ ∈ GΓ∞(Z) ∩ Γpara(t; 1, 2)I .

Now, GΓ∞(Z)∩Γpara(t; 1, 2)I ⊆ (GΓ∞(Q) ∩ Γpara(t; 1, 2))I and we have
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GΓ∞(Q)∩Γpara(t; 1, 2) = Γ∞(Q)∩Γpara(t; 1, 2) = Γ2(1, 2)∞[t], where the
last equality is by Lemma 8. Thus β5β4β3β2β1β0γ ∈ Γ2(1, 2)∞[t]I ⊆ GI

t

and γ ∈ GI
t . �

Lemma 12. We have Sp2(Z) ⊆ Γpara(t) U Γ∞(Q), where

U = {
(

1 c 0 0
0 1 0 0
0 0 1 0
0 0 −c 1

)

: c ∈ Z}.

Proof. Take any α ∈ Sp2(Z). Since the second column of α must have
relatively prime entries, by a similar argument to Steps 1 and 2 of the

proof to Proposition 11 we can find a β1 =

(

1 0 0 v
λ 1 v k
0 0 1 −λ
0 0 0 1

)

∈ Γpara(t) ∩
Sp2(Z) such that (β1α)2 = (y1, y2, y3, y4) where gcd(y2, y4) = 1. Let
g = gcd(ty2, y4) = aty2 +by4 for some a, b ∈ Z. Note g|t. Then let β2 =
( 1 0 0 0

0 a 0 b/t
0 0 1 0
0 −y4t/g 0 ty2/g

)

∈ Γpara(t) so that (β2β1α)2 = (y1, g/t, y3, 0). Next

let ( a b
c d ) ∈ SL2(Z) such that ( a b

c d ) ( y1

y3
) = ( z

0 ) where z = gcd(y1, y3).

Then let β3 =

(

a 0 b 0
0 1 0 0/t
c 0 d 0
0 0 0 1

)

∈ Γpara(t) so that (β3β2β1α)2 = (z, g/t, 0, 0).

Finally, let u =

(

1 zt/g 0 0
0 1 0 0
0 0 1 0
0 0 −zt/g 1

)

so that (u−1β3β2β1α)2 = (0, g/t, 0, 0).

The zt
g

are the integers c in the statement of the Lemma. Calling γ =

u−1β3β2β1α, then γ ∈ Sp2(Q) and (γ)2 = (0, g/t, 0, 0) forces γ ∈ Γ∞(Q)
by Lemma 5. Then α = β−1

1 β−1
2 β−1

3 uγ says that α ∈ Γpara(t) U Γ∞(Q).
�

Lemma 13. For Γpara(t; 1, 2)\Γpara(t), a complete list of right coset

representatives can be taken to be

C1 =

(

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)

, C2 =

(

1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

)

, C3 =

(

1 0 0 0
0 1 0 1/t
0 0 1 0
0 0 0 1

)

, C4=

(

1 0 1 0
0 1 0 1/t
0 0 1 0
0 0 0 1

)

,

C5 =

(

1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1

)

, C6 =

(

1 0 0 0
0 1 0 1/t
1 0 1 0
0 0 0 1

)

, C7 =

(

1 0 0 0
0 1 0 0
0 0 1 0
0 t 0 1

)

, C8 =

(

1 0 1 0
0 1 0 0
0 0 1 0
0 t 0 1

)

,

C9 =

(

1 0 0 0
0 1 0 0
1 0 1 0
0 t 0 1

)

, C10 =

(

1 0 0 1
0 1 1 0
1 0 1 1
0 t t 1

)

for t odd, and we can omit C10 for t even.

Proof. It is a straightforward calculation to check that the set of cosets
{Γpara(t; 1, 2)Ci}10

i=1 is stable under right multiplication by the following
set of generators for Γpara(t):

α :=

(

1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

)

, β :=

(

1 0 0 0
0 1 0 1/t
0 0 1 0
0 0 0 1

)

, γ :=

(

1 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1

)

, δ :=

( 0 0 1 0
0 0 0 1/t
−1 0 0 0
0 −t 0 0

)

,
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which shows that Γpara(t) =
⋃10

i=1 Γpara(t; 1, 2)Ci. It is another sim-
ple calculation to see that CiC

−1
j 6∈ Γpara(t; 1, 2) when i 6= j except

in the case when t is even and {i, j} = {9, 10}; this shows that the
coset representatives are nonredundant except that we can omit C10

when t is even. One can check that the permutations of cosets in-
duced by the right multiplication of these generators as cycles in S10

(or in S9 for even t) are: ᾱ = (12)(34)(78) and β̄ = (13)(24)(56) and
δ̄ = (25)(37)(49)(68) in either case, whereas γ̄ is the identity for even
t and (56)(78)(9 10) for odd t. �

Let ∆2(F) = {( A B
0 D ) ∈ Sp2(F)}.

Proposition 14. Let t ∈ N.

(1) For t odd, we have

Sp2(Z) ⊆ Γpara(t; 1, 2)Γ∞(Z)∆2(Q)Γ∞(Q).

(2) For t even but with t/2 odd, we have

Sp2(Z) ⊆ Γpara(t; 1, 2)Γ∞(Z)∆2(Q)Γ∞(Q)

∪Γpara(t; 1, 2)µ−1
t Γ∞(Z)µt∆2(Q)Γ∞(Q).

Proof. From Lemma 12 and Lemma 13, we have that

Sp2(Z) ⊆
10
⋃

i=1

Γpara(t; 1, 2)CiUΓ∞(Q),

where U is as defined in Lemma 12. It is clear that Ci ⊆ Γ∞(Z)∆2(Q)
for i = 1, . . . , 6, and so we have the inclusion Γpara(t; 1, 2)CiUΓ∞(Q) ⊆
Γpara(t; 1, 2)Γ∞(Z)∆2(Q)Γ∞(Q) for these i.

For the case where t is odd, we have

C7 =

( 1 −t 0 0
−1 1+t 0 0

−1−t 0 1+t 1
−2t t(t+1) t 1

)(

1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1

)(

t+1 t 0 0
1 1 0 0
0 0 1 −1
0 0 −t t+1

)

and C8 = C7

(

1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

)

so that C7, C8 ∈ Γpara(t; 1, 2)Γ∞(Z)∆2(Q). And

we have

C9 =

(

1 −t 0 0
0 1 0 0
0 −t 1 0
−t t t 1

)(

1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1

)(

1 t 0 0
0 1 0 0
0 0 1 0
0 0 −t 1

)

and C10 = C9

(

1 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1

)

so that C9, C10 ∈ Γpara(t; 1, 2)Γ∞(Z)∆2(Q).

Then Γpara(t; 1, 2)CiUΓ∞(Q) ⊆ Γpara(t; 1, 2)Γ∞(Z)∆2(Q)Γ∞(Q) for i =
7, 8, 9, 10 as well, which proves item (1).

For t even (and t/2 odd), we use that

C7 = µ−1
t C5µt
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so that C7, C8 ∈ µ−1
t Γ∞(Z)µt∆2(Q). The final case is C9 when t is

even. We will manipulate C9u for any u ∈ U . Any u ∈ U is of the form

u =

(

1 c 0 0
0 1 0 0
0 0 1 0
0 0 −c 1

)

with c ∈ Z. So C9u =

(

1 c 0 0
0 1 0 0
1 c 1 0
0 t −c 1

)

. For the case where

c is odd, Let g = gcd(c− t, c) = a(c− t)+ bc for some a, b ∈ Z. We can
verify that

C9u =

(

1 t 0 0
0 1 0 0
0 0 1 0
0 0 −t 1

)(

1 0 0 0
0 1 0 0
0 0 1 0
0 t(c+1) 0 1

)

(

c−t
g

0 −b 0

0 1 0 0
c
g

0 a 0

0 0 0 1

)

(

1 g 0 0
0 1 0 0
0 0 1 0
0 0 −g 1

)

(

a+b 0 b 0
0 1 0 0
−t
g

0 c−t
g

0

0 0 0 1

)

and this proves C9u ∈ Γpara(t; 1, 2)Γ∞(Z)∆2(Q)Γ∞(Q) when c is odd.
For the case where c is even, we can verify that

C9u =

(

1 tc/2 0 0
0 1 0 0
0 0 1 0
0 0 −tc/2 1

)(

1−t/2 0 −1 0
0 1 0 0
1 0 0 0
0 0 0 1

)

·

µ−1
t

(

1 0 0 0
0 1 0 0

1+c2/2 0 1 0
0 0 0 1

)

µt

(

1 c 0 0
0 1 0 0
0 0 1 0
0 0 −c 1

)(

1 0 1 0
0 1 0 0

−t/2 0 1−t/2 0
0 0 0 1

)

.

One important note is that we are assuming that t/2 is odd so that
(

1−t/2 0 −1 0
0 1 0 0
1 0 0 0
0 0 0 1

)

∈ Γpara(t; 1, 2), and so the above proves

C9u ∈ Γpara(t; 1, 2)µ−1
t Γ∞(Z)µt∆2(Q)Γ∞(Q) when c is even. Thus

Γpara(t; 1, 2)C9UΓ∞(Q) ⊆ Γpara(t; 1, 2)Γ∞(Z)∆2(Q)Γ∞(Q)

∪Γpara(t; 1, 2)µ−1
t Γ∞(Z)µt∆2(Q)Γ∞(Q).

The proof of item (2) is now complete. �

3. Hecke Algebras

We recall the abstract Hecke algebra HR(U, S). Let U ⊆ S be a
group contained in a semigroup inside of some larger group. For a ring
R, let LR(U, S) be the free R-module of finite linear combinations of
the basis U\S. A right action of U on LR(U, S) is defined by (Us)u 7→
U(su), extended R-linearly. The invariant R-module is denoted

HR(U, S) = {T ∈ LR(U, S) : ∀u ∈ U, Tu = T}.

The right invariance of HR(U, S) under U allows us to define a product
HR(U, S) × LR(U, S) → LR(U, S) by (

∑

α cαUsα) Us =
∑

α Usαs for
cα ∈ R and sα ∈ S. The restriction of this product to HR(U, S) ×
HR(U, S) → HR(U, S) makes HR(U, S) an associative R-algebra and
HR(U, S) also acts on LR(U, S) from the left.
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Lemma 15. Let U0 ⊆ S0 and U ⊆ S be groups contained in semigroups

inside of some larger groups. Let i : (U0, S0) → (U, S) be a relative

homomorphism. Let R be a ring. If

(L1) There exists a subgroup H ⊆ U such that U = i(U0)H,

(L2) For all s ∈ i(S0), we have sHs−1 ⊆ U ,

then there is an R-algebra homomorphism j : HR(U0, S0) → HR(U, S)
such that j(

∑

α cαU0xα) =
∑

α cαUi(xα) for cα ∈ R and xα ∈ S0.

Furthermore, if i is injective and

(L3) i(S0)i(S0)
−1 ∩ U ⊆ i(U0),

then j is injective.

Proof. Since i(U0) ⊆ U we may define a R-linear map j : LR(U0, S0) →
LR(U, S) by

∑

α cαU0xα 7→ ∑

α cαUi(xα). To show that j restricts
to an R-linear map on the Hecke algebras, select T =

∑

α cαU0xα ∈
HR(U0, S0). The right invariance of T under U0 implies that j(T )
is right invariant under i(U0): j(T )i(u0) = j(Tu0) = j(T ). The
right invariance of j(T ) under h ∈ H follows from (L2): j(T )h =
∑

α cαUi(xα)h =
∑

α cαU (i(xα)h i(xα)−1) i(xα)=
∑

α cαUi(xα) = j(T ).
Since U = i(U0)H by (L1), we have j(T ) ∈ HR(U, S).

To show that j : HR(U0, S0) → HR(U, S) is a homomorphism it
suffices to prove the commutativity of the following diagram:

HR(U0, S0)×LR(U0, S0)
×−→ LR(U0, S0)

j × j ↓ ↓ j

HR(U, S)×LR(U, S)
×−→ LR(U, S).

We have

j(T (U0x)) =
∑

α

cαUi(xαx) =

(

∑

α

cαUi(xα)

)

(Ui(x)) = j(T )j(U0x).

To show the injectivity of j given the injectivity of i and (L3), write
T =

∑

α cαU0xα ∈ HR(U0, S0) with distinct cosets U0xα. It suffices to
show that the cosets j(U0xα) = Ui(xα) are distinct. If Ui(x1) = Ui(x2)
then i(x1)i(x2)

−1 ∈ i(S0)i(S0)
−1 ∩ U ⊆ i(U0) by (L3) and we conclude

U0x1 = U0x2 by the injectivity of i. �

We will apply Lemma 15 with the following choices:
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Lemma 16. Consider the Hecke pairs (U0, S0) and (U, S):

U0 = Γ1(1, 2),

S0 = {( a b
c d ) ∈ G Sp+

1 (Z) : ac, bd even, ad − bc ∈ N};
U = Γ2(1, 2)∞,

S = {( A B
C D ) ∈ G Sp+

2 (Z) : A′C, B′D even matrices, AD′ − BC ′ ∈ NI}
and the relative injection i : (U0, S0) → (U, S) given in Lemma 6. We

have i(S0)i(S0)
−1 ∩ U = i(U0). Let H ⊆ U be the subgroup given by

H = ±w(He(Z)). H is a normal subgroup with U = i(U0)H. In fact,

for all s ∈ i(S0), we have sHs−1 ⊆ H. Therefore, (U0, S0) and (U, S)
satisfy (L1), (L2) and (L3) of Lemma 15.

Proof. That H is a normal subgroup of U = Γ2(1, 2)∞ with U = i(U0)H
follows from Lemma 6. We have

(3) H =















ρ









1 0 0 v
λ 1 v k
0 0 1 −λ
0 0 0 1









: v, k, λ ∈ Z, ρ = ±1, k + vλ even















For condition (L2), take any s = i(( a b
c d )) ∈ i(S0). So ad − bc ∈ N

and ac, bd are even. Take a general h ∈ H as in (3). Then

sHs−1 = ρ









1 0 0 −bλ + av
dλ − cv 1 −bλ + av (ad − bc)k

0 0 1 −dλ + cv
0 0 0 1









.

For this to be in H , we need that the following is even:

(ad − bc)k + (dλ − cv)(−bλ + av).

But this can be rearranged to

(ad − bc)(k + vλ) + 2bcvλ − acv2 − bdλ2

which is even because (k + vλ), ac, bd are all even. Thus sHs−1 ⊆ H ,
and condition (L2) of Lemma 15 is also satisfied.

We now show i(S0)i(S0)
−1 ∩ U = i(U0) even though it is easy. The

general element u ∈ U may be written

u =









a 0 b g
e f h j
c 0 d r
0 0 0 n









∈ Γ2(1, 2)

where the conditions are ad − bc = 1, fn = 1, de − ch + fr = 0,
be + fg − ah = 0 and ab, cd, eh + fj are even. The alternate parity
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conditions are ac, bd and gr + jn even. If this u is in i(S0)i(S0)
−1 ⊆

i(GL+
2 (Q)) then e, g, h, j, and r vanish while n = 1 and f > 0. From

the equation 1 = det(u) = (ad − bc)f and from a, b, c, d, f ∈ Z we get
(ad − bc) = f = 1. Therefore u = i(( a b

c d )) ∈ i(U0). �

Definition 17. For each m ∈ N, consider the operator

T (1)
m =

∑

U0( a b
0 d ) ∈ LZ(U0, S0),

where the sum is over a, b, d ∈ N with ad = m, 0 ≤ b < 2d, and

a, (b + d) both odd.

Lemma 18. For each m ∈ N, T
(1)
m ∈ HZ(U0, S0).

Proof. First note that the left cosets in the above sum are disjoint
because

( a b
0 d )
(

a2 b2
0 d2

)−1
=

(

a
a2

b
d2

− b2
d

0
a2

a

)

,

and the only way that this could be in U0 is if a = a2, hence d = d2,
and b−b2

d
is even, which means that b− b2 would have to be a multiple

of 2d. Next, we will show that T
(1)
m is right invariant by elements from

U0. Since U0 = Γ1(1, 2) is generated as a group by the two elements
( 1 2

0 1 ) and ( 0 1
−1 0 ), we only need to show right invariance by these two

elements. In fact, because the above cosets are disjoint, we only need
to show that a coset representative multiplied on the right by these
generators always land in another of the cosets above.

First, we can easily calculate that

( a b
0 d )( 1 2

0 1 ) = ( 1 2`
0 1 )

(

a b+2a−2`d
0 d

)

.

By picking ` ∈ Z such that 0 ≤ b + 2a − 2`d < 2d and noting that
(b + 2a − 2`d) has the same parity as b, then

(

a b+2a−2`d
0 d

)

is one of the
coset representatives.

Second, let u = gcd(b, d), so that u is odd. Let x, y ∈ Z such
that bx + dy = u. Since u is odd, we can choose x, y such that b, x
have the same parity and d, y have the same parity. (Just replace by

b(x+d)+d(y− b) = u if necessary.) Let A =
(

−b/u y
−d/u −x

)

. Note A ∈ U0.

One can easily verify that

( a b
0 d )( 0 1

−1 0 ) = A
( u −ax

0 ad/u

)

= A( 1 2`
0 1 )

(

u −ax−2`ad/u
0 ad/u

)

where we choose ` ∈ Z so that 0 ≤ −ax − 2`ad/u < 2ad/u. Since ax
has the same parity as b, and since ad

u
has the same parity as d, then

(

u −ax−2`ad/u
0 ad/u

)

is one of the coset representatives, and we have shown

that T
(1)
m is right invariant by U0. �
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So we may apply Lemma 15 to conclude the operator j(T
(1)
m ) is in

HZ(U, S). We denote Tm = j(T
(1)
m ); namely, we have proven the fol-

lowing Corollary:

Corollary 19. We may define

Tm = j(T (1)
m ) =

∑

Γ2(1, 2)∞i(( a b
0 d )) ∈ HZ(U, S)

where the sum is over a, b, d ∈ N with ad = m, 0 ≤ b < 2d, and

a, (b + d) both odd.

4. Jacobi forms and Siegel forms and the lift

For r ∈ Q and γ = ( A B
C D ) ∈ Spg(R) and Ω ∈ Hg, we set

(f |rγ)(Ω) = det(CΩ + D)−rf(γ ◦ Ω),

for the choice of holomorphic root on Hg determined by the condition
that det(Ω/i)r > 0 for Ω = iY with Y ∈ Pg(R). Let Γ be a subgroup
commensurable with Γg. A holomorphic function f : Hg → C is a
modular form of weight r with respect to Γ and a map v : Γ → C∗ if

∀γ ∈ Γ, ∀Ω ∈ Hg, (f |rγ)(Ω) = v(γ) f(Ω),

and if additionally, for all γ ∈ Γg and for all Y0 ∈ Pg(R), f |γ is bounded
on domains of type {Ω ∈ Hg : Im Ω > Y0}. By a result of Koecher, this
boundedness condition is redundant for g ≥ 2. We denote by Mr(Γ, v)
the vector space of such functions and use the notation Mr(Γ) when the
map v is identically 1. The space Mr(Γ, v) is trivial unless µ(γ, Ω) =
det(CΩ + D)rv(γ) is a factor of automorphy; that is, µ : Γ×Hg → C∗

satisfies the cocycle condition: µ(γ1γ2, Ω) = µ(γ1, γ2 ◦ Ω)µ(γ2, Ω). For
integral weights k, det(CΩ+D)k is already a factor of automorphy and
hence v : Γ → C∗ is a character.

The transformation formula for the theta function, see pages 176 and
182 of [12],

∃v
(g)
θ : Γg(1, 2) → e (1/8) : ∀γ ∈ Γg(1, 2), θ[0]|1/2γ = v

(g)
θ (γ)θ[0],

gives an example of a Siegel modular form of weight 1/2; the standard

thetanull θ[0](0, Ω) gives an element of M1/2(Γg(1, 2), v
(g)
θ ). We write

vθ = v
(g)
θ when the degree g is clear from the context.

For holomorphic f : Hg → C we define

Φ(f)(Ω1) = lim
λ−→+∞

f

(

Ω1 0
0 iλ

)

when this limit exists for all Ω1 ∈ Hg−1. In particular, this operator
maps Mr(Γg) to Mr(Γg−1) and Mr(Γg(1, 2)) to Mr(Γg−1(1, 2)), see [7]
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for details. A modular form is a cusp form if ∀γ ∈ Γg, Φ(f |rγ) = 0.
We shall denote by Sr(Γ, v) the subspace of cusp forms and use the
notation Sr(Γ) when v is identically 1. We let e(z) = e2πiz for z ∈ C.

Definition 20. Let k, m ∈ Q. Let Γ ⊆ Γ∞(Z) and fix a map v : Γ →
C∗. The Jacobi forms with respect to Γ and v, denoted Jk,m(Γ, v), are

the vector space of holomorphic φ : H1×C → C such that for all γ ∈ Γ,

we have φ̃|kγ = v(γ) φ̃, where we define

φ̃(( τ z
z w )) = φ(τ, z)e(mw),

and for all γ ∈ Γ∞(Z), we have that the Fourier expansion for φ̃|kγ
is supported on semidefinite index matrices, namely (φ̃kγ)(( τ z

z w )) =
∑

s≥0 c(s)e(tr(s( τ z
z w ))), where s ≥ 0 indicates s is summed over only

semidefinite 2 × 2 matrices. Furthermore, we say φ is a Jacobi cusp

form and write φ ∈ Jcusp
k,m (Γ, v) if for all γ ∈ Γ∞(Z), we have that

the Fourier expansion for φ̃|kγ has no nonzero coefficients at indefinite

index matrices, namely (φ̃kγ)(( τ z
z w )) =

∑

s>0 c(s)e(tr(s( τ z
z w ))), where

s > 0 indicates s is summed over only positive definite 2 × 2 matrices.

When v is identically 1, we write Jk,m(Γ) = Jk,m(Γ, v) and similarly

for cusp forms.

We study Jk,t/2(Γ2(1, 2)∞) in this article. Note that Γ2(1, 2)∞ con-
tains translation matrices of the form ( I S

0 I ) where S is symmetric inte-
gral with even diagonal entries. This implies that φ ∈ Jcusp

k,t/2(Γ2(1, 2)∞)

has a Fourier expansion of the form

φ(τ, z) =
∑

n,r∈Z:
tn−r2>0, n>0

c(n, r)e(1
2
nτ + rz).

For g = 2, the Fourier Jacobi expansion of θ[0]

θ[0]( τ z
z ω ) = θ[0](0, τ) + 2θ[0](z, τ)e (ω/2) + . . .

shows that θ[0](z, τ) is automorphic with respect to Γ2(1, 2)∩Γ∞(Z) =
Γ2(1, 2)∞ of weight 1/2 and index 1/2. Thus θ[0](z, τ) gives an element
of J 1

2
, 1
2

(Γ2(1, 2)∞, vθ).

The definition of Jacobi form above is equivalent to the usual one.
The group Γ1(1, 2)J = Γ1(1, 2)nHe(Z) is isomorphic to Γ2(1, 2)∞/{±I}
by Lemma 6, and this shows the equivalence to the usual definition by
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taking generators of Γ1(1, 2) and He(Z). These transformations are

∀( a b
c d ) ∈ Γ1(1, 2),

φ

(

aτ + b

cτ + d
,

z

cτ + d

)

= v (i( a b
c d )) (cτ + d)ke

(

cmz2

cτ + d

)

φ(τ, z),

∀(λ, v, κ) ∈ He(Z),

φ(τ, z + λτ + v) = v (w(λ, v, κ)) e
(

m(λ2τ + 2λz + (λv + κ))
)

φ(τ, z).

The first equation shows that if φ ∈ Jk,m(Γ, v) then φ(τ, 0) gives an ele-
ment of Jk,0(Γ, v). Using the isomorphism Mk(i

−1(Γ), i∗v) = Jk,0(Γ, v)
we have Mk1

(i−1(Γ), i∗v1)Jk2,m(Γ, v2) ⊆ Jk1+k2,m(Γ, v1v2). We use this
containment in the statement of Corollary 2 to write

Sk− 1

2

(Γ1(1, 2), (v
(1)
θ )2k−1)θ[0](z, τ) ⊆ J cusp

k, 1
2

(Γ1(1, 2)J , (v
(2)
θ )2k).

Here one needs to check that i∗(v
(2)
θ ) = v

(1)
θ on Γ1(1, 2). This can be

done by restricting the theta function to diagonal ( τ 0
0 ω ) ∈ H2.

Definition 21. Fix t ∈ N and k ∈ Z. For φ ∈ Jcusp

k, 1
2
t
(Γ2(1, 2)∞), define

φ̃(( τ z
z w )) = φ(τ, z)e(1

2
tw).

Define a formal series Fφ by

Fφ =
∞
∑

m=1

m2−k(−1)m+1φ̃ |k Tm =
∞
∑

m=1

∑

a,b,d

m2−k(−1)m+1φ̃ |k i(( a b
0 d )),

where the inner sum is over a, b, d ∈ N with ad = m, 0 ≤ b < 2d, and

a, (b + d) both odd.

Proposition 22. Let φ ∈ Jcusp

k, 1
2
t
(Γ2(1, 2)∞) have expansion

φ(τ, z) =
∑

n,r∈Z: tn−r2>0, n>0

c(n, r)e(1
2
nτ + rz).

Then the formal series Fφ(Ω) may be rearranged to

Fφ(Ω) =
∑

T=(n r
r m ):

mn−r2>0, n>0,m>0
t|m

a(T )e(1
2
tr(TΩ))

where the coefficients a(T ) are given by

a(

(

n r
r m

)

) = (−1)(m/t+1)(n+1)
∑

a|(n,r,m/t)
a odd

ak−1c(
mn

ta2
,
r

a
).
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Proof. Applying the action of Tm to φ̃, we get

Fφ((
τ z
z w )) =

∞
∑

m=1

m2−k(−1)m+1
∑

ad=m
0≤b<2d

a,b+d odd

m2k−3d−kφ(aτ+b
d

, az)e(1
2
tmw)

=

∞
∑

m=1

mk−1(−1)m+1
∑

ad=m
0≤b<2d

a,b+d odd

d−k·

∑

tn−r2>0

c(n, r)e(1
2
naτ+b

d
+ raz + 1

2
tmw)

=

∞
∑

m=1

∑

tn−r2>0

∑

ad=m
a odd

mk−1(−1)m+1c(n, r)d−k·

e(1
2
naτ

d
+ raz + 1

2
tmw)

∑

0≤b<2d
b+d odd

e(nb
2d

).

If m is odd, then d is odd, and b must be even and we would have

∑

0≤b<2d
b+d odd

e(nb
2d

) =

d−1
∑

j=0

e(nj
d

) =

{

d if d|n
0 otherwise.

If m is even, then d is even and b must be odd and we would have

∑

0≤b<2d
b+d odd

e(nb
2d

) =

d−1
∑

j=0

e(n(2j+1)
2d

)

=e(1
2

n
d
)

d−1
∑

j=0

e(nj
d

) =

{

d(−1)
n
d if d|n

0 otherwise.

We can unify these two cases of m even or odd by

∑

0≤b<2d
b+d odd

e(nb
2d

) =

{

d(−1)(m+1)n
d if d|n

0 otherwise.
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Plugging this into the formula, we can make the substitution n = dn1

where n1 ∈ Z to get

Fφ((
τ z
z w )) =

∞
∑

m=1

∑

ad=m
a odd

∑

tdn1−r2>0

mk−1(−1)(m+1)(−1)(m+1)n1 ·

c(dn1, r)d
−k+1e(1

2
n1aτ + raz + 1

2
tmw)

=
∞
∑

m=1

∑

ad=m
a odd

∑

tm
a

n1−r2>0

ak−1(−1)(m+1)(n1+1)c(m
a
n1, r)·

e(1
2
n1aτ + raz + 1

2
tmw).

Making another substitution R = ar and N = an1, where we sum over
R, N which must be multiples of a (or equivalently, we must only use
a which divide all of m, R, N), we get

(4) Fφ(( τ z
z w )) =

∞
∑

m=1

∑

tmN−R2>0

∑

a|(m,R,N)
a odd

ak−1(−1)(m+1)(N+1)·

c(mN
a2 , R

a
)e(1

2
Nτ + Rz + 1

2
tmw),

where we used the fact that N has the same parity as n1 because a
is odd when we replaced n1 by N in the exponent of (−1). A final
substitution M = mt where M ranges over N with t|M gives

Fφ((
τ z
z w )) =

∑

M,N∈N,R∈Z

MN−R2>0
t|M

∑

a|(M/t,R,N)
a odd

ak−1(−1)(M/t+1)(N+1)c(MN
ta2 , R

a
)·

e(1
2
Nτ + Rz + 1

2
Mw),

and this proves the proposition. �

Proposition 23. Fix t ∈ N and k ∈ Z. Let φ ∈ Jcusp

k, 1
2
t
(Γ2(1, 2)∞). The

series Fφ(Ω) converges absolutely for all Ω ∈ H2 and Fφ : H2 → C

defines a holomorphic function. Also, for ( τ z
z w ) ∈ H2 we have

Fφ(
(

tw z

z
1
t
τ

)

) = Fφ((
τ z
z w )).

Proof. Since φ has its Fourier coefficients c(n, r; φ) bounded by polyno-
mial growth, so does Fφ have its Fourier coefficients a(( n r

r m )) bounded
by polynomial growth. In more detail, the cusp form φ has a bound
|φ(τ, z)| ≤ Mφ v−k/2eπty2/v, where we write z = x+iy and τ = u+iv for
real x, y, u, v. This implies that the Fourier coefficients of φ have a poly-
nomial bound |c(n, r; φ)| ≤ Aφ (2tn−r2)k/2 where Aφ = (2πe/kt)k/2Mφ.
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A crude estimate shows |a (( n r
r m )) | ≤ Aφ mk(2tn− r2)k/2. This suffices

to show the absolute convergence of Fφ on compact subsets of H2. Note
that in the above proof of Proposition 22, in equation 4, the expression
is nearly symmetric in m and N . Thus switching m and N , we see that

Fφ(
(

tw z

z
1
t
τ

)

) = Fφ((
τ z
z w )).

�

Proposition 24. Fix t ∈ N and let φ and Fφ be as in Proposition 23.

Then Fφ |k µt = (−1)kFφ.

Proof. Note that φ̃ |k i(
(−1 0

0 −1

)

) = φ̃ implies φ(τ,−z) = (−1)kφ(τ, z)

and so c(n,−r; φ) = (−1)kc(n, r; φ). We have

(Fφ |k µ)(( τ z
z w )) = Fφ(

(

tw −z

−z
1
t
τ

)

)=(−1)kFφ(
(

tw z

z
1
t
τ

)

) = (−1)kFφ((
τ z
z w ))

�

The following Theorem completes the proof of Theorem 1 from the
Introduction. The form of the Fourier coefficients has already been
given in Proposition 22.

Theorem 25. Let t ∈ N and k ∈ Z. For φ ∈ Jcusp

k,
1
2
t
(Γ2(1, 2)∞), we have

Fφ ∈ Mk(Γ
para(t; 1, 2)) and Fφ|µt = (−1)kFφ. If t 6≡ 0 mod 4, then we

have Fφ ∈ Sk(Γ
para(t; 1, 2)).

Proof. We know that Fφ is holomorphic from Proposition 23. From De-
finition 21, we know that Fφ is invariant under Γ2(1, 2)∞ because the se-
ries defining it is term by term invariant. From the form of Fφ in Propo-
sition 22, it is clear that Fφ is invariant under γt and so Fφ is invariant
under Γ2(1, 2)∞[t]. From Proposition 24, we know Fφ |k µt = (−1)kFφ

and therefore Fφ is invariant under Gt = 〈Γ2(1, 2)∞[t], µtΓ2(1, 2)∞[t]µt〉
= Γpara(t; 1, 2) by Proposition 11.

We only need to prove that Fφ is a cusp form when t 6≡ 0 mod 4.
Take any β ∈ Sp2(Z). Since t 6≡ 0 mod 4, by Proposition 14, we
have that β = αγ1δγ2, or β = αµ−1

t γ1µtδγ2, where α ∈ Γpara(t; 1, 2),
δ ∈ ∆2(Q) and γ1 ∈ Γ∞(Z) and γ2 ∈ Γ∞(Q). Then Fφ|β = Fφ|γ1δγ2 or
Fφ|β = (−1)kFφ|γ1µtδγ2.

Since Fφ has no nonzero indefinite coefficients in its Fourier expan-
sion, and since γ1 ∈ Γ∞(Z), we have that Fφ|γ1 has no nonzero indef-
inite coefficients. Since δ and µtδ are upper triangular, then Fφ|γ1δ
and Fφ|γ1µtδ have no nonzero indefinite coefficients either; these two
cases can be unified together by saying that Fφ|βγ−1

2 has no nonzero
indefinite coefficients.
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Consider the Siegel operator (Φ2f)(τ) = lims→∞ f(( τ 0
0 is )) for a mod-

ular form f . Since γ2 ∈ Γ∞(Q) and (f |γ2)((
τ z
z ω )) = (∗)f(( ∗ ∗

∗ ω+∗ ))
where the ∗ depend only on τ, z and not on ω, then Φ2f = 0 would
imply Φ2(f |γ2) = 0. Thus

Φ2(Fφ|β) = Φ2((Fφ|βγ−1
2 )|γ2) = 0.

Since this is true for all β ∈ Sp2(Z), Fφ is a cusp form. �

When t = 1 and k is even, we get the following corollary which we
state as a theorem because it is of particular interest for the degree two
chiral superstring measure.

Theorem 26. Lifting to Degree Two Theta Group for even k.
Let k ∈ N be even and φ ∈ Jcusp

k, 1
2

(Γ2(1, 2)∞). Then Fφ ∈ Sk(Γ2(1, 2)).

Corollary 27. For t = 1, if k ∈ N is odd and φ ∈ Jcusp

k, 1
2

(Γ2(1, 2)∞)

then Fφ = 0.

Proof. Since k is odd, then by Proposition 24, Fφ|µt = −Fφ. Let

g =









1 0 0 0
1 1 0 0
0 0 1 −1
0 0 0 1









, ε =









1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1









.

Note that both g, ε ∈ Γ2(1, 2)∞ (see Lemma 6) and so Fφ|g = Fφ and
Fφ|ε = Fφ. But it is straightforward to check that

µ1gεµ1g
−1εµ1g = I

is the identity matrix. But Fφ|(µ1gεµ1g
−1εµ1g) = (−1)3Fφ = −Fφ and

Fφ|I = Fφ. This forces Fφ = 0. �

5. The Chiral String modular form in genus 2

Now we discuss the weight 15/2 form that gives Ξ2[0]. We define
here the variety of theta functions that we use. For Ω ∈ Hg, z ∈ Cg

and a, b ∈ Rg, define the first order theta function with characteristics
a and b as a holomorphic function on Cg ×Hg given by the series

θ

[

a
b

]

(z, Ω) =
∑

n∈Zg

e

(

1

2
(n + a)′Ω(n + a) + (n + a)′(n + z + b)

)

.

For r ∈ N, the rth order theta functions θr[ν] : Hg → C are given by

θr[ν](Ω) = θ

[

ν/r
0

]

(0, rΩ).
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In g = 1, we use the standard abbreviations θab(τ) = θ

[

a/2
b/2

]

(0, τ) for

a, b ∈ {0, 1}. In g = 2, we use θ(
a1 a2

b1 b2 )(Ω) = θ

[

a1/2 a2/2
b1/2 b2/2

]

(0, Ω).

The Dedekind eta function, mentioned only in connection with the
g = 1 chiral superstring measure in the Introduction, is the stan-
dard one. In the introduction, we have given Φ = θ11F2 − 16 θ7F 2

2 ∈
S15/2 (Γ0(4)∗, ṽ15

θ ) in terms of the generators of ⊕∞
`=0 M`/2(Γ0(4), ṽ`

θ):

θ(τ) = θ2[0](τ) =
∑

n∈Z

qn2

= 1 + 2q + 2q4 + 2q9 + . . .

F2(τ) =

(

θ2[1](τ)

2

)4

=
∑

n∈N: n odd

σ1(n)qn = q + 4q3 + 6q5 + 8q7 + . . .

Here ṽθ : Γ0(4)∗ → C∗ is given explicitly by ṽθ( a b
c d ) = vθ

(

a 2b
c/2 d

)

. In

these terms we can show directly that, for W4 =
(

0 1

2

−2 0

)

, we have

F2|W4 = F2 −
1

24
θ4.

However, the following alternate expression immediately shows modu-
larity with respect to the theta group.

Φ(τ/2) = θ00(τ)3

(

θ00(τ)θ01(τ)θ10(τ)

2

)4

∈ S15/2

(

Γ1(1, 2), v15
θ

)

.

Consider a form g ∈ Sk− 1

2

(Γ1(1, 2), v2k−1
θ ) whose Fourier expansion is

g(τ) =
∑

n∈N
c(n; g)qn/2. Multiplication by θ[0] ∈ J1/2,1/2(Γ1(1, 2)J , vθ)

whose Fourier expansion is θ[0](z, τ) =
∑

n∈N
qn2/2ζn produces a Ja-

cobi form φ(τ, z) = g(τ)θ[0](z, τ) ∈ Jcusp
k,1/2(Γ1(1, 2)J , v2k

θ ) whose Fourier

expansion is φ(τ, z) =
∑

n∈N,r∈Z
c(n− r2; g)qn/2ζr. Note that when 4|k,

φ has trivial character. In this case we have c(n, r; φ) = c(n − r2; g)
and the formula for the Fourier coefficients of the lift L(φ) is

a

((

n r
r m

)

; L(φ)

)

= (−1)(m+1)(n+1)
∑

a|(n, r, m)
a odd

ak−1c(
mn − r2

a2
; g).

This proves the formula for the Fourier coefficients of the chiral super-
string form Ξ2[0] that was given at the conclusion of the Introduction.
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6. Final Remarks

A final remark is that when t ≡ 0 mod 4, we can prove that
(

1 2 0 0
0 1 0 0
1 2 1 0
0 t −2 1

)

6∈Γpara(t; 1, 2)Γ∞(Z)∆2(Q)Γ∞(Q)

∪ Γpara(t; 1, 2)µ−1
t Γ∞(Z)µt∆2(Q)Γ∞(Q)

by showing that any matrix in the coset Γpara(t; 1, 2)

(

1 2 0 0
0 1 0 0
1 2 1 0
0 t −2 1

)

cannot

have a 0 in the (3, 2) or (4, 2) entry but a matrix in Γ∞(Z)∆2(Q)Γ∞(Q)
must have a 0 in the (4, 2) entry and any matrix that happens to be in
Γpara(t; 1, 2)µ−1

t Γ∞(Z)µ∆2(Q)Γ∞(Q) must have a 0 in the (3, 2) entry.
Thus the above method of proof in Theorem 25 that the lift is a cusp
form does not work when t ≡ 0 mod 4. It is conceivable that the lift
of a Jacobi cusp form might not be a cusp form in general when t ≡ 0
mod 4 but we don’t know any examples of this. The intended case
where t/2 is strictly half integral has been fully treated, as well as the
slightly more general case when t 6≡ 0 mod 4.
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