ON GOLOMB'S NEAR-PRIMITIVE ROOT CONJECTURE

PIETER MOREE

Abstract

Golomb conjectured in 2004 that for every squarefree integer $g>1$, and for every positive integer t, there are infinitely many primes $p \equiv 1(\bmod t)$ such that the order of g in $(\mathbb{Z} / p \mathbb{Z})^{*}$ is $(p-1) / t$ (we say that g is a near-primitive root of index t). We show that this conjecture is false and provide a corrected and generalized conjecture that is true under the assumption of the Generalized Riemann Hypothesis (GRH) in case g is a rational number.

1. Introduction

Let $g \in \mathbb{Q} \backslash\{-1,0,1\}$. Let p be a prime. Let $\nu_{p}(g)$ denote the exponent of p in the canonical factorization of g. If $\nu_{p}(g)=0$, then we define $r_{g}(p)=\left[(\mathbb{Z} / p \mathbb{Z})^{*}\right.$: $\langle g \bmod p\rangle$], that is $r_{g}(p)$ is the residual index modulo p of g. Note that $r_{g}(p)=1$ iff g is a primitive root modulo p. For any natural number t, let $N_{g, t}$ denote the set of primes p with $\nu_{p}(g)=0$ and $r_{g}(p)=t$ (that is $N_{g, t}$ is the set of near-primitive roots of index t). Let $A(g, t)$ be the natural density of this set of primes (if it exists). For arbitrary real $x>0$, we let $N_{g, t}(x)$ denote the number of primes p in $N_{g, t}$ with $p \leq x$.

In 1927 Emil Artin conjectured that for g not equal to -1 or a square, the set $N_{g, 1}$ is infinite and that $N_{g, 1}(x) \sim c_{g} A \pi(x)$, with c_{g} an explicit rational number,

$$
A=\prod_{p}\left(1-\frac{1}{p(p-1)}\right) \approx 0.3739558
$$

and $\pi(x)$ the number of primes $p \leq x$. The constant A is now called Artin's constant. On the basis of computer experiments by the Lehmers in 1957 Artin had to admit that 'The machine caught up with me' and provided a modified version of c_{g}. See e.g. Stevenhagen [12] for some of the historical details. On GRH this modified version was shown to be correct by Hooley [4].

During the summer of 2004 Solomon Golomb related the following generalization of Artin's conjecture to Ram Murty [2].
Conjecture 1. For every squarefree integer $g>1$, and for every positive integer t, the set $N_{g, t}$ is infinite. Moreover, the density of such primes is asymptotic to a constant (expressible in terms of g and t) times the corresponding asymptotic density for the case $t=1$ (Artin's conjecture).

In a 2008 paper Franc and Murty [1] made some progress towards establishing this conjecture. In particular they prove the conjecture in case g is even and t

[^0]is odd, assuming GRH. In general though, this conjecture is false, since in case $g \equiv 1(\bmod 4), t$ is odd and $g \mid t, N_{g, t}$ is finite. To see this note that in this case we have $\left(\frac{g}{p}\right)=1$ for the primes $p \equiv 1(\bmod t)$ by the law of quadratic reciprocity and thus $r_{g}(p)$ must be even, contradicting the assumption $2 \nmid t$.

Work of Lenstra [5] and Murata [10] suggests a modified version of Golomb's conjecture (with as usual μ the Möbius function and $\zeta_{k}=e^{2 \pi i / k}$).

Conjecture 2. Let $g>1$ be a squarefree integer. The set $N_{g, t}$ has a natural density $A(g, t)$ given by

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\mu(n)}{\left[\mathbb{Q}\left(\zeta_{n t}, g^{1 / n t}\right): \mathbb{Q}\right]}, \tag{1}
\end{equation*}
$$

which is worked out as an Euler product in Table 1. The set $N_{g, t}$ is finite if and only if $g \equiv 1(\bmod 4), 2 \nmid t$ and $g \mid t$. We have

$$
A(g, t)=0 \text { iff } g \equiv 1(\bmod 4), 2 \nmid t, g \mid t .
$$

Note that if a set of primes is finite, then its natural density is zero. The converse is often false, but for a wide class of Artin type problems (including the one under consideration in this note) is true (on GRH) as first pointed out by Lenstra (5).

We put

$$
B(g, t)=\prod_{p \left\lvert\, \frac{g}{(g, t)}\right.} \frac{-1}{p^{2}-p-1},
$$

and let $E(t)$ be as in (2).
Table 1: The density $A(g, t)$ of $N_{g, t}$ (on GRH)

g	$\tau=\nu_{2}(t)$	$g \mid t ?$	$A(g, t)$
$g \equiv 1(\bmod 4)$	$\tau=0$	YES	0
		NO	$(1-B(g, t)) E(t)$
	$\tau \geq 1$	YES	$2 E(t)$
		NO	$(1+B(g, t)) E(t)$
$g \equiv 2(\bmod 4)$	$\tau<2$		$E(t)$
	$\tau=2$		$(1-B(g, t) / 3) E(t)$
	$\tau>2$		$(1+B(g, t)) E(t)$
$g \equiv 3(\bmod 4)$	$\tau=0$		$E(t)$
	$\tau=1$		$(1-B(g, t) / 3) E(t)$
	$\tau>2$		$(1+B(g, t)) E(t)$

Given a rational number g, let $d(g)$ denote the discriminant of $\mathbb{Q}(\sqrt{g})$.
Theorem 1. Conjecture 2 holds true on GRH.
Proof. By work of Lenstra [5] it follows that $N_{g, t}$ is finite iff $2 \nmid t$ and $d(g) \mid t$. By elementary properties of the discriminant this is seen to be equivalent with $g \equiv 1(\bmod 4), 2 \nmid t$ and $g \mid t$.

Lenstra's work also shows that $N_{g, t}$ has a natural density $A(g, t)$ that is given by (1), with $A(g, t) / A$ rational. The explicit evaluation of $A(g, t)$ as an Euler product in Table 1 we took from a paper by Murata [10. (We leave it as an exercise to the reader to show that the results of Wagstaff described below lead to the same results.)

Since by the work of Lenstra $N_{g, t}$ is finite iff $A(g, t)=0$, the final assertion follows. Alternatively, this can be deduced from Table 1.

Note that $A(g, t)$ equals a rational constant times $A(g, 1)$. Thus the constant alluded to in Golomb's conjecture is actually a rational number.

2. Generalization to rational g

A natural next question is what happens if we relax the condition that g need to be squarefree ? Here we propose the following conjecture. We put

$$
S(h, t, m)=\sum_{\substack{n=1 \\ m \mid n t}}^{\infty} \frac{\mu(n)(n t, h)}{n t \varphi(n t)}
$$

with φ Euler's totient function. Put $E(t)=S(1, t, 1)$. This sum can be evaluated as an Euler product and one finds:

$$
\begin{equation*}
E(t)=\frac{A}{t^{2}} \prod_{p \mid t} \frac{p^{2}-1}{p^{2}-p-1} \tag{2}
\end{equation*}
$$

Write $M=m /(m, t)$ and $H=h /(M t, h)$. Then we have [13, Lemma 2.1]

$$
S(h, t, m)=\mu(M)(M t, h) \prod_{q \mid(M, t)} \frac{1}{q^{2}-1} \prod_{\substack{q \mid M \\ q \nmid t}} \frac{1}{q^{2}-q-1} \prod_{\substack{q \mid(t, H) \\ q \nmid M}} \frac{q}{q+1} \prod_{\substack{q \mid H \\ q \nmid M t}} \frac{q(q-2)}{q^{2}-q-1} .
$$

Conjecture 3. Let $g \in \mathbb{Q} \backslash\{-1,0,1\}$ and $t \geq 1$ be an arbitrary integer. Write $g= \pm g_{0}^{h}$, where $g_{0} \in \mathbb{Q}$ is positive and not an exact power of a rational and $h \geq 1$ an integer. Let $d\left(g_{0}\right)$ denote the discriminant of $\mathbb{Q}\left(\sqrt{g_{0}}\right)$. Put $e=\nu_{2}(h)$ and $\tau=\nu_{2}(t)$. In the following cases there are only finitely many near-primitive roots of index t :

1) $2 \nmid t, d(g) \mid t$.
2) $g>0, \tau>e, 3 \nmid t, 3\left|h, d\left(-3 g_{0}\right)\right| t$.
3) $g<0, \tau=e=1, d\left(2 g_{0}\right) \mid 2 t$.
4) $g<0, \tau=1, e=0,3 \nmid t, 3\left|h, d\left(3 g_{0}\right)\right| t$.
5) $g<0, \tau=2, e=1,3 \nmid t, 3\left|h, d\left(-6 g_{0}\right)\right| t$.
6) $g<0, \tau>e+1,3 \nmid t, 3\left|h, d\left(-3 g_{0}\right)\right| t$.

In the remaining cases, there are infinitely many primes p such that g is a nearprimitive root of index t.

The natural density of the set $N_{g, t}$ exists, call it $A(g, t)$, and equals a rational number times the Artin constant A. We have $A(g, t)=0$ iff one of the conditions (1)-(6) applies. To write $A(g, t)$ as A times a correction factor, write $g_{0}=g_{1} g_{2}^{2}$, where g_{1} is a squarefree integer and g_{2} is a rational. If $g>0$, set $m=\operatorname{lcm}\left\{2^{e+1}, d\left(g_{0}\right)\right)$. For $g<0$, define $m=2 g_{1}$ if $e=0$ and $g_{1} \equiv 3(\bmod 4)$, or $e=1$ and $g_{1} \equiv 2(\bmod 4)$; let
$m=\operatorname{lcm}\left(2^{e+2}, d\left(g_{0}\right)\right)$ otherwise. If $g>0$, we have $A(g, t)=S(h, t, 1)+S(h, t, m)$. If $g<0$ we have

$$
A(g, t)=S(h, t, 1)-\frac{1}{2} S(h, t, 2)+\frac{1}{2} S\left(h, t, 2^{e+1}\right)+S(h, t, m) .
$$

Note that $S\left(h, t, m_{1}\right)$ has an Euler product that differs in at most finitely many primes p from that of $S\left(h, t, m_{2}\right)$. This allows one to write $A(g, t)$ as an Euler product. It is a rational multiple of A. From the above description it is very cumbersome to determine when $A(g, t)=0$. However, from the work of Lenstra we know that $A(g, t)=0$ iff one of the conditions (1)-(6) is satisfied. In each of those cases, one has that $N_{g, t}$ is finite. Examples are given in Table 2.

Table 2: Examples of pairs (g, t) satisfying conditions (1)-(6)

	1	2	3	4	5	6
(g, t)	$(5,5)$	$\left(3^{3}, 4\right)$	$\left(-6^{2}, 6\right)$	$\left(-15^{3}, 10\right)$	$\left(-6^{6}, 4\right)$	$\left(-3^{3}, 4\right)$

Theorem 2. Conjecture 3 holds true on GRH.
Proof. Most of the proof is a consequence of work of Lenstra (5]. However, he merely indicated conditions (1)-(6) without working this out. Moree [8] by an independent method also arrived at these conditions (see also below). The explicit evaluation of $A(g, t)$ can be found in Wagstaff [13].

Moree introduced a function $w_{g, t}(p) \in\{0,1,2\}$ for which he proved (see [8], for a rather easier reproof see [9]) under GRH that

$$
N_{g, t}(x)=(h, t) \sum_{p \leq x, p \equiv 1(\bmod t)} w_{g, t}(p) \frac{\varphi((p-1) / t)}{p-1}+O\left(\frac{x \log \log x}{\log ^{2} x}\right) .
$$

This function $w_{g, t}(p)$ has the property that, under GRH, $w_{g, t}(p)=0$ for all primes p sufficiently large iff $N_{g, t}$ is finite. Since the definition of $w_{g, t}(p)$ involves nothing more than the Legendre symbol, it is then not difficult to arrive at the conditions (1)-(6). For condition (1) we have that g is a square modulo p, and thus $2 \mid t$, contradicting $2 \nmid t$. Likewise for the other 5 cases the obstructions can be written down. In each of the cases it turns out that $\nu_{2}\left(r_{g}(p)\right) \neq \nu_{2}(t)$. For the complete list of obstructions we refer to Moree [8, pp. 170-171].

For a large class of Artin type problems there are conjectural densities, that can be shown to be true on GRH, involving inclusion-exclusion. It is computationally challenging to convert these expressions in to Euler products and determine exactly when the densities are zero. Using the theory of radical entanglement as developped by Lenstra [6] this problem is rather more easily resolved, for two examples see Lenstra et al. [7] (Artin problems over base field \mathbb{Q}) and De Smit and Palenstijn [11] (for arbitrary base field). A preview of [7] is given in [12].

3. An application

Let $\Phi_{n}(x)$ denote the n-th cyclotomic polynomial. Let S be the set of primes p such that if $f(x)$ is any irreducible factor of $\Phi_{p}(x)$ over \mathbb{F}_{2}, then $f(x)$ does not divide any trinomial. Over $\mathbb{F}_{2}, \Phi_{p}(x)$ factors into $r_{2}(p)$ irreducible polynomials. Let

$$
\left.S_{1}=\left(\left\{p>2: 2 \nmid r_{2}(p)\right\}\right\} \cup\left\{p>2: 2 \leq r_{2}(p) \leq 16\right\}\right) \backslash\{3,7,31,73\}
$$

Theorem 3. We have $S_{1} \subseteq S$. The set S_{1} contains the primes $p>3$ such that $p \equiv \pm 3(\bmod 8)$. On GRH the set $S_{!}$has density

$$
\begin{equation*}
\delta\left(S_{1}\right)=\frac{1}{2}+A \frac{1323100229}{1099324800} \approx 0.950077195 \cdots \tag{3}
\end{equation*}
$$

Proof. The set $\left.\left\{p>2: 2 \nmid r_{2}(p)\right\}\right\}$ equals the set of primes p such that $\left(\frac{2}{p}\right)=-1$, that is the set of primes p such that $p \equiv \pm 3(\bmod 8)$. This set has density $1 / 2$. We thus find, on invoking Theorem 1, that

$$
\begin{aligned}
\delta\left(S_{1}\right) & =\frac{1}{2}+\sum_{\substack{2 \leq j \leq 16 \\
2[j]}} A(2, j) \\
& =\frac{1}{2}+E(2)\left(1+\frac{2}{3 \cdot 4}+\frac{2}{16}+\frac{2}{64}\right)+E(6)\left(1+\frac{2}{3 \cdot 4}\right)+E(10)+E(14)
\end{aligned}
$$

which yields (3) on invoking formula (2). That $S_{1} \subseteq S$ is a consequence of the work of Golomb and Lee 3].

References

[1] C. Franc and M. Ram Murty, On a generalization of Artin's conjecture, Pure Appl. Math. Q. 4 (2008), 1279-1290.
[2] S.W. Golomb, Letter to M. Ram Murty, June 22, 2004.
[3] S.W. Golomb and P.F. Lee, Irreducible polynomials which divide trinomials over GF(2), IEEE Trans. Inform. Theory 53 (2007), 768-774.
[4] C. Hooley, Artin's conjecture for primitive roots, J. Reine Angew. Math. 225 (1967), 209-220.
[5] H.W. Lenstra, Jr., On Artin's conjecture and Euclid's algorithm in global fields, Invent. Math. 42 (1977), 202-224.
[6] H.W. Lenstra, Jr., Entangled radicals, AMS Colloquium Lectures, San Antonio, 2006.
[7] H.W. Lenstra, Jr., P. Moree and P. Stevenhagen, Character sums for primitive root densities, in preparation.
[8] P. Moree, Asymptotically exact heuristics for (near) primitive roots, J. Number Theory 83 (2000), 155-181.
[9] P. Moree, Asymptotically exact heuristics for (near) primitive roots. II, Japan. J. Math. (N.S.) 29 (2003), 143-157.
[10] L. Murata, A problem analogous to Artin's conjecture for primitive roots and its applications, Arch. Math. (Basel) 57 (1991), 555-565.
[11] W.J. Palenstijn, PhD. thesis, Universiteit Leiden (2010).
[12] P. Stevenhagen, The correction factor in Artin's primitive root conjecture, J. Théor. Nombres Bordeaux 15 (2003), 383-391.
[13] S.S. Wagstaff, Jr., Pseudoprimes and a generalization of Artin's conjecture, Acta Arith. 41 (1982), 141-150.

Max-Planck-Institut für Mathematik, Vivatsgasse 7, D-53111 Bonn, Germany
E-mail address: moree@mpim-bonn.mpg.de

[^0]: Date: November 13, 2009.
 2000 Mathematics Subject Classification. 11A07.

