
ON GOLOMB’S NEAR-PRIMITIVE ROOT CONJECTURE

PIETER MOREE

Abstract. Golomb conjectured in 2004 that for every squarefree integer g > 1,
and for every positive integer t, there are infinitely many primes p ≡ 1(mod t)
such that the order of g in (Z/pZ)∗ is (p− 1)/t (we say that g is a near-primitive
root of index t). We show that this conjecture is false and provide a corrected
and generalized conjecture that is true under the assumption of the Generalized
Riemann Hypothesis (GRH) in case g is a rational number.

1. Introduction

Let g ∈ Q\{−1, 0, 1}. Let p be a prime. Let νp(g) denote the exponent of p in
the canonical factorization of g. If νp(g) = 0, then we define rg(p) = [(Z/pZ)∗ :
〈g mod p〉], that is rg(p) is the residual index modulo p of g. Note that rg(p) = 1 iff
g is a primitive root modulo p. For any natural number t, let Ng,t denote the set of
primes p with νp(g) = 0 and rg(p) = t (that is Ng,t is the set of near-primitive roots
of index t). Let A(g, t) be the natural density of this set of primes (if it exists).
For arbitrary real x > 0, we let Ng,t(x) denote the number of primes p in Ng,t with
p ≤ x.

In 1927 Emil Artin conjectured that for g not equal to −1 or a square, the set
Ng,1 is infinite and that Ng,1(x) ∼ cgAπ(x), with cg an explicit rational number,

A =
∏
p

(
1− 1

p(p− 1)

)
≈ 0.3739558,

and π(x) the number of primes p ≤ x. The constant A is now called Artin’s constant.
On the basis of computer experiments by the Lehmers in 1957 Artin had to admit
that ‘The machine caught up with me’ and provided a modified version of cg. See
e.g. Stevenhagen [12] for some of the historical details. On GRH this modified
version was shown to be correct by Hooley [4].

During the summer of 2004 Solomon Golomb related the following generalization
of Artin’s conjecture to Ram Murty [2].

Conjecture 1. For every squarefree integer g > 1, and for every positive integer
t, the set Ng,t is infinite. Moreover, the density of such primes is asymptotic to a
constant (expressible in terms of g and t) times the corresponding asymptotic density
for the case t = 1 (Artin’s conjecture).

In a 2008 paper Franc and Murty [1] made some progress towards establishing
this conjecture. In particular they prove the conjecture in case g is even and t
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is odd, assuming GRH. In general though, this conjecture is false, since in case
g ≡ 1(mod 4), t is odd and g|t, Ng,t is finite. To see this note that in this case we
have (g

p
) = 1 for the primes p ≡ 1(mod t) by the law of quadratic reciprocity and

thus rg(p) must be even, contradicting the assumption 2 - t.
Work of Lenstra [5] and Murata [10] suggests a modified version of Golomb’s

conjecture (with as usual µ the Möbius function and ζk = e2πi/k).

Conjecture 2. Let g > 1 be a squarefree integer. The set Ng,t has a natural density
A(g, t) given by

∞∑
n=1

µ(n)

[Q(ζnt, g1/nt) : Q]
, (1)

which is worked out as an Euler product in Table 1. The set Ng,t is finite if and only
if g ≡ 1(mod 4), 2 - t and g|t. We have

A(g, t) = 0 iff g ≡ 1(mod 4), 2 - t, g|t.

Note that if a set of primes is finite, then its natural density is zero. The converse
is often false, but for a wide class of Artin type problems (including the one under
consideration in this note) is true (on GRH) as first pointed out by Lenstra [5].

We put

B(g, t) =
∏
p| g

(g,t)

−1

p2 − p− 1
,

and let E(t) be as in (2).

Table 1: The density A(g, t) of Ng,t (on GRH)

g τ = ν2(t) g|t ? A(g, t)
g ≡ 1(mod 4) τ = 0 YES 0

NO (1−B(g, t))E(t)
τ ≥ 1 YES 2E(t)

NO (1 +B(g, t))E(t)
g ≡ 2(mod 4) τ < 2 E(t)

τ = 2 (1−B(g, t)/3)E(t)
τ > 2 (1 +B(g, t))E(t)

g ≡ 3(mod 4) τ = 0 E(t)
τ = 1 (1−B(g, t)/3)E(t)
τ > 2 (1 +B(g, t))E(t)

Given a rational number g, let d(g) denote the discriminant of Q(
√
g).

Theorem 1. Conjecture 2 holds true on GRH.

Proof. By work of Lenstra [5] it follows that Ng,t is finite iff 2 - t and d(g)|t.
By elementary properties of the discriminant this is seen to be equivalent with
g ≡ 1(mod 4), 2 - t and g|t.
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Lenstra’s work also shows that Ng,t has a natural density A(g, t) that is given by
(1), with A(g, t)/A rational. The explicit evaluation of A(g, t) as an Euler product
in Table 1 we took from a paper by Murata [10]. (We leave it as an exercise to
the reader to show that the results of Wagstaff described below lead to the same
results.)

Since by the work of Lenstra Ng,t is finite iff A(g, t) = 0, the final assertion follows.
Alternatively, this can be deduced from Table 1. �

Note that A(g, t) equals a rational constant times A(g, 1). Thus the constant
alluded to in Golomb’s conjecture is actually a rational number.

2. Generalization to rational g

A natural next question is what happens if we relax the condition that g need to be
squarefree ? Here we propose the following conjecture. We put

S(h, t,m) =
∞∑

n=1
m|nt

µ(n)(nt, h)

ntϕ(nt)
,

with ϕ Euler’s totient function. Put E(t) = S(1, t, 1). This sum can be evaluated
as an Euler product and one finds:

E(t) =
A

t2

∏
p|t

p2 − 1

p2 − p− 1
. (2)

Write M = m/(m, t) and H = h/(Mt, h). Then we have [13, Lemma 2.1]

S(h, t,m) = µ(M)(Mt, h)
∏

q|(M,t)

1

q2 − 1

∏
q|M
q-t

1

q2 − q − 1

∏
q|(t,H)

q-M

q

q + 1

∏
q|H

q-Mt

q(q − 2)

q2 − q − 1
.

Conjecture 3. Let g ∈ Q\{−1, 0, 1} and t ≥ 1 be an arbitrary integer. Write
g = ±gh0 , where g0 ∈ Q is positive and not an exact power of a rational and h ≥ 1 an
integer. Let d(g0) denote the discriminant of Q(

√
g0). Put e = ν2(h) and τ = ν2(t).

In the following cases there are only finitely many near-primitive roots of index t:
1) 2 - t, d(g)|t.
2) g > 0, τ > e, 3 - t, 3|h, d(−3g0)|t.
3) g < 0, τ = e = 1, d(2g0)|2t.
4) g < 0, τ = 1, e = 0, 3 - t, 3|h, d(3g0)|t.
5) g < 0, τ = 2, e = 1, 3 - t, 3|h, d(−6g0)|t.
6) g < 0, τ > e+ 1, 3 - t, 3|h, d(−3g0)|t.
In the remaining cases, there are infinitely many primes p such that g is a near-
primitive root of index t.

The natural density of the set Ng,t exists, call it A(g, t), and equals a rational num-
ber times the Artin constant A. We have A(g, t) = 0 iff one of the conditions (1)-(6)
applies. To write A(g, t) as A times a correction factor, write g0 = g1g

2
2, where g1

is a squarefree integer and g2 is a rational. If g > 0, set m = lcm{2e+1, d(g0)). For
g < 0, define m = 2g1 if e = 0 and g1 ≡ 3(mod 4), or e = 1 and g1 ≡ 2(mod 4); let
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m = lcm(2e+2, d(g0)) otherwise. If g > 0, we have A(g, t) = S(h, t, 1) + S(h, t,m).
If g < 0 we have

A(g, t) = S(h, t, 1)− 1

2
S(h, t, 2) +

1

2
S(h, t, 2e+1) + S(h, t,m).

Note that S(h, t,m1) has an Euler product that differs in at most finitely many
primes p from that of S(h, t,m2). This allows one to write A(g, t) as an Euler prod-
uct. It is a rational multiple of A. From the above description it is very cumbersome
to determine when A(g, t) = 0. However, from the work of Lenstra we know that
A(g, t) = 0 iff one of the conditions (1)-(6) is satisfied. In each of those cases, one
has that Ng,t is finite. Examples are given in Table 2.

Table 2: Examples of pairs (g, t) satisfying conditions (1)-(6)

1 2 3 4 5 6
(g, t) (5, 5) (33, 4) (−62, 6) (−153, 10) (−66, 4) (−33, 4)

Theorem 2. Conjecture 3 holds true on GRH.

Proof. Most of the proof is a consequence of work of Lenstra [5]. However, he
merely indicated conditions (1)-(6) without working this out. Moree [8] by an in-
dependent method also arrived at these conditions (see also below). The explicit
evaluation of A(g, t) can be found in Wagstaff [13]. �

Moree introduced a function wg,t(p) ∈ {0, 1, 2} for which he proved (see [8], for a
rather easier reproof see [9]) under GRH that

Ng,t(x) = (h, t)
∑

p≤x, p≡1(mod t)

wg,t(p)
ϕ((p− 1)/t)

p− 1
+O

(x log log x

log2 x

)
.

This function wg,t(p) has the property that, under GRH, wg,t(p) = 0 for all primes p
sufficiently large iff Ng,t is finite. Since the definition of wg,t(p) involves nothing more
than the Legendre symbol, it is then not difficult to arrive at the conditions (1)-(6).
For condition (1) we have that g is a square modulo p, and thus 2|t, contradicting
2 - t. Likewise for the other 5 cases the obstructions can be written down. In each
of the cases it turns out that ν2(rg(p)) 6= ν2(t). For the complete list of obstructions
we refer to Moree [8, pp. 170-171].

For a large class of Artin type problems there are conjectural densities, that can
be shown to be true on GRH, involving inclusion-exclusion. It is computationally
challenging to convert these expressions in to Euler products and determine exactly
when the densities are zero. Using the theory of radical entanglement as developped
by Lenstra [6] this problem is rather more easily resolved, for two examples see
Lenstra et al. [7] (Artin problems over base field Q) and De Smit and Palenstijn
[11] (for arbitrary base field). A preview of [7] is given in [12].
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3. An application

Let Φn(x) denote the n-th cyclotomic polynomial. Let S be the set of primes p such
that if f(x) is any irreducible factor of Φp(x) over F2, then f(x) does not divide any
trinomial. Over F2, Φp(x) factors into r2(p) irreducible polynomials. Let

S1 = ({p > 2 : 2 - r2(p)}} ∪ {p > 2 : 2 ≤ r2(p) ≤ 16})\{3, 7, 31, 73}.

Theorem 3. We have S1 ⊆ S. The set S1 contains the primes p > 3 such that
p ≡ ±3(mod 8). On GRH the set S! has density

δ(S1) =
1

2
+ A

1323100229

1099324800
≈ 0.950077195 · · · (3)

Proof. The set {p > 2 : 2 - r2(p)}} equals the set of primes p such that (2
p
) = −1,

that is the set of primes p such that p ≡ ±3(mod 8). This set has density 1/2. We
thus find, on invoking Theorem 1, that

δ(S1) =
1

2
+
∑

2≤j≤16
2|j

A(2, j)

=
1

2
+ E(2)(1 +

2

3 · 4
+

2

16
+

2

64
) + E(6)(1 +

2

3 · 4
) + E(10) + E(14),

which yields (3) on invoking formula (2). That S1 ⊆ S is a consequence of the work
of Golomb and Lee [3]. �
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