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In this paper we consider Hamiltonian perturbations of an infinite-dimensional linear

system with pure imaginary spectrum {± i Tj I j = 1,2,...} . We study perturbations of a

quasiperiodie solution of linear system with finitely-many frequencies T· )... ,T. being
JI Jn

exited. It is proved that for most values of frequency vector (T. ,.. _T.) this solution is
Jl Jn

preserved under small Hamiltonian perturbations) if roughly speaking the perturbed system

is quasilinear and frequencies Tj grows linearly or "super-linearly when j --+ m .

Dur theorems have well-known finite-dimensional analogues. The preservation of most

quasiperiodie motions with n fundamental frequencies in the integrable 2n-dimensional

Hamiltonian system under small Hamiltonian perturbations was proved in the classical

works of Kolmogorow, Arnold and Moser (see [AA], [Mo] and their bibliography).

Theorems on the preservation of quasiperiodic motioDs with k 5 D fundamental

frequenciea were formulated by V. Melnikov. For their proves and discussions see [E,Pl].

As an infinite-dimensional analog of our results we want to mention the paper [W]

devoted to the perturbed wave equation with random potential.

In this paper we formulate our main theorem and give its applications to some nonlinear

equations of mathematical physics_ The theorem generalize results of works [KI - K3]. Its

proof will be given in the next paper (part 3 of aur text).

The fallowing notations are used: for Hilbert spaces Y and Z the norms are denoted by

1·1 y, I-I Z and inner praducts by <-,.>y, <-,>Z ; distz - distance in the space Z_

The usua! norms in If and (Dn (n ~ 1) are denoted I-I _For metric spaces Bl'B2, for

a subset Q} CBI and a mapping h: Ql --+ B2 we denote
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dist B (h(b1);h(b2))

Lip h = Lip(h :: -- b) = SUp cl ~t (b'b)
b .J.b B1 l' 2rr 2

H the space B2 is a Banach one with a norm 1·1 B ' we denote
2

Ql'Lip .
Ih I B = max {SUp Ih(b) IB ' Lip h} . (0.1)

2 bEQl 2

Let B1,B2 be Banach spaces with norms 1·1 B ' 1·1 B ' let B1c B c be their
1 2 ' 2

complexifications, let Yj
C be an (open) domain in Bj

C j = 1,2 . We denote by

..;6R(V1c ; V2c) the set of Frechet complex-analytical mappings from V1c to Y2c

which map V1c nB1 into V2c nB2 . Let M be BOme metric space. We denote by

.ARM (V1c ; V2c) a class of mappings G: V1c x M ---+ V2c with the followil!g

properties:

i) G(·; m) E vt R(V1
C

; V2
c) Vm E M,

ii) the map G(b j .) : M ---+ V2c ia Lipschitz Vb E VIC and

V C •

IGIB1 ; M == sU p c IG(b ; .) I ~,LIP < m (0.2)
2 bEY1 2

(the norm in B2C is denoted by 1·1 B ).
2

For domains Vy ( y , VZ (Z we use standard notations Ck(Vy ; Vz) (k EZ , k ~ 0)

•for the spaces of Frechet-differentiable mappings rp: Vy ---+ V Z and notation rp.( rp )

for tangent (cotangent) map.
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For abstract sets 2! I .7, for a subset 8 of their produci 21)( .7 and for I E .7 we denote

by 8 [I] a subset of 21 of the form

8[1] = {a E 211 (a,l) E8} (0.3)

In the notations of functions and mappings we sometimes omit a part of argumentsj we

denote by C,Cl'C2 etc. different positive constants which a.rrive at estimates and denote

by K,K1 etc. constants at the assumptions of theorems.
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1. Statement of the main theorem

Let {Z,{Zs Is E R} , a = < JZdz J dz >z} be a symplectic Hilbert scale as it was defined

in [1]. It means that Z is a Hilbert space,· {Zs} is a scale of Hilbert spaces with norms

*11·ll s and inner products <·'·>s' Zs C Z8 if 81 ~ 82 J Zs is adjoint to Zs with
1 2

respect to scalar product <">0 and Zo = Z . JZ is an isomorphism of 8cale {Zs} of

order -dJ ~ 0, Le. :TZ: Z --+ Z +d Va ER. Operator:T
Z : Z ---+ Zd (Z is

s N 8 J J

supposed to be antisymmetrie in Z. Operator JZ = -{:TZ)-l ia an isomorphism of the

scale {Zs} of order dJ I its restriction on Z is aniselfadjoint (and possibly unbounded).

The 2-form a = < :TZdz , dz > Z '

is continous, antisymmetric and nondegenerate in any space Zs' s ~ 0 . Now every

Zs(s ~ 0) is a linear symplectic space. See [1] for more details.

Let us suppose that operator :TZ depends on a vector-parameter a E2l ,2l is a bounded

open domain in ~. So the symplectic fonn a depends on the parameter a I too. Let

AZ(a) be a self-adjoint in Z operator depending on a E 21 and let Va E21 AZ(a)

defines an isomorphism of the scale {Zs} of order dA ~ 0 J

Vs ER (1.1)

Let us suppose that there exists a basis {'Pj± Ij ~ 1} of the space Z with the following

properties:
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there exist positive numbers AJ.(S), SER, JEN, such that A.(-S) = (A.(S))-l V'j,s,
J J

Z ± A ± V' \JA (a) 'P' = A. (a) 'P' J , va ,
J J J

(1.3)

(1.3')

Here real numbers A/ ,A/ are positive for j large enough:

(1.4)

Let us consider a hamiltonian

1 ZeN(z;a,c) = 2" < A (a) z, z > Z +c H(z;a,c;)

depending on a parameter a E 2L and a small parameter c; E [0,1] . Corresponding

Hamiltonian equation (with respect to 2-fonn a(a) ) has the form

z= JZ(a) (AZ(a)z + c; VH(z;a,c;)) . (1.5)

Here and in what follows, V is the gradient in z E Z with respect to the scalar product
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<·'>z . Equation (1.5) is aperturbation of linear Hamiltonian equation

(1.6)

In view of conditions (1.3), (1.3 / ) the spectrum of operator JZ(a) AZ(a) is purely

imaginary,

1t is supposed that the functions

a...........-. ~~(a) I a...........-. ~1(a) I j ~ n I

are C2-sIDooth and for j ~ n, a E 7l.n , Ier I ~ 2

(1.7)

and the mapping a t-----+ w= (~l''''''\n) E!Rn is nondegenerate at some point aOE21 ,

(1.8)

Let us denote

(1.9)

Let üS set ZO CZ be a 2n-dimensional linear span ofthe VectOIS {rp~ jj ~ n} . The sp'ace

ZO is foliated into tori T(I) which are invariant for linear equation (1.6),
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n 2 2
T(I) = {I Q1~1 + aj~jl a1 +aj = 2 Ij ~ 0) l~~n} .

j=1

(1.9 1
)

A torus T(I) with Ij > 0 Vj is n-dimensional, T(I) ~ Tn and it is filled with

quasiperiodie solutioDB of the form

ci = w(a) .

Here q is a coordinate on T(I),

qj = Arg( a1+ i aj) , j = 1,... ,n .

Let us set

1: 0 : Tn
----t ZO ( Z

I

(1.10)

be an imbedding identifying a point of Tn with a point of T(I) having the same

coordinates.

Let us consider a family of tori {T(I) II E J} where

(1.11)

is some Borel set (possibly J consists of the only point, J= {In} ). Let us denote

9'- U{T(I) II E J} .
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Let us fix BOrne number d,

(1.12)

and let choose a domain 0 d in the complexification of the spare Zd I

o~ ( Z~ = Zd ~ ( , such that 9' ( 0dand
IR •

(1.13)

We suppose that the function H may be extended to a function

H : OC )( 21)( [0,1] ----t 4: which is complex-analytical on z E 0d and Lipschitz on

a E 21 , Le. H E A~ (O~;() Vf .

Theorem 1.1. Let the conditions mentioned above hold tagether with

1) (analyticity and quasilinearity): for some dH E IR such that

(1.14)

and for an f E [0,1]
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(see (0.2));

2) (spectral asymptotics):

dl =dA + dJ ~ I

and there exists an asymptotic expa.nsion for the frequencies ~ jO t j -----+ m :

d d d d
I
~J'O-K .... i I-K!i 1,1__Kr-I. l,r-l

1
<K . I,r

"J:I ~ ••• 2 J - IJ

d d
K11

j J ~ I~i(a) I ~ K1j J Vj ~ 1 ;

A J .a Lipschitz constants of functions ~ j , ~ j t ~j are bounded above.

d d d
L· ,A <K . A L' ,J <K . J L' ,< K . I,rIp A j _ IJ , Ip A j _ IJ , Ip Aj _ IJ

Then there exist integers jI' MI such that if condition

3) (nonresonance):

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)
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is satisfied, then far sufficiently small f > 0 there exist 6* > 0 (sufficiently small and

a
independent from f), Borel set 8 f0 of vectors (a,I) ,

and analytical embeddings

with the following properties a)-d):

uniformly with respect to I E j (see (0.3));

b) the mapping

o 0
is Lipschitz and is dose to the mapping l :(qja,I) t-----t l (q)

I

(1.22)

(1.23)
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E a1: (Tn) , (a,l) E 8 0 ,is invariant for the equation (1.5) and is
(a,l) E

E

Zd solutions of (1.5) of the form zf(t) = 1: (q+w' t) , here
(a,l)

q E TTI, 61' = 61' (a,I,E) E!Rn and I fV-W' I ~ CE ;

d) all Liapunov exponents of 8Olutions zf(t) are equal to zero.

The theorem will be proved in apart 3 of the text. Indeed we shall formulate and prove

more general result applicable to some systems ~th da + dJ > 0 which are of physical

interest.

An immediate consequence of the stated reault is a strong averaging principle for

nonresonant systems of form (1.5):

a
Corollary 1.2. Under the assumptions of Theorem 1.1 {or every (a,l) E 8 f 0, q E 1rn , and

o
for all t a curve t~ 1: (q+w' t) for f small enough is Cf-elose to some weak

I '

solution of (1.5). Here 61' is an averaged frequency vector, Iw' -w I ~ Cf .

Remarks. 1) From the second estimate in (1.15) one can see that the order of nonlinear

operator in equation (1.5) is equal to dJ+dH . The order of linear one is equal to

dJ + dA· So the condition (1.14) of theorem 1.1 indeed means the quasilineari ty of

equation (1.5) because the order of linear term exceeds the order of nonlinear one at least

by one.
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2} If da 5 dc-d1 = d-dJ-dH-1 then the r.h.s. in (1.5) with z(t} = z€(t} belongs to

C( [O,T] ;Zd } . So z€ E C1( [O,T] ;Zd } is a strong in Zd solution of (1.5).
a a a

3} The numbers j1' MI in the aBsumption 3} of Theorem 1.1 depends on K, KO-K2,

K~, dl' d1,j' dA' dJ' dH, d, n and jo only. The maximal possible values of €, 0* and

the rate of convergence in (1.23) dependB on the same quantities and on K3 .

€ € * a
4) All the tori 2: (Tn) are isotropie, Le. [2: 1 a = 0 V(a,I) E BE0 .

(a,l) (a,I}J

5) The frequencies {.\jO} are ordered asymptotically only (see (1.16)). So for aspace

ZO one can choose any 2n-dimensional invariant subspace of operator J(a}A(a} .

6} If instead of the condition d1 ~ 1 a weaker condition d1 > 0 takes place then the

statements of Theorem 1.1 seems to be wrong in a general case. But the statement of

Corollary 1.2 remains true for 0 5 t ~ €-x for some 6> 0, X > 1 (see [K4]).

7} The form (1.16) of a spectral condition ia not the most general one we need for our

proof. For example for d1 > 1 it is sufficient to demand that

See [K1] for (1.24) and [K2] for a possible form of a 8pectral condition with d1 = 1 . For

the profound investigation of this problem see [DPRV].
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8) The necessity of the quasilinearity condition da ~ dA-1 resulta from (1.16) (or

(1.24)). Indeed {or arbitrary dä > dA-1 one can easily find perturbation H o{ the form

such that condition (1.15) ia aatisfied with

d -1
AZ(a) + AP(a,f) condition I~j+l-~jl ~ C1j 1 is broken {or some j large enough.

f

9) The analyticity of tori 1: ('rn) was observed by J. Päschel [PI]. In the
(a,I)

author's works [KI-K3] only smoothness of the tori was stated.

10) If all the numbers d, dH' dA' dJ are the integers then Theorem 1.1 may be

stated in the framework of discrete symplectic Hilbert scales {Z,{Zs Is E 7l},a} (see [1],

part 5).
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2. Refonnulation of Theorem 1.1

Let U8 8UPPOse that the boundary /1)J.. is smooth, domain ~ is connected, all eigen-va!ues

A~ , ""~ are analytical functions of a E21 and
J J

(2.1)

A -J
For some fixed point aOE21 we define numbers Aj 0' "" jO' ""jO and a vector Wo as in

(1.9).

Let us consider same resonance relation of a fonn

s· w(a) + A(a) == 0, A = l1"".n+1(a)+...+lp~n+p(a) J (2.2)

Lemma 2.1. Let an the tu ions Al A1 Iv anCn du Z, u! ! 1 anp

(1.16) together with assumptions (1.19) and (2.1) take place. Then there exist numbers

M2, j2 with the following property: if some relation of form (2.2), (2.3) holds and in (2.2)

lp *0 ,then 181 ~ M2, p ~ ~ .

Proof. For the assumption (2.1) there exist a point a'E 21 such that

c-l ~ Iw.(a' ) I n n ~ C
IR IR .,

(2.4)

for some C. Let Va be a gradient with respect to the uaua! scalar product in !Rn. Then
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*Va(S· w(a)) = w (a)s and for (2.4)

(2.5)

We consider two possibilities:

a) d1 > 1. As I t 1 1 ~ 2 , ihen for the assumption (1.16)

(2.6)

So assumption (2.2) imply inequality

and

(2.7)

d
We may suppose that in (1.19) d1 r > 0 . Then IVaA(a /) I 52K1P 1,r and for (2.5),,

d
(2.2) Isl 5C3P 1,r . From tbis estimate and (2.7) the statements of the lemma results

immediately.

b) d1 = 1. By the assumption (1.19) IVaA(a /) I ~ 2K1 . From tbis estimate and

(2.2), (2.5), (1.19) results an estimate on s :
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Hit 11 = 1 or 1t 11 =2 and 1t p I =2 then I A(aO)) ~ K2p-CS for (1.16) . So by

(2.2)

(2.9)

The estimates (2.8), (2.9) imply the lemma's statements if Itl1 = 1 or It p I = 2 .

Now let 1tl 1 = 2 and It p 1= 1 . Then the set {j 1t j *O} consists of two elements

and contains p. Let us denote the second element as ~, ä > O. Then for (1.16)

1A(aO) I ~ K2ä-e I and for estimates (2.8) and relation (2.2)

K2ä-e' ~ 18· w(aO) 1~ Ca . So tJ. ~ C7 and for (1.19)

d
So, 1Va,(s· w(a')) 1 ~ 2K1(p-tJ.) l,r ) too. If s 'f 0 then for (2.5)

and the estimate for p is obtained. If s = 0 then

and the estimate on p ia obtained again. Now the lemma ia proved. _

Thwrem 2.2 Let & 6gw-v&ues At. Ai Oe M&nlc& functions of a par a E 2(
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and conditions (1.2), (1.3), (1.3'), (1.7), (1.11}-(1.13), (2.1) hold together with

aBsumptions 1), 2) of Theorem 1.1. Then there exist integers jl' Mi such that if an

38sumption

(2.10)

is satisfied then for every 6 > 0 and for sufficienUy small € > 0 there exist a Borel

subset 2l~ (21 and analytical embeddings

with the following properties a)-c):

a)mes21\21~< 6 ,

b) the mapping

ia Lipschitz and

(2.11)
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c) every torus L€(Tn) , a EQ(o , is invariant for the equation (1.5) and is filled
a E

E

with weak in Zd quasiperiodidc solutions of the form l (q+w' t) and
a

(2.12)

All Liapunov exponents of these solutions are equal to zero.

Proof. Ey the analyticity of functions ~~, ~t and by the assumption (2.1) the set

{a E2t I Idet 8wj/8ak I > O} is open and of full Lebesque measure in 21 (Le. a measure

of its complement is equal to zero). Let set

Then 2(t' t ----t 0 , is an increasing sequence of compa.ct sets and U{2!t It > O} is of full

measure. So there exists KO= KO(0) > 0 such that

mes 21\2!K <; = 6/4 .
o

(2.13)

Let us choose jl ~ ~+n, MI ~ M2+2 with ~,M2 as in Lemma 2.1. Then for the

assumption (2.10) and Lemma 2.1 there is no identical resonance relation of the form (2.2),

(2.3). So every set

(2.14)

with 1 5 Isn+l 1+ ...+ 18p I 52 , is of full measure in 21.



•
-20-

Let U8 take a point aOE 21K . For the remark 3, Theorem 1.1 is applicable with this
o

choice of &0 if condition (1.20) is fulfilled with sorne jf-:jl 0 ' MI = MI 0 which does, ,
not depend on &0' Let U8 consider &set

As the sets (2.14) are of full measure, then for some to> 0

mes 21\2It < 7 . (2.15)
o

Theorem 1.1 is applicable with arbitrary aOE 21K n 2lt ' J = {la} and & constant KOo 0

in the assumption (1.8) as in (2.13). In tbis situation for remark 3 0. does not depend on

aOaO and set 8 f is of the form

The open balls 21(aO'o.), &0 E21K n 2ft ' form a covering of compact 21K n 2ft . Let
o 0 0 0

M
us fix some finite subcovering, 21K n ~t ( UD., D

J
. = 21(a

OJ
"6.) . For the statement

o 0 j= 1 J

a) of Theorem 1.1

mes D .\2laOj < 7/M V j=l,... ,M if f < f( 6)
J f

(2.17)
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For every j = l, ... ,M let us choose &dosed subset D~ ( Dj such th&t

(2.18)

and

(2.19)

Let us set

€ &0' 0 < €
and define &map 1: ,a E21 J n D. , being equal to the map 1: constructed by

& € J (a,IO)

means of Theorem 1.1 for a E 21a Oj . This definition is correct because every point a E2{0
€ €

belangs to the only set 21aOj n D~ .
€ J

The statements a)--e) of the theorem are true with this choice of ~6 and Lf . Indeed,
l a

the assertion a) reaults from the estimates (2.13), (2.15), (2.17), (2.19). The assertion c) is

local with respect to the parameter a and it results from Theorem 1.1.

For to prove the assertion b) let us mention that by Theorem 1.1 for 61; = 1;€ - tJ we

have
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(2.20)

By (2.20), (2.21) we get an estimate (2.11) with Co = C6(1 + 26,-1) .•

Corollary 2.3. If under the assumptions of Theorem 2.2 condition (2.10) is satisfied then

for arbitrary p E (0,1) and for 0 < € «1 there exist a Borel subset 21 C2t and
€

\ € n
analytical embeddings L : T ----t Zd' a E 2l€, dc = d + dA - d~1 , with the

a c

following proPerties:

a) mes 2t\2l € -----. 0 (E ----t 0) ,

€

c) every torus 1: ern), a E 21 , is invariant for the equation (1.5) and is filled
a €

€

with weak in Zd solutions of the form l (q+w' t), Iw' -w I ~ €p . All Liapunov
a

exponents of these solutions are equal to zero.

Proof. By Theorem 2.2 with 6 = Iln, n = 1,2,... for € 5 En , En > 0 , we have the
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sets 'lJ.l/n and maps l € satisfying the assertions a)-c) of the theorem. If €n« 1
E a

then

(2.22)

We mayassume that E "0 (n --+ m) and set 6( E) = 1/n if f E (f(n+1), f(n)] .n

Now the assertions of the corollary result from Theorem 2.2 and (2.22).•
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3. On systems with random spectrum

Theorems 1.1 and 2.2 may be applied to the Hamiltonian penurbations of random linear

system for proving that quasiperiodie solutions of tbe unpenurbed linear system survive in

perturbed system with probability 1 (w.pr.1). Here we prove a simple theorem of tbis sort

wbieh deals with perturbations of a linear system equivalent to a countable set of free

harmonie oscillators with random frequencies "'1' "'2' ....

The perturbations of a countable system of random 08cillators by means of a short range

interected hamiltonians have been studied in a number of works (see (FSW] , (P2] and

bibliography of these papers). For applications cf our theorems we don't need short range

interaction assumption. Instead of the last we use assumption of linear or super-linear

growth of frequencies (Wj '" Cjd, d ~ 1) .

In the work [W] non-linear perturbations of the string equation with a random potential

were studied. The theorems of [W] are similar to our results of tbis section.

Let Z be a Hilbert space with an onhobasis {~~ Ij ~ I}; Zs' s E IR , be a Hilbert

spaces with the orthobasis {j-Srp~ Ij ~ 1} and

J : Z --+ Z, J(~:) =T ~~ Vj .
J J

(3.1)

Then J = (-J)-1 = J and the tripie {Z,{Zs}' < Jdz,dz >Z} is a symplectic Hilbert

scale with properties (1.3) being fulfilled with ~i == 1 .

Let (U,:Y,.9') be some probability space and A = A(,u) , ,u E '/t, be a random

selfadjoint operator in Z such that Vj E IN
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(3.2)

, Here K > 0 and {Aj Jj ~ 1} are independent random variables (r.v.) such that every Aj

is uniformly distributed on a segment

(3.3)

Let 0d be a neighborhood of Zd in Zd = Zd 8 ( and H E """R(Od j() • Let us consider
R

a Hamiltonian equation with a hamiltonian R = ~ < Az,z >Z + f H(z) , i.e. the equation

z= J(Az + f VH(z)) . (3.4)

Th\lQI\lm ~.1. Let dA ~ 1, d ~ i dA ,H E .A'R(O~j(), VH E .A'R(O~jZd-dH) with

some dH ~ min(O,dA-1) and H,. VH are bounded on bounded subsets cf 0d' Let in

(3.3) p < dA-1 . Let Qd be an arbitrary open domain in Zd' Then V f > 0 there

exists a set U f E .5f such that

a) ,9J ( U )~ 0 (f --+ 0) I
f

b) if J.l ~ U then the equation (3.4) has a quasiperiodic solution passing through
f
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Qd . All Liapunov exponents of this solution are equal to zero.

Remark. For a "not so small € 11 one has U = U and the statement of the theorem is
€

empty.

Corollary 3.2. Let {€.} be a sequence such that €., 0 for j ---+ m . Then unrler the
J J .

assumptions of Theorem 3.1 w.pr.l equation (3.4) has a quasiperiodic solution through Qd

for € equal to some €"
J

~. Let us set Uo = n U € .• For Theorem 3.1 .9( Uo) = 0 . H JJ ~ ?LO then JJ lies
J

out of some ?L and equation (3.4) with € = €. has a quasiperiodic solution though
f j J

•

Corollary 3.3. Let € j '0 (j --t m) and QP( € j) be the union of all quasiperiodie

trajectories of equation (3.4) with f = f j . Then w.pr.l ~ QP( f j) is dense at Zd'
J

Proof. As the Hilbert space Zd is separable there exists a countable system {Bj Ii E IN}

of balls B. ( Zd such that any open set B. contains some ball B. . Now the statement
J J.

results from Corollary 3.2 being applied to the balls Bj (j = 1,2,... ), because the

intersection of a countable system of sets of full measure is of full measure, again. _

Proof of the theorem. Let us take some point zo E Qd of the form
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and denote

(3.5)

After the rearrangement of n first pairs of basis vectors {tp~ Ij = 1,... ,n} and decreasing
2 2

the number n (if there is need in it) one may suppose that zt j + ZOj > 0 V j = 1,... ,n .

So the point Zo belangs to same torus T(IO) ~ Tn , 10 E IR~ .

ALet UB denote CJ). = ,\ .(1') , j EIN. Hy Corollary 2.3 for every fixed
J J

wm = (wn+l'wn+2",,) there exists a set OE" = 0E"(wO)) of vectors W = (wl'''''wn) ,

°E" ( Al )( A2 )( ".)( An ' such that

mes OE ~ m( E) , m( E") E"==+O 10 , (3.6)

(here mes is the normalized Lebesque measure) and for w;' OE the equation (3.4) has an

invariant torus T E" ~ '['n at a distance < (1/2 from the torus T(I). The torus TE" is

filied with the quasiperiodic solutions. So if E < c5~ then equation (3.4) has a

quasiperiodie solution passing through Qd provided W lies out of °E" .

In the present situation a n-dimensional parameter of the problem (3.4) is the frequency
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vector w itself. So condition (1.8) is fulfilled with KO= 1 . All the constants mentioned

in the remark 3 (see part 1) are uniform with respect to w . So the remark and an
m

analysis of the proof of Theorem 2.2 (we omit the routine) show that in (3.6) the function

m(E) does not depend on wm ' Let us set IftE= {p E UI w E 0f(wm)} . As the r.v. w

and w are independent, then .9'(?t.J ~ m( f) . So the theorem is proved because form ~ ,

p;' tU f equation (3.4) has a quasiperiodie solution through Qd' •
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4. Nonlinear Schrödinger equation

A nonlinear Schrödinger equation

· D 2u = i(-u + V(x)u + f 2 X(x, Iu I )u)
xx Dlul

will be considered under the Dirichlet boundary condition

05x~r, u(t,O):u(t,r):O.

Let Z = L2(0, I1j() which is regarded as a real Hilben space with inner product

<,v>: = Re f u(x) v(x) dx .

A differential operator -02/ 1Jx2 with tbe Dirichlet boundary conditions defines a positive

selfadjoint operator .A0 in Z with the domain of definition

o
D( .A0) = (H

1 n H
2

)(O, ~() . For s ~ 0 let Zs be the domain of definition of the

operator A~/2. Every space Zs is a closed subspace of HS(O,~() and ihe norm in Zs

is equivalent to the norm. induced from H8(O, rj() . In. particular

Let Z-s be the space adjoint to Zs with respect to the scalar product in Z.

Let us consider antiselfadjoint operator J ,

(4.1)
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J : Z ---+ Z J u(X)~ i u(x) .

Then J2 = - E, so J == -(J-1) = J and the tripIe {Z,{Zs}' < Jdz,dz >z} is a

symplectic Hilbert scale [1].

Let 21 be a bounded domain in IRn and V: [O,r] )( m- ---+ IR be a C2-function. The

differential operator -02/ (Jx2 + V(xja) defines a selfadjoint operator A(a) in Z with

the domain of definition Z2. A(a) depends on a parameter a E21 . For a full system of

eigen-vectors of A(a) let us take {<p7(a)}. Here <P!(a) = <pix;a), <pj(a) = i <pix;a)

and { <Pj(Xja) } is the full in L2(0, J"j1R) system of real eigen-functions of the operator

-I?/nx2 + V(x;a) under Dirichlet boundary conditions. So

Let us suppose that the numbers pt(a)} are asymptotically ordered, i.e.

~t(a) > ~~(a) if j > k and k is luge enough.

Let Oc ( ( be a complex neighborhood of IR and x: Oc)( [0, W"] )( 2r ---+ ( be a

function such that

(4.2)

Let us set



•
-31-

~

IJ 2HO(u;a) = ~ x( Iu(x) I ,x;a)dx .
o

(4.3)

Lemma 4.1. Für any R > 0 there wsts a complex 6-neighbourhood BR(Z~ of a ball

{u E Z2 1 lIull2 ~ R} such that 6 = 6(R) > 0 and HO E ...4'~ (B~;() ,

V 8 2
HO(u;a) = 2 X(x, Iu I ;a)u

Dlul
(4.4)

Proof. The existence of the set B~ and analyticity of HO result from Corollary A2 !rom

Appendix. Relation (4.4) results !rom the identities

< v(x),V HO(u(x)ja) >Z = d HO(uja)(v) =

jf

=»J 3,y x 'ui <alu
o 81 u I

D 2= < v(x), 2 X(x, Iu(x) I ;a)u >Z .
81ul

The last statement results !rom Corollary A2 again. •
1So the Hamiltonian equation with a hamiltonian 2" < A(a)u,u >Z + HO(u;a) has the

form

ü = i(-u + V(x;a)u + f 8 2 X(x, lu 1
2ja)u) (4.5)

xx Dlul
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This equation is of the form (1.5) hut operators A(a) don't commute one with another

and the condition (1.3') is not satisfied. For applying the theorem we at first mllSt do

linear transformations Ua of the phase spate depending on a parameter a,

1/2
Here cpix) = (2/ r) sin jx .

Lemma 4.2. For every a E 2L the transformation Ua is canonical and orthogonal with

respect to scalar product < -, - >z . For every &, &1' ~ E 21 and every s E [0,2]

Here li-li s s = I -Iz z .
, s' s

lIua -ua.Jls s ~ Csl al~ I ,1 -~ ,

(4.6)

(4.7)

(4.8)

Proof. The orthogonality of Ua results from the fact that it maps one Hilben basis of the

space Z into another. The canonicity results from identities

(we use the orthogonality of Ua ).
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The estimate (4.6) for the spectrum of Sturm-Liouville problem is well-known [PT,Ma].

For to prove (4.7) let us mention that for the eigen-functions I(Jj(x;a) one has the estimate

(see [PT,Ma] ). As

F?
----w rp.(x;a) = (V(x;a) - ~ .(a))<p.(x;a)
8x~ J J J

then we get from estimates (4.6), (4.9) that

(4.9)

(4.10)

From (4.9), (4.10) and interpolation inequality [RS2] it follow8 that estimate (4.10) holds

for all s E [0,2] .

I

Let u E Zs and

(one has to mention that lIrt'j lls = l ).Then
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~ LI ut + iUkI 1I<t1c(x;a1) - Cf\(x;a2)lI s ~
k

and we get the estimate (4.7). The estimate (4.8) results from the inequali ty

lI<pj(x ja)--<pj(x)lI j ~ C~l-1 in the same way as (4.7) results from (4.10).•

For Lemma 4.2 and Theorem 2.2 from [1] the substitution

u= U va

transforms solutions of equation (4.5) to solutions of equation

v= J(A(a)v + E VH(v;a))

with

So

(4.11)

(4.12)
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Equation (4.5) with f = 0 is a linear Schrödinger equation

• 0 1 2
u = i(-uxx+V(xja)u), u(t) E (H n H )(O,1j() Vt

and it has invariant n-tori

. {n . }n + . +2 _2
T (I) = ~ (0. +lQ)cp.(Xja) 10. +0. = 21.> 0

a l J J J J J J
j=l

Let a Borel set j (iR~ be as in (1.11) and 9"a = U{T~(I) II E .7} . For every a E2l.

U~l(T~(I)) is an invariant torus T(I) of equation (4.12) with f = 0 . 1t is of the form

(1.9 I), does not depend on a and

U~l 9"a = 9' = U {T(I) II E J}

Moreover, if R islarge enough then one can choose a domain o~

OC ( n U-1 B C

2 aE21 a R

which satisfies relation (1.13) with s = 2 .

Let us check that Theorem 1.1 with

(4.13)
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may be applied to the equation (4.12). Indeed, the ,validity of assumption 1) with

O~ = O~ (see (4.13)) results from (4.3), (4.7), (4.8); as8~ption 2) with d1 = dA = 2

resu1ts from (4.6) and from 1he well-known asymptoUCAj:"" j2 + 0(1) (see [PT] I

[Ma]). So we get the following statement.

Theorem 4.3. Let aO be a point in 2( such that

(4.14)

Then there exist integer il' MI such that if

(4.15)

then for 8ufficiently small E > 0 there exists 6. > 0 (sumciently small and independent

on €), Borel subset

and analytic embeddings

f n °1 3 aOl :T -----i(H nH )(O,I";(), (a,l) E8 ,
(a,l) f
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with the following properties:

a
a) mes 8 e0[I] --+ mes 21(ao,6*) (e ----+ 0) uniformly with respect to 1 j

e
b) every torus l ('rn) is invariant for the equation (4.5) and is filled with weak

(a,l)
o e

in (H1nH2) solutions of (4.5) of the form l (CIo + ~' t) (<In is an arbitrary point
( a,l)

from Tn , w' = w' (a,I, e) E IHn )j
€

c) dist 2(l (Tn) , T~{I)) ~ Ce and I tJJ-w' I ~ C e j
H (a,l)

d) the numbers jl' MI depend on KO' n and C2-norm of V(xja) only.

Let us discuss aBsumptions (4.14), (4.15) of the theorem. For tbis purpose let us consider a

mapping U from the set 2! into the space C [0, ,,-] of potentials V(x) J

1ft : 21--+ C [0, ~] , a 1------+ V( · ja) .

Every ~~ is an analytical function of potential V(x) . So condition (4.1) means that the
J

point U(aO) lies in the space C [O,~] out of the zero set of some nontrivial analytical

function. For to diSCUS8 &Ssumption (4.14) let U8 mention that

(see [PT, Ma]). It is proved in [PT] that the system of the functions

{<pi( · ja),... ,<p~( •ja)} is linearly independent for all a. So the function
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is non-trivial n-form on the Spate C [0,,-] and the condition (4.14) means that the

reatriction of this n-form on the image of the tangent mapping

is nondegenerate, too.

So the assumption (4.14)+(4.15) is an non-degeneracy condition on the I-jet of the map

11 at the point aO'

Remark. Theorem 1.1 is applicable to study equation (4.5) under Neumann boundary

conditions, or in the space of even periodic with respect to x functions,

xEIR, u(t,x) == u(t,x+2r), u(t,x) == u(t,-x) , (4.16)

if the functions V and X are even periodic and smooth on x. In the last situation one

has to take for spaces {Zsl the spaces of even periodie Sobolev functions. In such a case

relation (4.4) defines an analytical mapping from the space Zs into itself for every s ~ 1 .

So Theorem 1.1 is applicable with arbitrary d ~ 1 and in the case of the problem (4.5),

(4.16) one may prove the existence of arbitrary smooth invariant tori (Le. being in the

space Hk(O,r;() with k arbitrary large) at a distance of order f from 9'a'
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5. Nonlinear string equation

The next application of our theorem will be to the equation of oscillation of astring with

the fixed ends in a nonlinear~astic medium:

02 -2 2 8-::-2" w = (Ir / lJx -V(x))w-€ 7JW X(x,w)
8t

w = w(t,x), O~t~1r, w(t,O) == w(t,,,") == °

(5.1)

(5.2)

For writing down this non-linear boundary value problem in a form (1.5) we need some

preliminary work. Let V: [O,,,.])(m --+ IR+ be a smooth function. The differential

operator -,r/Dx2+ V(x;a) defines a positive selfadjoint operator in the space L2(0, ,,-;IR)

o
with the domain of definition (H1nH2)(O,,,"jlR). The space ~ = D(v:::r;) is the Sobolev

0 1space H (0,1r,1R) with the scalar product

""
< u,v >(a) = J(uxvx + V(xja)uv)dx

°
For t~O let ~t be the space ~t = D( A~t+l.)/2) with the norm

Ilull~a) = 11 A~/2u lI~a). In particular lIull~a) = « U,u >(a»)1/2 . For -t~O let

~-t be aspace dual to $'t with respect to scalar product <. j. >(al . Let U8 set

z~a) = ~t)( .$"t with the natural norm and scalar product which will be denoted as

<.,. >(al, too. In the scale {Z~a)} let UB consider an operator Ja of order dJ = 1 ,
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This operator is anti-selfadjoint in Z(a) = z~a) with the domain of definition

D(Ja) = Z~a) . The tripIe

{ z(a) {z(a) IsEiH} < J dw dw >(a)} J = -(J )-1
's 'a' .'a a

is a symplectic Hilbert scale [1] depending on a parameter a.

Let {tp~a) Ij ~ 1} be a full in L2(O,:r,IR) ayatem of eigen-functiona of operator

-02/8x2 + V(xja) ,

and ~~a) > ~~a) for j > k and k large enough. Let ua aet

Then the aet offunctions {(,\ ~a)r-ll /2tp~(a) Ij~ I} ia a Hilbert basis of Z~a) Va E IR and

Let the function x(x,wja) and domain OC C( be the same as in § 4 and

(5.3)



•
-41-

1f

HO(wl'w2) = JX(x,W1(X)ia)dx
o

Lemma 5.1. For any R > 0 there exiate a complex 6-neighborhood

B~ ( Z1a)e = zla) GlD ( of a ball {u E Z1a) I lIu ll1a)~} such that 6 = 6(R) > 0 and

HO E v4'~(B~;() ,

(5.4)

VaHOE v4'~ (B~;Z~a)c) (here Va ia the gradient with respect to scalar product

<.;.>(a)).

Proof of analyticity of HO and VaHO is the same as in Lemma 4.1. The formula for

VagO results from identities

•

The Hamiltonian equation corresponding to a hamiltonian dIa(w) = ~ IIwll~ + fHO(w)

in a symplectic structure with the 2-form < Jadw,dw >(al is the following:
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_ 1/2 1/2 -1 8 .- ( via w2, - A a (w1 + A a E 7JVi: X(x,w1(x),a)))
1

· _ 1/2 -1 8 .
w2 - - via (w1 + via E 71W7 X(x,w1(x),a)) .

1

(5.5)

Mter elimination w2 from this equation one gets an equation on w1 ,

So equation (5.5) is equivalent to equation (5.1). In what follows we shall discuss equation

(5.1) in the form (5.5).

As in § 4 we have to do BOrne linear transformation helore we apply our theorem. So let

{Zs} be the scale of spaces of form {Z~a)} with V(x;a) == 0 J Le. defined by operator

-l?/1Jx2 instead of -l?/1Jx2 + V(x;a) . Let us set

and denote an antiselfadjoint operator J(a) of order 1 in the scale {Zs} J

(5.7)
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The tripie {Z = ZO,{Zs}' < J(a)dw,dw >o} is a symplectic Hilbert scale depending on a

paramete~ a of the same sort as in § 1, i.e. with condition (1.3) being fulfilled.

For the relations (5.3), (5.7) the mapping

defines a canonical transformation from Zs to Z~a) for every s ~ 0 . So Ua transforms

solutions of equation

· V 0v = J(a)(v+E H(v;a)), H(v;a) = H (Ua(v);a)

into solutions of (5.5). As in § 4 one can prove the following statement.

(5.8)

Lemma 5.2. For any R > 0 there exists a complex 6-neighborhood O~ C Z~ of a ball

{u E Z1 1 IIul11 ~ R} such that 6 = 6(R) > 0 and H E .A~ (O~;(),

VH E .A~(O~;Z~) . Let us check that Theorem 1.1 with

is applicable to equatian (5.8). Indeed, a8sumption 1) results from Lemma 5.2, assumption

2) with r = 2, K2 = 1, d1,1 = 0 and same K~ E IR is satisfied because

A/a) = Ai(a) = (A~a))1/2 ,where {A~a) = j2 + C(a) + O(l)} is a spectrum of the

Sturm-Liouville problem. So we get the following statement on equation (5.5) {ar (5.6)).
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Theorem 5.2. Let a Borel set J be as in (1.11) and &0 be &point in Q{ such that

(& )
det( BA j 0 /~11~j, k~n)# 0 .

Then there exist integers jl' M1 such that if

(5.9)

(5.10)

then for sufficiently small f > 0 there exists 0* > 0, Borel subset

&0 &0 \ f n aO
8 € C 8 = 2L (&0,0*) x J and smooth embeddings l : T ----+ Z2' (a,l) E8 ,

(a,l) €

with the following properties:

&
a) mes 8 f

0
[I] ----+ mes 2L (aO' 0.) (f ----+ 0) uniformly with respect to I;

f

b) every torus 1: ('rn) is invariant for the equation (5.5) and is filled with weak
( a,l)

in ZI solutions.

The conditions (5.9), (5.10) are ones of non-degeneracy in the same hence as in § 4.
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6. On real points in the spectrum

The proof of the statements a)--e) of Theorem 1.1 is valid if some finite number of

eigenvalues of the operator JZ(a) AZ(a) is real) Le. if for BOrne finite number of indexes j

instead of the conditions (1.3'), (1.3) one has

Z:f: A:f: Z:f: J T.
A (a)<p j = T ~ j (a)<p j l J (a)<p j = T ~ j(a)cp j' J = n+l,,,,,n+p

(see [K3]). In such a case

So the spectrum contains p pairs of real eigenvalues.

(6.1)

(6.2)

Example. Let us consider the problem (5.6), (5.2) without the limitation V(x;a) ~ 0 (and,

so, with the possibility of negative points in the spectrUDl u( tA' a) of the operator

A a = -02/ {}x2 + V(x;a)). Let us suppose that 0 ~ u( A a) and denote by ~t )

t ~ 0 , a space ~t = D( I viia l (t+1)/2) ~ Let us define spaces {Z~a)}, {Zs} and

operators Ja' J(a) and function HO in the same way as in § 5 but with the operator

I vi I instead of vii and I~(a) I instead of ~(a) l j = 1,2,... (by definition,
a a J J

I A Icp(a) = I~(a) I<p(a) Vj) .
a J J J

Let us consider a hamiltonian
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1 11 11 2 1 1 1 0R(wja) = 2" W (a) + 2" < sgn Aaw,w > (a) + E H (wja)j
Zo Zo

Corresponding Hamiltonian equations have the form

-I _ I A 11/ 2 2w - a w,

(6.3)

(6.4)

and we get the equation (5.6) for the function w1(t~) , again. One can repeat the proofs of

§ 5 and to write down the equations (6.4) in a form (5.8) which satisfies the conditions of

Theorem 1.1 with the condition (6.1) instead of (1.3'), (1.3). So the statements of

Theorem 5.2 are true without the assumption V(x;a) ~ 0 .
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Appendix. On superposition operator in Sobolev spaces.

Let Oc C ( be a complex neighborhood of the rea.lline and X: Oc x [0, w-] ---+ (p be a

Ck-function which is real for real arguments. Let Hk(O,r;(p) (Hk(O,w;IRP)) be the UBUal

Sobolev space of (p(IRP)-valued functioDB on [O,r]; BR be a baJl in Hk(O,r;IRP) of

radius R centered at zero and B~(6) be a 6-neighborhood of BR in Hk(O,r;(p). As

Hk(O,w;IRP)CC(O,w;IRP) for k~l then for BUch a k B~(o)CC(O,r;Oc) if

0= 6(R) << 1 . So the superposition operator

;: B~(O) --+ C(O,r;(p), u(x) t---+ X(u(x),x)

is well-defined.

Theorem Al. Let k E lN , X ECk(OCx [0,r]) and Vs ~ k

OS R c OS c
-s X( •,x) E.A (0 ;() Vx E [0, r], I-s X(u,x) 1~ K* V u E 0 , x E [0 I w-] .
fix Dx

1;(u)1 k P ~C(R)K* VuEB~(o)
H (O,r;( )

(Al)

Proof. By taking a derivative of order t ~ k from the function X(u(x).x), u EB~( 0) ,

one gets the estimate (A1). If u EB~(0) and v,w E Hk(0, r; (p) then the function

is complex-analytic in same neighborhood of the origin in (; so the map t/J is weakly
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analytic on B~(6) .

As ; is bounded and weakly analytic then it is Frechet-analytic (see [PT], Appendix

A). •

Let the function X = x(u,x;a) depends on a parameter a E21 in a Lipschitzian way, i.e.

x( · , • ja) E Ck(0 c)( [0, r]) Va E 21 and

IJs R c p
-s X(· ,x;·) E A (0 ;( ) Vs ~ k, Vx E [O,~] . (A2)
lJx

Then by applying Theorem Al to functions X(u(x),x,a) and X(u(x),x,al ) - X(U(X),X,~)

(a,al'~ E 21) we get

Corollary A2. If aBsumption (A2) takes place for BOrne kEIN, then

,p E A~(B~(6); Hk(O,II{P)). In panicular, a functian u(x) 0-------< J ,p(u)(x)dx belangs

to A~(B~(o);(p) .
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