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In this paper we consider Hamiltonian perturbations of an infinite—dimensional linear
system with pure imaginary spectrum {+ i rj| j=12,...} . We study perturbations of a

quasiperiodic solution of linear system with finitely—many frequencies Ty oo being
1 n

exited. It is proved that for most values of frequency vector (Tj ,...Tj ) this solution is
1 n
preserved under small Hamiltonian perturbations, if roughly speaking the perturbed system

is quasilinear and frequencies T grows linearlj or super-linearly when j— o .

Our theorems have well-known finite—dimensional analogues. The preservation of most
quasiperiodic motions with n fundamental frequencies in the integrable 2n—dimensional
Hamiltonian system under small Hamiltonian perturbations was proved in the_ classical
works of Kolmogorow, Arnold and Moser (see [AA], [Mo] and their bibliography).
Theorems on the preservation of quasiperiodic motions with k<n fundamental
frequencies were formulated by V. Melnikov. For their proves and discussions see [E,P1].
As an infinite—dimensional analog of our results we want to mention the paper [W]

devoted to the perturbed wave equation with random potential.

In this paper we formulate our main theorem and give its applications to some nonlinear
equations of mathematical physics. The theorem generalize results of works [K1 — K3]. Its
proof will be given in the next paper (part 3 of our text).

The following notations are used: for Hilbert spaces Y and Z the norms are denoted by

|Iy || andinner products by <-,>y , <> ; dist, — distance in the space Z.

The usual norms in R" and C® (n> 1) aredenoted |-| . For metric spaces B,,B,, for

a subset Q, C B, and a mapping h: Q, — B, we denote
1 1 1 2



diSth(h(bl);h(bg))

If the space B, is a Banach one withanorm |-|g , we denote
2

b1 27 < max sup b, Liph}.  (0)
= max {sup , Liph}. :
B, bEQ, By
Let B;,B, be Banach spaces with norms |[-|g , |-|g ,let Blc B ¢ be their
1 2 12
complexifications, let Vjc be an (open) domain in Bjc j=1,2 . We denote by

A R(Vlc ; Vzc) the set of Fréchet complex—analytical mappings from Vlc to Vzc
which map Vlc N B, into \’2c NB, . Let M be some metric space. We denote by
AN (VS5 V%) a class of mappingg G:V,°xM— V,° with the following

properties:

) G(;m)€ LRV, V.Y VmeM,
ii) themap G(b;-):M— V,° is Lipschitz Vb € V,® and

VC

1 ;M _ M, Lip
G ' = sup G(b; - ’ <o 0.2
|G| B, bevlc| (b;-)] B, (0.2)

. [
(the norm in B, is denoted by |-|B2 )

For domains Vy CY,V, CZ we use standard notations Ck(\"Y ;Vg)(kE€Z,k20)
*
for the spaces of Fréchet—differentiable mappings ¢: VY —_ Vz and notation 4(p )

for tangent (cotangent) map.



For abstract sets A, J, for a subset B of their product o x J and for I € J we denote
by B[I] asubset of Y of the form

B[I] = {a € %|(a,]) € B} (0.3)
In the notations of functions and mappings we sometimes omit a part of arguments; we

denote by C,Cl,C2 etc. different positive constants which arrive at estimates and denote

by K,K1 etc. constants at the assumptions of theorems.
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1. Statement of the main theorem

Let {Z,{Z |s€R},a=< 124z ,dz >,} be a symplectic Hilbert scale as it was defined

in [1]. It means that Z is a Hilbert space, {Zs} is a scale of Hilbert spaces with norms
*

||-||s and inner products <> Z81 C Z32 if 8, 2 89 Z8 is adjoint to Zs with

respect to scalar product <>, and Z;=127. 32 s an isomorphism of scale {Zs} of

order —dJSO, ie. JZ:ZBTZs+dJVsER.Operator 7% :Z—-»ZdJCZ is

supposed to be antisymmetric in Z . Operator JZ = —(IIZ)"1 is an isomorphism of the
scale {Z;} of order dy, its restriction on Z is aniselfadjoint (and possibly unbounded).
The 2—form @ = < J2dz ,dz > 5,

/A - Z
<7 dz,dz>, [zl,zz] =<7J 21,29 > 7,

is continous, antisymmetric and nondegenerate in any space ZS, 820 . Now every

Z (s 2 0) is a linear symplectic space. See [1] for more details.

Let us suppose that operator ]Z depends on a vector—parameter a € A , A is a bounded
open domain in R" . So the symplectic fgrm a depends on the parameter a , too. Let
Az(a) be a self-adjoint in Z operator depending on a €2 and let Va€% Az(a)
defines an isomorphism of the scale {Z;} of order d, 20,

Ata). 2, —— 12, 4, VseR (1.1)

Let us suppose that there exists a basis {cpj:h |j2 1} of the space Z with the following
properties:



-6 —

i)  there exist positive numbers A j(s), 8 €R,j€EN,suchthat A j(_s) = (,\j(ﬁ))_1 Vi.s,
K¢ Aj(") <KP Vi>1, Vs €R, (1.2)

and {goji Aj(_s) |21} is a Hilbert basis of the space Z, VE€ER,i.e.

ag a
1, (-) 2, (-9) -
< #; Aj P Ay > Zs = 6j,k 601,0

Vjk €N, Val,02=i;
2
i) 3@ e =727 @) T Vi2 L Ve (1.3)
A%@) o = 280) 05 V5, Va, (1.3")

Here real numbers A jJ y A jA

are positive for j large enough:
A J CN
A; (a.)>0,A.i (a)>0Va, Vj2j, (1.4)
Let us consider a hamiltonian

H(z;3,6) = % < Az(a) 2,2 > 5 + € H(zja,¢)

depending on a parameter a €% and a small parameter ¢ € [0,1] . Corresponding

Hamiltonian equation (with respect to 2—form a(a) ) has the form
Y / Z .
z = J"(a) (A“(a)z + ¢ V H(z;a,¢)) . (1.5)

Here and in what follows, V is the gradient in z € Z with respect to the scalar product



.

<>y . Equation (1.5) is a perturbation of linear Hamiltonian equation
7 = J2(a)A%(a)s (1.6)

In view of conditions (1.3), (1.3°) the spectrum of operator Jz(a) Az(a.) is purely

imaginary,
o)A @) = {£i A@)]i2 1}, 38) = 2(2) 2 *(a)
It is supposed that the functions
a.-———n\‘}(a.) , a.-—-.,\*j‘(a) j<n,

are C2—smooth and for j<n, a€L", |a| <2

a.J a A
|0a,\ (3)|+|‘9a"j

! (8)] <K, (L7)

and the mapping a—— w = (Al,...,A n) € R" is nondegenerate at some point a, € A,

|det(0wj/0ak)(a0)| > K0>0 (j=1,..n). (1.8)
Let us denote
A A J J

Let us set Z° C Z be a 2n—dimensional linear span of the vectors {(,0:']k |j<n} . The space

20 is foliated into tori T(I) which are invariant for linear equation (1.6),



2

n

2

TM={) a';'(p'}' + ajg| cﬂjL +a; =2 1,20, 1<i<n} . (1.97)
=1

A torus T(I) with 1,>0 Vj is ndimensional, T(I)= T® and it is filled with

quasiperiodic solutions of the form
q=wa) . (1.10)
Here q is a coordinate on T(I),
q.= Arg(a".' +ia), j=1,.,n .
J ] J
Let us set

EO:T“—-»ZOCZ
I

be an imbedding identifying a point of T" with a point of T(I) having the same
g 8 g

coordinates.
Let us consider a family of tori {T(I)|I € J} where
JC{IER™K; ¢ L<K;, j= 1.0} (1.11)
is some Borel set (possibly 7 consists of the only point, J= {I5} ). Let us denote

F=U{T(D)|I€ J} .



Let us fix some number d,
dA/2 <d , (1.12)

and let choose a domain 03 in the complexification of the space 2Z

OSCZ&:ngt,su'chthat 5co§ and

d H

disty ( 7:25\05) 2 K. (1.13)

We suppose that the function H may be extended to a function
H:0%x 2% x [0,]] — € which is complex—analytical on z € O(cl and Lipschitz on
a€%,ie HE Ay (050) Ve.

Theorem 1.1. Let the conditions mentioned above hold together with
1) (analyticity and quasilinearity): for some dg €R such that

and for all € € [0,1]

0 g:21 042t
JH(-5-e)| & SKy, |VH(:-,€) ] <K (1.15)
1 Z 1
d-dg
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(see (0.2));
2) (spectral asymptotics):
dy=d, +dg 21

and there exists an asymptotic expansion for the frequencies A 0" j— m:

B jo—szdl—K;jdl'l-...—K;“ljdl"“l| < Kljdl’r , (1.16)

here K, >0, r>1 and d, > d1,1 > .. > dl,r , 41> dl,r;
KA <A@ <k A Vit (117)
K;‘jd’ <A@ € Klde Vi21; (1.18)

a Lipschitz constants of functions A‘;‘ , A'} y A j are bounded above:

d d d
Lip A'}gxlj A Lip A*}gxlj J . Lip 3 $Kyj Lr. (1.19)

Then there exist integers ip M, such that if condition

3) (nonresonance):

|£1A10+£2A20+...+£jlxj10| 2K, >0
(1.20)

ji
Ve ET! ] My, 1€ [yl +ok [ | €2
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is satisfied, then for sufficiently small € > 0 there exist 8¢ > 0 (sufficiently small and

a
independent from € ), Borel set B 60 of vectors (a,I),

a a
8,080 =%ay,6,)x 7, Ways)={a€U| |aay| < &}, (1.21)

and analytical embeddings

€ a
. R 0 4 =

2

with the following properties a)—d):
%0
a) mes B " [I] —— mes A(a), 6¢) (1.23)

e—0

uniformly with respect to I € J (see (0.3));

b) the mapping
€ a €
: T"x8 0,z , (q,a,]) — q
2 € dC ( ) 2 (a,I)( )

0 0
is Lipschitz and is close to the mapping 2 : (q;a,I) '-—-’2 ()
I



€ a
¢) every torus 2 )(Tn) , (aI)€ EIE0 , 18 invariant for the equation (1.5) and is
|

€
filled with weak in Z, solutions of (1.5) of the form z€(t) =E )(q+w’ t), here

q€T", o =w'(a]e) ER" and |w-w’| £ Ce;

d) all Liapunov exponents of solutions z€(t) are equal to zero.

The theorem will be proved in a part 3 of the text. Indeed we shall formulate and prove
more general result applicable to some systems with dH +d 3> 0 which are of physical

interest.

An immediate consequence of the stated result is a strong averaging principle for

nonresonant systems of form (1.5):

a

Corollary 1.2. Under the assumptions of Theorem 1.1 for every (a,I) €8 60, q€T", and

for all t a curve t -———rz (eq+w’t) for € small enough is Ce—close to some weak
I »

solution of (1.5). Here w’ is an averaged frequency vector, |w’—w| < Ce .

Remarks. 1) From the second estimate in (1.15) one can see that the order of nonlinear
operator in equation (1.5) is equal to dJ+dH. The order of linear one is equal to
dy+d, . So the condition (1.14) of theorem 1.1 indeed means the quasilinearity of
equation (1.5) because the order of linear term exceeds the order of nonlinear one at least

by one.
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2)If d, {d,—d; = d—dy—dp—! then the r.h.s. in (1.5) with 2(t) = z°(t) belongs to

C([o,T] ;Zda) .S0 z€ € Cl( [0,T] ;Zda) is a strong in zda solution of (1.5).

3) The numbers j;, M, in the assumption 3) of Theorem 1.1 depends on K, K,—K,,
K, d,, dy ydprdj, dg, d,n and jy only. The maximal possible values of ¢, 6, and

the rate of convergence in (1.23) depends on the same quantities and on K, .

€
4) All the tori 2

* a
(a,I)(Tn) are isotropic, i.e. [2 :a,l)] a=20 V(a,I) € BGO _

5) The frequencies {A jO} are ordered asymptotically only (see (1.16)). So for a space

70

one can choose any 2n—dimensional invariant subspace of operator J(a)A(a) .
6) If instead of the condition d; 21 a weaker condition d; > 0 takes place then the
statements of Theorem 1.1 seems to be wrong in a general case. But the statement of

Corollary 1.2 remains true for 0t < ¢ X forsome 6> 0, x> 1 (see [K4]).

7) The form (1.16) of a spectral condition is not the most general one we need for our

proof. For example for d1 > 1 it is sufficient to demand that

d,—1

1.4 dy 1
T €ei Y, Dl 200 TV (124

j+l

See [K1] for (1.24) and [K2] for a possible form of a spectral condition with d; = 1. For

the profound investigation of this problem see [DPRV].
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8) The necessity of the quasilinearity condition df £ d,—1 results from (1.16) (or
(1.24)). Indeed for arbitrary dIl1 >d,—1 one can easily find perturbation H of the form

H=1<AP(ae)zz>,, APAZ = AZAP

such that condition (1.15) is satisfied with dH=dé and for the operator

d,—1
Az(a) + AP(a,¢) condition |A j +1—Aj| 2Cj 1™ is broken for some j large enough.

€
9) The analyticity of tori 2( )(T“) was observed by J. Péschel [P1]. In the
a,l

author’s works [K1—K3] only smoothness of the tori was stated.

10) If all the numbers d, dH’ d A dJ are the integers then Theorem 1.1 may be
stated in the framework of discrete symplectic Hilbert scales {Z,{Z|s € I},a} (see [1],
part 5).
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2. Reformulation of Theorem 1.1

Let us suppose that the boundary & is smooth, domain 2 is connected, all eigen—values

J ,A

are analytical functions of a € % and
det{awj/ﬂak(a) |1<j,k<n} =0 . (2.1)

For some fixed point 3 € 2 we define numbers A?O’ A‘}O, A 0 and a vector wy as in

(1.9).
Let us consider some resonance relation of a form
s-w{a) +A(a)=0, A= l’.lAn+1(a)+...+2.pAn+p(a) , (2.2)
s €1, LS8y = 81+l ++ 8 ]<2. (2.3)

Lemma 2.1. Let all the functions ,\51' A‘? be analytical in ®, d, > 1 and asymptotic
(1.16) together with assumptions (1.18) and (2.1) take place. Then there exist numbers
M,, j, with the following property: if some relation of form (2.2), (2.3) holds and in (2.2)
ﬂpaﬁo,then |s] <My, p<iy-

Proof. For the assumption (2.1) there exist a point a’ € 2 such that

-1
C S | w*(a,) I[Rn,IRn S c (2°4)

for some C . Let Va. be a gradient with respect to the usual scalar product in R® . Then
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V,(s+ (a)) = w (2)s and for (2.4)

V(8- (a”))} 2 C s (2.5)

We consider two possibilities:

a)d; >1. As |£]; <2, then for the assumption (1.16)

d,—1 .
|Aag)] 2 1A (ag) =14, 1(a)|Co2 Cpp 1, (2.6)

So assumption (2.2) imply inequality

d,-1
|3""(30)| chp —C,

and

d,~1
1497
ls] 2Cp © —C5 . (2.7)

d
We may suppose that in (1.19) d; > 0. Then |VaA(a.’)| $2Kp LT and for (2.5),

d
(22) |s] £Cyp LT From this estimate and (2.7) the statements of the lemma results

immediately.

b) d; = 1. By the assumption (1.19) |V A(a’)| < 2K, . From this estimate and

(2.2), (2.5), (1.19) results an estimate on 8 :

|51 $CIV,(s-ofa"))| = CIV,A(")] € 2K, . (28)
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If [e];=1or [£];=2 and |f.p|=2 then |A(:.=.0))2K2p—C5 for (1.16) . So by
(2.2)

Kyp € Cy + |5 o{ag)| < Cg + I8l 1ukag)| - (29)
The estimates (2.8), (2.9) imply the lemma’s statements if [£]; =1 or H’.p[ =2.

Now let |£],=2 and |£p| = 1. Then the set {j| R.j #0} consists of two elements
and contains p. Let us denote the second element as p—A, A > 0. Then for (1.16)

|A(ag)| 2 KyA—C’ and for  estimates (2.8) and  relation  (2.2)
K,A—C’ < [8-wag)| < Cg.So A< C, and for (1.19)

d
1
|V, A7) € 2K, (p-a) ™, dy, <dj-1=0.
dl r

So, |V (s-w(a”))| < 2K (p~4) " ,to0.1f 8# 0 then for (2.5)

d1 r

C’ <1V, (5+(a’))] € 2K, (p-8)

and the estimate for p is obtained. If s =0 then

dl r
0= |A(24)] 2 KQA "‘2K1(P_A) '

and the estimate on p is obtained again. Now the lemma is proved. g

A

Theorem 2.2. Let all eigen—values A i A‘} be analytical functions of a parameter a € &
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and conditions (1.2), (1.3), (1.37), (1.7), (1.11}H1.13), (2.1) hold together with
assumptions 1), 2) of Theorem 1.1. Then there exist integers ip My such that if an

assumption

8;4,(a) + 52A2(a)+...+sj1Aj1(a) =0
(2.10)

]
VseZ", |s] <My, 1< |sn+1|+;;.+|sj1| <2

is satisfied then for every 6 > 0 and for sufficiently small € > 0 there exist a Borel
subset 2 C 2 and analytical embeddings

€ .n é
Eazr _-.udc, a €AY, d =d+dy—dg-1 ,

with the following properties a)—):

a) mes Ql\Qlf <é,

b) the mapping
€ €
Y ol 2, (48)—] @

is Lipschitz and

€ 0 Tnxﬁlg,Lip
1y -y | 2, < Cge (2.11)
C
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€ ph 6 .
c) every torus 2 (T7), a€ A, is invariant for the equation (1.5) and is filled
a
€
with weak in Z, quasiperiodidc solutions of the form 2 (q+w’t) and
a
| o—w’ | SC%G . (2.12)
All Liapunov exponents of these solutions are equal to zero.

Proof. By the analyticity of functions A‘}, A? and by the assumption (2.1) the set
{a €A| |det Bwj/ da) | > 0} is open and of full Lebesque measure in 2 (i.e. a measure

of its complement is equal to zero). Let set
U ={a€U| |det 8wj/3ak| > t, dist(a,d) 2t} .

Then 2, t — 0, is an increasing sequence of compact sets and U{2, [t > 0} is of full

measure. 5o there exists K, = K(6) > 0 such that

mes Qi\QlKO <7v=16/4. (2.13)

Let us choose j1 > j2+n, M1 2 M2+2 with j2, M2 as in Lemma 2.1. Then for the
assumption (2.10) and Lemma 2.1 there is no identical resonance relation of the form (2.2),

(2.3). So every set

{a € Ql[slll(a)+...ﬂ-spAp(a) $ 0} (2.14)

with 1< |sn+1|+...+|sp| <2, is of full measurein A .
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Let us take a point ag € QLK . For the remark 3, Theorem 1.1 is applicable with this
0

choice of 3 if condition (1.20) is fulfilled with some 11-:- jl 0 M, = M1 0 which does

not depend on ag - Let us consider a set

= : . >
A ={a €T |s;2,(a) + +8110/\,110(a)| 2t

’ At}

Vs| <My g, 1€ sy I+l 1<2}

As the sets (2.14) are of full measure, then for some t; > 0

mes m\QItO <7. (2.15)

Theorem 1.1 is applicable with arbitrary a; € % N2 J = {IO} and a constant K,
0

t ]
0
in the assumption (1.8) as in (2.13). In this situation for remark 3 6, does not depend on

a
a, and set B eO is of the form

a

8 0= 01y, %0Caa. b (2.16)
€ Te 0 “e 0 7* :

The open balls 2[(3,0,6*), 3, € QIKO na o’ form a covering of compact QIKO n QItO . Let

M
us fix some finite subcovering, A, NA C U D, D.=Ua;. b¢) . For the statement
Ko "t g=1 1 TT0

a) of Theorem 1.1

an.
mes Dj\QlGOJ <y/M Vj=1,..M if €< €(é) (2.17)
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For every j=1,...,M let us choose a closed subset D? CD j such that
dist(D‘J?,Dﬂ) >6 >0 Vj#k (2.18)
and
mes(U D;\U D‘j’) <7. (2.19)

Let us set
an-
0j 0
(Ql6 NnD j)

€
0 being equal to the map 2 constructed by

€ 2g;
a.nddeﬁneama.pz ,aEQlGJnD.,
a . (a:lo)

aan:
means of Theorem 1.1 for a € QIGOJ . This definition is correct because every point a € ng

¢

an-
belongs to the only set Qleo-‘ n D_]

: €
The statements a)—c) of the theorem are true with this choice of ng and z . Indeed,
a

the assertion a) results from the estimates (2.13), (2.15), (2.17), (2.19). The assertion c) is

local with respect to the parameter a and it results from Theorem 1.1.

For to prove the assertion b) let us mention that by Theorem 1.1 for AY = X€ — »0 we

have
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Q.
T2 xg OJ,Lip
€

Z
dc

|A X <Cye (2.20)

ag.
OJ 0 : : _ /
If bjEQle nDj then for j, #j, by (2.18) |bjl blzl 2 &8’ . So by (2.20)

-1
I8 Bqiby) — 8 laibyllg $2C56” ~Iby-byle Vorby € 2l . (221)
By (2.20), (2.21) we get an estimate (2.11) with C = Cy(1 + 26"1) -

Corollary 2.3. If under the assumptions of Theorem 2.2 condition (2.10) is satisfied then

for arbitrary p € (0,1) and for 0 < € << 1 there exist a Borel subset 2_C% and
€

analytical embeddings :T"—2Z, , a€%_ , d =d+d, —d 1, with the
a d, € c AT CH

following properties:

a)mel\Qle——bO (e —0) ,
,Lip

0,T x«
Y|z e
C

€
¢) every torus T®), a €9 , is invariant for the equation (1.5) and is filled

€
with weak in Z; solutions of the form 2 (q+w’t), |w'—w| < €”. Al Liapunov
a

exponents of these solutions are equal to zero.

Proof. By Theorem 2.2 with §=1/n, n=12,.. for €X €, €, >0, we have the
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€
sets ﬂi/ T and maps z satisfying the assertions a)—) of the theorem. If €, <<1
a

then
CJESGP,C]‘;)-GSGP Ve<e, . (2.22)

We may assume that € \,0 (n— o) and set &(e) =1/n if € € (e(n+1), €(n)] .
Now the assertions of the corollary result from Theorem 2.2 and (2.22).
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3. On systems with random spectrum

Theorems 1.1 and 2.2 may be applied to the Hamiltonian perturbations of random linear
system for proving that quasiperiodic solutions of the unperturbed linear system survive in
perturbed system with probability 1 (w.pr.1). Here we prove a simple theorem of this sort
which deals with perturbations of a linear system equivalent to a countable set of free

harmonic oscillators with random frequencies Wy, Wy, .-

The perturbations of a countable system of random oscillators by means of a short range
interected hamiltonians have been studied in a number of works (see [FSW], [P2] and
bibliography of these papers). For applications of our theorems we don’t need short range
interaction assumption. Instea:d of the last we use assumption of linear or super—linear

growth of frequencies (wj ~ de ,d21).

In the work [W] non-linear perturbations of the string equation with a random potential
were studied. The theorems of [W] are similar to our results of this section.

Let Z be a Hilbert space with an orthobasis {(p:;| i21}; Z., s€R, be a Hilbert

8 ]
spaces with the orthobasis { j-'stp:;T~ |j2 1} and

J:Z—AZ,J(@?):#g}? Vij. (3.1)

Then J = (—J)"1 =J and the triple {Z,{Z;}, < Jdz,dz>,} is a symplectic Hilbert
scale with properties (1.3) being fulfilled with A'} =1.

Let (%, &, #) be some probability space and A = A(y), z€ %, be a random

selfadjoint operator in Z such that Vj€N
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d
AW = M5, M =Ki A+ 4w - (3.2)

. Here K> 0 and {Ajl j2 1} are independent random variables (r.v.) such that every l\j
is uniformly distributed on a segment

8= 3P 3P . (33)

Let O be a neighborhood of Zy in Zj=2Z;®C and HE JR(OE;C) . Let us consider
R

a Hamiltonian equation with a hamiltonian & = % < Az,z >gt € H(z) , i.e. the equation

z = J(Az + € VH(z)) . (3.4)

1 R R .
Theorem 3.1. Let d, 21, d25d, HE £405C), VHE 4 (og;zd_dH) with

some dp < min(0,d A—l) and H, VH are bounded on bounded subsets of Og. Let in
(3.3) p<dy—1.Let Qy be an arbitrary open domain in Zj. Then Ve >0 there
exists a set ¥ ¢ € 5 such that

a) 2 ( 2[6)——»0 (e —0) ,

b)if uf « ¢ then the equation (3.4) has a quasiperiodic solution passing through
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Q 4 All Liapunov exponents of this solution are equal to zero.

Remark. For a "not so small ¢ " one has ?te = % and the statement of the theorem is

empty.

Corollary 3.2. Let {e j} be a sequence such that € j N\, 0 for j— o. Then under the
assumptions of Theorem 3.1 w.pr.1 equation (3.4) has a quasiperiodic solution through Q d

for ¢ equal to some Ej‘

Proof Letusset %,=n % _ . For Theorem 3.1 #( %0) =0.If uf %, then u lies
J
out of some % c. and equation (3.4) with e =¢ j has a quasiperiodic solution though
J

Qd' |

Corollary 3.3. Let ej\,O (j— o) and QP(ej) be the union of all quasiperiodic

trajectories of equation (3.4) with € = € Then w.pr.1 U QP(ej) is dense at Z; .
J

Proof. As the Hilbert space Z is separable there exists a countable system {le j €N}
of balls B i CZ d such that any open set B, contains some ball B i Now the statement

results from Corollary 3.2 being applied to the balls B.i (j=1,2,...), because the

intersection of a countable system of sets of full measure is of full measure, again. g

Proof of the theorem. Let us take some point 2, € Qd of the form

n
+ =+
z0=2 259 » n=n(z0)<m ,
=1
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and denote
distzd(zo, Zd\Qd) = &n, 60 >0 . (3.5)

After the rearrangement of n first pairs of basis vectors {go:; |j=1,...,n} and decreasing

L2 2

the number n (if there is need in it) one may suppose that 20); + z95 > 0 Vi=1,.,n .

So the point z; belongs to some torus T(I;) = ™, I, € [R_T_ .

Let us denote W. = A‘?

; (1) , jEN. By Corollary 2.3 for every fixed

w, = (wn+1,wn+2,...)

ﬂe C A1 X A2 X, % An , such that

there exists a set ﬂf = ne(wm) of vectors w= (wl,...,wn),

mes QESm(e) N m(f)mﬂo ’ (36)

(here mes is the normalized Lebesque measure) and for w £ 0 ¢ the equation (3.4) has an

invariant torus TE ~T" at a distance < 61/2

from the torus T(I). The torus T _ is
filled with the quasiperiodic solutions. So if €< 63 then equation (3.4) has a

quasiperiodic solution passing through Q d provided « lies out of ﬂe .

In the present situation a n—dimensional parameter of the problem (3.4) is the frequency
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vector w itself. So condition (1.8) is fulfilled with K, =1. All the constants mentioned
in the remark 3 (see part 1) are uniform with respect to w, - So the remark and an
analysis of the proof of Theorem 2.2 (we omit the routine) show that in (3.6) the function
m(e) does not depend on w_ . Letusset % _={p€ %|w€N (v )} . Astherv. w
and w  ~are independent, then P u e) <m(e) . So the theo'rem is proved because for

p £ % _ equation (3.4) has a quasiperiodic solution through Q - =
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4. Nonlinear Schrédinger equation

A nonlinear Schrédinger equation
i=i(-u + V(x)u+ € ﬁ? x(x, [u] %))
will be considered under the Dirichlet boundary condition
0<x<x, ut0)=ut,x)=0 .
Let Z = L,(0,7;C) which is regarded as a real Hilbert space with inner product

<u,v>Z=ReJu(x)?(dex :

A differential operator —32 / 0x2 with the Dirichlet boundary conditions defines a positive
selfadjoint operator A in Z with the domain of definition

[e]
D( £,) = (H1 n H2)(0,1;C). For 520 let Z  be the domain of definition of the
operator g/ z Every space Z is a closed subspace of HS(O,r,C) and the norm in Z g

is equivalent to the norm induced from Hs(O,x;C) . In, particular

21 01 A g2
Z, =H(0,r;C), Z, = (H nH)(0,xC) . (4.1)
Let Z s be the space adjoint to Zs with respect to the scalar product in Z .

Let us consider antiselfadjoint operator J,
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J:Z—7Z, u(x) —iu(x) .

Then J2=-E,s0 J=—(J) =7 and the triple {Z,{Z,}, <Jdzdz>,} is a
symplectic Hilbert scale [1].

Let 2 be a bounded domain in R® and V: [0,7] xT—R bea C2—function. The
differential operator —32/ a2 + V(x;a) defines a selfadjoint operator .$(a) in Z with
the domain of definition Z,. £ (a) depends on a parameter a € 2% . For a full system of
eigen—vectors of .£(a) let us take {<p:jh(a)} . Here goj.'(a.) = goj(x;a.) , qp}(a) =i goj(x;a)
and {(,oj(x;a)} is the full in L2(0,r,IR) system of real eigen—functions of the operator
—& / oax2 + V(x;a) under Dirichlet boundary conditions. So

A(3) ¥5(@) = 15 #3(a) Vi21.

Let us suppose that the numbers {A‘?(a)} are asymptotically ordered, i.e.
A‘?‘(a) > /\‘ﬁ(a) if j>k and k is large enough.

Let O°CC be a complex neighborhood of R and x:0%x [0,7] xT—C be a

function such that

x(+,+;8) € C(O%x [0,7];€) VaERA ,
8
%x(-,x;-) € J%(OC;C) Vs <2, VxE€ [0,2] .

Let us set



.
Ho(uia) = 3 | 2(1u(@)|*xa)ax . (43)
0

Lemma 4.1. For any R > 0 there exists a complex é—neighbourhood Blcl C Zg of a ball
{u €2, |lull, <R} suchthat §= 6(R)>0 and Hy€ xﬁ (BRi0) ,

V Hy(ua) = I—lgx( Jul%a) (4.4)

and V Hy € "‘QL(BR’ 2)

Proof. The existence of the set Bf{ and analyticity of HO result from Corollary A2 from

Appendix. Relation (4.4) results from the identities

v(x),V Ho(u(x);a) >z =d Ho(u;a)(v) =

—ﬁgx(x,IUI .3)(“V+“V)d"_
u

[
[ & T
Q’%’!

2
= < v(x), Taﬁ x(x [u(x) | Za)u >,
u
The last statement results from Corollary A2 again. -

So the Hamiltonian equation with a hamiltonian %< £(a)u,u >, + Hy(u;a) has the

form

. . 2
i =i(-u + V(xa)u + ¢ ﬁ, x(x, || Za)u) (4.5)
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This equation is of the form (1.5) but operators .6(a) don’t commute one with another
and the condition (1.3") is not satisfied. For applying the theorem we at first must do
linear transformations Ua. of the phase space depending on a parameter a,

U,:2—12Z, zgoj(x)-—-'quj(x;a) Vze¢ Vj.

1/2
Here <pj(x) =(2/x) 8injx.

Lemmga 4.2. For every a € U the transformation U, is canonical and orthogonal with
respect to scalar product < -,- >, . Forevery a, a,, a, €A and every s € [0,2]

12(2;) — A,(8y)| £ Claj—ay] , (4.6)
|IUal—U32||s’BSCB|al—a2| , (4.7)
o llgs<cy - (4.8)

Here ||- "s,s =|- |zs,zs .

Proof. The orthogonality of U, results from the fact that it maps one Hilbert basis of the

space Z into another. The canonicity results from identities
<i Uau,Uav >y =< Ualu,UaV >g = <inv >,

(we use the orthogonality of U a ).
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The estimate (4.6) for the spectrum of Sturm—Liouville problem is well-known [PT,Ma].

For to prove (4.7) let us mention that for the eigen—functions gaj(x;a.) one has the estimate
lloya)—aplly < € sup | Vi(xia;)-V(xiag) /< C; 2129 /i (4.9)
(see [PT,Ma]). As

&
)

—3 ‘Pj(an) = (V(x;a) — A j(a))qaj(x;a)

X

then we get from estimates (4.6), (4.9) that

“V’j(al) - ?’1(32)”2 < 02 | 31789 lj (4.10)

From (4.9), (4.10) and interpolation inequality [RS2] it follows that estimate (4.10) holds
for all s € [0,2] .

Let u€Z, and
u=Y @i +)e (), ull2=Y 1 4* <o
(one has to mention that ”goJ” ;=1). Then

10, v, ull, = Ilg(upiup(ual—vaz)wk(x)IIS <
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SE |u.lt +iuy | "tpk(x;al) —sok(x;az)”s <
k

_ 1/2 . 1/2
<y luf+ing | %) T laga, | (JE?) <
. .

’ 7/

and we get the estimate (4.7). The estimate (4.8) results from the inequality
||<p (x; a)—(p (x)” < C1 71 in the same way as (4.7) results from (4.10). g

For Lemma 4.2 and Theorem 2.2 from [1] the substitution
u=0U_v (4.11)
transforms solutions of equation (4.5) to solutions of equation
v =J(A(a)v + € VH(v;a)) (4.12)
with
A(a) = U o £V, H=Hy(U va) .

So

H(v;a) = U:VHO(U a73)
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A(a) () = 25@) &5 V5 -

Equation (4.5) with € = 0 is a linear Schrbdinger equation

i = i(-u_+V(xa)), u(t) € (L 0 B2)(0,7,€) Vt

and it has invariant n—tori
‘ 1 2 2
() [.21(0 T+ (xa) | o +a] i> o}
J=

Let a Borel set J C [R_T_ be asin (1.11) and , =U {T:(I) |I€ J} . Forevery a€2
U;I(T:(I)) is an invariant torus T(I) of equation (4.12) with ¢ = 0. It is of the form

(1.97), does not depend on a and

-1 _ _
U7l 9, = 9=U{T(D)|IE I} .

Moreover, if R is large enough then one can choose a domain Og

o¢c n ulBS (4.13)
2 a€ @ R

which satisfies relation (1.13) with s = 2.

Let us check that Theorem 1.1 with
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M=1,d,=0,d,=2,dg=0;d=2,d =3
j - H J - ] A - ’ H - ] - ] c -

may be applied to the equation (4.12). Indeed, the .validity of assumption 1) with

0§ =05 (see (4.13)) results from (4.3), (4.7), (4.8); assumption 2) with d, =d, =2
results from (4.6) and from the well-known asymptoti¢ ‘A;=j2 + O(1) (see [PT],

J
[Ma]). So we get the following statement.
Theorem 4.3. Let a, be a point in A such that
| det(d A‘}(ao)/a a, |1<5, kn) [ 2K > 0. (4.14)

Then there exist integer j;, M, such that if

A A A
A1 (ag)sy + Ag(aglsy +..+ ’\jl(aO)sjl #0
(4.15)

Jy
Ve€Z", |s] <M, 1< |8 1] +ot |sj1| <2,

then for sufficiently small ¢ > 0 there exists &4 > 0 (sufficiently small and independent

on € ), Borel subset

%0 - p%0
BE C B = m(a()!‘s*) x J
and analytic embeddings

€

(o] a
( ):Tn——»(Hlnﬂs)(O,r,C), (aD€s,
a,l

2
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with the following properties:
a
a) mes BGO [I] — mes A(a;,64) (e — 0) uniformly with respect to I ;

€
b) every torus Z )(‘E‘n) is invariant for the equation (4.5) and is filled with weak
a,l

in (H10H2) solutions of (4.5) of the form 2 I (qg+ t) ( qq i8 an arbitrary point
(a,
from T®, v’ = w'(al,e) ERT);
€
c)dist o)  (T7),Th(I)) < Ce and |w—w’'| <Cc;
H a,l)

d) the numbers j;, M, depend on Ky, n and C’-norm of V(x;a) only.

Let us discuss assumptions (4.14), (4.15) of the theorem. For this purpose let us consider a

mapping % from the set A into the space C[0,7r] of potentials V(x),
%:A—C[0,x] , a—— V(-;a) .
Every A? is an analytical function of potential V(x) . So condition (4.1) means that the

point  %(ay) lies in the space C[0,x] out of the zero set of some nontrivial analytical

function. For to discuss assumption (4.14) let us mention that

3—1(%) jso 8g) a0 ")

(see [PT, Ma]). It is proved in [PT] that the system of the functions

{<,a§( . ;a),...,qpﬁ( -;a)} is linearly independent for all a . So the function
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(€ (R €4 x)) = det( | @2(xia) € (x)dx | 1<), €<n)

is non—trivial n—form on the space C[0,x] and the condition (4.14) means that the
restriction of this n—form on the image of the tangent mapping

“x(ay) : R — T C[0,7] 2 C[0,r]

%(a,)
is nondegenerate, too.

So the assumption (4.14)+4(4.15) is an non—degeneracy condition on the 1—jet of the map
% at the point ag -

Remark. Theorem 1.1 is applicable to study equation (4.5) under Neumann boundary

conditions, or in the space of even periodic with respect to x functions,
x€R, u(t,x) = u(t,x+27), u(tx) = u(t,~x) , (4.16)

if the functions V and x are even periodic and smooth on x . In the last situation one
has to take for spaces {ZB} the spaces of even periodic Sobolev functions. In such a case
relation (4.4) defines an analytical mapping from the space Zs into itself for every 52 1.
So Theorem 1.1 is applicable with arbitrary d 2 1 and in the case of the problem (4.5),
(4.16) one may prove the existence of arbitrary smooth invariant tori (i.e. being in the

space Hk(O,r,d'.) with k arbitrary large) at a distance of order ¢ from 5 .



5. Nonlinear string equation

The next application of our theorem will be to the equation of oscillation of a string with

the fixed ends in a nonlinear—elastic medium:

8—:’22 w = (808’ V(x))w-e g x(xw) ; (5.1)
w = w(t,x), 0<t€r; w(t,0) = w(t,7r)=0 (5.2)

For writing down this non—linear boundary value problem in a form (1.5) we need some
preliminary work. Let V: [0,x]xA — R 4 be a smooth function. The differential

operator —82/ ﬁx2+V(x;a) defines a positive selfadjoint operator in the space L2(0,r,IR)
(o]
with the domain of definition (HlnHz)(O,x;[R) . The space & =D(y £ ) is the Sobolev

o]
space H]‘(O,r,[R) with the scalar product
T
<uv >@) - J (u v, + V(x;a)uv)dx
0

For t20 let %, be the space Z, = D( ./{gt'*'l-)/z) with the norm

2 {
[all®) = || #2/%]|{®). m particwtar [full{® = (< uu>EHY2 | For —t<0 et
z'_t be a space dual to Zt with respect to scalar product < _;,>(a) . Let us set
2{®) = % x %, with the natural norm and scalar product which will be denoted as

<e,e >(a), t0o. In the scale {Zga)} let us consider an operator J a of order dy=1,
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Iy Zga’) — ZE%, w = (wy,w,) — ( J;lzwg, - .A;/zwl)

This operator is anti—selfadjoint in Z(a) = Z[()a) with the domain of definition
D(J3,) = Z{¥) . The triple

a -1
{z(a), {Zga) |s€R}, < ]adw,dw >( )}, J'a = _(Ja)
is a symplectic Hilbert scale [1] depending on a parameter a .

Let {tpga)|j?_ 1} be a full in Ly(0,mR) system of eigen—functions of operator
—32/0x2 + V(x;a)

OO, 101 =1

and Aga) > A](‘a) for j> k and k large enough. Let us set

wﬂ”=w@umm$N”{@”=m4an$Nﬂz

Then the set of functions {(Aga))—s/ 290?(31) |21} is a Hilbert basis of Zga) Vs€R and

1,658 = ()27 v (5.3)

Let the function y(x,w;a) and domain 0° C € be the same as in § 4 and
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x
Ho(wl,wz) = J’ x(x,wl(x);a)dx
0

Lemma 5.1. For any R >0 there exists a complex é—neighborhood
BE C2{®° = 2{ @ ¢ ofaball {u€z{¥| [Jul|{*)R} such that 6= 6(R)>0 and
0. R

H' € Ay(Bpi0),

Ve (ua) = (A5 g x(xwy (92)0) (5.4)

verl ¢ Ay (BR,Z(a)C) (here V* is the gradient with respect to scalar product

<.;.>(a) )

Proof of analyticity of H® and V3H? is the same as in Lemma 4.1. The formula for

V2R results from identities
< (vy,%), V2EO(w) >(®) = aBO(w)(v,,v,) =
= | (g xxomy (e (ax =
= [ (47! g xtxwy(x)ia) vy (x))ix =
= < () (A3 g ey (x2),0) > .

The Hamiltonian equation corresponding to a hamiltonian a? w + EHO w
g 2 0

in a symplectic structure with the 2—form < Jadw,dw >( a) ; is the following:
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(g = w =3V ¥, =

= (b - 4w+ AT 7’3_1 x(x,w, (x);a)))

or

€v1 = Ji/2w2
(5.5)
. 1/2 -1 a
Wo=— "‘a/ (W + A, € WI x(x,w,(x);a)) .
After elimination Wo from this equation one gets an equation on w1
i i 9
21" ("a"x'g — V(x;a))w, ~ € By x(x,w,(x);a) . (5.6)

So equation (5.5) is equivalent to equation (5.1). In what follows we shall discuss equation

(5.1) in the form (5.5).

As in § 4 we have to do some linear transformation before we apply our theorem. So let
{Za} be the scale of spaces of form {Zga‘)} with V(x;a) =0, i.e. defined by operator
—02/ 9x? instead of —82/ a2 + V(x;a) . Let us set

o 0) = (in x 02/ 1), 4= (0sin )2/ 2

and denote an antiselfadjoint operator J(a) of order 1 in the scale {Zs} ,

3(@) o5 == )2 7 NN CE)
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The triple {Z = Z,{Z;}, < J(a)dw,dw >0} i8 a symplectic Hilbert scale depending on a
parameter a of the same sort as in § 1, i.e. with condition (1.3) being fulfilled.

For the relations (5.3), (5.7) the mapping

v, z___,z() QO '_____”p;k(a)

defines a canonical transformation from Z g to Zga) for every 82 0. So U transforms

solutions of equation
= J(a)(v+eVH(v;a)), H(v;a) = HO(Ua(v);a) (5.8)
into solutions of (5.5). As in § 4 one can prove the following statement.

Lemma 5.2. For any R > 0 there exists a complex é—neighborhood 0(1: C Zi of a ball

R
{u€Z| |lu]l; SR}  such that §=6R)>0 and  HE 5 (050),
VHE £ Ql(ol’ 3) Let us check that Theorem 1.1 with

1/2

A J a) _ _ _ _
M=1, 23 (A( ), dy=1,d,=0,dg=-2 d=1, d =2

is applicable to equation (5.8). Indeed, assumption 1) results from Lemma 5.2, assumption

2) with r=2 K,=1, d''=0 and some KéE[R is satisfied because

M) = 1) =(A§a)) ok , where {Aga)=j2+ C(a) + O(1)} is a spectrum of the

Sturm—Liouville problem. So we get the following statement on equation (5.5) (or (5.6)).
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Theorem 5.2. Let a Borel set J be as in (1.11) and 2 be a point in 2 such that

det(ﬁ,\(ao)/ 1<j, k<
§ V1o 1<), k) #0 (59)

Then there exist integers j;, M, such that if

1/2 1/2 1/2
(ag). Y/ (ag) Y/ (ag) Y
(A1 7)) 8+ 7)) sy t.t (Ajl ) sjl 0
(5.10)
3
Vs€Z ", |s| SM;y, 1< s |+t |sj1| <2
then for sufficiently small €e>0 there exists 6« >0, Borel subset

30 - %0 . € n %9
B8, C8 °=2(ayb,) x J and smooth embeddings ) ( T —2,, (a))€0_
a,l

with the following properties:
a
a) mes 860 [1] — mes Y (3g:6%) (e — 0) uniformly with respect to I;
€
b) every torus 2 (T™) is invariant for the equation (5.5) and is filled with weak

(a,I)
in Z1 solutions.

The conditions (5.9), (5.10) are ones of non—degeneracy in the same hence as in § 4.
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6. On real points in the spectrum

The proof of the statements a)—) of Theorem 1.1 is valid if some finite number of
eigenvalues of the operator Jz(a) Az(a) is real, i.e. if for some finite number of indexes j

instead of the conditions (1.3”), (1.3) one has
APy} =% 25();, 14(a)e; = % M(@)e], i = nt1,ntp (6.1)
(see [K3]). In such a case

o(1%(2)A%(2)) = {#2(a)|j=L,-.n, n+p+L, n+p+2,..} U
(6.2)
U {23 (a)|j=n+1,..04p}, Afa) = ).'}(a),\‘;‘(a) :

So the spectrum containg p pairs of real eigenvalues.

Example. Let us consider the problem (5.6), (5'.2) without the limitation V(x;a) 2 0 (and,
so, with the possibility of negative points in the spectrum o( 6 a.) of the operator
A, =-—02/ 2 + V(x;a)) . Let us suppose that 0 € o( A4 ,) and demote by %,
t 20, a space Z, = D(| Aal(H'l)/z).. Let us define spaces {Zga)}, {Zs} and
operators J_, J(a) and function HC in the same way as in § 5 but with the operator
| 6,| instead of .§, and |A§a)| instead of Aga), j=1,2,.. (by definition,
| £, 168 = 120 ) )

Let us consider a hamiltonian
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H(w;a) = % ”w";(a) + %— < 8gn ./{awl,wl >Z(a) + € Ho(w;a); (6.3)
0 0

8gn "‘a. goga) = Bgn /\ga) goga) Vi.

Corresponding Hamiltonian equations have the form

Wl “‘a|1/2"2 ,
(6.4)
«2 1/2 1 -1 &8
W= | | ((sgn S YW + €| A, rx)

and we get the equation (5.6) for the function wl(t,x) , again. One can repeat the proofs of
§ 5 and to write down the equations (6.4) in a form (5.8) which satisfies the conditions of
Theorem 1.1 with the condition (6.1) instead of (1.3), (1.3). So the statements of

Theorem 5.2 are true without the assumption V(x;a) 2 0.
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Appendix. On superposition operator in Sobolev spaces.
Let O°(C C be a complex neighborhood of the real line and y : O° x [0,2] — €P bea
c¥function which is real for real arguments. Let Hk(O,r,Cp) (Hk(o,x;IRp)) be the usual
Sobolev space of CP(RP)—valued functions on [0,x]; Bp bea ball in Hk(O,r,lRp) of
radius R centered at zero and Bﬁ(é) be a 6-neighborhood of By in Hk(o,r,(lp) . As

B¥(0,RP) C C(0,rRP) for k21 then for such a k BS(8) CC(0,50% if
& = §(R) << 1. So the superposition operator

¢ : BR(6) — C(0,;€P), u(x) = x(u(x),x)
is well—defined.

Theorem Al. Let k€N, xy € Ck(ch [0,7]) and Vs <k
8 8
%x(',X) € £(0%0) Vx € [0,7], I%X(U,X)l <Ky Yu€OS x€[0,7].

Then ¢ € £T(BE(6); HY(0,xCP)) and

)]y py S CRIKs Vu € B5(4) (A1)

(0,m;

Proof. By taking a derivative of order £ { k from the function x(u(x),x), u € Bﬁ( ),
one gets the estimate (A1). If u € Bﬁ( 6) and v,w€ Hk(O,r;Cp) then the function

A v— < g(ut+Av),w >
1%(0,x;,CP)

is complex—analytic in some neighborhood of the origin in € ; so the map ¢ is weakly
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analytic on Bﬁ( 6) .

As ¢ is bounded and weakly analytic then it is Fréchet—analytic (see [PT], Appendix
A). |

Let the function y = x(u,x;a) depends on a parameter a € A in a Lipschitzian way, i.e.

x(+,-a) €CY0° x [0,7]) Va€ and
%x(-,x;-) € JR(OC;CP) Vs<k, Vx€ [0,x] . (A2)

Then by applying Theorem Al to functions x(u(x),x,a) and x(u(x)x,a,) — x(u(x),x,3,)
(32,8, € A) we get ‘

roll A2. If assumption (A2) takes place for some k€N, then
$€ An(BL(6); BX(0,m€P)) . In particular, a function u(x).__;J' #(u)(x)dx belongs
R
to Ag(BL(6)CP).



(1]

[AA]

[DPRV]

(E]
[FSW]

[K1]

(K2]

[K3]

[K4]

[Ma]
[Mo] |
[P1]
[P2]

References

Kuksin, S.B.: Perturbation theory for quasiperiodic solutions of
infinite—dimensional Hamiltonian systems, 1. Symplectic structures
and Hamiltonian systems in the scales of Hilbert spaces. Preprint MPI
fir Mathematik, Bonn (1990).

Amold, V.I., Avez A.: Ergodic problems of classical mechanics.
Addison—Wesley Publishing Co., 1989.

Dodson, M.M., Poschel, J., Rynne, B.P., Vickers, J.A.G.: The
Hausdorff dimension of small divisors for lower dimensional
KAM-—tori. To appear.

Eliasson, L.H.: Perturbations of stable invariant tori. Ann. Sc. Super.
Pisa, Cl. Sci., IV Ser. 15, 115147 (1988).

Frohlich, J., Spencer, T., Wayne, C.E.: Localization in disordered
nonlinear dynamical systems. J. Stat. Phys. 42, 247—274 (1986).

Kuksin, S.B.: Perturbation of quasiperiodic solutions of
infinite—dimensional Hamiltonian systems. Math. USSR Izvestiya.
Vol. 32, No 1, 39—62 (1989).

Kuksin, S.B.: Hamiltonian perturbations of infinite—dimensional
linear systems with an imaginary spectrum. Funct. Anal. Appl. 21,
192-205 (1987).

Kuksin, S.B.: Conservative perturbations of infinite—dimensional
linear systems depending on a vector parameter. Funct. Anal. Appl.
23, 62—63 (1989).

Kuksin, S.B.: An averaging theorem for distributed conservative
system and its application to the von Karman equations. P.M.M.
USSR, 53, No 2 (1989).

Marchenko, V.A.: Sturm-Liouville operators and applications.
Naukova Dumka, Kiev, 1977; English transl., Birkhduser, Basel, 1986.

Moser, J.K.: Stable and random motions in dynamical systems. Ann.
of Math. Stud. 77. Princeton Univ. Press, Princeton, 1973.

Poschel, J.: On elliptic lower dimensional tori in Hamiltonian
systems. Math. Z. 202, 559—608 (1989).

Poschel, J.: Small divisors with spatial structure in infinite
dimensional Hamiltonian systems. Commmun. Math. Phys. 127,
351—393 (1990).



- 50—

[PT] Péschel, J., Trubowitz, E.: Inverse spectral theory. Academic Press,
Boston, 1987. -

[W] Wayne, C.E.: Periodic and quasi—periodic solutions of nonlinear wave
((aquat;ons via KAM theory. Commun. Math. Phys. 127, 4790528
1990).



