THE FANO SURFACE OF THE FERMAT CUBIC THREEFOLD, THE DEL PEZZO SURFACE OF DEGREE 5 AND A BALL QUOTIENT

XAVIER ROULLEAU

Abstract

We prove that the Fano surface of the Fermat cubic threefold is a degree 81 abelian cover of the degree 5 del Pezzo surface branched over the 10 lines and that the complementary of the union of 12 disjoint elliptic curves of this surface is a ball quotient. The lattice of this ball quotient is linked with a congruence sub-group of the lattice of the Eisenstein integers.

Let us recall a classical construction of surfaces due to Hirzebruch [4]: The configuration of 6 lines L_{1}, \ldots, L_{6} going through 4 points p_{1}, \ldots, p_{4} in general position on the plane is called the complete quadrilateral. Let $\ell_{i} \in H^{0}\left(\mathbb{P}^{2}, \mathcal{O}(1)\right)$ be a linear form defining L_{i} and let $n>1$ be an integer. The field

$$
\mathbb{C}\left(\mathcal{H}_{n}\right)=\mathbb{C}\left(\mathbb{P}^{2}\right)\left(\left(\frac{\ell_{2}}{\ell_{1}}\right)^{\frac{1}{n}}, \ldots,\left(\frac{\ell_{6}}{\ell_{1}}\right)^{\frac{1}{n}}\right)
$$

determine a normal algebraic surface, \mathcal{H}_{n}^{\prime}, that is a branched cover, $\pi: \mathcal{H}^{\prime}{ }_{n} \rightarrow \mathbb{P}^{2}$, of \mathbb{P}^{2} of degree n^{5} with the complete quadrilateral as the branching locus. Let $\tau: \mathcal{H}_{1} \rightarrow \mathbb{P}^{2}$ denotes the blow-up map above the 4 points $p_{1}, . ., p_{4}$. The surface \mathcal{H}_{1} is called the del Pezzo surface of degree 5 and contains exactly $10(-1)$-curves : these curves are the proper transform of the lines L_{i} and the 4 exceptional divisors. Let be \mathcal{H}_{n} the fibre product of \mathcal{H}_{1} and \mathcal{H}_{n}^{\prime} over \mathbb{P}^{2} :

$$
\begin{array}{ccc}
\mathcal{H}_{n} & \xrightarrow{\iota} & \mathcal{H}^{\prime}{ }_{n} \\
\downarrow \eta_{n} & & \downarrow \pi \\
\mathcal{H}_{1} & \xrightarrow{\tau} & \mathbb{P}^{2}
\end{array}
$$

The surface \mathcal{H}_{n} is smooth of general type ; the cover η_{n} is branched exactly over the $10(-1)$-curves, and with order n. Hirzebruch proves that:

Theorem 0.1. The Chern numbers of \mathcal{H}_{5} satifies: $c_{1}^{2}\left(\mathcal{H}_{5}\right)=3 c_{2}\left(\mathcal{H}_{5}\right)>0$.
Few examples of surfaces with Chern ratio $\frac{c_{1}^{2}}{c_{2}}$ equals 3 have been constructed algebraically i.e. by ramified covers of known surfaces. The following result formulated by Kobayashi [7], that generalizes the works of Miyaoka, Yau, Hirzebruch and Sakai, gives an analytic characterization of (log-)surfaces with Chern ratio 3:

Theorem 0.2. Let S be a smooth projective surface with canonical bundle K and let D be a reduced simple normal crossing divisor on S (may be 0). Suppose that $K+D$ is nef and big. Then the following inequality:

$$
3 \bar{c}_{2}-\bar{c}_{1}^{2} \geq 0
$$

holds, where $\bar{c}_{1}^{2}, \bar{c}_{2}$ are the logarithmic Chern numbers of $S-D$.
The equality occurs if and only if the universal covering of S minus D and the union
of the (-2)-curves is biholomorphic to the open unit ball \mathbb{B}_{2} minus a discrete set of points.
If a compact surface X contains a rational curve and $c_{1}^{2}(X)=3 c_{2}(X)>0$ holds, then X is the projective plane.

The first algebraic construction of a surface \mathbb{S} which is a ball quotient (ie $\mathbb{S} \neq \mathbb{P}^{2}$ and $c_{1}^{2}(\mathbb{S})=3 c_{2}(\mathbb{S})>0$) was done independently by Inoue and Livné as a cyclic cover of the Shioda modular surface of level 5 (for a reference see [1]). Ishida [6] has then proved that:

Proposition 0.3. There is a étale map $\mathcal{H}_{5} \rightarrow \mathbb{S}$ that is a quotient of \mathcal{H}_{5} by an automorphism group of order 25 .

Having recalling these facts, we can state the results of this paper, the remainder being the proof of this Theorem:
Let $F \hookrightarrow \mathbb{P}^{4}=\mathbb{P}\left(\mathbb{C}^{5}\right)$ be the Fermat cubic threefold:

$$
F=\left\{x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}+x_{5}^{3}=0\right\} .
$$

The variety that parametrizes the lines on F is a smooth complex surface S called the Fano surface of lines of F [3].

Theorem 0.4. A) There is a étale map $\kappa: \mathcal{H}_{3} \rightarrow S$ that is a quotient of \mathcal{H}_{3} by an automorphism of order 3.
B) There is an open subvariety $S^{\prime} \subset S$ such that S^{\prime} is a ball quotient i.e. $\bar{c}_{1}\left(S^{\prime}\right)^{2}=$ $3 \bar{c}_{2}\left(S^{\prime}\right)$.
C) Let \mathbb{B}^{2} be the 2-dimensional ball with respect to the Hermitian form represented by the diagonal matrix H with entries $(1,1,-1)$. Let \mathcal{T} be the inverse image of S^{\prime} by κ. The ball lattice of the ball quotient \mathcal{T} is the commutator group of the congruence group:

$$
\Gamma=\left\{T \in G L(\mathbb{Z}[\alpha]) / T \equiv I \text { modulo }(1-\alpha) \text { and }^{t} \bar{T} H T=H\right\}
$$

where α is a primitive third root of unity and I is the identity matrix.
Let us prove Theorem 0.4.
Let $A(3,3,5) \subset G L_{5}(\mathbb{C})$ be the group of diagonal matrices of determinant 1 whose diagonal elements are in $\mu_{3}:=\left\{x \in \mathbb{C} / x^{3}=1\right\}$. The group $A(3,3,5) \simeq(\mathbb{Z} / 3 \mathbb{Z})^{4}$ acts faithfully on F. An automorphism f of F preserves the lines and induce an automorphism on the Fano surface S denoted by $\rho(f)$. Let G be the group $\rho(A(3,3,5))$.
Proposition 0.5. Let X be the quotient of S by the group G and let $\eta: S \rightarrow X$ be the quotient map. The surface X is (isomorphic to) the del Pezzo surface of degree 5 and the cover is branched with index 3 over the $10(-1)$-curves of X.

Let us prove this Proposition.
Let s be a point of S. Let us denote by $T_{S, s}$ the tangent space of S at s, by $L_{s} \hookrightarrow F$ the line on F corresponding to s and by

$$
P_{s} \subset \mathbb{C}^{5}
$$

the subjacent plane to the line L_{s}. The following Proposition is a consequence of the tangent bundle Theorem [3] (see also [9]).

Proposition 0.6. Let s be a fixed point of an automorphism $\rho(f)(f \in A(3,3,5))$. The plane P_{s} is stable by the action of f and the eigenvalues of

$$
d \rho(f): T_{S, s} \rightarrow T_{S, s}
$$

are equal to the eigenvalues of the restriction of $f \in A(3,3,5)$ to the plane $P_{s} \subset \mathbb{C}^{5}$.
Hence we know the action of the differential $d \rho(f)$ on the fixed points of $\rho(f)$. Recall ([9]):

Proposition 0.7. For $1 \leq i<j \leq 5, \beta \in \mu_{3}$, the hyperplane $\left\{x_{i}+\beta x_{j}=0\right\}$ cuts out a cone on F. The curve that parametrizes the lines on this cone is an elliptic curve $E_{i j}^{\beta}$ that is naturally embedded in the Fano surface S. The configuration of these 30 elliptic curves is:

$$
E_{i j}^{\beta} E_{s t}^{\gamma}=\left\{\begin{array}{cc}
1 & \text { if }\{i, j\} \cap\{s, t\}=\emptyset \\
-3 & \text { if } E_{i j}^{\beta}=E_{s t}^{\gamma} \\
0 & \text { otherwise }
\end{array}\right.
$$

Let $\alpha \in \mu_{3}$ be a primitive root. The orbit by G of the curve $E_{i j}^{1}$ is $E_{i j}^{1}+E_{i j}^{\alpha}+E_{i j}^{\alpha^{2}}$. Let be $\{i, j\} \cap\{s, t\}=\emptyset$ and let s be the intersection point of $E_{i j}^{1}$ and $E_{s t}^{1}$. The orbit of s by G is the set of the 9 intersection points of the curves $E_{i j}^{\beta}$ and $E_{s t}^{\gamma}$ $\left(\beta, \gamma \in \mu_{3}\right)$. Let I be the set of the 135 intersection points of the 30 elliptic curves and let s be a point of I. The group

$$
G_{s}=\{g \in G / g(s)=s \text { and } s \text { is a fixed isolated point of } g\}
$$

is isomorphic to μ_{3}^{2} and, by the Proposition 0.6 , its representation on the space $T_{S, s}$ is isomorphic to the representation:

$$
\left(\alpha_{1}, \alpha_{2}\right) \in \mu_{3}^{2} \quad\left(\alpha_{1}, \alpha_{2}\right) \cdot(x, y)=\left(\alpha_{1} x, \alpha_{2} y\right) \in \mathbb{C}^{2}
$$

on \mathbb{C}^{2}. The quotient of S by this action is a smooth point [2]. This implies that the surface X is smooth. The ramification index of $\eta: S \rightarrow X$ at the points of I is 9 and the ramification index of η on the curve $E_{i j}^{\beta}$ is 3 .
Let us denote by K_{V} the canonical divisor of a surface V. Let be $\Sigma=\sum_{i, j, \beta} E_{i j}^{\beta}$; the ramification divisor of $\eta: S \rightarrow X$ is 2Σ and

$$
K_{S}=\eta^{*} K_{X}+2 \Sigma
$$

By [3], we know moreover: $\Sigma=2 K_{S}$, hence $3^{4}\left(K_{X}\right)^{2}=\left(\eta^{*} K_{X}\right)^{2}=\left(-3 K_{S}\right)^{2}=$ 9.45 and $\left(K_{X}\right)^{2}=5$.

The stabilisator of an elliptic curve $E_{i j}^{\beta} \hookrightarrow S$ contains 27 elements, the group that fixes each points of $E_{i j}^{\beta}$ has 3 elements. Let $\eta_{i j}^{\beta}: E_{i j}^{\beta} \rightarrow X_{i j}$ be the restriction on $E_{i j}^{\beta}$ of η. This is a cover of degree 9 ramified over 3 points with ramification index 3. Hence

$$
0=e\left(E_{i j}^{\beta}\right)=9\left(e\left(X_{i j}\right)-3\right)+3.3
$$

(here e is the Euler characteristic) and $e\left(X_{i j}\right)=2: X_{i j}$ is a smooth rational curve. We known moreover that:

$$
\eta^{*} X_{i j}=3\left(E_{i j}^{1}+E_{i j}^{\alpha}+E_{i j}^{\alpha^{2}}\right)
$$

We deduce that the 10 curves $X_{i j}$ have the following configuration:

$$
X_{i j} X_{s t}=\left\{\begin{array}{cc}
1 & \text { if }\{i, j\} \cap\{s, t\}=\emptyset \\
-1 & \text { if } X_{i j}=X_{s t} \\
0 & \text { otherwise }
\end{array}\right.
$$

Let I^{\prime} be the 15 points on X image of the 135 points of I and let be $\Sigma^{\prime}=\sum X_{i j}$. We have

$$
3^{3}=e(S)=3^{4} e\left(X-\Sigma^{\prime}\right)+3^{3} e\left(\Sigma^{\prime}-I^{\prime}\right)+3^{2} e\left(I^{\prime}\right)
$$

As we can verify, $e\left(\Sigma^{\prime}\right)=5$ and we obtain $e(X)=7$. We can blow down 4 (-1)-curves among the 10 curves $X_{i j}$ and we obtain a surface with Chern numbers

$$
c_{1}^{2}=3 c_{2}=9
$$

but this surface contains 6 rational curves. Hence, by Theorem 0.2 , it cannot be a ball quotient and this is the plane : X is the blow-up of the plane at four points. These points are in general position because of the intersection numbers of the $X_{i j}$. Hence X is the degree 5 del Pezzo surface \mathcal{H}_{1} and the $X_{i j}$ are its $10(-1)$-curves.

Moreover, we have proved that the quotient map $S \rightarrow X$ is an abelian cover branched over the ten (-1)-curves of X with ramification index 3 . By the work of Namba [8] on abelian covers, \mathcal{H}_{3} is universal among finite abelian covers with such properties. That means that :

Corollary 0.8. There exists a map $\kappa: \mathcal{H}_{3} \rightarrow S$ of degree 3 that is a quotient of \mathcal{H}_{3} by a group of order 3.

Now, let us consider $S^{\prime} \subset S$ be the complementary of 12 disjoints elliptic curves on S (there are 5 such sets of 12 elliptic curves).

Corollary 0.9. The logarithmic Chern ratio of S^{\prime} is $3: S^{\prime}$ is a ball quotient.
Proof. A canonical divisor K_{S} of S is ample, moreover $K_{S}^{2}=45$ and $K_{S} E=3$ for an elliptic curve $E \hookrightarrow S[3]$, [9]. As $\bar{c}_{2}\left(S^{\prime}\right)=e(S-D)=e(S)=27>0$ and $\left(K_{S}+D\right)^{2}=45+2.12 .3-12.3=81$, the logarithmic Chern ratio of S^{\prime} satisfies:

$$
\frac{\left(K_{S}+D\right)^{2}}{e(S-D)}=3
$$

Thus S^{\prime} is a ball quotient.
Let us recall the notations

$$
\begin{array}{lll}
\mathcal{H}_{3} & \xrightarrow{\iota} & \mathcal{H}^{\prime}{ }_{3} \\
\downarrow \eta_{3} & & \downarrow \pi \\
\mathcal{H}_{1} & \xrightarrow{\tau} & \mathbb{P}^{2} .
\end{array}
$$

The composite of $\kappa: \mathcal{H}_{3} \rightarrow S$ and $\eta: S \rightarrow \mathcal{H}_{1}$ is the map η_{3}. As this map η_{3} is branched with order 3 over the $10(-1)$-curves of \mathcal{H}_{1}, the map κ is étale. Let S^{\prime} be the complementary of a set of 12 disjoint elliptic curves on S. As S^{\prime} is a ball quotient and κ is étale, the surface $\mathcal{T}=\kappa^{-1} S^{\prime}$ is a ball quotient. It remains to find the lattice corresponding to \mathcal{T}. To this aim, we take ideas in [10], where Yamazaki and Yoshida computed the lattice of the Ball quotient surface \mathcal{H}_{5} and we use Namba's results as follows:

Let $b: \mathbb{P}^{2} \rightarrow \mathbb{N}$ be the function such that $b(p)=1$ outside the complete quadrilateral, $b(p)=3$ on the complete quadrilateral minus the 4 triple points $p_{1}, . ., p_{4}$, and $b(p)=\infty$ on these 4 points. The pair $\left(\mathbb{P}^{2}, b\right)$ is an orbifold that has been studied by Holzapfel and Shiga. The universal cover of that orbifold is \mathbb{B}_{2} with the transformation group:

$$
\Gamma=\left\{T \in G L(\mathbb{Z}[\alpha]) / T \equiv I \text { modulo }(1-\alpha) \text { and }{ }^{t} \bar{T} H T=H\right\}
$$

([12], chapter 10, [5], chapter 5). A cover $Z \rightarrow \mathbb{P}^{2}$ with branching index 3 over the complete quadrilateral corresponds to a normal sub group K of Γ and Γ / K is isomorphic to the group of transformation of the covering $Z \rightarrow \mathbb{P}^{2}$. In particular, if $Z \rightarrow \mathbb{P}^{2}$ is an abelian cover, the group K contains the commutator group $[\Gamma, \Gamma]$. By the work of Namba, $\pi: \mathcal{H}^{\prime}{ }_{3} \rightarrow \mathbb{P}^{2}$ is universal among abelian covers of $\left(\mathbb{P}^{2}, b\right)$, thus the lattice of the ball quotient \mathcal{T} is the commutator $[\Gamma, \Gamma]$.

Acknowledgement. I wish to thank Amir Dzambic for stimulating discussions on this paper, and the Max Planck Institute of Bonn, where this research was done.

References

[1] Barth, W., Hulek, K. "Projective models of Shioda modular surfaces", Manus. Math. 50 (1985) 73-132.
[2] Cartan H., "Quotients d'un espace analytique par un groupe d'automorphismes", Algebraic geometry and topology, Princeton Univ. Pr. (1957), 90-102.
[3] Clemens H., Griffiths P., "The intermediate Jacobian of the cubic threefold", Annals of Math. 95 (1972), 281-356.
[4] Hirzebruch F., "Arrangement of lines and algebraic surfaces", Arithmetic and geometry, Vol II, Progress in Math. Vol. 36. pp. 113-140, Birkhauser 1983.
[5] Holzaphel R. "Ball and Surface Arithmetics", Aspects of mathematics, Vieweg, 1998.
[6] Ishida M-N., "Hirzebruch's examples of surfaces of general type with $c_{1}^{2}=3 c_{2}$ ", Algebraic Geometry, Tokyo/Kyoto, 1982, 412-431, LNM 1016, Springer, Berlin, 1983.
[7] Kobayashi, R., "Einstein-Kaehler metrics on open algebraic surfaces of general type", Tohoku Math. J. (2) 37 (1985), no. 1, 43-77.
[8] Namba M., "On Branched Coverings of Projective Manifolds", Proc. Japan Acad, 61, Ser. A. (1985).
[9] Roulleau X., "Elliptic curve configurations on Fano surfaces", arXiv, 2008.
[10] Yamazaki, T., Yoshida M., "On Hirzebruch examples of surfaces with $c_{1}^{2}=3 c_{2}$ ", Math. Ann. 266, 421-431 (1984).
[11] Sakaï F., "Semi-stable curves on algebraic surfaces and logarithmic pluricanonical maps", Math. Ann. 254, (1980) 89-120.
[12] Yoshida M. "Fuchian Differential equations", Aspects of mathematics, Vieweg, 1987.
roulleau@mpim-bonn.mpg.de
Xavier Roulleau, Max Planck Institute für Mathematik, Vivatgasse 7, 53111
Bonn, Germany.

