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ABSTRACT
We answer positively to Zariski’s multiplicity question for families of convenient Newton nonde-
generate aligned singularities.

Let f: (C" xC, {0} x C) — (C,0), (2,t) — f(z,t) = fi(2), with n > 2, be a germ {at
the origin) of holomorphic function such that, for all £ near 0, the germ f; is reduced. Let vy,
be the multiplicity of f; at 0, that is, the lowest degree in the power series expansion of f;
at 0. As we are assuming that f; is reduced, vy, is also the number of points of intersection,
near 0, of Vj, := f;1(0) with a generic (complex) line of C" passing arbitrarily close to 0

" but not through 0. Let sy, denote the Milnor number of f; at 0.

One says that (f;): is topologically constant if, for all ¢t near 0, there is a germ of
homeomorphism ¢;: (C*,0) — (C",0) such that ¢(Vy,) = Vj,. One says that (f;). is u-
constant if, for all t near 0, one has uys, = uy . Notice that, in the special case where (f;).
is a family of isolated singularities (i.e., when, for all ¢ near 0, f; has an isolated critical
point at 0), if n # 3, then “topologically constant” is equivalent to “u-constant” (cf. Lé [L],
Teissier [Te] and Lé&-Ramanujam [LR]). Finally, one says that (f¢) is equimuitiple if, for
all ¢ near 0, one has vy, = vy,. ‘

In [Z)], Zariski asked the following question: if (f;); is topologically constant, then is it
equimultiple? More than thirty years later, the question is, in general, still unsettled {even
for isolated hypersurface singularities). The answer is, nevertheless, known to be yes in
several special cases the list of which can be found in the recent author’s survey {Ey].

In this paper, we concentrate our attention on families of convenient germs f; having a
nondegenerate Newton principal part (see the Appendix for the definitions). Regarding this
class of germs, Abderrahmane [A] proved the following theorem about isolated singularities
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(see also Saia-Tomazella [ST] for a related result).

THEOREM 1 (Abderrahmane [A, Theorem 1]). We assume that, for all t near 0, the
germ f; has an isolated critical point at 0. Also we suppose that (f;); is u-constant. If,
for all t near 0, the germ f; is convenient and has a nondegenerate Newton principal part
with respect to a system of coordinates z = (z1,...,2y), then (f;): i3 equimultiple.

In this paper, we extend this theorem to a special class of higher dimensional sin-
gularities, namely that of aligned singularities (see Section A2 of the Appendix for the
definition). More precisely, we get the following result.

THEOREM 2. We assume that, for all t near 0, the germ f; has an s-dimensional
aligned singularity at 0. Also we suppose that (ft): is topologically constant. Let (tx)xeN
be an infinite sequence of points in C tending to 0. Let z = (21,...,2,) be an aligning
set of coordinates, at 0, for fo and for f,,, for all k € N (such a coordinates system
always exists by Massey [M, Proof of Theorem 7.9]). If, for all t near 0, the germ f;
is convenient and has a nondegenerate Newton principal part with respect to the rotated
coordinates Z = (2541, 2542 - -3 Zn, 21y - - - y Z5), then (fi)e is equimultiple.

For the definition of an “aligning set of coordinates”, see Section A2 of the Appendix.
Notice that, given an aligned singularity, aligning sets of coordinates are generic (in the
inductive pseudo-Zariski topology).

The notion of aligned singularities was introduced by Massey in [M, Chapter 7]. Re-
garding this class of singularities, Massey proved the following reduction theorem.

THEOREM 3 (Massey [M, Theorem 7.9]). The following are equivalent:

(i) for alln > 4, the answer to Zariski’s multiplicity question is positive for families (f¢).
of reduced analytic hypersurfaces with isolated singularities;

(ii) for all n > 4, there exists an integer s such that the answer to Zariski’s multiplic-
ity question is positive for families (f;); of reduced analytic hypersurfaces with s-
dimensional aligned singularities (i.e., for allt near 0, f, has a s-dimensional aligned
singularity at 0);

(iii) for all n > 4, for all integer s, the answer to Zariski’s multiplicity question is pos-
itive for families (f:): of reduced analytic hypersurfaces with s-dimensional aligned
singularities.

With Theorem 1 in hand, the proof of Theorem 2 goes similar to the proof of Theo-
rem 3. We will sketch it in Section A3 of the Appendix. Notice nevertheless that Theorem 2
cannot be obtained by a simple direct application of Theorem 3.

Theorem 2 provides a positive answer to Zariski’s question for a large class of noniso-
lated singularities, without any assumption on the topological constancy, that is, without
any assumption on the homeomorphism ¢, involved in the definition of “topologically
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equivalent”. Under some additional hypotheses on ¢;, positive answers to Zariski’s ques-
tion exist. For example, it is known that the multiplicity is an embedded C! invariant
(cf. Ephraim [Ep] and Trotman [TY]) and an embedded “right-left bilipschitz” invariant
(cf. Risler-Trotman [RT]). For a complete list, see [Ey].

APPENDIX

Al. NEWTON POLYHEDRA. In this section, we recall the basic material about Newton
polyhedra introduced by Kouchnirenko in [K]. See also Oka {O)].

We consider the complex space C* with fixed coordinates z = (z,...,2,). Let
J:(C*,0) — (C,0) be a germ of holomorphic function defined by a convergent power
series Y G, 2%, where a = (ay,...,a,) € N®, a, € C, and z* = 2§ ... 23", The Newton
polyhedron Ty (f; z) of f at 0, with respect to the coordinates z = (2, .. ., 2,), is the convex

hull in R} of the set
| U (@+R}),
aa7#0

where R} = {(Z1,...,Z2) € R®; z; > 0for 1 < i < n}. The Newton boundary I'(f;z)
of f at 0, with respect to 2, is the union of the compact faces of the boundary of I', (f; 2).
The polynomial Eae[‘([;z) aq 2% is called the Newton principal part of f at 0 with respect
to z. For a face A of I'(f; z), one defines the face function fa by fa(z) := X ca Ga 2*.
One says that f is Newton nondegenerate on A if the equations

%%(.:): = %ff(z) -0
have no common solution on 2;...2, # 0. When f is nondegenerate on every face A
of I'(f; z), one says that f has a nondegenerate Newton principal part with respect to z.
One says that f is convenient, with respect to z, if the intersection of I'(f; z) with each
coordinate axis is nonempty, that is, if, for 1 < i < n, the monomial 2{*, a; > 1, appears
in the expression f(z) =Y, aq 2* with a non-zero coefficient.

A2. ALIGNED SINGULARITIES. In this section, we recall the notion of aligned singu-
larities introduced by Massey in [M]. Aligned singularities generalize isolated singularities
and smooth one-dimensional singularities (in particular line singularities).

Let f:(C",0) — (C,0) be a germ of holomorphic function. A good stratification for f
at 0 is an analytic stratification of the germ V such that the smooth part of V5 is a stratum
and so that the stratification satisfies Thom’s a5 condition with respect to the complement
of V¢ (i.e., if (px)x is a sequence of points in the complement of V; such that px — p€ S,
where S is a stratum, and the tangent space T, Vy_ ¢(p,) converges to some hyperplane T,
then T,S C T). Notice that good stratifications always exist (cf. Hamm-Lé {HL]). An
aligned good stratification for f at 0 is a good stratification for f at 0 in which the closure
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of each stratum of the singular set of f is smooth. If such an aligned good stratification
exists, and if the dimension (at 0) of the singular locus of f is s, one says that f has an
s-dimensional aligned singularity at 0. If S is an aligned good stratification for f at 0, one
says that a linear choice of coordinates z = (21,...,2,) i8 an aligning set of coordinates
for S if, for each 1 < i < n — 1, the (n — i)-plane of C*, defined by z; = ... = 2, = 0,
intersects transversely the closure of each stratum of S of dimension > i. One says that
a set of coordinates z = (z1,...,2y,) is aligning for f at O if there exists an aligned good
stratification for f at 0 with respect to which z is aligning.

A3. PROOF OF THEOREM 2. We essantially repeat Massey’s proof of Theorem 3.
Since z = (z1,.. ., 2,) is an aligning set of coordinates for fo and for f;, at 0, all k, and (f;):
is topologically constant, the L& numbers (cf. [M, Definition 1.11]) X} , (0<i<n-1)
of fo at 0 with respect to z are equal to the L& numbers /\}‘k 2 of fi, at 0 with respect
to z, for all k large enough (cf. [M, Corollary 7.8]). By an inductive application of the
Massey’s generalized Iomdine-Lé formula (cf. [M, Theorem 4.5 and Corollary 4.6]), for all
integers j1,...,Js such that 0 <« j; < j2 < ... < j,, the germs fo+z‘}'1 +...4 2
and fi, + 2! + ...+ zi* have an isolated singularity at 0 and the same Milnor number
at 0, provided k is large enough; here, and hereafter, according to M, Theorem 4.5 and
Corollary 4.6], for the germ f; +z{1 +...4 23+, all £, one always uses the rotated coordinates
Z = (2441, Zs42; - - - » Zns 21, - - - y Zs)- In particular, by the upper semicontinuity of the Milnor
number, this implies that, for all ¢ sufficiently close to 0, the germ f; + 2'{" + ...+ 23 has
an isolated singularity at 0 and the same Milnor number, at 0, as fo + z{‘ + ..+ 2de.
On the other hand, if the j;’s are sufficiently large, our hypothesis implies that, for all ¢
sufficiently close to 0, the germ f; + z{‘ + ...+ zJ* is convenient and has a nondegenerate
Newton principal part with respect to the coordinates system z. Hence, by Theorem 1,
the multiplicity of f; + z{‘ +...+ 2zd* at 0 does not depend on t, provided ¢ is sufficiently
close to 0. Theorem 2 follows immediately.

REMARK. By contrast with Theorem 3, we do not assume n > 4.
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