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Usually the most interesting questions in Physics are connected with the dynamics. How the
system evolves in time, what are the equilibrium states, how the known structures are dynam-
ically generated. There are a lot of interesting questions about the dynamics. But underneath
there are more fundamental kinematic questions - what variables should we use to describe the
system in the most natural way. Obviously the choice of the kinematic structure precedes the
discussion of the dynamics. And the search for the appropriate structure is obviously not an
easy task in general.

There are indications that we do not know the right variables in the string theory. Thus the
most important problem is to uncover the corresponding underlying kinematic structure. From
this point of view the string theories supposedly describing our world are very complicated
and it might be extremely difficult to decipher what are the right variables in this case. The
problem is that the theories are highly non-local from the point of view of the space-time. In
the string geometry the points are considered to be close if there is a curve passing through
them. So in a sense all points coincide and it is not clear what is the right way to describe
this situation. Obviously this is not a disadvantage but actually an advantage of the theory -
it clearly indicates that string theory is not about smooth manifolds or anything like standard
geometry. Unfortunately it is not easy to say something meaningful in this situation.

Thus one should look for more manageable yet non-trivial examples of string theories. It
seems that the appropriate set of such examples is given by the topological string theories.
The main advantage is the huge reduction of the degrees of freedom. Most commonly discussed
topological string theories are of two types - Type A and Type B. In mathematical terms the first
one is connected with the symplectic geometry and Gromov-Witten invariants and the second
one is described in terms of the variations of the Hodge structure in complex geometry. There is
some redundancy in this description because Type A theory on a manifold M can be equivalent
to Type B theory on another manifold M̃ (if we substitute the notion of the manifold by an
appropriate generalization we get the equivalence of Type A and Type B topological strings).

The Type A topological strings are intrinsically non-local. The points on M are considered
to be close to each other if there is a holomorphic curve passing through them. Due to the
rigidity of the holomorphic maps this case is intermediate between local theories and ”fully”
non-local string theories. In particular it is difficult to get the explicit formula for Gromov-
Witten invariants for a generic manifold.

Type B topological string theory is the most simple case from this point of view - it is
a local quantum field theory. So one might suspect that it could give us nothing to help to
understand the fundamental degrees of freedom behind the strings. Fortunately it seems not the
case. The formulation of these theories in appropriate variables conjecturally leads to a drastic
simplification of the theory. It becomes a “free” theory with quadratic action functionals. This
phenomena is well known for a simple class of Type B topological strings. I would like to argue
that this is a general phenomena for Type B topological strings leading to explicit solution of
the theory.

Below I am going to describe some results in this direction obtained in collaboration with
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Samson Shatashivili [GS1], [GS2]. Some parts were also previously presented in [G]. Let us
also remark that the list of references is reduced to the absolute minimum (especially what
concerns the next section).

1 Simplest example

To illustrate the ideas we consider the most simple example of the Type B topological string
theory - the theory with the target-space being the point M = pt (see [W] for the details).
What we mean by the solution of the theory is the set of correlation functions which in this
particular case can be defined as follows. Let Mg,n be a compactified moduli space of the curves
of genus g with n punctures. There are canonical cohomology classes c1(Li) on Mg,n (the first
Chern classes of the line bundles of the cotangent space at the marked point) associated with
each puncture. Then the correlation functions are defined in terms of the generating function
of the intersection numbers:
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>>=
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The whole set of correlation functions may be written as a generating function
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For this generating function the most explicit representation was given by Kontsevich [K] in
terms of the matrix Airy function

Z(t) =

∫
DX exp

(
i
1

3
trX3 − i trΛX

)
, (3)

where the integral is over hermitian (N×N) matrices and tn(Λ) = 2−(2n+1)/3(2n−1)!! Tr(Λ−n−1/2).
Explicitly we have

Z(t(Λ)) =
Z(Λ)

Zcl(Λ)
, (4)

where Zcl(Λ) is the value of the integral in the quasi-classical approximation. It is natural to
organize the parameters tn in the generating series

ϕ(z) =

∞∑

n=0

tnz
n. (5)

Thus the generation function is a functional of ϕ(z). This has clear interpretation in terms of
2D Quantum Field Theory (QFT) on the disk D

Z(t) =

∫
Dφ(z, z) e

−
i

g2
S[φ]

, φ|∂D = ϕ(z). (6)

The action functional S of the two-dimensional field theory is a prototype of the action func-
tionals in string/field theories. In the full-fledged string theories it includes metric tensor, gauge
fields and the other fields corresponding to the different modes of the fluctuating strings.
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Unfortunately even in the simplest case of Type B theory for M = pt the action functional
is a polynomial function of the higher derivatives of the fields. So the corresponding functional
theory seems very difficult to calculate explicitly. However the existence of the general solution
(3) shows that something missing in this formulation.

Indeed it appears that the change of the variables such that

ψ = eiφ, ψ∗ = e−iφ, ψ∗ψ = dφ, (7)

saves the case. The relations (7) might look strange (as a change of the variables) but one
should take into account regularization of the functional integral in QFT. In the new variables
the resulting action has much more simple structure which schematically may be written in the
following form

S(ψ) = SD(ψ) + Sb(ψ)) =

∫

D

d2z (ψ∗∂ψ + c.c.) + (

∮

∂D

dz ψ∗∂3ψ + c.c.). (8)

Note that the action S(ψ) is at most quadratic (actually linear) over the fields ψ∗ and ψ and
thus the value of the functional integral is given by the infinite-dimensional determinant. The
theory turns out to be very simple being written in one set of variables and complicated being
written in another set. What is striking is that the variables that provide the simplest way to
solve the theory are not the natural string variables φ!

The following simple analogy might help understanding what these new variables are about.
Let g be a Lie algebra. Consider the collection of the finite-dimensional representations Va i.e.

πa : g → End(Va) = Va ⊗ V ∗

a .

Thus the image of the generators of the Lie algebra in a given representation can be represented
as an element of the tensor product of the representation and its dual. In other terms knowing
the category of representations of a group one can reconstruct the group itself. Basically this is
what was used above (see the last relation in (7)). We transform the natural string variables φ
parameterizing string algebra into the variables ψ describing its representation. And this turns
out to be not a simple tautology but drastically simplifies the description of the theory.

The meaning of the deformation Sb of the standard action SD in (8) can be illustrated by
the following simple algebraic problem. Consider the Weyl algebra of the differential operators
in one variable C[z, w ≡ ∂z]. The following transformation

Z = z + w2, (9)

W = w,

is an automorphism of the algebra. Remark that in the the classical approximation the cor-
responding automorphism of the Poisson algebra is generated by the canonical transformation
with the generating function

F(w) =
1

3
w3, (10)

transforming the linear Lagrangian submanifolds into non-linear. The integral kernel of the
transformation (9) is easy to find

K(z, Z) = e
1

3
∂3

zδ(z − Z) =

∫
∞

−∞

dp ei( 1

3
p3+p(z−Z)). (11)
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This is an integral representation of the Airy function that appears in the Kontsevich’s formula
and the reason for the appearance of the third derivative term in (8) is the same as in last
formula.

2 Kodaira-Spencer theory on Calabi-Yau three-folds

The example discussed in the previous section might look too simple to make a decision on
the fate of the strings in general. However the main ideas can be generalized to more general
cases. Thus there are a lot of examples of more complex topological theories (various Landau-
Ginzburg theories including the mirror counterparts of Type A topological theories on Fano
varieties) that can be explicitly solved in a similar fashion.

Let us consider the most geometrical case of the Type B topological string on Calabi-Yau
(CY) threefold. In the classical approximation (that is taking only the contributions of the
genus zero curves) one can express the generating function in terms of the critical values of the
functional integral as follows [BCOV].

Let M be a compact CY threefold and MM be the moduli space of the deformations of M
as a CY manifold. Let M̂M be the moduli space of the compact calibrated CY manifolds (i.e.
CY manifolds M supplied with a holomorphic (3, 0)-form Ω∗). The deformation of the complex
structure can be parametrized by the Beltrami differential µ ∈ Ω−1,1(M)

∂ → ∂µ = ∂ + µ∂, (12)

subjected to the integrability condition ∂
2

µ = 0 (Kodaira-Spencer equation):

(∂ + µ∂)2 = 0.

The deformations are considered to be equivalent if they are connected by the action of the
global vector fields v0,1. Given a holomorphic (3, 0)-form Ω∗ we could identify Ω−p,q(M) with
Ω3−p,q(M) using the inner product:

Ω−p,q(M) → Ω3−p,q(M), (13)

A→ A∨ = A ` Ω∗. (14)

Define the following operations on the forms:

A∨ ◦B∨ = (A ∧B) ` Ω∗,

< A∨, B∨, C∨ >= A∨ ∧ (B∨ ◦ C∨),

Then one can rewrite the integrability condition as follows:

∂µ∨ + 1
2
∂(µ∨ ◦ µ∨) = 0, (15)

∂µ∨ = 0,

where now µ∨ ∈ Ω1,2 and we consider the solutions modulo the action of the vector v0,1 leaving
the holomorphic three-form Ω∗ invariant. From the last equation we have µ∨ = x + ∂b where
x is an element of H1,2. Now the critical points of the following functional

SKS =

∫

M

(
1

2
∂b ∧ ∂b+

1

6
< (x + ∂b), (x + ∂b), (x + ∂b) >), (16)
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satisfy (15). Notice that the two-form b here plays the role very similar to the field φ in the
previous discussion. Therefore the hypothetical representation for the correlation functions
would be the functional integral in Kodaira-Spencer theory [BCOV]

Z(x) =

∫
Db e

−
1

g2
SKS(b)

. (17)

This functional integral in the classical approximation (evaluated at the critical points) indeed
gives a generating function of the correlation functions of the Type B topological strings. We
discuss its relevance to the full quantum theory below.

One can derive this representation using the quantum geometry of the moduli space of CY
manifolds. Consider the infinite-dimensional space N of the real three-forms on M supplied
with the symplectic structure:

ωsymp =

∫

M

δΩ ∧ δΩ. (18)

The phase space H3(M,R) (which can be identified with the open part of the moduli space
MM) is then obtained by the reduction of the infinite-dimensional symplectic space with respect
to the first class constraint:

dΩ = 0. (19)

There are two natural polarizations on the symplectic manifold N . Given a complex structure
on M let

ΩC = Ω3,0 ⊕ Ω2,1 ⊕ Ω1,2 ⊕ Ω0,3, (20)

be the Hodge decomposition of the complex three-forms on M . The real forms are singled out
by the reality condition: Ω0,3 = Ω0,3, Ω1,2 = Ω2,1. The subspaces Ω3,0⊕Ω2,1 and Ω1,2⊕Ω0,3 define
complementary linear complex Lagrangian sub-manifolds in the space of complex three-forms
and thus a linear complex polarization of N .

In the specific case of the three-forms in six dimensions there is another polarization [H].
It can be constructed using the decomposition of the generic real three-form Ω into the sum
of two decomposable forms Ω = Ω+ + Ω−. Let us consider the open subset in the space of
three-forms N where the following decomposition holds

Ω = Ω+ + Ω− = E1 ∧ E2 ∧ E3 + E
1 ∧ E2 ∧ E3

, (21)

with Ei being complex one-forms. It is easy to see that the subspace of the decomposable forms
defines the Lagrangian family and gives rise to a non-linear polarization.

One can construct the canonical transformation U relating the two polarizations. Basically
the generating function of this canonical transformation coincides with the value of the action
at the critical points of the integral (17)

S∗

KS(x) =
1

6

∫

M

< µ∨, µ∨, µ∨ > . (22)

The Kodaira-Spencer functional integral (17) is equal then to the result of the application of the
corresponding quantum version of the canonical transformation Û to the simple wave function
Z0 defined in the non-linear polarization

Z = ÛZ0. (23)
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Here Z0 is a simple distribution supported on the fixed section of the C∗-bundle M̂ → M.
One can reformulate the relation (23) between the different wave functions in terms of the

higher dimensional field theory. Quantization of the space of three-forms on the six-dimensional
manifold M with the imposed constraint (19) can be formulated in terms of the the seven-
dimensional field theory with the action

S7(Ω) =

∫

M×I

Ω d Ω + Sb(Ω), (24)

where I = [0, T ] is an interval and Sb(Ω) = St=0
b (Ω) + St=T

b (Ω) is a boundary term defining
the polarization at t = 0 and t = T . To reproduce the relation (23) one can chose the linear
polarization for the wave function at t = 0 and the nonlinear polarization at t = T . The most
nontrivial part is the boundary term defining the nonlinear polarization which is expressed in
terms of the (generalized) Hitchin functional

e−St=T
b = e−

R

M

√
−λ(Ω) ∼

∫
DK e

−
R

M

 

1√
−

1

6
trK2

Ω∧iKΩ+
√

−
1

6
trK2

!

, (25)

where
√
−λ(Ω) is a volume element constructed using three-form Ω (see [H]) andK ∈ End(TM)

is an operator acting in the tangent space (see [H, GS1]). Note that the last equality holds for
the critical point contribution of the integral over K.

The important point is that the quantum unitary transformation Û in (23) is not uniquely
defined by its classical counterpart U . Thus the corresponding Kodaira-Spencer (KS) action
(16) is unambiguously defined only in the classical approximation and may need corrections to
reproduce the exact result beyond the classical approximation. Below we will argue that this is
what actually happens in KS theory. Moreover proper account of these corrections presumably
allows one to solve the theory exactly. Thus we have the full analogy with the simplest example
M = pt discussed in the first section.

3 On quantum completion and exact solution

Let us compare in more details the integral representation for the KS theory for three-dimensional
CY manifold M with the representation for the simple case M = pt. In both cases we have the
quadratic bulk action with the non-linear boundary term which is unambiguously defined only
in the leading order over the coupling constant. The cubic dependence in (22) manifests the
clear analogy with the classical cubic action in the case M = pt. In technical terms both are
the first critical points in the corresponding hierarchies of the field theories. Let us recall that
in the case M = pt (complex dimension is zero) the representation for the generating function
was written in terms of the Quantum Field Theory on the one-dimensional complex manifold.
Following this analogy we should expect that the proper formulation of the KS theory on the
complex compact three-dimensional manifold should be given in terms of the Quantum Field
Theory on a complex four-dimensional non-compact manifold. This has perfect sense from the
point of view of the underlying topological string theory. In general the correlation functions
of the topological strings are described in terms of the cohomology classes of the compactified
moduli space of the holomorphic maps of the two dimensional surfaces Σ into a given manifold
M . The (open part of the) moduli space has a structure of a fibration over the moduli space
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of the holomorphic structures on Σ. The correlation functions are given by the cohomology
classes of M pulled back to the moduli space and multiplied by the powers of c1(L). The possi-
bility to multiply on powers of the cohomology classes c1(L) effectively makes the manifold one
dimension higher. The fact that this additional dimension does not show up explicitly in the
Kodaira-Spencer formulation is due to the specifics of the geometry of CY threefolds - one can
consistently truncate the set of the correlation functions to the subset that does not include the
fields corresponding to higher powers of c1(L). However to formulate the theory in a way that
reveals its simplicity one should use the full set of the correlation functions. Thus to pursue
the full analogy with the case of M = pt one should reformulate KS theory in terms of the
QFT on four-dimensional complex manifold. The exact quantum formulation of the Type B
topological theory on CY threefold would be given in terms of the quadratic first derivative
theory in eight dimensions deformed by the quadratic higher derivative boundary terms.

The simplest example of the eight-dimensional manifold in question is C ×M . Its product
structure is a manifestation of the fact that M is a CY threefold. In general it does not need to
be so. One has the quadratic theories on (d+1)-dimensional manifold providing the description
of Type B toplogical strings on d-dimensional manifold. Note that this can be considered as a
complexified version of AdS/CFT correspondence [GS2].

Let us remark that the germ of this higher-dimensional formulation has already appeared
at the end of the last section. The only thing that should be added is the one additional real
dimension. The appearance of this additional dimension can be traced back to the geometriza-
tion of the multiplicative group C∗

R
which is the Tannaka-Krein dual to the category of the pure

Hodge structures.
Thus from this point of view the Kodaira-Spencer action is an effective action that should

be modified in such a way that the functional integral becomes quadratic in appropriate vari-
ables (actually by adding infinite number of additional variables to make it quadratic). Some
confirmation of this representation comes from the duality considerations. By independent
reasons one knows the expansion of the full generating function around degeneration locuses
of the moduli space of some CY manifolds. Quite surprisingly we get various modular forms
of the Borcherds type as generating functions. This implies that there is a hidden quadratic
structure.

What is the geometrical meaning of the proposed description? Following the previous
example one would say that the fundamental fields in this case are definitely not the strings
(which are directly connected with variables µ in KS theory). There should be some underlying
structure behind the differential forms that are used in KS theory. It seems the hint in the
right direction is the following fundamental relation

⊕p+q=nH
p(M,∧qTM) = Extn

Coh(M×M)
(O∆,O∆) (26)

where TM is holomorphic tangent bundle to M , Coh(X) is the category of the coherent sheaves
on X, M is M with the opposite complex structure and ∆ ⊂M ×M is a diagonal embedding.
This interpretation of the de Rham cohomology can be translated into the relation between
open and closed topological strings and is the conceptual reason for the change of the variables
discussed in the first section. One of the indications that the reformulation in terms of the
underlying category is relevant to the problem discussed above is the fact that for the semisimple
Frobenius structures on the moduli space (corresponding to the simplest categories in the above
formulation) the representation directly generalizing the representation discussed at the first
section is known [Giv].
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