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On the thermodynamic formalism for the Gause map

Dieter H. Mayer

CD [1 J2ß [ 1JAbstract We study the generalized transfer operator .$r!(z) = l z+n f z+n of

n=l

the Gauss maps Tx = ! mod 1 on the unit interval. This operator, which for ß= 1 is thex

familiar Perron-Frobenius operator of T , can be defined for Re ß> ~ as a nuclear opera-

tor either on the Hanach space A (D) of holomorphic functions over a certain disc D orCD

on the Hilbert space Jr(~~)tJn_~ offunctions be!onging to some Hardy class offunetions

over the half plane H_~ . The spectra of J ß on the two spaces are identica.l. On tbe

space Jr(~~)tJH_~ ~ß is isomorphie to an integral operator .%ß with kerne! the

Hesse! function jf2ß-l(2.ySt) and hence to some generalized Hanke! transform. This

shows that Zß has real spectrum for real ß > ~. On the space ACD(D) the operator Zß

ca» be analytically continued to the entire ~plane with simple poles at ß=~ =!?'
k = 0,1,2,... and residue the rank 1 operator ~k)f= ~ ~ ~k)(O) . From this similar

analyticity properties for the Fredholm determinant det(l-J~ of Zß and hence also

for Ruelle's zeta function follow. Another application is to the function

CD ß (n2 4)1/2
'M(ß) = l [n] where [n] denotes the irrational [n] =n+ 1 'M(ß)

n=l

extends to a meromorphic'function in the ß-plane with the only poles at ß = ± 1 both

with residue 1.
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1. Generalized transfer operators for the Gauss map

H I = [0,1] denotes the unH interval in [R the Gauss (ar continued fraction-) map

T: [0,1] ----:-+ [0,1] is defined as

{

1/x mod 1 x:j. 0
Tx=

o x = 0
(1)

From ergodie theory for general hyperbolic systems T: M ---.. M it is known [Bo] ,

for {= ({. )·Ell. ' on the
1 1 +

one sided subshift of finite type with the above data. For the GauBs map F turns out to be

[Ru1] that systems like the Gauss map allow for a description in terms of symbolic dyna

1l.
mies 'K: F + ---.. M with an alphabet Fand a transition matrix A = (A 1),

(f,(f

u,u ' E F , defined through a Markov partition vi = (0u)uEF . This way T gets semi-

11+ 11.+
conjugated to the shift map T: F ---.. F J (Te)i = ei+1

IN and hence the symbolic dynamics takes pIace on a one sided subshift of infinite type.

The physical system corresponding to such a subshift is a spin system on the lattice Tl.+

whose spins take values in N. Of special interest in the ergodie theory of hyperbolic

systems are the equilibrium Btates [Bo] which are T-invariant probability measures de

fined through the Gibbs-ensembIes of the above mentioned lattice spin systems. These

Gibbs--ensembles are determined by some interaction energy characterizing the spin system

[Ru]. A rather special roIe from the physical point of view in this approach plays the in-
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tera.ction determined by the function (jJ1(x) = -log Idet DuT(x) I ,where DuT denotes

the derivative 01 T along the unstable directions of the hyperbolic system T [Ru1] ,

[Bo]. For 1-dimensionalsystems this is the function 'P1(x) = -log IT' (x) I ,which for

71
the Gauss map reads 'P1(x) = log x2 . Through the symbolic dynamics 7:: F +----+ I

11
this defines a function A(~) = ""1 0 7:{ {) on F + . As shown in [Ma3] , the map

11
'Ir : N + ------+ I for the Markov partition A = (In)nEIN' In = [n~l'~] ,of the Gauss

map T: I ----+ I is given by

(2)

where [nl'~""'] denotes the number x E I whose continued fraction expansion has

entries {i E[N, i E11+ . Strictly speaking, the map 1f is not surjective since 7:{ {) is

11
irrational for {E IN + . This means that we are treating this way the Gauss map T re-

stricted to the invariant subset Iinv = {x EI: x irrational} . As long however as we are

interested only in measures which are absolutely continuous with respect to Lebesgue mea-

sure the properties of T : I. ----+ 1. and T: I --t I are the same since 1\1. ialnv lnv lnv

countable and hence has Lebesque measure zero.

A powerful method within the so cal1ed thermodynamic formalism as developped in [Ru1]

is the transfer operator method. It is a straightforward generalization of the transfer matrix

11
technique for lattice spin systems with finite range interactions [Ma2]: if C(F +) de-

11
notes the space of continuous observables of the spin system on 11+ and if A E C(F +)

11 11
is any such observable, the transfer operator $: C(F +) ----+ C(F +) is the following

linear bounded operator
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.tf( {) = l Au { exp A(q,{) f(q,{) ,
uEF ' 0

(3)

where (q,{) denotes the configuration {' . ({i) with {o =q and {i = {i-I' If tbis

{' is allowed then A e = 1 otherwise A e = 0 . In the special caae of a locally ex-
q,~o u,~O

panding Markov map T: M --+ M and the function A = <PI 0 'X' with

<PI = -log IT' (x) I the operator $ obviously induces an operator .r on the space of

observables l' of the system T: M ----+ M which haB the form

.r1'(x) = l I ,~(x) I l' 0 'u(x) XTO (x)
qEF q

and hence coincides with the so called Perron Frobenius operator [LaM] of T . For the

Gauss map the oPerator haa the form [Mal],

m

.1' 'l'(x) = 1: [x';'n] 2'l' [x';'n]
n=1

(4)

and Ha spectral properties in the Bana.ch spa.ce A (D) of functions holomorphic and conm

tinuous over the disc D = {z: Iz-ll <~} have been studied in [Mal], [MaRI] J

[Ma.R2]. The main application of operators of the form (3) originally was to construct

invariant measures for the system T: M ----+ M J a special case being the Sinai-Bowen

Ruelle [BoR] measure corresponding to the choice A( {) = <PI 0 r( {) with <PI aa before

[R.n2]. For general A one gets by tbis construction KeaneJs g-measures [K]. From equi

librium statistical mechanics of lattice spin systems one knows that the Gibbs states carre

sponding to the intera.ction ßA( {) , considered now as a function of the parameter ß,

which corresponds infact up to Boltzmann's constant to inverse temperature, describe the
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physical properties of such a system when coupled to an exterior heat bath of fixed tempe

rature. From this one could expect that also for the dynamicalsystem T: M -----+ M the

function VJrJ.x) = -ß log Idet(DuT(x) I reapectively the corresponmng observable for the

spin system ArJ. e) = VJß 0 r( e) plays a crucial role in the description of the properties of

the system T: M -----+ M . The transfer operator then has the form

$rfW = I Au,eo
exp Alu,e> f(u,e>·

uEF

(5)

Specialising to the Gauss map and going immediately over to the induced operator on C(I)

we get

(I) [ 1 J2ß [ 1 J$r!(x) = 1: x+n f x+n '
n=1

(6)

where for reasons of simplicity we have omitted the tildes in (4). To our knowledge the first

time where in ergodic theory an operator analogoUB to $ ß has been used to characterize

invariants of a dynamical system was in [PaT] for Markov chains. It was shown that the

highest eigenvalue "'1((f) of a certain generalized transition matrix has a convergent power

series around ß= 1 whose coefficients define invariants of the Markov chain. Instead of

the eigenvalue "'1(ß) it is more convenient to study the quantity P(ß) = log "'1 (ß) . For

real ß the eigenvalue "'1(ß) is positive and P(ß) hence weIl defined. It can be analyti

cally extended around the real &Xis, at least for systems where F can be chosen finite: one

applies simply the Ruelle--Perron-Frobenius (RPF) 'rheorem [W1] to $ß wbich shows

that for real ß the leading eigenvalue Al(ß) is positive and simple. For these ß-values

P(ß) is nothing else than the pressure of the observable (JA for the system T: M -----+ M

and hence a convex function in ß [Ru1]. P(ß) can be defined independently of the
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operator ~ß in analogy to equilibrium statistica1 mechanics through the systems

partition functionB Zn(ßA) [Ru2]:

n-l

where Zn(ßA) = l expß l A(Tkx}

xEFix Tn k=O

and Fix Tn = {x EM : Tnx = x} , respectively the variational principle [W2]

P(ß) = sup {h (T) + ß rA(x}dJl(x}}
Jl Jl if

(7)

(8)

(9)

where the supremum is taken over all Tinvariant probability measures Jl and hJl(T}

denotes the Kolmogorov-Sinai entropy of T with respect to Jl. The measures

maximizing the right hand side in (9) are just the equilibrium measures Jl for the

observable ßA . For A = Al = CPl 0 11" we recover thereby the Sinai-Bowen-Ruelle

measure for the dynamical system T: M --. M [BoR] [Ru2].

The results of Parry and Tuncel in [PaT] have been generalized recently by Rand et al.

[Ra], [RuB] who showed how practically all quantities introduced over the last years to

characterize chaotic behavioUI of hyperbolic systemslike entropies, dimensions, singularity

spectra etc. can be derived from the function P(ß). In complete analogy to equilibrium

statistical mechanics where the quantity P(ß) ia up to sign and a factor of ß just the free

energy of the spin system attached to the map T through its symbolic dynamics, the

analytic behaviour of P(ß) aB a function of ß ia used to define phase transitions for the

dynamical system T: M --. M . It ia clear from the RPF-Theorem that for hyperbolic
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systems with finite F no such phase transition can occur for real ß. The situation chan

ges completely if F is cotltable infinite as we will show in the special case of the Gauss

map. Similar results are expected to hold for all hyperbolic systems with a countable infi

nite Markov partition. Candidates are the higher dimensional versions of the continued

fraction transformation as for instance the Jacobi-Perron algorithm.. Their transfer
"

operators for ß= 1 have been discussed in [MaS].

In this paper we restrict the discussion to the ordinary Gauss map in dimension 1. It would

be interesting to see how far our results for this case can be extended to higher dimensions.

By applyjng the same arguments as in [Mal] respectively [MaR1] , [MaR2] one shows

for general ßE 4: with Re ß> ~ that "for a discUBsion of the pressure P(ß) of the Gauss

map one can restrict the generalized transfer operator $ ß in (6) to the Banach space

A (D) of holomorphic functions over the domain D defined as for the operator
m

$1 = .? in (4). As for ß= 1 one has

Proposition 1 The operator .z'ß: A (D) ----+ A (D) withm m

m [1 J2ß [ 1J
$ r!(z) = l z+n f z+n

n=l

is nuclear of order zero for ßE 4: with Re ß> ~ . For real ß> ~ $ ß has aleading posi

tive eigenvalue ..\1(ß) which is simple such that P(ß) = log ..\1 (ß) is the pressure of the

observable t{}ß for the Gauss map. For any mEIN the following trace formula holds

(10)
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As a consequence we hence get for the partition functions

n-l

Zn(ß) = 1: exp 1: tprJ-Tkx) :
xEFix~ k=O

Coqmry 1 Z}p =racc J;';rm - trace .1 )n whcrc thc generalizcdunr

tA s), efi.uß S = 0,1 , are d ned as

m 2(~8)

-1
s
)f(z) = (_l)s L [z~nJ f[z~nJ

n=1

(11)

obiously -1°) = J;'ß nd -11) = - J;'ß+1 with .J;'ß as in Prop. 1. Sincc thc IDap

ß--+ -1s) is holoIDorphic in ß for Rc(ß+s) > i wc find that thc function

m Z (ß)
«((3) = exp 1: nn

n=l

which by a. standard argument can be written as

det(l
((ß) = -----'7""""'"'

det(1-

(12)

(13)

ia a meromorphic function in the domain Re ß> ~ . Thereby one makes use of the fact

that thc FrcdhoID determinnt dct(l--1s)) is a holoIDorphic function of ß in thc do

rnain whcrc -1s) dcpcnds holoIDorphically on ß[G] . Obviously, thc function ((ß) has

poles in thc dOIDain Re ß> i among thosc ß values whcrc -10) has ~ = 1 among its

eigenvalues. This ia certainly the case for ß= 1 where ..\ = 1 is the leading eigenvalue of
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.x10) and hence is simple. Since in this case -'11) is just the operator -4°) ,whose

leading eigenvalue is strictly amaller than 1 in absolute value, the Fredholm. determinant

det(1-.x11)) f 0 and hence ß= 1 ia a simple pole of ((ß).

Problem: What is the residue of ((13) at ß= 1 ?

1t ia one of the aims of this paper to show that the function ((ß) in (13) can be extended

to the entire ß-plane and defines there a meromorphic function. Before doing this we want

to relate the genera.lized tra.nsfer operators -'1s) in (11) to some integral operator with a

simple kernel acting in some Hilbert space of square summable functions. The resulting

integral transform turns out to be a generalized Hanke! transformation. This rortends an

analogons result for the case ß= 1 discussed in [MaRI]) [MaR2] . Since the arguments

for general ß, Re ß > ~ are slightly more complicated than for ß= 1 we present them in

more detail in the next aection.

2.M ?Verators -'1s) in generalizeg Hardy spaces

Since -'11) = -~~ it is enough to discuss the operator -'10) which for simpli

city we denote again by ~ß' If fE A(D(D) is an eigenfunction of $(ß) then one dedu

ces recursively from the eigenequation

m [1 J2ß [ 1J~f(z) = 1: z+n f z+n = $ r!(z)
n=l

(14)

that f can be extended to a function holomorphic in the entire complex z plane cut along

the line (--1]),-1] . This follows from the contraction properties of the maps f/J (z) = +1 .n z n
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H we theretore denote by HO the halt plane

HO = {z E (: : Re z > o} (15)

then anyeigentunction t of ~ß in A(I)(D) is holomorpbic in every half plane H_1+€

for any € > 0 . 1t is also evident from equation (14) that any such eigenfunction vanishes

tor Iz I ---+ m in these half planes and hence is also bounded there. From tbis one can

expect that ~ß cau be defined on some Hardy space of functions holomorphic in a half

plane. We denote by Jl(2)(Ho) the ordinary Hardy space of functions holomorphic over

the half plane H 6 [D] :

Jr((2)(H O) = {f: f holomorphic in Ho' f bounded in

+(1)
H6+€ for all € > 0 and f If(6+iy) 1

2dy < m} (16)
--(D

Trus space is known to be a Hilbert space with scalar product

+(1)
(fl'~) = hf f~(6+iY)~(6+iY)dY.

-Q)

(17)

Furthermore the Paley-Wiener Theorem holds, giving a simple characterization of the ele

ments of tbis spate [D]:

Theorem 1 A function f belongs to the space a<2)(H 0) if and only if there exists a

function cp E ~2(dS,1R+) such that
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00

f(z) = Jda e--ilZe68cp(8) .
o

The function cp is unique (in the $2 sense) and

From what we have found earlier for the eigenfunctions of $ ß one could expect that the

Hardy space c:i{(2)(H 6) for appropriately chosen 6> -1 would be a good space for $ß

to be defined on. The discussion of the case ß= 1 in [MaRI] shows however that a

slightly modified dass of functions is better for simplifying the operator $ ß . Generalizing

the procedure in [MaRI] we define for arbitrary real Q ~ 1 the space eNi2)(H 0) as

follows

OVi2)(H6) = {f: f holom. in Hö' fE a(2)(Ho+
E

) for any E > 0 and
00 +00

Jx2a-2dx J dy( If(x+6+iy) 12- lf(x+6+}tiy)l 2) < m (18)

o --m

We want to show that ai2)(H 8) is a Hilbert space. Since any f E eNi2)(H 0) has the

+00

property that J dy 1f( 6+x+iy) 12 < m for x > 0 we find that for any f > 0

--1D

00 +00

Jx2a-2dx J dy( If(x+6+iy)l2_ 1f(x+6+}tiy) 12) =
E --1D

00 +00 00 +00

=Jx2a-2dx J dYlf(x+O+iy) 12 _ Jx2a-2dx J dYlf(x+6+}tiy)1 2

€ --m €--1D
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Changing in the first term of the RHS the variable x to x = x'4 gives

Introducing next the density function qJ~ f )(x) with

0 x<- -}+f
f{J( f)(x) = (x+~)20'-2 1 (19)j+f~X~fQ

(+1)20'-2 20'-2 f ~ xx 2' -x

we have shown for any E > 0

m +(1)
f x2ll'-2dx f dy(l f(x+6+iy) 1

2
- 1f(x+e+}riy) 1

2
) =

f ~

+(1) +(1)
= f f <P~~)(x)dxdy 1f(x+}r6+iy) 1

2

~-m

For f E JI~2)(H 6) the limit f ---+ 0 on the left hand side exists and hence also the

limit on the right hand aide exists and the two coincide. Since <pi f) converges for

f ~ 0 to the positive density f{JQ(x) where

o
tpa(x) = (x+~)20'-2

( + 1)20'-2 2a-2
x 2' -x

1
x<-'2"

1
-~~x~O

o ~ x

(20)
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we have shown that fOI fE ai2)(H 6)

m +mf x2a-2dx f dy( If(x+6+iy) 1
2 - 1f(x+6-t}t-iy) 1

2) = (21)
o ~

+m +m
= f !Pa(x)dx f dy 1f(x+6+}+iy)l2
~ -m

This shows that ai2)(H 8) is indeed a Hilbert spare.

The Paley-Wiener Theorem far this space takes the following form

Theorem 2 A function f belangs ta the space Ni2)(H 8) if and only if there exists a

function cp E .z'2(ds,1R+) such that

m 1 1
f(z) = f ds e-BZeS 6sa- 2"( l-e--ll)- 2"tp(s)

o

The function cp is unique in the .z'2--fiense and

(22)

Proof: The "if l-part of Theorem 2 is easy: assume f can be written as in (22). Since the
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function gf (s) = e-fSsa- !(l--e-fi)-! is oounded on the realline 0 ~ s < m for any

f > 0 the function gf(S)r,o(S) belongs to $2(ds,IR+). The Paley-Wiener Theorem then

implies that the function

m

f(z) = f da e-8Zes(c5+~)g~(s)lp(s)

o

belongs to eN(2)(H 6+ f) for any f > 0 . Furthermore any such f obviously is holomor

phic in He. Applying next for x > 6 Plancherel's Theorem to the function

fx(y) = f(x+iy) we find

+m mhf If(x+iy)1 2dy= f da e-2s(x-c5)s2a-1(1-e-6)-1 Icp(s)l 2

--m 0

respectively for x > 0

+m m
h f If(x+6+iy) 1

2dy = f ds e-28Xs2a-1(1-e-6)-1 1cp(s)l2 .

--m 0

From this we conclude that for x > 0

+mhf (If(x+O+iy)1 2-lf(x+o+}tiy)1
2
)dy=

--m
m

=f da s2a-1e-2sx Icp(s) 12

o
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and hence

(I) +(1)
hf x2a-2dx f (If(x+c5+iY)12_lf(x+6+~iy)l2)dy =

o ---<D
(I) (I) (I)

= f ds s2a-1 1rp(s) 1
2 f x2a-2e-2sxdx = f(~:=P f dsl rp(s) 1

2 .
o 0 2 0

To prove the t1 0nly if" part of Theorem 2 we proceed a.s folIaws: for 1/ > 0 we define far

any f E tR~2){H0) the function

f (z) = f{71+z) .
71

Then we have

Lemma 1 For auy f E R~2)(H6) aud "> 0 the function f" is in

eN~2){H 0) n ß(2){H 6) and lim f = f , where convergence is in the space
~O 71

",~2){H6) .

(23)

Proof ofLemmi!: 1. By definition auy f E R~2)(H6) belongs to the spate R(2)(Hc5+,,)

m

for auy "> 0 . By Paley-Wiener this means f(z) = f e-flZe(6+ ,.,)s'P ,.,(s)ds with

o
m

'P" E .t'2(ds,lR+) . Hence f,,(z) =f e-flZe6s'P,,(s)ds belongs to R(2)(H 6) aud trivially

o
also to R(2)(H 6+

f
) for auy f > 0 . To prove that f,., E R~2)(H6) we have to show

that 11f" 11 2_/ 2) < 1Il • But
~ (Ho)
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m +m
Jx2a-2dx J dy( 1f(x+ö+'l+iy) 12-lf(x+ö+'l+}tiy) 12) =

o --cD

m +m
= J(x'_'l)2a-2dx , J dy(lf(x'+6+iy)j2- lf(x'+ö+}tiy)1 2) .

", --cD

+m +00
Since a ~ 1 and J dy If(x' +ö+iy) 12 ~ J 1fex' +6+}tiy) 1

2 for x' > 0 [D] we find
--cD --cD

far any ", ~ 0 :

(24)

To show finally that f'l converges to f in the space oVi2)(H 15) we argue as folIows:

since f-f E J{ (
2)(H 1:) we know from relation (21) that

1/ Q u

+00 +00
J <Pa(x)dx J dy If(x+ 6+}t-iy)-f(x+Ö+'l+}t-iY)l2 < m

--m --m

Hence there exists for any f > 0 a compact set Kf such that both f and f", are halo

marphic in K f and

J <pa(x)dxdy 1f(x+6+}tiy)-f(x+6+'l+}tiy) 1
2 < ~ (25)

1R2\K
f

On the other hand there exists 1/ = ",( f) such that
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sup If(z+6+~)-f(z+1J+6+i) I < ~ r '{J (x)dxdy)-l (26)
zEK i<. 0

E €

and hence lim IIf-f 11
2 (2) = 0 folIows. This concludes the proof of Lemma 1.

rr-+O 1] R a (H 6)

To proceed then with the proof of Theorem 2 we apply again the Paley-Wiener Theorem,

now to the function f
Tl

which by Lemma 1 belongs to .N(2)(H6) for TI> 0 . Hence there

exists a. function 1/J1] E $2(ds,lR+) such that

Plancherel's Theorem then gives for all x ~ 6

+CD CD

hJ lf,lx+iy)1 2dy= Jdse-2BXe26sl~17(s)12
---«I 0

aJ +CDJx2a-2dx J(lf,lx+6+iy) I2- lf(x+6+}tiy) 1
2)dy < m

o ---«I

Tagether with relation (28) this shows that

CD CDJx2a-2dx Jds e-2sx(1-e-il) I~17(s) 12ds < m

o 0

(27)

(28)
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and hence by Fubini

m mf ds(l-e-ll) I,'1(s) 12f dx x20'-2e-2sx < In

o 0

(29)

Tne x-integration CiW b: perimrnei to ws n2 }ls020'-1). horn (29 tnerefore we

deduce that there must exist a function CP" E $ 2(ds,1R+) such that

(30)

From this we conclude that the function f1] = f(z+,,) for 1] > 0 has the unique represen

tation

(31)

such that

(32)

Since by Lemma 1 the sequence {f,,} is a Cauchy--sequence it follows !rom (32) that also

{~1]} is a Cauchy sequence in $2(ds,IR+). Hence there exists a unique cp E $2(ds,IR+)

with 1im cp = cp in the $2 sense. Define finally the function

11-+
0

"
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m

1'(Z) = Jds e-Bze6ssa4(1-e-Br-!cp(S)

o
(33)

which by the first part of Theorem 1 belongs to ßi2)(H6) . From relation (32) applied to

the function 1-f" we get

lim f = 1 .
1]-"tO "

Hut by Lemma 1 we also have lim f = f and hence
1]-+0 "

m
f(z) = 1'(z) = Jds e-Bze6ssa4(1-e-Br-'cp(s)

o

with an unique cp E $2(ds)IR+) . This coneludes the proof of Theorem 2.

Equivalent to Theorem 2 is the following

Corollary 2 A function f belongs to the space Jri2)(Ho) if and only if there exists
A

cp E $2(dm)IR+) such that

(34)

m
f(z) =Jdm(s)e-Sze(o+,)s8a4~8) where dm(s) = ~8 .

e -1

..
The function cp is unique and
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In (18) we defined generalized Hardy spaces Hi2)(H 6) for real a ~ 1 . This definition"can

be extended to a' s with a > ~ as follows:"if a ~ 1 then any function f in Jr~2)(Ho)

obviously has the property that its derivative f' with f' (z) = ~ f(z) belangs to the

space a~~{(H6). Hence we can define for arbitrary a with ~ < a < 1

H~2)(H6) = {f: f holam. in Ho' lim f(x+iy) = 0
X--im

and f' E Hi~i(H 6)} . (35)

Then it is elear that Theorem 2 respectively Corollary 2 hold for general real a with

1
a> ~.

If one wanted to define the spaces H ~2)(H 6) also for a ~ ~ the situation gets more

complicated aB one can see already from representation (22). For such a-values the func-

tion e-;;(x-6)sa-~{1-e--sr-! is for x > 6' , because of the singularity in s = 0 , not any

_more bounded, even not $2 on [O,m). Hence such a representation can be interpreted in

the whole half plane H 6 only in the sense of distributions. Since for our present discussion

we do not need values a < ~ we da not enter this problem here. The following result

shows how the above spaces Ni2)(H 0) are related to the generalized transfer operators

.tß of the Gause map:

Th~rllm 3 If $ ß: 4 (fm_j - 4 ~~1JH_~ denotes the operator
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m [1 J2ß [ 1J~r!(z) = l z+n f z+n and X ß: ~2(dmJIR+)--t ~2(dm,IR+) denotes the
n=1

m

integral operator J{rJP<s) = Jdm(t) .,.2,8-1(2.f8I)rp(t) with dm(t} =~ then the two
o e -1

operators are isomorphie for all ßE ( with Reß>!. They are both of trace dass.

Hence we have also

Corollary 3 The operators ~ß and %ß have the same spectrum, that means all eigen

values are identicaJ and have the same multiplicity. For real ß they are real.

Proof of Theorem 3 For fixed ß= ß1+iß2 by Corollary 2 anyelement f of the space

J{1~)(H-i) has an essentially unique representation as

m

fez) = Jdm(s}e--6z/H ~s)
o

(36)

... d ~
with VJ E ~2(dm,IR+) and dm(s) = +. There we have taken out a factor s from

e -1
A

the function VJ of that Corollary. Applying the operator ~ß to such a f we find

m 2ßm s
$ rJ(z) = l [z~nJ Jdm(s}sß1 ~s)e- z+n .

n=l 0

(37)

Absolute convergence of both the sum and the integral allows us to interchange summation

and integration in (37) to get



-22-

m m ~ S

%r!(z) =I dm(s)1-1 ~s) L [z~n] e- z+n

o n=1

The SUffi under the integral can be rewritten by using the Hurwitz zeta function

CD s

«(s.z) = L [z~n]
n=O

aB follows:

m 2ß s m k
L [z~n] e- z+n = L~ «(k+2ß,z+1) .

n=l k=O

(38)

(39)

(40)

For Re s > 1 on the other hand the function ((s,z) has the integral representation

[GR]

I
m s-1 -(z-1)t

«(s.z) = rhJ t ~ dt ,
o e -1

80 that the right hand side in (40) can be written aB

m k m
, (-s )A 1 I k+2ß-1 --zt ()

(RHS) = L --n- I'(k+2ß) t e dm t
k=O 0

or after performing the k summation [GR]:

(41)
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where :Yß denotes the Bessel function of order ß, we find

H
J
m H-zt

RHS = s t e jf"2ß-l(2{Si) .
o

Inserting this into relation (38) we therefore get

m m H
%rJ(z) = Jdm(s)~s) Jdm(t)t e-zt :Y2{J-l(2{Si)

o 0

Interchanging onee more the order of integration we finally arrive at

m

(X;)(t) = Jdm(s) :Y2{J-l(2{Si)~S) .
o

If we therefore define for ß = ß1+iß2, ß1 > ~ a linear map

jß: %2(dm,IR+) ---i ß~~#H_~ by

(42)

(43)

(44)

(45)
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ß 1
... 2 l' Sm t H ...

jrJ..CP)(z) = 172 dm(t)e-z t cp(t)
r(2ß1-1) 0

(46)

then by Corollary 2 jp is an isomorphism ofthe Sp&ceB .2'2(dm,IR+) and tN1~)(H_~.

Relation (44) furthermore shows that

(47)

and henee $ ß and X ß are isomorphie. The proof of Coroilary 3 is dear.

Obviously, the integral operator .%ß in $2(dmjlR+) ia trace dass for Reß > ~ and its

traee is given by the weil known formula

m m

trace J{p= Jdm(s) J{ri8,8) = Jdm(s) ..1"2ß-l(28) (48)
o 0

Hy Theorem 2 respectively Coroilary 2 the operator $ß in the Hilbert space

tN1~)(H_ ~ is trace clas8 too with trace .2'p = trace J{p. In an appendix we will use

the integral operator X ß to give a new derivation for the K-S entropy of the Gauss

map from standard perturbation theory of a symmetrie operator.

3. Traee fonnulas. Fredholm determinants and zeta functions

To calculate the traee of the operator .%ß resp. $ ß from expression (48) we apply the

fonnula [GR]
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(49)

Since the solution xn of the quadratic equation x2 + nx-1 = 0 with xn > 0 is given by

2 4 1/2 _ _ 2 4 1/2
xn = - ~ + (n +2) and hence its inverse xn

1 by xn
1 = ~ + (n +2) which im-

plies

the right hand aide of (49) can be written aB

x 2ß
RHSof(49)=~ .

l+xn

Summing over n then gives

(50)

(51)

If we compare thia result with the trace of the operator .:t~: A (D)~ A (D) in (10)
}J OJ OJ

we find

(52)

This ia a special case of the following general result
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Theorem 4 The nuclear operators :lß:A (D)~ A (D) andm m

$ ß: J{~~#H_~ ---+ oV~~#H_~ have the same eigenvalues, multiplici ties included.

Since the proof proceeds more or less along the same chain of arguments as for the case

ß= 1 in [MaR2] we ca.n be rather brief. The main problem for general ß= ß1+iß2,

ß1 > ~ is to show that every eigenfunction fE A(I)(D) of :lß belongs to the space

J(12)(H_~ . To see this consider first the case ß1 ~ 1 . If ,\ f(z) = I [z~nJ 2ßf[z~nJ
1 n=1

we know that f is holomorphic in every half plane H-1+ t5 for 6 > 0 . For zEH-1+ t5

and Iz I large enough we certainly have If[z~nJ I < M uniformly in n and Iz I > R ,

say. From the eigenvalue equation one then deduces

c
If(z) I N 2ß -1

Iz I 1

for z~ lD and z E H_1+6" 6 > 0 I where C = I~I . Therefore

+m
f dy I f(x+iy) 1

2 < 1II

-(lJ

(53)

for all x > -1+6, 6 > 0 and all ß1 > i and hence fE ß(2)(H_1+ 6) for all 6> 0 .

We have still to show that
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From the aBymptotic behaviour (53) it follows that in the half plane HO one haB

1 2 2 C'11f(z,) I -I f(z) I 1 IV 4 Reß=I .
z----tm I z 1

(54)

Using polar coordinates z = ~eicp, i ~ cp ~ ~ in HO the norm of an eigenfunction f

in A (0) can be written as
,(I)

Convergence properties of the integral on the RHS of this expression are because of (54) the

same as those of the integral

which certainly exists for /31 ~ 1 .

This shows that any eigenfunction fE Am(O) of the operator $ ß belongs to the space

.N1~)(H_ ~ for all ßE (: with ß1 = Reß ~ 1 . To extend this result to ß's with ß1 > ~

we have to show that for such ß values any eigenfunction fE A (0) haB the propertym

that f' belongs to .N12~l (H_ ~ I since obviously lim f(x+iy) = 0 and
1 x-tm

f E ~2)(H_1+0) for all 6 > 0 . From the equation

m [ 1 J2ß+1 [' 1 J m [ 1 J2ß+2 [1 J~ f/(z) = -2ß l z+n f z+n - l z+n f' z+n
n=l n=l
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one deduces

If'(z)1 N C2ß , z E H-1+6
z---+m Iz I 1

and hence f' E dr(2)(H_1+0) for all ö> 0 .

On the other hand we find for the oY~~il(H_.V -norm of f' :

2 1 Jm 2(ß1+1)-2 +J(I) 1 2 2IIf'lI (2) . =2'i x dx dy(lf'(z-2")I -lf'(z)1 ) .
drß

1
+1(H_~ 0 -cD

(55)

An argument analogous to the case ß1 ~ 1 then shows that IIr' 11 2 (2) is finite
OVßl+1(H_~

(I) 2ß +1 (I)
i andy if rr 1 ; +1 cr exists. But r~ obviously exists for ß1 > i. This

k r 1 kr 1

coneludes our remarks to the proof of Theorem 4.

An immediate consequence of Theorem 4 is

Corollary 4 For any nEIN the following formula holds

aJ (I)

Jruds ).. Jdmfst' "'2ß-l(2{ii1ii2)"''''2ß-l(2bn- 1sn) "'2ß-l(2~ =
o 0
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where x. . denotes the irrational number whose continued fraction expansion is
11,.·ln

periodie of period n and whose entries are the integers il' ... ,in .

Since -z1P = -~i the above results for $ß = 4°) ean be applied also to the ope

rator 4 1): this operator is isomorphie to the integral operator - X ß+1 and a formula

analogous to (56) holds. A consequence of this is

Corollary 5

Ey Corollary 5 the calculation of the infinite sum on the LHS has been transformed to an

n-dimensional integral. Resulting advantages for the numerical determination of these

quantities have been discussed for ß= I in [MaRI]. They apply for general ß with
I

Reß> 2"'

In the first chapter we had introduced a zeta function ((ß) which by (13) could be ex-

pressed as the quotient of the Fredholm determinants det(1-4s), s = 0,1 . From

Grothendieck's theory of such determinants we concluded that ((ß) is meromorphic in the

half plane Reß > ~ with a simple pole at ß= 1 . We want to extend this result now. For

this we consider the operators 4 s) again ~ acting in the Banach spaee Am(D) . It is

enough to treat the case 4°) = $ ß . For this operator we can prove
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Theorem 5 The map ß---+ $ß extends to a meromorphic function with values nuclear

operators of order zero in the entire complex ß plane. Ha poles, located at ß= !?'
f~~~(O)k = 0,1, ... , are all simple with residue the rank 1operator fkf(z) = . .

Proof: Any fE A (D) has apower series expansion around the point z = 0 which ia
Q)

uniformly convergent for Iz I ~ ~ . Hence for Iz I ~ ~ the function

N ~k)
fN(z) = f(z) - 1: ~ zk , which obviously is in Am(D) , fulfills the bound

k=O

(58)

Furthermore the map ,!lJN: A (D) ---+ A (D) , defined as
Q) m

(59)

is bounded. Für ß with Reß > ~ we can write $ rf also as

(60)

The first term on the RHS of (60) can be calculated explicitely for Reß > ~ :

But the right hand side is simply
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N ~k)
1: ~ ((k+2ß,z+l)

k=O

where ((s,z) denotes the zeta function of Hurwitz as defined for Re s > 1 in (39).

Denote by V<k): A (D) ----+ A (D) the linear bounded rank 1 operator
vI ß Q) Q)

V<k) ~ki{O)
.n ß f(z) = . ((k+2ß,z+1).

1
Then we can write the operator %ß for Reß> 2" as

(61)

(62)

where the projector 9JN of A (D) onto the subspace A (N)(D) of functions in A (D)
Q) Q) Q)

vanishing in z = 0 at least to order N+ 1 has been defined in (59).

Let us consider first the map ß--+ ~k) with ~k) the rank 1 operator in (61). By

Hermite's representation of the Hurwitz zeta function [E]

(63)

valid for Re z > 0 , the function ((k+2ß,z+1) is meromorphic in the entire ~plane with

only one simple pole with residue ~ at· ß=~ and is for fixed ß+~ a holomorphic

function in z for Re z > -1 . Hence the map ß--+ ~k) is a rank loperator-valued

meromorphic function in the entire complex ß plane with a simple pole at ß=!? and



-32-

residue the rank loperator ';k): A (D) --+ A (D) withm m

This folloW8 from [E]

lim (((k+2ß,z+1) - k+~ß=l) = -t?(z+l)

ß l-k
--+ ,-

(64)

(65)

where ~z) =~ log r(z) and r Ewers function. Obviously, the operators ';k) are

N

nilpotent for k ~ 1 . This shows that also the map ß--+ ~ ~k) can be meromor-

k=O
phically extended to the entire complex ß-plane with simple poles at the points ß= !?'
o~ k ~ N and corresponding residues ';k).

Let us next discuss the operator ~ß 0 .9N" Since by (58) for any fE A(D(D) the

function ( jDNf)(z) = fN(z) fulfills I .9'Nf(z) I ~ C· Iz IN+l for &11 Iz I ~ i we see

that in the representation

(66)

the sum converges uniformly and absolutely in D for all ß E( with

2 Reß + N + 1 > 1 , that means Re ß> - ~ . This shows, that the operator

$ß: A~N)(D) --+ Am(D) is nuclear of order zero for all ß with Re ß > -~. Since

.9'N : Am(D) --+ A~N)(D) ia bounded the operator $ ß 0 .9'N is also nuclear of order

N

zero for Re ß> - ~ . Obviously, also the finite-rank operator ~ ~k) is nuclear of

k=O
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order zero away from the points ß=~, k ~ O,... ,N . All this being true for general N

the proof of Theorem 5 is finished.

Interesting by itself as we see later is the following

Corollary 6 The function g({f) = trace ~ß extends to a meromorphic function in the

entire ß plane with only one simple pole at the JX>int ß= ~ with residue ~.

Proof: By (62) we have for Re ß> -~, ß 4=~

N

trace $ß = l trace 1k
) + trace $ß 0 .9'N .

k=O

But the trace of the rank 1 operator v1k) is given hy

Using next the formulas

respectively

we find for k ~ 1

d
QZ ((s,z) =--B ((s+l,z)

m

((s,l) = 'R(s) = l 1s
n=l n

(67)

(68)

(69)
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twe .r{ = tri (2ß+k)...(2ß+2k-l) (R(2ß+2k) (70)

respectively

(71)

Since Riemann's zeta function 'R(s) in (69) can be extended to the entire s-plane with a

single simple pole with residue 1 at s =1 we conclude that trace ~k) for k ~ 1 is

holomorphic in the entire ß-plane and trace ~O) ia meromorphic in ß with a simple

pole at ß= ~ with residue~. Since on the other hand ~ß 0 .9N is nuclear of order zero

and holomorphic in ß for Reß > - ~ we find that the function g(ß) is meromorphic in

this region with a simple pole at ß= ~ and residue~. Since N was completely arbitrary

the proof of Corollary 6 is finished. Another consequence of Theorem 5 is

Corollary 7 The Fredholm determinant det(l-~~ extends to a meroIDorphic function in

the ß-plane whose only poles are at the points f\ =~, k =0,1,2,... which furthermore

are simple.

This follows from the formula [G]

m

det(l-.t&= 1: (-l)Itrace A .tßrr=O
(72)

where A .zß denotes the r-fold exterior product of the linear operator .zß in the space
r



-35-

N

AlD(D) together with the representation .%ß = l 1k
) + .%ß 0 .9'N in (62), where

k=Q
1k

) is an operator of rank 1 which as a function of ß behaves for ß----+~ =!#- as

~k) .1k)7RJk with A\ defined in (64).

Remark In the lIbasisll of AQ)(D) spanned by the functions fk with

1
fk(z) = ((2ß+k,z+1), k = 0,1,2, ... the operator ~ß can be represented for Reß> 2" by

a matrix M= '1c fJß), k,l = 0,1,2, ... with,

k
M (ßJ = H)?4 t k), (2ß+t+k)-'"k,l --rr- ( + t ) R

From this one concludea that all matrix elements '1c l (ß) with k ~ 1 can be analytically,
continued to the entire ß-plane whereas the elements '4J l (/f) = 'R(2ß+f.) are meromor-,
phic in the ß-plane with simple poles at the points ß= ßf. =~ . This gives a formal

proof of our results for the operator $ ß'

Corollary 7 now implies

Q) Z (ß) n-l k 2ß
Theorem 6 The function (({J) = exp 1: nn with Zn(ß) = 1: TI (T x)

1 EF ' Tn k=On= x IX

extends for the Gauss map as a meromorphic function to the entire ß plane. , has trivial

zero's at ß =0 and ß =~ .Hs nontrivial zero's are at ß =ßt such that -.%ß
t

+1 has

eigenvalue t\ = 1 , its nontrivial poles are at ß=~ such that ~~ has t\ = 1 as an

eigenvalue. There are no poles besides ß= 1 on the real ans ß~ 1 and no zero's for

ß~ O.
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Ploof: Apply Corollary 7 to fonnula (13).

Remark: We expect besides ß= 1 no pole on the entire real ans.

Another trivial application of the above results concerns analyticity properties of the folIo

wing function 'M:

(74)

where xn denotes the irrational number which has periodie continued fraction expansion

of period 1 with entry n as defined after relation (49). It is clear that asymptotically for

large n xn behaveslike n-1 and hence 'M(ß) should be somehow related to Riemann's

zeta function 'R(ß) = l n-ß . Corollary 6 implies

n=1

Proposition 2 The function 'M(ß) extends as a meromorphic function to the entire

ß-plane with the only poles at the points ß= % 1 with residue 1.

Proof: Since by Corollary 1

(M(2ß) = Zl(ß) = trace -10) -trace -11)= trace .Z'ß + trace .Z'ß+1 we get from

Corollary 6 that 'M(2ß) extends to a meromorphic function in the entire complex

ß-plane with simple poles at the points ß= :I: ~ and residue ~. From this Proposition 2

folIows.

We have seen that formally the operator ~ß can be represented by the matrix M with
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k
M (ß) = H)r#t+Lj; (2ß+t+k)-'K,t k! ( +l) R

By using this matrix the trace of ~ß can be expressed as

(75)

This series is not absolutely convergent so that one haB to be rather careful to calculate its

values.

Since the function 'M(ß) in (74) can be expressed aB

'M(2ß) = trace :!ß+ trace ~ß+1

we find after a simple calculation using representation (75)

(76)

This representation can be used indeed to rederive the analyticity properties of the function

'M . We are going to show namely that

(77)

where t(ß) is holomorphic in the entire ß-plane. Corollary 5 shows that for n = 1 and

Reß>l
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Using the functional equation far Hesse! functiona [GR]

this simplifies to

m da ~rJ.2s)
'M({J) = pI - .

eS-1 so

H we introduce the finite power Beließ 3f1N)(2S)

N

(N) A trft s2k
~ß (28) = gI'" 1: .k+f1+I)

k=O

we get far Rep> 1 the fallowing representation for 'M:

The first integral in (81) can be perfarmed explicitly ta give

aJ 3f1N) (2s) N kpI 2 = ß ~ (-) \\42 (ß+2k)
8 1 8 L ~I k+ R

oe - k=O

(78)

(79)

(80)

(81)

(82)
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The funetion ,(N)(ß) is obviously holomorphic in the entire ß-plane for all N ~ 2 .

The second integral in (81) defines a funetion t(N)(ß) whieh ia holomorphie in ß for all

ß with Reß> -{2N+1) sinee

(83)

This shows that the funetion 'M can indeed be represented as

(84)

where

(85)

is independent of N for N ~ 2 and hence holomorphic in the entire ß-plane.

Sinee the function 'M is defined by the numbers [n] whieh have niee arithmetie pro

perties like periodie continued fractions one could wonder if 'M does not fulfill some sort

of functional equation. Unfortunately we cannot say much to this problem at present.

Let UB add some remarks concerning the transfer operator .!Iß and i ts Fredholm deter

minant det(l-.!I,&. Quite recen~ly M. Pollicott gave a new approach to Selberg's theory

of compact surfaces of constant negative curvature through the transfer operator method
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[P]. He applied this method to the Bowen-Series maps, analytic expanding Markov maps

of the boundary of the unit disc which have been used by these authors to construct sym

hoHc dynamics for the geodesic flow on these 8urfaces [BoS]. 1t turns out that there exists

a dose connection between the Fredholm determinant of the transfer operator for these

boundary maps and the Selberg zeta function for the ßow on the surface. Ita poles are

known to determine the apectrum of the Laplacian on that surface and this meanB thai also

the transfer operator for the corresponding Bowen-Series map determines this spectrum.

The operator however is completely determined by the dassical geodesic ßow on the sur

face.

From this one should expect that very similar things are true for the modular surface: the

Bowen-Series map in this case is just the Gauss map T in (1) whose transfer operator we

have studied in this paper. One could therefore hope that there is also a dose relation of

the function ((ß) in Theorem 6 and the Selberg zeta function for the geodesie ßow on the

modular surface. 1ndeed, the pole ß= 1 of ((ß) corresponds, when translating Pollicott's

formulas to the present case, just to the lowest lying eigenvalue ..\ = 0 of -& for the

modular surface with f = const. as eigenfunction.

Let us finally come back to our discussion of phase transitions in hyperbolic dynamical

systems in Section 1. There we argued that hyperbolic dynamical systems with a finite

Markov partition cannot have such a phase transition, that is a singularity in the function

P(ß) for real ß. For the Gauss map, whose minimal Markov partition ia infinite, ihis is

not true. From what we have found for the transfer operator $ ß it follows that P(ß) has

a logarithmic singularity at ß= ~ and henceforth T has a phase transition for "finite"

temperature. This follows from the behaviour of $ß for ß----t ßO= ~ determined by

relations (64) and (65):
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(77)

This shows that for real ß the leading eigenvalue ~i(PJ behaves for ß---+ ßO like

where ! is the eigenvalue of the operator ..,r<O). All the other eigenvalues ~i({J) have a

finite value for ß= ßO= ~ . This is just what one expected from Corollary 6.

Appendix: The K-8 entropy of T through the thermodynamic formalism

From the variational principle (9) together with Pesin's identity

1

hK_S(T) = Jdpa(x)log IT' (x) I
o

(Al)

where dJlG = 10~ 2 x~1 dx denotes normalized Gauss measure for Tone derives the

formula [Ra], [RaH]:

d
hK-S(T) = - Qf3 P(ß) Iß=1 . (A2)

Since P(ß) = log ~I(,ß) with ~I(ß) the leading eigenvalue of the transfer operator $ß

in Prop. I we find
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hK_S(T) = - ~ i (ß) Iß=1 (A3)

because Al(1) = 1 . Since for real ß> ~ the eigenvalue Al(ß) is simple it is analytic in

ß in a neighbourhood of ß= 1 and hence

A1(ß) = 1+ (~l)Al (1) + ... (A3)

is a convergent power series for Iß-11 small enough. Since u( $ ßJ = u( .xrY with .xß

the integral operator in Thm. 3, standard perturbation theory applied to the selfadjoint

operator X ß' ß real, gives

(A4)

where X 1 is defined through the power series expansion 01 the operator .%ß aa

(A5)

rp1 is the normalized eigenfunction of Xl with eigenvalue Al(1) and (,) denotes the

usual scalar product in the Hilbert space $2(dm,1R+) . The eigenfunction VJ1 is known

explicitly [MaRI]:

The operator Xi on the other hand is defined through the kernel

Ki (s,t) = 2~ ~(2{St) Iv=l

(A6)

(A7)
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Tms kernel ca.n be written as [AS]

Using this representation one finds

Inserting tms into formula (A4) leads to

(I) k+l
il )= w: 2 JA 1 U[ +

k=O

Since ,(k+2) = ~k+l) + k~l we get

m k 2

i )= j ';2 = - aiog 2
k=l

and therefore finally

2
hK_S(T) = 6 iog 2

(A8)

(A9)

(AIO)

(All)
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Obviously, this result can be derived directly from Pesin's identity (Al). The approach

presented above however is more general in that it allows to determine also the higher

derivatives of P(ß) at ß=1 whieh themselves are again interesting invariants of the

system T: I -----t I .
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